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First-Order Autoregressive Process (or AR(1) Process)

Consider the process

yt = µ+ αyt−1 + εt , t ∈ Z,

where we assume that

|α| < 1,

{εt} ≡ i .i .d .
(
0, σ2ε

)
with 0 < σ2ε < ∞.

To obtain the moving average representation of the AR (1) process,
we shall consider here an approach due to Kasparis (2016). To
proceed, note that, by using the lag operator notation, we can rewrite
this process as

α (L) yt = (1− αL) yt = µ+ εt , t ∈ Z,

where
α (L) = 1− αL.
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First-Order Autoregressive Process (or AR(1) Process)

Hence, a moving-average representation can be obtained if we can
invert the lag operator α (L) to obtain

yt = α (L)−1 (µ+ εt )

= (1− αL)−1 (µ+ εt ) , t ∈ Z.
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First-Order Autoregressive Process (or AR(1) Process)

Definition: Let V be a real (or complex) linear space (vector space).
A function ‖·‖ : V→ R with the properties

P1
‖ϕ‖ ≥ 0 (positivity)

P2
‖ϕ‖ = 0 if and only if ϕ = 0 (definiteness)

P3
‖αϕ‖ = |α| ‖ϕ‖ (homongeneity)

P4
‖ϕ+ ψ‖ ≤ ‖ϕ‖+ ‖ψ‖ (triangle inequality)

for all ϕ,ψ ∈ V and for all α ∈ R (or C) is called a norm on V. A
linear space V equipped with a norm is called a normed space.

(Econ 624) March 26, 2021 4 / 44



First-Order Autoregressive Process (or AR(1) Process)

Defintion: A linear operator A : V→W from a normed space V

into a normed space W is called bounded if there exists a positive
constant C such that

‖Aϕ‖ ≤ C ‖ϕ‖
for all ϕ ∈ V. Each number C for which the inequality holds is called
a bound for the operator A.
Remark: With the aid of linearity of the operator A, it is easy to see
that there exists a positive constant C such that

‖Aϕ‖ ≤ C ‖ϕ‖
if and only if

‖Aϕ‖
‖ϕ‖ =

∥∥∥∥A ϕ

‖ϕ‖

∥∥∥∥ (by homogeneity)
≤ C

for all ϕ ∈ V.
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First-Order Autoregressive Process (or AR(1) Process)

Remark (con’t): Moreover, define

ϕ∗ =
ϕ

‖ϕ‖

so that

‖ϕ∗‖ =

∥∥∥∥ ϕ

‖ϕ‖

∥∥∥∥ (again by homogeneity)
=
‖ϕ‖
‖ϕ‖

= 1

Note that ϕ∗ ∈ V since a linear space is closed under scalar
multiplication.
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First-Order Autoregressive Process (or AR(1) Process)

Hence, A is bounded if and only if there exists a positive constant C
such that

‖Aϕ∗‖ ≤ C
for all ϕ∗ ∈ V such that ‖ϕ∗‖ = 1. It, thus, follows that A is
bounded if and only if

‖A‖ := sup
‖ϕ‖=1

‖Aϕ‖ = sup
‖ϕ‖≤1

‖Aϕ‖ < ∞

where the number ‖A‖ is the smallest bound for A and is called the
norm of A. Thus, a linear operator is bounded if and only if it maps
bounded sets in V, i.e., {ϕ : ‖ϕ‖ ≤ 1} into bounded sets in W.
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First-Order Autoregressive Process (or AR(1) Process)

Definition (Cauchy Sequence): A sequence {ϕn} of elements in a
normed space V is called a Cauchy sequence if for every ε > 0, there
exists an integer N (ε) such that

‖ϕn − ϕm‖ < ε

for all n,m ≥ N (ε); that is, if

lim
n,m→∞

‖ϕn − ϕm‖ = 0.

