
 6-1 

 

 

 

Econ 423 – Lecture Notes 

 

(These notes are slightly modified versions of lecture notes provided by 

Stock and Watson, 2007. They are for instructional purposes only  

and are not to be distributed outside of the classroom.)  
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Review of Linear Regression 

 

The Linear Model with Two Regressors 

 

Consider the case of two regressors: 

Yi = β0 + β1X1i + β2X2i + ui,  i = 1,…,n 

• Y is the dependent variable 

• X1, X2 are the two independent variables (regressors) 

• (Yi, X1i, X2i) denote the ith observation on Y, X1, and X2. 

• β0 = unknown population intercept 

• β1 = effect on Y of a change in X1, holding X2 constant 

• β2 = effect on Y of a change in X2, holding X1 constant 

• ui = the regression error (omitted factors) 
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Interpretation of coefficients in multiple regression 

 

Yi = β0 + β1X1i + β2X2i + ui,  i = 1,…,n 

 

Consider changing X1 by ∆X1 while holding X2 constant: 

Population regression line before the change: 

 

Y = β0 + β1X1 + β2X2 

 

Population regression line, after the change: 

 

Y + ∆Y = β0 + β1(X1 + ∆X1) + β2X2  
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Before:        Y = β0 + β1(X1 + ∆X1) + β2X2  

 

After:    Y + ∆Y = β0 + β1(X1 + ∆X1) + β2X2 

 

Difference:   ∆Y = β1∆X1 

So: 

    β1 = 
1

Y

X

∆

∆
, holding X2 constant          

 

    β2 = 
2

Y

X

∆

∆
, holding X1 constant 

 

         β0 = predicted value of Y when X1 = X2 = 0. 
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The OLS Estimator in Multiple Regression 

 

With two regressors, the OLS estimator solves: 

 

0 1 2

2

, , 0 1 1 2 2

1

min [ ( )]
n

b b b i i i

i

Y b b X b X
=

− + +∑  

 

• The OLS estimator minimizes the average squared 

difference between the actual values of Yi and the prediction 

(predicted value) based on the estimated line. 

• This minimization problem is solved using calculus 

• This yields the OLS estimators of ββββ0 and ββββ1. 
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Empirical Example:  Class size and educational output 

 

• Policy question:  What is the effect on test scores (or some 

other outcome measure) of reducing class size by one 

student per class?  by 8 students/class? 

• We must use data to find out (is there any way to answer 

this without data?) 
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The California Test Score Data Set 

 

All K-6 and K-8 California school districts (n = 420) 

 

Variables: 

• 5th grade test scores (Stanford-9 achievement test, 

combined math and reading), district average 

• Student-teacher ratio (STR) = no. of students in the 

district divided by no. full-time equivalent teachers 
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Initial look at the data: 

(You should already know how to interpret this table) 

 

This table doesn’t tell us anything about the relationship 

between test scores and the STR.
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Do districts with smaller classes have higher test scores?  

Scatterplot of test score v. student-teacher ratio 

  what does this figure show?  
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Example (con’t):  the California test score data 

 

Regression of TestScore against STR: 

 

�TestScore  = 698.9 – 2.28×STR 

 

Now include percent English Learners in the district (PctEL): 

 

�TestScore  = 686.0 – 1.10×STR – 0.65PctEL 

 

• What happens to the coefficient on STR? 

• Why? (Note: corr(STR, PctEL) = 0.19) 
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Multiple regression in STATA 

 
reg testscr str pctel, robust; 

 

Regression with robust standard errors                 Number of obs =     420 

                                                       F(  2,   417) =  223.82 

                                                       Prob > F      =  0.0000 

                                                       R-squared     =  0.4264 

                                                       Root MSE      =  14.464 

 

------------------------------------------------------------------------------ 

             |               Robust 

     testscr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         str |  -1.101296   .4328472    -2.54   0.011     -1.95213   -.2504616 

       pctel |  -.6497768   .0310318   -20.94   0.000     -.710775   -.5887786 

       _cons |   686.0322   8.728224    78.60   0.000     668.8754     703.189 

------------------------------------------------------------------------------ 
 

�TestScore  = 686.0 – 1.10×STR – 0.65PctEL 

 

More on this printout later… 
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Measures of Fit for Multiple Regression 

 

Actual = predicted + residual:   Yi = ˆ
i

Y  + ˆ
i

u  

 

SER = std. deviation of ˆ
i

u  (with d.f. correction) 

 

RMSE = std. deviation of ˆ
i

u  (without d.f. correction) 

 

R
2 = fraction of variance of Y explained by X 

 
2

R  = “adjusted R2” = R2 with a degrees-of-freedom correction 

that adjusts for estimation uncertainty; 2
R  < R2

 



 6-13 

SER and RMSE 

 

As in regression with a single regressor, the SER and the 

RMSE are measures of the spread of the Y’s around the 

regression line: 

 

SER = 2

1

1
ˆ

1

n

i

i

u
n k =− −

∑  

 

RMSE = 2

1

1
ˆ

n

i

i

u
n =

∑  
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R
2
 and 2

R  

 

The R2 is the fraction of the variance explained – same 

definition as in regression with a single regressor: 

 

R
2 = 

ESS

TSS
 = 1

SSR

TSS
− , 

 

where ESS = 2

1

ˆ ˆ( )
n

i

i

Y Y
=

−∑ , SSR = 2

1

ˆ
n

i

i

u
=

∑ ,  TSS = 2

1

( )
n

i

i

Y Y
=

−∑ . 

