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Challenges Posed by Time Series Data

Question: What are some of the challenges of working with
dependent observations as opposed to independent observations?
Recall that, in the most basic statistical framework, a random sample
X1,X2, ...Xn is assumed to be i .i .d .

(
µ, σ2

)
, where 0 < σ2 < ∞. We

get a lot of mileage out of this simplified but restrictive setup.

(i) Law of Large Numbers:

X n =
1
n

n

∑
t=1
Xt

p→ µ = E [Xt ] as n→ ∞.

Note from a statistical perspective what the law of large numbers says
is that the sample mean is a consistent estimator of the population
mean.

(ii) Central Limit Theorem:
√
n
(
X n − µ

) d→ N
(
0, σ2

)
as n→ ∞.
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Challenges Posed by Time Series Data

Remark: The i .i .d . framework, however, is clearly not suitable for
time series data since it assumes mutual independence of X1,X2, ...Xn.

Example: Consider an extreme example of a dependent process

Xt = X for all t

where

X =
{
1 with probability 1/2
0 with probability 1/2

It follows that for this process

X n =
1
n

n

∑
t=1
Xt = X

so we are not going to estimate µ = E [Xt ] consistently. The problem
is that we have too much memory or dependence in this case.
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Challenges Posed by Time Series Data

Other challenges posed by time series: Suppose we consider the
classical (random regressor) linear regression model

y
n×1

= X
n×k

β
k×1

+ u
n×1

where we assume that

(i) Rank (X ) = k (≤ n) a.s.
(ii) E [u|X ] = 0 a.s.
(iii) E [uu′|X ] = σ2In a.s.
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Challenges Posed by Time Series Data

Note that, for this model, it is well known that the OLS estimator β̂
is an unbiased estimator of β since, by the usual regression algebra,

β̂ = β+
(
X ′X

)−1 X ′u
so that

E
[

β̂
]
= β+ E

[(
X ′X

)−1 X ′u]
= β+ EX

[(
X ′X

)−1 X ′E [u|X ]]
= β.

Remark: Note also that the unbiasedness of β̂ as shown above is a
finite sample property which does not involve taking n to infinity.
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Challenges Posed by Time Series Data

On the other hand, consider a dynamic time series analogue of the
linear regression model

y = βy−1 + u

where

y =


y2
y3
...
yn

 , y−1 =


y1
y2
...

yn−1

 , and u =

u2
u3
...
un


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Challenges Posed by Time Series Data

Now, under the assumptions that |β| < 1 and {yt} is stationary so
that E

[
y2t
]
is a constant not depending t, we have

yt =
∞

∑
j=0

βjut−j

Note that yt here depends on current and past errors, so that the
unbiasedness argument given previously for the classical linear
regression does not work here. For this and other reasons, analyzing
the performance of estimators for time series models is a challenging
task and relies heavily on asymptotic, or large sample, analysis and
approximation.
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Basic Setup for Time Series and Stochastic Processes

Let (Ω,F,P) be a probability space, and we consider a setup where
each realization of a random sequence is modeled as a point in a
probability space so that for ω ∈ Ω, we have the (infinite) sequence

(....Xt−1 (ω) ,Xt (ω) ,Xt+1 (ω) , ....)

and for another element ω′ ∈ Ω, we have a (possibly) different
sequence (

....Xt−1
(
ω′
)
,Xt

(
ω′
)
,Xt+1

(
ω′
)
, ....
)

More formally, we have the following definition.
Defintion (Stochastic Process): A stochastic process is a family
(or collection) of random variables

x (ω) = {Xt (ω) : t ∈ T,ω ∈ Ω}

defined on a probability space (Ω,F,P). Here, T is called the index
set.
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Basic Setup for Time Series and Stochastic Processes

Oftentimes, we take T = Z (i.e., the set of integers) or T = R (i.e.,
the set of real numbers). When T is countable,
{Xt (ω) : t ∈ T,ω ∈ Ω} is said to be a stochastic sequence. The
random variable Xt (ω) at a particular point in time, say t = τ, is
called the τth coordinate of the process.