Definition (Completeness and Banach Space): A subset U of a
normed space is called complete if every Cauchy sequence of elements
in U converges to an element in U. A normed space U is called a
Banach space if it is complete.
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First-Order Autoregressive Process (or AR(1) Process)

Theorem 1: Let B be a Banach space. If T : B→ B is bounded
linear operator and ‖I − T‖ < 1, where I : B→ B denotes the
identity operator. Then, T has a bounded inverse operator on B

which is given by the Neumann series

T−1 =
∞

∑
k=0

(I − T )k

and which satisfies ∥∥T−1∥∥ ≤ 1
1− ‖I − T‖ .

The iterated operators (I − T )k are defined by (I − T )0 := I and
(I − T )k := (I − T ) (I − T )k−1 for k ∈N.
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First-Order Autoregressive Process (or AR(1) Process)

Consider the space V of sequences Y (ω) = {Yt (ω)}t∈Z on some
probability space (Ω,F,P) that satisfies

sup
t
E |Yt | < ∞.

We can take V to be a normed space, equipped with the (pseudo or
semi) norm

‖Y ‖ = sup
t∈Z

E |Yt | .

Remark: Note that any covariance stationary sequence belongs to
the space V, but the setup here is more general since covariance
stationarity requires a higher (second) moment condition as well as
homogeneity of the first two moments with respect to t.

Lemma 1 (Kasparis, 2016): The normed space V is complete and
therefore is a Banach space.
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First-Order Autoregressive Process (or AR(1) Process)

Some Calculations: Since

sup
t∈Z

E |Yt | = sup
t∈Z

E |Yt−1| = sup
t∈Z

E |LYt | ,

we have

‖L‖ = sup
‖Y ‖=1

‖LY ‖

= sup
{Yt}∈V:supt E |Yt |=1

(
sup
t∈Z

E |Yt−1|
)

= 1.
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First-Order Autoregressive Process (or AR(1) Process)

Some Calculations (con’t): Similarly, we have

sup
t∈Z

E |Yt | = sup
t∈Z

E |Yt+1| = sup
t∈Z

E
∣∣L−1Yt ∣∣ ,

so that ∥∥L−1∥∥ = sup
‖Y ‖=1

∥∥L−1Y ∥∥
= sup

{Yt}∈V:supt E |Yt |=1

(
sup
t∈Z

E |Yt+1|
)

= 1.

where L−1 is the inverse of L.
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First-Order Autoregressive Process (or AR(1) Process)

Some Calculations (con’t):
Now, given the assumption |α| < 1, we have

‖1− α (L)‖ = ‖1− (1− αL)‖
= ‖αL‖
= |α| ‖L‖
= |α|
< 1.
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First-Order Autoregressive Process (or AR(1) Process)

Some Calculations (con’t): We can, thus, apply Theorem 1 to the
AR (1) case by taking

T = α (L) = 1− αL

and note that

α (L)−1 =
∞

∑
j=0
(1− [1− αL])j

=
∞

∑
j=0

αjLj .
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First-Order Autoregressive Process (or AR(1) Process)

Some Calculations (con’t): It then follows that

yt = α (L)−1 (µ+ εt )

=
∞

∑
j=0

αjLj (µ+ εt )

= µ
∞

∑
j=0

αj +
∞

∑
j=0

αj εt−j

=
µ

1− α
+

∞

∑
j=0

αj εt−j

where the last equality is obtained by applying the summation formula
for geometric series

∞

∑
j=0

αj =
1

1− α

given that |α| < 1.
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First-Order Autoregressive Process (or AR(1) Process)

Remarks:

(i) The representation

yt =
µ

1− α
+

∞

∑
j=0

αj εt−j (1)

is often referred to as the stationary solution of the AR (1) process

yt = µ+ αyt−1 + εt , t ∈ Z.

Moreover, this AR (1) process is said to be causal because it only
depends on past innovations.

(ii) From expression (1), we see that {yt} is strictly stationary and
ergodic since it is a measurable transformation of {εt}, which is an
i .i .d . sequence and, thus, strictly stationary and ergodic.
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First-Order Autoregressive Process (or AR(1) Process)

Remarks (con’t):

(iii) Note, in addition, that in this case

∞

∑
j=0

∣∣∣ψj ∣∣∣ =
∞

∑
j=0

∣∣αj ∣∣
=

∞

∑
j=0
|α|j

=
1

1− |α|
< ∞

so that the moving average coeffi cients are absolutely summable.