• The R2 always increases when you add another regressor 

(why?) – a bit of a problem for a measure of “fit” 
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R
2
 and 2

R , ctd. 

 

The 2
R  (the “adjusted R2”) corrects this problem by 

“penalizing” you for including another regressor – the 2
R  

does not necessarily increase when you add another regressor. 

 

Adjusted R
2:  2

R  = 
1

1
1

n SSR

n k TSS

− 
−  

− − 
    

 

Note that 2
R  < R

2, however if n is large the two will be very 

close. 
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Measures of fit, ctd. 

 

Test score example: 

 

(1)  �TestScore  = 698.9 – 2.28×STR, 

R
2 = .05, SER = 18.6 

 

(2)  �TestScore  = 686.0 – 1.10×STR – 0.65PctEL, 

R
2 = .426, 2

R  = .424, SER = 14.5 

 

• What – precisely – does this tell you about the fit of 

regression (2) compared with regression (1)? 

• Why are the R
2
 and the 

2
R so close in (2)? 
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 The Least Squares Assumptions for Multiple Regression  

 

Yi = β0 + β1X1i + β2X2i + … + βkXki + ui,  i = 1,…,n 

 

1. The conditional distribution of u given the X’s has mean 

zero, that is, E(u|X1 = x1,…, Xk = xk) = 0. 

2. (X1i,…,Xki,Yi), i =1,…,n, are i.i.d. 

3. Large outliers are rare: X1,…, Xk, and Y have four 

moments: E( 4

1iX ) < ∞,…, E( 4

kiX ) < ∞, E( 4

iY ) < ∞. 

4. There is no perfect multicollinearity. 
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Assumption #1: the conditional mean of u given the 

included X’s is zero. 

  E(u|X1 = x1,…, Xk = xk) = 0 

 

• This has the same interpretation as in regression with a 

single regressor. 

• If an omitted variable (1) belongs in the equation (so is 

in u) and (2) is correlated with an included X, then this 

condition fails 

• Failure of this condition leads to omitted variable bias 

• The solution – if possible – is to include the omitted 

variable in the regression. 
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Assumption #2:  (X1i,…,Xki,Yi), i =1,…,n, are i.i.d. 

This is satisfied automatically if the data are collected by 

simple random sampling. 

 

 

Assumption #3:  large outliers are rare (finite fourth 

moments) 

This is the same assumption as we had before for a single 

regressor.  As in the case of a single regressor, OLS can 

be sensitive to large outliers, so you need to check your 

data (scatterplots!) to make sure there are no crazy values 

(typos or coding errors). 
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Assumption #4:  There is no perfect multicollinearity 

Perfect multicollinearity is when one of the regressors is 

an exact linear function of the other regressors. 

 

Example: Suppose you accidentally include STR twice: 
 

regress testscr str str, robust 

Regression with robust standard errors            Number of obs =     420 

                                                  F(  1,   418) =   19.26 

                                                  Prob > F      =  0.0000 

                                                  R-squared     =  0.0512 

                                                  Root MSE      =  18.581 

------------------------------------------------------------------------- 

        |               Robust 

testscr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

--------+---------------------------------------------------------------- 

    str |  -2.279808   .5194892    -4.39   0.000    -3.300945   -1.258671 

    str |  (dropped) 

  _cons |    698.933   10.36436    67.44   0.000     678.5602    719.3057 

------------------------------------------------------------------------- 
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Perfect multicollinearity is when one of the regressors is an 

exact linear function of the other regressors. 

• In the previous regression, β1 is the effect on TestScore of a 

unit change in STR, holding STR constant (???)
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 Multicollinearity, Perfect and Imperfect 

 

The dummy variable trap 

Suppose you have a set of multiple binary (dummy) 

variables, which are mutually exclusive and exhaustive – that 

is, there are multiple categories and every observation falls in 

one and only one category (Freshmen, Sophomores, Juniors, 

Seniors, Other).  If you include all these dummy variables 

and a constant, you will have perfect multicollinearity – this 

is sometimes called the dummy variable trap. 

• Why is there perfect multicollinearity here? 

• Solutions to the dummy variable trap: 

1. Omit one of the groups (e.g. Senior), or 

2. Omit the intercept 
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Perfect multicollinearity, ctd. 

 

• Perfect multicollinearity usually reflects a mistake in the 

definitions of the regressors, or an oddity in the data 

• If you have perfect multicollinearity, your statistical 

software will let you know – either by crashing or giving an 

error message or by “dropping” one of the variables 

arbitrarily 

• The solution to perfect multicollinearity is to modify your 

list of regressors so that you no longer have perfect 

multicollinearity. 
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Imperfect multicollinearity 

 

Imperfect and perfect multicollinearity are quite different 

despite the similarity of the names. 

 

Imperfect multicollinearity occurs when two or more 

regressors are very highly correlated. 