Remark: Within this framework, we think of the available time series
sample as being just a single realization of a random sequence, i.e.,

(....Xt−1 (ω) ,Xt (ω) ,Xt+1 (ω) , ....)

for a particular ω ∈ Ω. In fact, we only observe a finite subset of this
sequence given that, in reality, the sample size of our time series is
always finite.
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Basic Setup for Time Series and Stochastic Processes

Food for Thought: Suppose in an idealized world, we are able to do
repeated sampling, and suppose we do this by making i .i .d . draws of
ω (i.e., ω1, ...,ωN ) at time t = t0. In this setting, we would be able
to construct the ensemble average

XN ,t0 =
1
N

N

∑
j=1
Xt0 (ωj )

which is of course a consistent estimator of µ. On the other hand, in
the case where we cannot do this and must be content with analyzing
data that come from a single draw ωi ∈ Ω; then, we must make do
with the following time average

X n =
1
n

n

∑
t=1
Xt (ωi ) .
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Basic Setup for Time Series and Stochastic Processes

In general, these two averages are not going to converge to the same
thing with the former giving you the right answer and the latter giving
you the wrong answer. However, the interesting question is whether
there are circumstances under which these two averages would
converge to the same limit, so that the time average also gives you
the right answer. Under what conditions would this occur.
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Basic Setup for Time Series and Stochastic Processes
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Stationarity

Some Intuition: Given that typically we only observe a finite subset
{Xt (ω)}nt=1 of a single realization of a random sequence, this would
seem to suggest that, for us to be able to extract useful information
from time series data, the probability distribution of Xt cannot vary
too much over time. Motivated by this, the classical approach to time
series modeling allows for dependence but imposes some rather strong
homogeneity assumptions which have come to be known collectively
as stationarity conditions.
Definition (Finite Dimensional Distributions): Let T be the set of
vectors of the form{

τ = (t1, .., tp)
′ : t1 < t2 < · · · < tp , p = 1, 2, ...

}
The finite-dimensional distribution functions of {Xt} are given by

Fτ (b) = P
(
Xt1 ≤ b1,Xt2 ≤ b2, ...,Xtp ≤ bp

)
for b = (b1, ..., bp)

′ ∈ Rp .
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Stationarity

Definition (Strict Stationarity): A stochastic sequence
{Xt}∞

t=−∞−is said to be strictly stationary if the finite-dimensional
distributons are all translation invariant, i.e.,(

Xt1 ,Xt2 , ...,Xtp
) d
=
(
Xt1+h,Xt2+h, ...,Xtp+h

)
or, alternatively,

P
(
Xt1 ≤ b1,Xt2 ≤ b2, ...,Xtp ≤ bp

)
= P

(
Xt1+h ≤ b1,Xt2+h ≤ b2, ...,Xtp+h ≤ bp

)
for all h ∈ Z, ∀p ∈N, ∀t1, ..., tp ∈ Z, and for all
b = (b1, ..., bp)

′ ∈ Rp .

Note that the assumption of strict stationarity is stronger than the
assumption of identical distribution so that, in particular, the latter
does not imply the former. This is illustrated in the following example.
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Stationarity

Example: Consider the stochastic sequence {Xt}∞
t=1 where

Z1 = (X1,X2)
′ ∼ N (0,Σ) ,

Z2 = (X3,X4)
′ ∼ N (0,Σ) ,

Z3 = (X5,X6)
′ ∼ N (0,Σ) ,

...

Suppose that {Zs}∞
s=1 is a mutually independent sequence of 2× 1

random vectors but suppose that

Σ =
(
1 ρ
ρ 1

)
, where ρ 6= 0.

Note that under these assumptions

Xt ∼ N (0, 1) for every t

so this process is identically distributed.
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Stationarity

On the other hand, (
X1
X2

)
∼ N (0,Σ)

whereas (
X2
X3

)
∼ N (0, I2)

so {Xt}∞
t=1 is not strictly stationary.

Note also that {Xt}∞
t=1 is not an independent sequence. An

i .i .d .sequence would have been strictly stationary.
Definition (Autocovariance Function): Let {Xt} be a stochastic
sequence such that supt E

[
X 2t
]
< ∞. Then, the autocovariance

function is given by

γX (t, s) = Cov (Xt ,Xs )

= E {(Xt − E [Xt ]) (Xs − E [Xs ])}
for t, s ∈ Z (or t, s ∈N).
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Stationarity

Remark: Note that by the Cauchy-Schwarz inequality, we have that

|γX (t, s)| = |E {(Xt − E [Xt ]) (Xs − E [Xs ])}|

≤
√
E
{
(Xt − E [Xt ])2

}√
E
{
(Xs − E [Xs ])2

}
≤

√
Var (Xt )

√
Var (Xs )

Now, by Jensen’s inequality and Liapunov’s inequality

|E [Xt ]| ≤ E |Xt | ≤
√
E [X 2t ].

Moreover,

Var (Xt ) = E
[
X 2t
]
− (E [Xt ])2 ≤ E

[
X 2t
]
.

Hence, if supt E
[
X 2t
]
< ∞; then, the mean, the variance, and the

autocovariance are all well-defined for every t and s.
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Stationarity

Defintion (Covariance Stationarity): A stochastic process {Xt} is
said to be covariance stationary, weakly stationary, or stationary in
the wide sense if

(a) E
[
X 2t
]
< ∞ for all t;

(b) E [Xt ] = µ for all t;
(c) γX (t, s) = γX (t + k, s + k) for all s, t, and k.