(Econ 624) March 26, 2021 17 / 44



First-Order Autoregressive Process (or AR(1) Process)

Moments: We can exploit the stationarity of the AR (1) process to
calculate its mean, variance, and autocovariances

1. Mean:

E [yt ] = E [µ] + E [αyt−1] + E [εt ]

= µ+ αE [yt−1] (since E [εt ] = 0 by assumption)

This implies that
E [yt ]− αE [yt−1] = µ

or

(1− α)E [yt ] = µ (since by stationarity E [yt ] = E [yt−1])

from which we deduce that

E [yt ] =
µ

1− α

which is well-defined given that |α| < 1.
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First-Order Autoregressive Process (or AR(1) Process)

Moments (con’t):

2. Variance:

Var (yt ) = Var (µ+ αyt−1 + εt )

= α2Var (yt−1) + Var (εt ) + 2Cov (yt−1, εt )

= α2Var (yt−1) + σ2ε .

It follows that

σ2ε = Var (yt )− α2Var (yt−1)

=
(
1− α2

)
Var (yt ) (by stationarity)

or

Var (yt ) =
σ2ε

1− α2
< ∞

(
given that 0 < σ2ε < ∞ and |α| < 1

)
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First-Order Autoregressive Process (or AR(1) Process)

Moments (con’t):

3. Autocovariances: For positive integer h, note that

Cov (yt , yt−h) = Cov (µ+ αyt−1 + εt , yt−h)

= αCov (yt−1, yt−h) + Cov (εt , yt−h)

= αCov (yt−1, yt−h)

Now, for h = 1, we have

Cov (yt , yt−1) = αCov (yt−1, yt−1)

= αVar (yt ) (by stationarity)

=
ασ2ε
1− α2

= γy (1) .
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First-Order Autoregressive Process (or AR(1) Process)

3. Autocovariances (con’t): Iterating backwards, we also see that for
h = 2

Cov (yt , yt−2) = αCov (yt−1, yt−2)

= αCov (yt , yt−1) (by stationarity)

=
α2σ2ε
1− α2

= γy (2) .

It is, thus, clear that for any positive integer h, we would have

Cov (yt , yt−h) =
αhσ2ε
1− α2

= γy (h) .
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First-Order Autoregressive Process (or AR(1) Process)

3. Autocovariances (con’t): In addition, for negative integer h, we
have

Cov (yt , yt−h) = Cov
(
yt , yt+|h|

)
= Cov

(
yt−|h|, yt

)
(by stationarity)

= Cov
(
yt , yt−|h|

)
=

α|h|σ2ε
1− α2

Hence, in general, for any integer h, we have

γy (h) =
α|h|σ2ε
1− α2

.

(Econ 624) March 26, 2021 22 / 44



p-th Order Autoregressive Process (or AR(p) Process)

Consider the process

yt = µ+ α1yt−1 + · · ·+ αpyt−p + εt , t ∈ Z,

where {εt} ≡ i .i .d .
(
0, σ2ε

)
with 0 < σ2ε < ∞. Again, using the lag

operator notation, we can rewrite this process as

α (L) yt = µ+ εt , t ∈ Z,

where
α (L) = 1− α1L− · · · − αpLp
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p-th Order Autoregressive Process (or AR(p) Process)

Now, factor this lag operator polynomial as follows:

α (L) =

(
1− 1

ρ1
L
)(

1− 1
ρ2
L
)
× · · · ×

(
1− 1

ρp
L

)
= α1 (L) α2 (L)× · · · × αp (L)

where {ρi : i = 1, ..., p} are the roots of the polynomial equation
α (z) = 0, z ∈ C, and where

αi (L) = 1−
1
ρi
L for i = 1, ..., p.

We assume that

|ρi | > 1 for every i ∈ {1, ..., p} .