• Why this term?  If two regressors are very highly 

correlated, then their scatterplot will pretty much look 

like a straight line – they are collinear – but unless the 

correlation is exactly ±1, that collinearity is imperfect. 
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Imperfect multicollinearity, ctd. 

Imperfect multicollinearity implies that one or more of the 

regression coefficients will be imprecisely estimated. 

• Intuition: the coefficient on X1 is the effect of X1 holding 

X2 constant; but if X1 and X2 are highly correlated, there is 

very little variation in X1 once X2 is held constant – so the 

data are pretty much uninformative about what happens 

when X1 changes but X2 doesn’t, so the variance of the 

OLS estimator of the coefficient on X1 will be large. 

• Imperfect multicollinearity (correctly) results in large 

standard errors for one or more of the OLS coefficients. 
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The Sampling Distribution of the OLS Estimator 

  

Under the four Least Squares Assumptions, 

• The exact (finite sample) distribution of 1β̂  has mean β1, 

var( 1β̂ ) is inversely proportional to n; so too for 2β̂ . 

• Other than its mean and variance, the exact (finite-n) 

distribution of 1β̂  is very complicated; but for large n… 

• 1β̂  is consistent: 1β̂  
p

→ β1 (law of large numbers) 

•  1 1

1

ˆ ˆ( )

ˆvar( )

Eβ β

β

−
 is approximately distributed N(0,1) (CLT) 

•  So too for 2β̂ ,…, ˆ
k

β  
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Hypothesis Tests and Confidence Intervals in 

Multiple Regression 

 

Hypothesis Tests and Confidence Intervals for a Single 

Coefficient in Multiple Regression 

• 1 1

1

ˆ ˆ( )

ˆvar( )

Eβ β

β

−
 is approximately distributed N(0,1) (CLT). 

• Thus hypotheses on β1 can be tested using the usual t-

statistic, and confidence intervals are constructed as { 1β̂  ± 

1.96×SE( 1β̂ )}. 

• So too for β2,…, βk. 

• 1β̂  and 2β̂  are generally not independently distributed – so 

neither are their t-statistics (more on this later). 
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Example:  The California class size data 

(1)    �TestScore  = 698.9 – 2.28×STR 

(10.4)  (0.52) 

(2)  �TestScore  = 686.0 – 1.10×STR – 0.650PctEL 

       (8.7)  (0.43)    (0.031) 

• The coefficient on STR in (2) is the effect on TestScores of a 

unit change in STR, holding constant the percentage of 

English Learners in the district 

• The coefficient on STR falls by one-half 

• The 95% confidence interval for coefficient on STR in (2) is 

{–1.10 ± 1.96×0.43} = (–1.95, –0.26) 

• The t-statistic testing βSTR = 0 is t = –1.10/0.43 = –2.54, so 

we reject the hypothesis at the 5% significance level 
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Standard errors in multiple regression in STATA 

 
reg testscr str pctel, robust; 

 

Regression with robust standard errors                 Number of obs =     420 

                                                       F(  2,   417) =  223.82 

                                                       Prob > F      =  0.0000 

                                                       R-squared     =  0.4264 

                                                       Root MSE      =  14.464 

 

------------------------------------------------------------------------------ 

             |               Robust 

     testscr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         str |  -1.101296   .4328472    -2.54   0.011     -1.95213   -.2504616 

       pctel |  -.6497768   .0310318   -20.94   0.000     -.710775   -.5887786 

       _cons |   686.0322   8.728224    78.60   0.000     668.8754     703.189 

------------------------------------------------------------------------------ 
 

  �TestScore  = 686.0 – 1.10×STR – 0.650PctEL 

       (8.7)  (0.43)    (0.031) 

We use heteroskedasticity-robust standard errors – for exactly 

the same reason as in the case of a single regressor. 
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Tests of Joint Hypotheses 

 

Let Expn = expenditures per pupil and consider the 

population regression model: 

TestScorei = β0 + β1STRi + β2Expni + β3PctELi + ui 

 

The null hypothesis that “school resources don’t matter,” and 

the alternative that they do, corresponds to: 

 

H0: β1 = 0 and β2 = 0  

vs. H1: either β1 ≠ 0 or β2 ≠ 0 or both 

TestScorei = β0 + β1STRi + β2Expni + β3PctELi + ui 
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Tests of joint hypotheses, ctd. 

H0: β1 = 0 and β2 = 0  

vs. H1: either β1 ≠ 0 or β2 ≠ 0 or both 

• A joint hypothesis specifies a value for two or more 

coefficients, that is, it imposes a restriction on two or more 

coefficients. 

• In general, a joint hypothesis will involve q restrictions.  In 

the example above, q = 2, and the two restrictions are β1 = 0 

and β2 = 0. 

• A “common sense” idea is to reject if either of the 

individual t-statistics exceeds 1.96 in absolute value. 

• But this “one at a time” test isn’t valid: the resulting test 

rejects too often under the null hypothesis (more than 5%)! 
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Why can’t we just test the coefficients one at a time? 

