

Lecture Notes on Linear Time Series Models¹

Econ 624

February 15, 2021

¹These notes are for instructional purposes only and are not to be distributed outside of the classroom.

Moving Average Processes

- **MA (1) Process:** The first-order moving average process, or *MA* (1) process is given by

$$y_t = \mu + \varepsilon_t + \theta \varepsilon_{t-1},$$

where $\{\varepsilon_t\} \sim WN(0, \sigma_\varepsilon^2)$. This model is called a “moving average” process because y_t is a weighted average of the shocks ε_t and ε_{t-1} .

- **Remark:** Recall that a white noise process is not necessarily *i.i.d.* Rather, $\{\varepsilon_t\} \sim WN(0, \sigma_\varepsilon^2)$ if it is mean zero, is serially uncorrelated, and is covariance stationary with homoskedastic variance σ_ε^2 .
- **Moments:** It is straightforward to calculate the first two moments of a *MA* (1) process. Note that

$$E[y_t] = E[\mu] + E[\varepsilon_t] + \theta E[\varepsilon_{t-1}] = \mu,$$

Moving Average Processes

- **Moments (con't):**

$$\begin{aligned} \text{Var}(y_t) &= \text{Var}(\mu + \varepsilon_t + \theta \varepsilon_{t-1}) \\ &= \text{Var}(\varepsilon_t) + \theta^2 \text{Var}(\varepsilon_{t-1}) + 2\theta \text{Cov}(\varepsilon_t, \varepsilon_{t-1}) \\ &= (1 + \theta^2) \sigma_\varepsilon^2 \\ &= \gamma(0). \end{aligned}$$

and

$$\begin{aligned} \text{Cov}(y_{t+1}, y_t) &= \text{Cov}(\mu + \varepsilon_{t+1} + \theta \varepsilon_t, \mu + \varepsilon_t + \theta \varepsilon_{t-1}) \\ &= \theta \text{Var}(\varepsilon_t) \\ &= \theta \sigma_\varepsilon^2 \\ &= \gamma(1). \end{aligned}$$

Moving Average Processes

- **Autocorrelation:**

$$\begin{aligned} \text{Corr}(y_{t+1}, y_t) &= \frac{\text{Cov}(y_{t+1}, y_t)}{\sqrt{\text{Var}(y_{t+1})} \sqrt{\text{Var}(y_t)}} \\ &= \frac{\gamma(1)}{\gamma(0)} \\ &= \frac{\theta \sigma_{\varepsilon}^2}{(1 + \theta^2) \sigma_{\varepsilon}^2} \\ &= \frac{\theta}{(1 + \theta^2)} \\ &= \rho(1). \end{aligned}$$

Moving Average Processes

- **Higher-Order Autocovariance and Autocorrelation:** For $h \geq 2$

$$\begin{aligned} \text{Cov}(y_{t+h}, y_t) &= \text{Cov}(\mu + \varepsilon_{t+h} + \theta \varepsilon_{t+h-1}, \mu + \varepsilon_t + \theta \varepsilon_{t-1}) \\ &= 0 \\ &= \gamma(h) \end{aligned}$$

It follows that

$$\rho(h) = \text{Corr}(y_{t+h}, y_t) = \frac{\gamma(h)}{\gamma(0)} = 0 \text{ for } h \geq 2.$$

- **Remark:** Note that the $MA(1)$ process with $\theta \neq 0$ has a non-zero first-order autocorrelation, but all higher-order autocorrelations are zero. If $\theta > 0$; then, y_{t+1} and y_t are positively correlated while, if $\theta < 0$, y_{t+1} and y_t are negatively correlated. Under the assumption that $\{\varepsilon_t\} \sim WN(0, \sigma_\varepsilon^2)$, it is covariance stationary, as the calculations above have shown, but it is not necessarily strictly stationary.

Moving Average Processes

- **Remark (con't):** On the other hand, if we assume that $\{\varepsilon_t\} \equiv i.i.d. (0, \sigma_\varepsilon^2)$; then, $\{y_t\}$ will be strictly stationary (and ergodic). That this is true is given in the following two theorems.
- **Theorem 1:** Suppose that

- $\{X_t\}$ is strictly stationary;
- $\varphi(\cdot) : \mathbb{R}^\infty \rightarrow \mathbb{R}$ is measurable;
- $Y_t = \varphi(\dots, X_{t-1}, X_t, X_{t+1}, \dots)$

Then, $\{Y_t\}$ is strictly stationary.