Remark: If {Xt} is covariance stationary; then, setting k = −s, we
have

γX (t, s) = γX (t − s, 0)
= γX (h, 0)

= γX (h)

where h = t − s. Hence, the autocovariance in this case depends only
on “how far apart" in time Xt and Xs are and not on their locations
in time.
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Stationarity

Remark (con’t): In addition, note that by setting k = −t, we have

γX (h) = γX (t, s)

= γX (0, s − t)
= γX (0,−h)
= γX (−h)

where −h = s − t, so that

γX (h) = γX (−h)

with
γX (0) = Var (Xt ) = E

{
(Xt − E [Xt ])2

}
.
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Stationarity

Similarly, under covariance stationarity, the autocorrelation
coeffi cient is

Corr (Xt ,Xs ) =
Cov (Xt ,Xs )√

Var (Xt )
√
Var (Xs )

=
γX (h)√

γX (0)
√

γX (0)
=

γX (h)
γX (0)

where again h = t − s.
Definition (White Noise): A process {ut : t ∈ Z} is said to be
white noise with mean zero and variance σ2u and denoted

{ut} ∼ WN
(
0, σ2u

)
,

if and only if

E [ut ] = 0 for all t ∈ Z

γX (t, s) = E [utus ] =
{

σ2u for t = s
0 for t 6= s
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Stationarity

Remarks:

(i) Note that a white noise process is not necessarily i .i .d . since we are
only making assumptions about the first two moments. It is of course
covariance stationary.

(ii) A strictly stationary stochastic sequence {Xt} such that E
[
X 2t
]
< ∞

is also covariance stationary, i.e., subject to a second moment
condition, strict stationary implies covariance stationarity.
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Stationarity

Remarks (con’t):

(iii) In general, covariance stationarity does not imply strict stationarity.
An exception is a Gaussian stochastic sequence. A stochastic
sequence {Xt} is Gaussian if all finite-dimensional distributions are
multivariate Gaussian (i.e., multivariate normal). A Gaussian,
covariance stationary stochastic sequence is also strictly stationary
since in this case

(
Xt1 ,Xt2 , ...,Xtp

)
and

(
Xt1+h,Xt2+h, ...,Xtp+h

)
would have the same mean vector and the same covariance matrix
∀h ∈ Z, ∀p ∈N, and ∀t1, ..., tp ∈ Z. Since a multivariate normal
distribution is completely determined by its mean vector and
covariance matrix (i.e., it is completely determined by the first two
moments), it follows that

(
Xt1 ,Xt2 , ...,Xtp

)
and(

Xt1+h,Xt2+h, ...,Xtp+h
)
would have the same distribution ∀h ∈ Z,

∀p ∈N, and ∀t1, ..., tp ∈ Z.
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Shift Transformation

Consider a 1− 1 measurable mapping
T : Ω→ Ω (onto)

This a rule for pairing (or mapping) each outcome ω with another
outcome ω′ = T (ω) of the space Ω, but since each ω ∈ Ω maps
into an infinite sequence, T induces a mapping from one sequence to
another.
Definition: T is called measure-preserving if

P (TE ) = P (E ) for all E ∈ F.
Shift Transformation: T is a (back) shift operator if

Xt (Tω) = Xt+1 (ω)

for a sequence {Xt (ω)}∞
t=−∞. Note that a shift operator T takes

each outcome ω and maps it into another outcome whereby the
realized value of X which had previously occurred in period t + 1
under outcome ω now occurs in period t, for every t.
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Shift Transformation

Illustration: Suppose that

ω = (..., x1, x2, x3, ...) ,

Tω = (..., x2, x3, x4, ...) ,

T 2ω = (..., x3, x4, x5, ...) .

Let
X1 (ω) = x1,X2 (ω) = x2,X3 (ω) = x3.

In this case,

X1 (Tω) = X2 (ω) = x2,

X2 (Tω) = X3 (ω) = x3,

X3 (Tω) = X4 (ω) = x4
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Shift Transformation

Illustration (con’t):
and

X1
(
T 2ω

)
= X3 (ω) = x3,

X2
(
T 2ω

)
= X4 (ω) = x4,

X3
(
T 2ω

)
= X5 (ω) = x5.

Note that our previous definition of strict stationarity corresponds to
the case where the shift transformation is measure preserving since
strict stationarity means that

P
(
Xt1 (E ) ≤ x1,Xt2 (E ) ≤ x2, ...,Xtp (E ) ≤ xp

)
= P

(
Xt1
(
T hE

)
≤ x1,Xt2

(
T hE

)
≤ x2, ...,Xtp

(
T hE

)
≤ xp

)
= P

(
Xt1+h (E ) ≤ x1,Xt2+h (E ) ≤ x2, ...,Xtp+h (E ) ≤ xp

)
for all E ∈ F, h ∈ Z, p ∈N as well as ∀t1, ..., tp ∈ Z, and also for
all (x1, ..., xp)

′ ∈ Rp .