Because the rejection rate under the null isn’t 5%.  We’ll 

calculate the probability of incorrectly rejecting the null using 

the “common sense” test based on the two individual t-

statistics.  To simplify the calculation, suppose that 1β̂  and 2β̂  

are independently distributed.  Let t1 and t2 be the t-statistics: 

t1 = 1

1

ˆ 0

ˆ( )SE

β

β

−
 and t2 = 2

2

ˆ 0

ˆ( )SE

β

β

−
 

 

The “one at time” test is: 

 reject H0: β1 = β2 = 0 if |t1| > 1.96 and/or |t2| > 1.96 

 

What is the probability that this “one at a time” test  rejects 

H0, when H0 is actually true? (It should be 5%.) 
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Suppose t1 and t2 are independent (for this calculation). 

The probability of incorrectly rejecting the null hypothesis 

using  the “one at a time” test  

= 
0

PrH [|t1| > 1.96 and/or |t2| > 1.96] 

= 
0

PrH [|t1| > 1.96, |t2| > 1.96]  + 
0

PrH [|t1| > 1.96, |t2| ≤ 1.96]  

 + 
0

PrH [|t1| ≤ 1.96, |t2| > 1.96]       (disjoint events) 

= 
0

PrH [|t1| > 1.96] × 
0

PrH [|t2| > 1.96] 

 + 
0

PrH [|t1| > 1.96] × 
0

PrH [|t2| ≤ 1.96] 

 + 
0

PrH [|t1| ≤ 1.96] × 
0

PrH [|t2| > 1.96]   

(t1, t2 are independent by assumption) 

 = .05×.05 + .05×.95 + .95×.05 

 = .0975 = 9.75% – which is not the desired 5%!! 
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The size of a test is the actual rejection rate under the null 

hypothesis. 

• The size of the “common sense” test isn’t 5%! 

• In fact, its size depends on the correlation between t1 and 

t2 (and thus on the correlation between 1β̂  and 2β̂ ). 

 

Two Solutions: 

• Use a different critical value in this procedure – not 1.96 

(this is the “Bonferroni method) (this method is rarely 

used in practice however) 

• Use a different test statistic that test both β1 and β2 at 

once: the F-statistic (this is common practice) 
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The F-statistic 

The F-statistic tests all parts of a joint hypothesis at once. 

 

Formula for the special case of the joint hypothesis β1 = β1,0 

and β2 = β2,0 in a regression with two regressors: 

 

F = 1 2

1 2

2 2

1 2 , 1 2

2

,

ˆ21

ˆ2 1

t t

t t

t t t tρ

ρ

 + −
  − 

 

 

where 
1 2,

ˆ
t tρ  estimates the correlation between t1 and t2. 

 

Reject when F is large (how large?) 
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The F-statistic testing β1 and β2: 

 

F = 1 2

1 2

2 2

1 2 , 1 2

2

,

ˆ21

ˆ2 1

t t

t t

t t t tρ

ρ

 + −
  − 

 

 

• The F-statistic is large when t1 and/or t2 is large 

• The F-statistic corrects (in just the right way) for the 

correlation between t1 and t2. 

• The formula for more than two β’s is nasty unless you use 

matrix algebra. 

• This gives the F-statistic a nice large-sample approximate 

distribution, which is… 



 6-37 

Large-sample distribution of the F-statistic 

Consider special case that t1 and t2 are independent, so 
1 2,

ˆ
t tρ  

p

→ 0; in large samples the formula becomes 

 

F = 1 2

1 2

2 2

1 2 , 1 2

2

,

ˆ21

ˆ2 1

t t

t t

t t t tρ

ρ

 + −
  − 

 ≅ 2 2

1 2

1
( )

2
t t+  

 

• Under the null, t1 and t2 have standard normal distributions 

that, in this special case, are independent 

• The large-sample distribution of the F-statistic is the 

distribution of the average of two independently 

distributed squared standard normal random variables. 
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The chi-squared distribution with q degrees of freedom ( 2

qχ ) 

is defined to be the distribution of the sum of q independent 

squared standard normal random variables. 

 

In large samples, F is distributed as 2

qχ /q. 

 

Selected large-sample critical values of 2

qχ /q 

q   5% critical value 

1     3.84  (why?) 

2     3.00  (the case q=2 above) 

3     2.60 

4     2.37 

5     2.21   
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Computing the p-value using the F-statistic: 

p-value = tail probability of the 2

qχ /q distribution  

beyond the F-statistic actually computed. 

 

Implementation in STATA 

Use the “test” command after the regression 

 

Example:  Test the joint hypothesis that the population 

coefficients on STR and expenditures per pupil (expn_stu) are 

both zero, against the alternative that at least one of the 

population coefficients is nonzero.
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F-test example, California class size data: 
 

reg testscr str expn_stu pctel, r; 

 

Regression with robust standard errors                 Number of obs =     420 

                                                       F(  3,   416) =  147.20 

                                                       Prob > F      =  0.0000 

                                                       R-squared     =  0.4366 

                                                       Root MSE      =  14.353 

 

------------------------------------------------------------------------------ 

             |               Robust 

     testscr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         str |  -.2863992   .4820728    -0.59   0.553    -1.234001     .661203 

    expn_stu |   .0038679   .0015807     2.45   0.015     .0007607    .0069751 

       pctel |  -.6560227   .0317844   -20.64   0.000    -.7185008   -.5935446 

       _cons |   649.5779   15.45834    42.02   0.000     619.1917    679.9641 

------------------------------------------------------------------------------ 

         NOTE 

 

test str expn_stu;    The test command follows the regression 

 

 ( 1)  str = 0.0     There are q=2 restrictions being tested 

 ( 2)  expn_stu = 0.0 

 

       F(  2,   416) =    5.43 The 5% critical value for q=2 is 3.00 

Prob > F =    0.0047    Stata computes the p-value for you 
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More on F-statistics:  a simple F-statistic formula that is 

easy to understand (it is only valid if the errors are 

homoskedastic, but it might help intuition). 