- **Theorem 2:** Suppose that

- $\{X_t\}$ is strictly stationary and ergodic;
- $\varphi(\cdot) : \mathbb{R}^\infty \rightarrow \mathbb{R}$ is measurable;
- $Y_t = \varphi(\dots, X_{t-1}, X_t, X_{t+1}, \dots)$

Then, $\{Y_t\}$ is strictly stationary and ergodic.

MA(q) Process

- The q^{th} - order moving average process, or $MA(q)$ process is given by

$$\begin{aligned}y_t &= \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \cdots + \theta_q \varepsilon_{t-q} \\&= \mu + \theta_0 \varepsilon_t + \theta_1 \varepsilon_{t-1} + \cdots + \theta_q \varepsilon_{t-q} \text{ (letting } \theta_0 = 1) \\&= \mu + \sum_{j=0}^q \theta_j \varepsilon_{t-j}\end{aligned}$$

where $\{\varepsilon_t\} \sim WN(0, \sigma_\varepsilon^2)$.

MA(q) Process

- **Example:** $MA(3)$ process

$$y_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \theta_3 \varepsilon_{t-3}$$

It is straightforward to calculate the following autocovariances

① $h = 1$

$$\begin{aligned} & Cov(y_{t+1}, y_t) \\ &= Cov(\mu + \varepsilon_{t+1} + \theta_1 \varepsilon_t + \theta_2 \varepsilon_{t-1} + \theta_3 \varepsilon_{t-2}, \\ & \quad \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \theta_3 \varepsilon_{t-3}) \\ &= \theta_1 \sigma_\varepsilon^2 + \theta_1 \theta_2 \sigma_\varepsilon^2 + \theta_2 \theta_3 \sigma_\varepsilon^2 \\ &= \sigma_\varepsilon^2 [\theta_0 \theta_1 + \theta_1 \theta_2 + \theta_2 \theta_3] \quad (\text{letting } \theta_0 = 1) \\ &= \sigma_\varepsilon^2 \sum_{j=0}^2 \theta_j \theta_{j+1} \\ &= \sigma_\varepsilon^2 \sum_{j=0}^{q-|h|} \theta_j \theta_{j+|h|} \quad (\text{given that } q = 3 \text{ and } h = 1) \end{aligned}$$

MA(q) Process

- **Example (con't):** $MA(3)$ process

2. $h = -1$

$$\begin{aligned} & Cov(y_{t-1}, y_t) \\ &= Cov(\mu + \varepsilon_{t-1} + \theta_1 \varepsilon_{t-2} + \theta_2 \varepsilon_{t-3} + \theta_3 \varepsilon_{t-4}, \\ & \quad \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \theta_3 \varepsilon_{t-3}) \\ &= \theta_1 \sigma_\varepsilon^2 + \theta_1 \theta_2 \sigma_\varepsilon^2 + \theta_2 \theta_3 \sigma_\varepsilon^2 \\ &= \sigma_\varepsilon^2 [\theta_0 \theta_1 + \theta_1 \theta_2 + \theta_2 \theta_3] \quad (\text{letting } \theta_0 = 1) \\ &= \sigma_\varepsilon^2 \sum_{j=0}^2 \theta_j \theta_{j+1} \\ &= \sigma_\varepsilon^2 \sum_{j=0}^{q-|h|} \theta_j \theta_{j+|h|} \quad (\text{given that } q = 3 \text{ and } h = -1) \end{aligned}$$

MA(q) Process

- **Example (con't):** $MA(3)$ process

3. $h = 2$

$$\begin{aligned} & Cov(y_{t+2}, y_t) \\ &= Cov(\mu + \varepsilon_{t+2} + \theta_1 \varepsilon_{t+1} + \theta_2 \varepsilon_t + \theta_3 \varepsilon_{t-1}, \\ & \quad \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \theta_3 \varepsilon_{t-3}) \\ &= \theta_2 \sigma_\varepsilon^2 + \theta_1 \theta_3 \sigma_\varepsilon^2 \\ &= \sigma_\varepsilon^2 [\theta_0 \theta_2 + \theta_1 \theta_3] \quad (\text{letting } \theta_0 = 1) \\ &= \sigma_\varepsilon^2 \sum_{j=0}^1 \theta_j \theta_{j+2} \\ &= \sigma_\varepsilon^2 \sum_{j=0}^{q-|h|} \theta_j \theta_{j+|h|} \quad (\text{given that } q = 3 \text{ and } h = 2) \end{aligned}$$