Lemma 2: Let V be a normed space and suppose that the operators
Ti : V→ V, with i ∈ {1, ..., p}, commute. Define T as T1T2 · · · Tp .
Then, T is invertible if and only if each Ti is invertible.
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p-th Order Autoregressive Process (or AR(p) Process)

Next, let

Ti = αi (L) = 1−
1
ρi
L

and note that

‖1− Ti‖ =
∥∥∥∥1−(1− 1

ρi
L
)∥∥∥∥ = ∥∥∥∥ 1ρi L

∥∥∥∥ = ∣∣∣∣ 1ρi
∣∣∣∣ ‖L‖ < 1

Hence, by Theorem 1 given earlier,

T−1i = αi (L)
−1

=
∞

∑
j=0

(
1−

[
1− 1

ρi
L
])j

=
∞

∑
j=0

(
1
ρi

)j
Lj for every i ∈ {1, ..., p} .
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p-th Order Autoregressive Process (or AR(p) Process)

Hence, a moving-average representation for the AR (p) process can
be obtained by inverting the lag operator α (L) to obtain

yt
= α (L)−1 (µ+ εt )

=

(
1− 1

ρ1
L
)−1 (

1− 1
ρ2
L
)−1
× · · · ×

(
1− 1

ρp
L

)−1
(µ+ εt )

To give a more explicit form of the moving average representation, we
look first at the explicit case where p = 2.
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p-th Order Autoregressive Process (or AR(p) Process)

Example (AR (2) process): In this case,

α (L) =
(
1− 1

ρ1
L
)(

1− 1
ρ2
L
)

so that

α (L)−1

=

(
1− 1

ρ1
L
)−1 (

1− 1
ρ2
L
)−1

=
∞

∑
j1=0

∞

∑
j2=0

(
1−

[
1− 1

ρ1
L
])j1 (

1−
[
1− 1

ρ2
L
])j2

=
∞

∑
j1=0

∞

∑
j2=0

(
1
ρ1

)j1 ( 1
ρ2

)j2
Lj1+j2
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p-th Order Autoregressive Process (or AR(p) Process)

Example (con’t): AR (2) Process
Let j = j1 + j2 and k = j1. By rearranging the sums, we can further
write

α (L)−1 =
∞

∑
j=0

j

∑
k=0

(
1
ρ1

)k ( 1
ρ2

)j−k
Lj

=
∞

∑
j=0

ψjL
j

where

ψj =
j

∑
k=0

(
1
ρ1

)k ( 1
ρ2

)j−k
.
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p-th Order Autoregressive Process (or AR(p) Process)

AR (2) Process (con’t): Making use of the representations of
α (L)−1 given previously, we have

yt = α (L)−1 (µ+ εt )

=
∞

∑
j1=0

∞

∑
j2=0

(
1
ρ1

)j1 ( 1
ρ2

)j2
Lj1+j2µ

+
∞

∑
j=0

j

∑
k=0

(
1
ρ1

)k ( 1
ρ2

)j−k
Lj εt

= µ

[
1

1− (1/ρ1)

] [
1

1− (1/ρ2)

]
+

∞

∑
j=0

ψj εt−j

= µ

(
2

∏
i=1

1
1− (1/ρi )

)
+ ψ (L) εt

where ψ (L) = ∑∞
j=0 ψjL

j .
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p-th Order Autoregressive Process (or AR(p) Process)

AR (2) Process (con’t): Moreover, note that

µ

(
2

∏
i=1

1
1− (1/ρi )

)
=

(
1− 1

ρ1
L
)−1 (

1− 1
ρ2
L
)−1

µ

=

[(
1− 1

ρ1
L
)(

1− 1
ρ2
L
)]−1

µ

=
(
1− α1L− α2L2

)−1
µ

=
µ

1− α1 − α2
.
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p-th Order Autoregressive Process (or AR(p) Process)

AR (2) Process (con’t): Finally, note that the moving-average
coeffi cients in this case are absolutely summable since

∞

∑
j=0

∣∣∣ψj ∣∣∣ ≤ ∞

∑
j=0

j

∑
k=0

∣∣∣∣ 1ρ1
∣∣∣∣k ∣∣∣∣ 1ρ2

∣∣∣∣j−k
≤

∞

∑
k=0

∣∣∣∣ 1ρ1
∣∣∣∣k ∞

∑
j=0

∣∣∣∣ 1ρ2
∣∣∣∣j

=

(
1

1− |1/ρ1|

)(
1

1− |1/ρ2|

)
< ∞
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p-th Order Autoregressive Process (or AR(p) Process)