 

The homoskedasticity-only F-statistic 

When the errors are homoskedastic, there is a simple formula 

for computing the “homoskedasticity-only” F-statistic: 

• Run two regressions, one under the null hypothesis (the 

“restricted” regression) and one under the alternative 

hypothesis (the “unrestricted” regression). 

• Compare the fits of the regressions – the R2’s – if the 

“unrestricted” model fits sufficiently better, reject the null 
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The “restricted” and “unrestricted” regressions 

Example: are the coefficients on STR and Expn zero? 

 

Unrestricted population regression (under H1): 

TestScorei = β0 + β1STRi + β2Expni + β3PctELi + ui 

 

Restricted population regression (that is, under H0): 

TestScorei = β0 + β3PctELi + ui     (why?) 

 

• The number of restrictions under H0 is q = 2 (why?). 

• The fit will be better (R2 will be higher) in the unrestricted 

regression (why?) 

By how much must the R2 increase for the coefficients on 

Expn and PctEL to be judged statistically significant? 



 6-43 

Simple formula for the homoskedasticity-only F-statistic: 

 

F = 
2 2

2

( ) /

(1 ) /( 1)
unrestricted restricted

unrestricted unrestricted

R R q

R n k

−

− − −
  

where:  
2

restrictedR = the R2 for the restricted regression  
2

unrestrictedR  = the R2 for the unrestricted regression 

q = the number of restrictions under the null 

kunrestricted = the number of regressors in the 

   unrestricted regression. 

• The bigger the difference between the restricted and 

unrestricted R2’s – the greater the improvement in fit by 

adding the variables in question – the larger is the 

homoskedasticity-only F. 
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Example: 

Restricted regression: 

�TestScore  = 644.7 –0.671PctEL,  2

restrictedR  = 0.4149 

          (1.0)  (0.032) 

Unrestricted regression: 

�TestScore  = 649.6 – 0.29STR + 3.87Expn – 0.656PctEL 

       (15.5)  (0.48)      (1.59)    (0.032) 

 2

unrestrictedR  = 0.4366, kunrestricted = 3,  q = 2 

so     F = 
2 2

2

( ) /

(1 ) /( 1)
unrestricted restricted

unrestricted unrestricted

R R q

R n k

−

− − −
 

   = 
(.4366 .4149) / 2

(1 .4366) /(420 3 1)

−

− − −
 = 8.01 

Note: Heteroskedasticity-robust F = 5.43… 
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The homoskedasticity-only F-statistic – summary 

F = 
2 2

2

( ) /

(1 ) /( 1)
unrestricted restricted

unrestricted unrestricted

R R q

R n k

−

− − −
 

 

• The homoskedasticity-only F-statistic rejects when adding 

the two variables increased the R2 by “enough” – that is, 

when adding the two variables improves the fit of the 

regression by “enough” 

• If the errors are homoskedastic, then the 

homoskedasticity-only F-statistic has a large-sample 

distribution that is 2

qχ /q. 

• But if the errors are heteroskedastic, the large-sample 

distribution is a mess and is not 2

qχ /q 
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Digression:  The F distribution  

Your regression printouts might refer to the “F” distribution. 

 

If the four multiple regression LS assumptions hold and: 

5. ui is homoskedastic, that is, var(u|X1,…,Xk) does not 

depend on X’s 

6. u1,…,un are normally distributed 

 

then the homoskedasticity-only F-statistic has the  

“Fq,n-k–1” distribution, where q = the number of restrictions 

and k = the number of regressors under the alternative (the 

unrestricted model). 

• The F distribution is to the 2

qχ /q distribution what the 

tn–1 distribution is to the N(0,1) distribution 
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The Fq,n–k–1 distribution: 

• The F distribution is tabulated many places 

• As n → ∞, the Fq,n-k–1 distribution asymptotes to the 2

qχ /q  

distribution: 

The Fq,∞∞∞∞ and 2

qχ /q distributions are the same. 

• For q not too big and n≥100, the Fq,n–k–1 distribution and 

the 2

qχ /q distribution are essentially identical. 

• Many regression packages (including STATA) compute 

p-values of F-statistics using the F distribution 

• You will encounter the F distribution in published 

empirical work. 
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Testing Single Restrictions on Multiple Coefficients 

 

Yi = β0 + β1X1i + β2X2i + ui,  i = 1,…,n 

 

Consider the null and alternative hypothesis, 

 

  H0: β1 = β2    vs.  H1: β1 ≠ β2 

 

This null imposes a single restriction (q = 1) on multiple 

coefficients – it is not a joint hypothesis with multiple 

restrictions (compare with β1 = 0 and β2 = 0). 
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Testing single restrictions on multiple coefficients, ctd.  