MA(q) Process

- **Example (con't):** $MA(3)$ process

4. $h = -2$

$$\begin{aligned} & Cov(y_{t-2}, y_t) \\ &= Cov(\mu + \varepsilon_{t-2} + \theta_1 \varepsilon_{t-3} + \theta_2 \varepsilon_{t-4} + \theta_3 \varepsilon_{t-5}, \\ & \quad \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \theta_3 \varepsilon_{t-3}) \\ &= \theta_2 \sigma_\varepsilon^2 + \theta_1 \theta_3 \sigma_\varepsilon^2 \\ &= \sigma_\varepsilon^2 [\theta_0 \theta_2 + \theta_1 \theta_3] \quad (\text{letting } \theta_0 = 1) \\ &= \sigma_\varepsilon^2 \sum_{j=0}^1 \theta_j \theta_{j+2} \\ &= \sigma_\varepsilon^2 \sum_{j=0}^{q-|h|} \theta_j \theta_{j+|h|} \quad (\text{given that } q = 3 \text{ and } h = -2) \end{aligned}$$

MA(q) Process

- **Moments of a $MA(q)$ process:** More generally, we have

$$y_t = E[\mu] + \sum_{j=0}^q \theta_j E[\varepsilon_{t-j}] = \mu,$$

$$Var(y_t) = \sigma_\varepsilon^2 \sum_{j=0}^q \theta_j^2 \text{ (again letting } \theta_0 = 1\text{)},$$

$$Cov(y_{t+h}, y_t) = \gamma(h) = \begin{cases} \sigma_\varepsilon^2 \sum_{j=0}^{q-|h|} \theta_j \theta_{j+|h|} & \text{if } |h| \leq q \\ 0 & \text{if } |h| > q \end{cases},$$

$$\begin{aligned} Corr(y_{t+h}, y_t) &= \rho(h) \\ &= \begin{cases} \sum_{j=0}^{q-|h|} \theta_j \theta_{j+|h|} / \sum_{j=0}^q \theta_j^2 & \text{if } |h| \leq q \\ 0 & \text{if } |h| > q \end{cases} \end{aligned}$$

MA(q) Process

- **Remarks:**

- (i) The above calculations show that the $MA(q)$ process is covariance stationary and will be strictly stationary (and ergodic) if we assume that $\{\varepsilon_t\} \equiv i.i.d. (0, \sigma_\varepsilon^2)$. Moreover, a $MA(q)$ process has q non-zero autocorrelations, while autocorrelation of order higher than q are all zero.
- (ii) A $MA(q)$ process with moderate size q can still have considerably more complicated dependence than the $MA(1)$ process. One specific pattern which can be induced by a MA process is smoothing. Suppose, for example, that the coefficients $\theta_j = 1$ for all $j = 0, 1, \dots, q$; then, y_t is a smoothed version of the shocks ε_t .

Infinite-Order Moving Average Process

- An infinite-order moving average process, denoted $MA(\infty)$, also known as a linear process is given by

$$y_t = \mu + \sum_{j=0}^{\infty} \theta_j \varepsilon_{t-j}$$

where we assume absolute summability of the moving average coefficients, i.e.,

$$\sum_{j=0}^{\infty} |\theta_j| < \infty$$

and where $\{\varepsilon_t\} \sim WN(0, \sigma_\varepsilon^2)$.

Infinite-Order Moving Average Process

- Note that the absolute summability condition given above is stronger than the square summability condition

$$\sum_{j=0}^{\infty} \theta_j^2 < \infty.$$

To see that this is true, note first that

$$\sum_{j=0}^{\infty} |\theta_j| < \infty \implies \sup_{j \in \mathbb{Z}_+ \cup \{0\}} |\theta_j| < \infty$$

Next, observe that

$$\sum_{j=0}^{\infty} \theta_j^2 = \sum_{j=0}^{\infty} |\theta_j|^2 \leq \sup_{j \in \mathbb{Z}_+ \cup \{0\}} |\theta_j| \sum_{j=0}^{\infty} |\theta_j| < \infty$$

so that absolute summability implies square summability.