(Econ 624) February 1, 2021 25 / 34



Shift Transformation

Definition of Invariant Event: E ∈ F is said to be invariant under
a transformation T if TE = E .

Alternative Definition of Invariant Event: E ∈ F is said to be
invariant under a transformation T if

P (TE ⊕ E ) = 0

where ⊕ denotes symmetric difference, i.e., A⊕B = A∪B\ (A∩ B) .
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Shift Transformation

Symmetric Difference:
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Shift Transformation

Note that if ω ∈ F is invariant under the shift transformation, then
Tω = ω and

Xt (ω) = Xt (Tω) = Xt+1 (ω) ,

Xt+1 (ω) = Xt+1 (Tω) = Xt+2 (ω) ,
...
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Ergodicity

Definition (Ergodicity): A strictly stationary sequence {Xt (ω)} is
ergodic if the probability of every invariant event is either 0 or 1.
Remarks:
(i) Note that events that are invariant under ergodic transformation must

either occur almost surely or do not occur almost surely.
(ii) Absence of ergodicity means that there exists at least one invariant

event E for which
0 < P (E ) < 1.

If this is the event which actually occurs, then the realized time series
will not be informative about the other possible realized values of Xt .

Ergodic Theorem: Let {Xt (ω)}∞
t=−∞ be a strictly stationary and

ergodic stochastic sequence such that E |Xt | < ∞. Then,

lim
n→∞

1
n

n

∑
t=1
Xt (ω) = E [Xt ] a.s.

Remark: Note that the ergodic theorem is in essence a strong law of
large numbers for dependent processes.
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Ergodicity

Example 1: Consider a simple case where Ω only has two sequences.
More specifically,

Ω = {ω1,ω2} ,
where

ω1 = (..., 1, 1, 1, ...)

ω2 = (..., 0, 0, 0, ...)

Clearly, both of these are invariant events under the shift operator T .
Suppose further that

Pr (ω = ω1) = p where 0 < p < 1

from which it follows that

Pr (ω = ω2) = 1− p = q ∈ (0, 1)
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Ergodicity

Example 1 (con’t): In this case, define the stochastic sequence
{Xt (ω)}∞

t=−∞ to be

Xt (ω1) = 1 for all t ∈ Z,

Xt (ω2) = 0 for all t ∈ Z.

Note that this stochastic sequence is non-ergodic since there exists
invariant events whose probability is not 0 or 1.
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Ergodicity

Example 2: Consider instead the case where Ω only has one
sequence. More specifically, let

Ω = {ω∗}

where
ω∗ = (..., 1, 1, 1, ...)

so that, again, ω∗ is an invariant event under the shift operator T .
Suppose that

Pr (ω = ω∗) = 1

and define {Xt (ω)}∞
t=−∞ to be the “trivial" process

Xt = Xt (ω∗) = 1 for all t ∈ Z.

Note that {Xt (ω)}∞
t=−∞ is ergodic in this case since there is only

one event, and it is an invariant event, but its probability is 1.
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Ergodicity

Example 3: Let Xt be generated by the equation

Xt = Ut + Z for t ∈ Z,

where

{Ut}∞
t=−∞ ≡ i .i .d .Uniform [0, 1] and Z ∼ N (0, 1)

and Ut and Z are independent for all t ∈ Z. Now, take

E =
∞⋂

t=−∞
{ω ∈ Ω : Xt (ω) < 0}

= {ω ∈ Ω : ...,Xt−1 (ω) < 0,Xt (ω) < 0,Xt+1 (ω) < 0, ...}
Clearly, E is invariant since

TE

= {ω ∈ Ω : ...,Xt−1 (Tω) < 0,Xt (Tω) < 0,Xt+1 (Tω) < 0, ...}
= {ω ∈ Ω : ...,Xt (ω) < 0,Xt+1 (ω) < 0,Xt+2 (ω) < 0, .....}
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Ergodicity

Example 3 (con’t): However, E occurs if and only if {Z < −1};
hence,

P (E ) = Φ (−1) = P (Z < −1)
so that, in this case, 0 < P (E ) < 1, and {Xt} is not ergodic. One
can, in fact, show that

X n =
1
n

n

∑
t=1
Xt = Un + Z

a.s .→ E [Ut ] + Z =
1
2
+ Z .

Another way to understand this problem is to calculate the
autocovariance

Cov (Xt ,Xt+h) = Cov (Ut + Z ,Ut+h + Z )

= Var (Z )

= 1

for all h ∈ Z\ {0}, so there is simply too much dependence in this
case.
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