 

Here are two methods for testing single restrictions on 

multiple coefficients: 

 

1. Rearrange (“transform”) the regression 

Rearrange the regressors so that the restriction 

becomes a restriction on a single coefficient in an 

equivalent regression; or, 

 

2. Perform the test directly 

Some software, including STATA, lets you test 

restrictions using multiple coefficients directly  
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Method 1:  Rearrange (“transform”) the regression 

    

   Yi = β0 + β1X1i + β2X2i + ui  

 

H0: β1 = β2    vs.  H1: β1 ≠ β2 

 

Add and subtract β2X1i: 

Yi = β0 + (β1 – β2) X1i + β2(X1i + X2i) + ui 

or 

Yi = β0 + γ1 X1i + β2Wi + ui 

where 

   γ1 = β1 – β2 

   Wi = X1i + X2i 
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Rearrange the regression, ctd. 

(a) Original system: 

Yi = β0 + β1X1i + β2X2i + ui  

H0: β1 = β2   vs.  H1: β1 ≠ β2 

  

(b) Rearranged (“transformed”) system: 

Yi = β0 + γ1 X1i + β2Wi + ui 

where γ1 = β1 – β2 and Wi = X1i + X2i 

so 

  H0: γ1 = 0  vs.  H1: γ1 ≠ 0 

 

The testing problem is now a simple one:  

test whether γ1 = 0 in specification (b). 
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Method 2: Perform the test directly 

 

Yi = β0 + β1X1i + β2X2i + ui  

H0: β1 = β2     vs.  H1: β1 ≠ β2 

Example:  

TestScorei = β0 + β1STRi + β2Expni + β3PctELi + ui 

 

In STATA, to test β1 = β2 vs. β1 ≠ β2 (two-sided): 

 
regress testscore str expn pctel, r 

test str=expn 

 

The details of implementing this method are software-

specific. 
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Confidence Sets for Multiple Coefficients  

 

Yi = β0 + β1X1i + β2X2i + … + βkXki + ui,  i = 1,…,n 

 

What is a joint confidence set for β1 and β2? 

A 95% joint confidence set is: 

• A set-valued function of the data that contains the true 

parameter(s) in 95% of hypothetical repeated samples. 

• The set of parameter values that cannot be rejected at the 

5% significance level. 

• You can find a 95% confidence set as the set of (β1, β2) that 

cannot be rejected at the 5% level using an F-test (why not 

just combine the two 95% confidence intervals?). 
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Joint confidence sets ctd. 

Let F(β1,0,β2,0) be the (heteroskedasticity-robust) F-statistic 

testing the hypothesis that β1 = β1,0 and β2 = β2,0: 

 

95% confidence set = {β1,0, β2,0:  F(β1,0, β2,0) < 3.00} 

• 3.00 is the 5% critical value of the F2,∞ distribution 

• This set has coverage rate 95% because the test on which 

it is based (the test it “inverts”) has size of 5% 

5% of the time, the test incorrectly rejects the null 

when the null is true, so 95% of the time it does not; 

therefore the confidence set constructed as the 

nonrejected values contains the true value 95% of the 

time (in 95% of all samples). 
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The confidence set based on the F-statistic is an ellipse 

{β1, β2:  F = 1 2

1 2

2 2

1 2 , 1 2

2
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t t

t t
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  − 

 ≤ 3.00} 

Now 

 F = 
1 2

1 2

2 2

1 2 , 1 22

,

1
ˆ2

ˆ2(1 )
t t

t t

t t t tρ
ρ

 × + − −
 

1 2

1 2

2

,

2 2

2 2,0 1 1,0 1 1,0 2 2,0

,

2 1 1 2

1

ˆ2(1 )

ˆ ˆ ˆ ˆ
ˆ2

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

t t

t t
SE SE SE SE

ρ

β β β β β β β β
ρ

β β β β

= ×
−
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This is a quadratic form in β1,0 and β2,0 – thus the 

boundary of the set F = 3.00 is an ellipse.  
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Confidence set based on inverting the F-statistic 
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Nonlinear Functions of a Single Independent Variable 

 

We’ll look at two complementary approaches: 

 

1.  Polynomials in X 

The population regression function is approximated by a 

quadratic, cubic, or higher-degree polynomial 

 

2.  Logarithmic transformations 

• Y and/or X is transformed by taking its logarithm 

• this gives a “percentages” interpretation that makes 

sense in many applications 



 6-59 

1.  Polynomials in X 

Approximate the population regression function by a 

polynomial: 

 

Yi = β0 + β1Xi + β2
2

i
X  +…+ βr

r

i
X  + ui 

 

• This is just the linear multiple regression model – except 

that the regressors are powers of X! 