Returning to the more general AR (p) process, note that, in a similar
manner, we have

yt
= α (L)−1 (µ+ εt )

=

(
1− 1

ρ1
L
)−1 (

1− 1
ρ2
L
)−1
× · · · ×

(
1− 1

ρp
L

)−1
(µ+ εt )

=
∞

∑
j1=0

∞

∑
j2=0
· · ·

∞

∑
jp=0

{(
1
ρ1

)j1 ( 1
ρ2

)j2
× · · ··

· · · ×
(
1
ρp

)jp
Lj1+ ··· +jp (µ+ εt )


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p-th Order Autoregressive Process (or AR(p) Process)

By letting j = j1 + · · ·+ jp and rearranging the sums, we further
obtain

yt =
∞

∑
j1=0

∞

∑
j2=0
· · ·

∞

∑
jp=0


(
1
ρ1

)j1 ( 1
ρ2

)j2
× · · · ×

(
1
ρp

)jp
×Lj1+ ··· +jp (µ+ εt )

}
=

∞

∑
j1=0

∞

∑
j2=0
· · ·

∞

∑
jp=0

(
1
ρ1

)j1 ( 1
ρ2

)j2
× · · · ×

(
1
ρp

)jp
Lj1+ ··· +jpµ

+
∞

∑
j=0

j

∑
k1=0

j−k1
∑
k2=0

· · ·
j−(k1+ ··· +kp−2)

∑
kp−1=0

{(
1
ρ1

)k1 ( 1
ρ2

)k2
× · · ·

· · · ×
(
1
ρp

)j−(k1+ ··· +kp−1)
Lj εt

 .
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p-th Order Autoregressive Process (or AR(p) Process)

It follows by argument similar to that given previously for the AR (2)
case that

yt = α (L)−1 (µ+ εt )

=

(
1− 1

ρ1
L
)−1 (

1− 1
ρ2
L
)−1
× · · · ×

(
1− 1

ρp
L

)−1
(µ+ εt )

= µ

[
1

1− (1/ρ1)

] [
1

1− (1/ρ2)

]
× · · · ×

 1

1−
(
1/ρp

)


+
∞

∑
j=0

ψj εt−j

= µ

(
p

∏
i=1

1
1− (1/ρi )

)
+ ψ (L) εt
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p-th Order Autoregressive Process (or AR(p) Process)

where

ψj =
j

∑
k1=0

j−k1
∑
k2=0

· · ·
j−(k1+ ··· +kp−2)

∑
kp−1=0

{(
1
ρ1

)k1 ( 1
ρ2

)k2
× ··

· · ×
(
1
ρp

)j−(k1+ ··· +kp−1) .
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p-th Order Autoregressive Process (or AR(p) Process)

In addition, note that

∞

∑
j=0

∣∣∣ψj ∣∣∣
≤

∞

∑
j=0

j

∑
k1=0

j−k1
∑
k2=0

· · ·
j−(k1+ ··· +kp−2)

∑
kp−1=0

{∣∣∣∣ 1ρ1
∣∣∣∣k1 ∣∣∣∣ 1ρ2

∣∣∣∣k2 × · · ·
· · · ×

∣∣∣∣∣ 1ρp
∣∣∣∣∣
j−(k1+ ··· +kp−1)


≤

∞

∑
k1=0

∣∣∣∣ 1ρ1
∣∣∣∣k1 ∞

∑
k2=0

∣∣∣∣ 1ρ2
∣∣∣∣k2 × · · · × ∞

∑
j=0

∣∣∣∣∣ 1ρp
∣∣∣∣∣
j
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p-th Order Autoregressive Process (or AR(p) Process)

so that, applying the summation formula for a convergent geometric
series, we obtain

∞

∑
j=0

∣∣∣ψj ∣∣∣
≤

∞

∑
k1=0

∣∣∣∣ 1ρ1
∣∣∣∣k1 ∞

∑
k2=0

∣∣∣∣ 1ρ2
∣∣∣∣k2 × · · · × ∞

∑
j=0

∣∣∣∣∣ 1ρp
∣∣∣∣∣
j

=

(
1

1− |1/ρ1|

)(
1

1− |1/ρ2|

)
× · · · ×

 1

1−
∣∣∣1/ρp

∣∣∣


< ∞

which shows the absolute summability of the moving average
coeffi cients of the AR (p) process.