Infinite-Order Moving Average Process

- On the other hand, the converse does not hold. To give a counterexample, consider $MA(\infty)$ process where $\theta_0 = 1$ and $\theta_j = 1/j$ for $j \geq 1$. Note that, in this case,

$$\sum_{j=0}^{\infty} \theta_j^2 = 1 + \sum_{j=1}^{\infty} \frac{1}{j^2} < \infty$$

but

$$\sum_{j=0}^{\infty} |\theta_j| = 1 + \sum_{j=1}^{\infty} \frac{1}{j} = \infty$$

so that square summability does not necessarily imply absolute summability.

Moments of an Infinite-Order Moving Average Process

- It is straightforward to calculate the mean, variance, autocovariances, and autocorrelations of a linear process

$$y_t = \mu + \sum_{j=0}^{\infty} \theta_j \varepsilon_{t-j}$$

under the assumptions that

- (i) $\sum_{j=0}^{\infty} |\theta_j| < \infty$
- (ii) $\{\varepsilon_t\} \sim WN(0, \sigma_{\varepsilon}^2)$ with $0 < \sigma_{\varepsilon}^2 < \infty$.

In particular, the mean and variance are given by

$$E[y_t] = \mu,$$

$$Var(y_t) = \gamma(0) = \sigma_{\varepsilon}^2 \sum_{j=0}^{\infty} \theta_j^2 < \infty$$

(since absolute summability implies square summability)

Moments of an Infinite-Order Moving Average Process

- In addition, the autocovariances and autocorrelations are given by

$$\begin{aligned} \text{Cov}(y_{t+h}, y_t) &= \gamma(h) \\ &= \sigma_\varepsilon^2 \sum_{j=0}^{\infty} \theta_j \theta_{j+|h|} \\ \text{Corr}(y_{t+h}, y_t) &= \frac{\gamma(h)}{\gamma(0)} \\ &= \frac{\sigma_\varepsilon^2 \sum_{j=0}^{\infty} \theta_j \theta_{j+|h|}}{\sigma_\varepsilon^2 \sum_{j=0}^{\infty} \theta_j^2} / \frac{\sum_{j=0}^{\infty} \theta_j^2}{\sum_{j=0}^{\infty} \theta_j^2} \end{aligned}$$

Lag Operator

- A lag operator, denoted by the symbol L , maps a sequence $\{X_t\}_{t=-\infty}^{\infty}$ into a sequence $\{Y_t\}_{t=-\infty}^{\infty}$ such that

$$Y_t = LX_t = X_{t-1} \text{ for all } t \in \mathbb{Z}$$

- Repeated application leads to

$$L^k X_t = X_{t-k} \text{ for all } t \in \mathbb{Z} \text{ and } k \in \mathbb{N}$$

- Note also that L is a linear operator in the sense that for two sequences $\{X_t\}_{t=-\infty}^{\infty}$ and $\{Z_t\}_{t=-\infty}^{\infty}$ and two scalars $\alpha \in \mathbb{R}$ and $\beta \in \mathbb{R}$,

$$\begin{aligned} L(\alpha X_t + \beta Z_t) &= \alpha LX_t + \beta LZ_t \\ &= \alpha X_{t-1} + \beta Z_{t-1} \end{aligned}$$

for all $t \in \mathbb{Z}$

Linear Operator

- Using the lag operator, we can, for example, give the following, alternative representation for the $MA(q)$ process

$$\begin{aligned}y_t &= \mu + \theta_0 \varepsilon_t + \theta_1 \varepsilon_{t-1} + \cdots + \theta_q \varepsilon_{t-q} \\&= \mu + \theta_0 \varepsilon_t + \theta_1 L \varepsilon_t + \cdots + \theta_q L^q \varepsilon_t \\&= \mu + (\theta_0 + \theta_1 L + \cdots + \theta_q L^q) \varepsilon_t \\&= \mu + \theta(L) \varepsilon_t,\end{aligned}$$

where

$$\theta(L) = \theta_0 + \theta_1 L + \cdots + \theta_q L^q$$

is a q^{th} degree polynomial in the lag operator L .