• Estimation, hypothesis testing, etc. proceeds as in the 

multiple regression model using OLS 

• The coefficients are difficult to interpret, but the 

regression function itself is interpretable 
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Example:  the TestScore – Income relation 

 

Incomei = average district income in the ith district 

 (thousands of dollars per capita) 

 

Quadratic specification: 

 

TestScorei = β0 + β1Incomei + β2(Incomei)
2 + ui 

 

Cubic specification: 

 

TestScorei = β0 + β1Incomei + β2(Incomei)
2  

+ β3(Incomei)
3 + ui 
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Estimation of the quadratic specification in STATA 

 
generate avginc2 = avginc*avginc;       Create a new regressor  

reg testscr avginc avginc2, r; 

 

Regression with robust standard errors                 Number of obs =     420 

                                                       F(  2,   417) =  428.52 

                                                       Prob > F      =  0.0000 

                                                       R-squared     =  0.5562 

                                                       Root MSE      =  12.724 

 

------------------------------------------------------------------------------ 

             |               Robust 

     testscr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      avginc |   3.850995   .2680941    14.36   0.000      3.32401    4.377979 

     avginc2 |  -.0423085   .0047803    -8.85   0.000     -.051705   -.0329119 

       _cons |   607.3017   2.901754   209.29   0.000     601.5978    613.0056 

------------------------------------------------------------------------------ 

 

Test the null hypothesis of linearity against the alternative 

that the regression function is a quadratic…. 
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Interpreting the estimated regression function: 

(a)  Plot the predicted values 

�TestScore  = 607.3 + 3.85Incomei – 0.0423(Incomei)
2 

(2.9)  (0.27)              (0.0048) 
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Interpreting the estimated regression function, ctd: 

(b)  Compute “effects” for different values of X 

 

�TestScore  = 607.3 + 3.85Incomei – 0.0423(Incomei)
2 

 (2.9)  (0.27)              (0.0048) 
 

Predicted change in TestScore for a change in income from 

$5,000 per capita to $6,000 per capita: 

 

∆�TestScore  = 607.3 + 3.85×6 – 0.0423×62 

     – (607.3 + 3.85×5 – 0.0423×52) 

    = 3.4 
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�TestScore  = 607.3 + 3.85Incomei – 0.0423(Incomei)
2 

 

Predicted “effects” for different values of X: 

 

Change in Income ($1000 per capita) ∆�TestScore  

from 5 to 6 3.4 

from 25 to 26 1.7 

from 45 to 46 0.0 

 

The “effect” of a change in income is greater at low than high 

income levels (perhaps, a declining marginal benefit of an 

increase in school budgets?) 

Caution!  What is the effect of a change from 65 to 66?   

Don’t extrapolate outside the range of the data! 
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Estimation of a cubic specification in STATA 

 
gen avginc3 = avginc*avginc2;    Create the cubic regressor 

reg testscr avginc avginc2 avginc3, r; 

 

Regression with robust standard errors                 Number of obs =     420 

                                                       F(  3,   416) =  270.18 

                                                       Prob > F      =  0.0000 

                                                       R-squared     =  0.5584 

                                                       Root MSE      =  12.707 

 

------------------------------------------------------------------------------ 

             |               Robust 

 

     testscr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      avginc |   5.018677   .7073505     7.10   0.000     3.628251    6.409104 

     avginc2 |  -.0958052   .0289537    -3.31   0.001    -.1527191   -.0388913 

     avginc3 |   .0006855   .0003471     1.98   0.049     3.27e-06    .0013677 

       _cons |    600.079   5.102062   117.61   0.000     590.0499     610.108 

------------------------------------------------------------------------------ 
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Testing the null hypothesis of linearity, against the alternative 

that the population regression is quadratic and/or cubic, that 

is, it is a polynomial of degree up to 3: 

 

H0:  pop’n coefficients on Income
2 and Income

3 = 0 

H1: at least one of these coefficients is nonzero. 

 
test avginc2 avginc3;  Execute the test command after running the regression 

 

 ( 1)  avginc2 = 0.0 

 ( 2)  avginc3 = 0.0 

 

F(  2,   416) =   37.69 

Prob > F =    0.0000 

 

The hypothesis that the population regression is linear is 

rejected at the 1% significance level against the alternative 

that it is a polynomial of degree up to 3. 
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Summary: polynomial regression functions 

 

Yi = β0 + β1Xi + β2 
2

i
X  +…+ βr

r

i
X  + ui 

• Estimation: by OLS after defining new regressors 

• Coefficients have complicated interpretations 

• To interpret the estimated regression function: 

o plot predicted values as a function of x 

o compute predicted ∆Y/∆X at different values of x 

• Hypotheses concerning degree r can be tested by t- and F-

tests on the appropriate (blocks of) variable(s). 

• Choice of degree r 

o plot the data; t- and F-tests, check sensitivity of 

estimated effects; judgment. 

o Or use model selection criteria (later) 
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2.  Logarithmic functions of Y and/or X 

• ln(X) = the natural logarithm of X 

• Logarithmic transforms permit modeling relations in 

“percentage” terms (like elasticities), rather than 

linearly. 

 

Here’s why:  ln(x+∆x) – ln(x) = ln 1
x

x

∆ 
+ 

 
 ≅ 

x

x

∆
 

(calculus: 
ln( ) 1d x

dx x
= ) 

Numerically: 

      ln(1.01) = .00995 ≅ .01;  

ln(1.10) = .0953 ≅ .10 (sort of) 
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The three log regression specifications: 

 

Case Population regression function 

I.    linear-log Yi = β0 + β1ln(Xi) + ui 

II.   log-linear ln(Yi) = β0 + β1Xi + ui 

III.  log-log ln(Yi) = β0 + β1ln(Xi) + ui 

 

• The interpretation of the slope coefficient differs in each 

case. 