(Econ 624) March 26, 2021 37 / 44



p-th Order Autoregressive Process (or AR(p) Process)

Remark: It follows from the moving average representation

yt = µ

(
p

∏
i=1

1
1− (1/ρi )

)
+

∞

∑
j=0

ψj εt−j

that {yt} is strictly stationary and ergodic since it is measurable
transformation of {εt}, which is an i .i .d . sequence and, thus, strictly
stationary and ergodic.
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p-th Order Autoregressive Process (or AR(p) Process)

Moments: Exploiting the strictly stationary property, we can obtain
the following expressions for the mean, variance, and autocovariances
of an AR (p) process.

1 Mean:

E [yt ] = E [µ] + E [α1yt−1] + · · ·+ E [αpyt−p ] + E [εt ]
= µ+ α1E [yt−1] + · · ·+ αpE [yt−p ]

(since E [εt ] = 0 by assumption)

This implies that

µ = E [yt ]− α1E [yt−1]− · · · − αpE [yt−p ]

= (1− α1 − · · · − αp)E [yt ]

(since by stationarity E [yt ] = E [yt−h ] for all h ∈ Z)
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p-th Order Autoregressive Process (or AR(p) Process)

1 Mean: From this, we deduce that

E [yt ] =
µ

1− α1 − · · · − αp

= µ

(
p

∏
i=1

1
1− (1/ρi )

)

which is well-defined, since by assumption z = 1 is not a solution of
the polynomial equation α (z) = 1− α1z − · · · − αpzp = 0.
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p-th Order Autoregressive Process (or AR(p) Process)

2. Variance:

Var (yt ) = E
[
(yt − E [yt ])2

]
= E

[(
yt −

µ

1− α1 − · · · − αp

)2]

= E

( ∞

∑
j=0

ψj εt−j

)2
=

∞

∑
j=0

ψ2j E
[
ε2t−j

]
= σ2ε

∞

∑
j=0

ψ2j < ∞

where the last equality follows from the fact that absolute summability
implies square summability and that by assumption σ2ε < ∞.
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p-th Order Autoregressive Process (or AR(p) Process)

2. Autocovariances: Let h > 0

γ (h)

= Cov (yt , yt−h)

= E [(yt − E [yt ]) (yt−h − E [yt − h])]

= E
[(
yt −

µ

1− α1 − · · · − αp

)(
yt−h −

µ

1− α1 − · · · − αp

)]
= E

[(
∞

∑
j=0

ψj εt−j

)(
∞

∑
j=0

ψj εt−h−j

)]

= E

[(
∞

∑
j=0

ψj εt−j

)(
∞

∑
k=h

ψk−hεt−k

)]
(by setting k = j + h)

=
∞

∑
j=h

ψjψj−hE
[
ε2t−j

]
(given the assumption of independence)
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p-th Order Autoregressive Process (or AR(p) Process)

2. Autocovariances (con’t): The assumption that {εt} is identically
distributed then implies that

γ (h) = σ2ε

∞

∑
j=h

ψjψj−h (i.e., E
[
ε2t−j

]
= σ2ε for all j ∈ Z+ ∪ {0} )

Moreover, since covariance stationarity implies that γ (h) = γ (−h),
we also have for h < 0

γ (h) = γ (−h)
= γ (|h|)

= σ2ε

∞

∑
j=|h|

ψjψj−|h|
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p-th Order Autoregressive Process (or AR(p) Process)

2. Autocovariances (con’t): It follows from these calculations that for
all h ∈ Z,

γ (h) = Cov (yt , yt−h)

= σ2ε

∞

∑
j=|h|

ψjψj−|h|.
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