• The interpretation is found by applying the general 

“before and after” rule: “figure out the change in Y for a 

given change in X.” 
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I. Linear-log population regression function 

 

Y = β0 + β1ln(X)       (b) 

 

Now change X:  Y + ∆Y = β0 + β1ln(X + ∆X)     (a) 

 

Subtract (a) – (b):    ∆Y = β1[ln(X + ∆X) – ln(X)] 

 

now    ln(X + ∆X) – ln(X) ≅ 
X

X

∆
, 

so       ∆Y ≅ β1
X

X

∆
 

or      β1 ≅ 
/

Y

X X

∆

∆
  (small ∆X) 
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Linear-log case, continued 

 

Yi = β0 + β1ln(Xi) + ui 

 

for small ∆X, 

β1 ≅ 
/

Y

X X

∆

∆
 

 

Now 100×
X

X

∆
 = percentage change in X, so a 1% increase in 

X (multiplying X by 1.01) is associated with a .01ββββ1 change 

in Y. 

(1% increase in X ⇒ .01 increase in ln(X)  

  ⇒ .01β1 increase in Y) 
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Example:  TestScore vs. ln(Income) 

• First defining the new regressor, ln(Income) 

• The model is now linear in ln(Income), so the linear-log 

model can be estimated by OLS: 

 

�TestScore  = 557.8 + 36.42×ln(Incomei) 
 (3.8)    (1.40)  

 

so a 1% increase in Income is associated with an increase 

in TestScore of 0.36 points on the test. 

• Standard errors, confidence intervals, R2 – all the usual 

tools of regression apply here. 

• How does this compare to the cubic model? 
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The linear-log and cubic regression functions 
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II. Log-linear population regression function 

 

ln(Y) = β0 + β1X    (b) 

 

Now change X:   ln(Y + ∆Y) = β0 + β1(X + ∆X)   (a) 

 

Subtract (a) – (b):     ln(Y + ∆Y) – ln(Y) = β1∆X 

 

so     
Y

Y

∆
 ≅ β1∆X  

or      β1 ≅ 
/Y Y

X

∆

∆
 (small ∆X) 
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Log-linear case, continued 

ln(Yi) = β0 + β1Xi + ui 

 

for small ∆X,  β1 ≅ 
/Y Y

X

∆

∆
 

• Now 100×
Y

Y

∆
 = percentage change in Y, so a change in X 

by one unit (∆∆∆∆X = 1) is associated with a 100ββββ1% change 

in Y. 

• 1 unit increase in X ⇒ β1 increase in ln(Y)  

  ⇒ 100β1% increase in Y 
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III. Log-log population regression function 

 

ln(Yi) = β0 + β1ln(Xi) + ui   (b) 

 

Now change X:  ln(Y + ∆Y) = β0 + β1ln(X + ∆X)  (a) 

  

Subtract:  ln(Y + ∆Y) – ln(Y) = β1[ln(X + ∆X) – ln(X)] 

 

so     
Y

Y

∆
 ≅ β1

X

X

∆
  

or      β1 ≅ 
/

/

Y Y

X X

∆

∆
 (small ∆X) 
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Log-log case, continued 

 

ln(Yi) = β0 + β1ln(Xi) + ui 

 

for small ∆X, 

β1 ≅ 
/

/

Y Y

X X

∆

∆
 

Now 100×
Y

Y

∆
 = percentage change in Y, and 100×

X

X

∆
 = 

percentage change in X, so a 1% change in X is associated 

with a ββββ1% change in Y. 

• In the log-log specification, ββββ1 has the interpretation of 

an elasticity. 
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Example: ln( TestScore) vs. ln( Income) 

• First defining a new dependent variable, ln(TestScore), and 

the new regressor, ln(Income) 

• The model is now a linear regression of ln(TestScore) 

against ln(Income), which can be estimated by OLS: 

 

�ln( )TestScore  = 6.336 + 0.0554×ln(Incomei) 

   (0.006)  (0.0021)  
 

An 1% increase in Income is associated with an increase 

of .0554% in TestScore (Income up by a factor of 1.01, 

TestScore up by a factor of 1.000554) 
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Example: ln( TestScore) vs. ln( Income), ctd. 

 
�ln( )TestScore  = 6.336 + 0.0554×ln(Incomei) 

   (0.006)  (0.0021)  
 

• For example, suppose income increases from $10,000 to 

$11,000, or by 10%.  Then TestScore increases by 

approximately .0554×10% = .554%.  If TestScore = 650, 

this corresponds to an increase of .00554×650 = 3.6 

points. 

• How does this compare to the log-linear model? 
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The log-linear and log-log specifications: 

 

• Note vertical axis 

• Neither seems to fit as well as the cubic or linear-log
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Summary:  Logarithmic transformations 

 

• Three cases, differing in whether Y and/or X is 

transformed by taking logarithms. 

• The regression is linear in the new variable(s) ln(Y) and/or 

ln(X), and the coefficients can be estimated by OLS. 

• Hypothesis tests and confidence intervals are now 

implemented and interpreted “as usual.” 

• The interpretation of β1 differs from case to case. 

• Choice of specification should be guided by judgment 

(which interpretation makes the most sense in your 

application?), tests, and plotting predicted values 

 

 


