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1These notes are for instructional purposes only and are not to be distributed outside
of the classroom.

(Econ 624) February 15, 2021 1/20



Moving Average Processes

e MA (1) Process: The first-order moving average process, or MA (1)
process is given by
Yo = p+ e+ 0er1,
where {&;} ~ WN (0,02). This model is called a “moving average"
process because y; is a weighted average of the shocks &; and €;_1.

@ Remark: Recall that a white noise process is not necessarily i.i.d.
Rather, {€;} ~ WN (0,0?) if it is mean zero, is serially uncorrelated,
and is covariance stationary with homoskedastic variance ¢2.

o Moments: It is straightforward to calculate the first two moments of
a MA (1) process. Note that

Elye] = E[u] + E[ee] + 0F [er-1] = p,
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Moving Average Processes

e Moments (con’t):

and

Var (y;) =

COV (Yt-i-l:}/t)

Var (u+ € + 0e¢—1)

Var (e;) + 62 Var (e;1) +20Cov (&1, 1)
(1+6%) 02

7(0).

Cov (u+€ri1+0er, u+ e+ 0er_1)
O Var (&)
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Moving Average Processes

@ Autocorrelation:

Cov (Yet1.¥t)
v/ Var (yes1)/Var (yt)
v (1)

v (0)

2
(Lo

(1+6%) 02
0

(1+6%)
= p(1).

Corr (ye1,yt) =

(Econ 624) February 15, 2021 4 /20



Moving Average Processes

@ Higher-Order Autocovariance and Autocorrelation: For h > 2

Cov (yesn yt) = Cov(p+erin+Oerin1,p+e+0e1)
=0
v (h)
It follows that
h
p (h) = Corr (yrsn, yt) = :)Y/E()g =0 for h > 2.

o Remark: Note that the MA (1) process with 6 # 0 has a non-zero
first-order autocorrelation, but all higher-order autocorrelations are
zero. If 8 > 0; then, y;+1 and y; are positively correlated while, if
0 < 0, yr+1 and y; are negatively correlated. Under the assumption
that {&;} ~ WN (0,0?), it is covariance stationary, as the
calculations above have shown, but it is not necessarily strictly
stationary.
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Moving Average Processes

@ Remark (con’t): On the other hand, if we assume that
{e;} = i.i.d. (0,02); then, {y:} will be strictly stationary (and
ergodic). That this is true is given in the following two theorems.
@ Theorem 1: Suppose that

(i) {X¢} is strictly stationary;

(i) @ (+) : R® — R is measurable;
(i) Y= @ (oo Xeo1, Xe» Xes1, )
Then, {Y;} is strictly stationary.

@ Theorem 2: Suppose that

(i) {Xt} is strictly stationary and ergodic;
(i) ¢ (-) : R® — R is measurable;
(i) Y= @ (oo Xeot, Xes Xes1, )
Then, {Y:} is strictly stationary and ergodic.
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MA(q) Process

@ The g~ order moving average process, or MA (q) process is given by

Ye = pte+01g 1+ +048 4
= p+00er+ 0161+ + 060 g (letting 6p = 1)
q
= pu+ Z e
j=0

wherre {&;} ~ WN (0,02).
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MA(q) Process

e Example: MA (3) process
Vi = U+ e+ 0161+ 0282 + 03813
It is straightforward to calculate the following autocovariances
QO h=1
Cov (Yr41.¥t)
= Cov (p+err1+ 018 + Orer1 + 03842,
pA e+ 0181 + Ooer 2 + 361 3)
910’3 + 91920’3 + 92930’3
0’3 [9091 + 610, + 9293] (Ietting Oy = 1)
2
= 07 ) 0ifn
j=0

a—|hl
= o’ ) 0;6j4n (given that g =3 and h=1)
j=0

8/
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MA(q) Process

e Example (con’t): MA (3) process
2. h=-1

Cov ()/t—lv)/t)
= Cov(pu+er—1+016—2+0r6r 3+ 0384,
pA e+ 0181 + O2er 2 + 361 3)
910’3 + 91920’3 + 92930’3
0‘3 [9091 + 60160, + 9293] (Ietting 0y = 1)

2
= 0’3 29j9j+1
j=0
q—|hl
= o ) 0;6;4n (given that g =3 and h= —1)
j=0
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MA(q) Process

e Example (con’t): MA (3) process
3. h=2

Cov (Yr42. ¥t)
= Cov (p+erro+ 018041 + 026 + 03841,
HA e+ 0161+ 0r6rp + 0364 _3)
920’3 + 91930’3
0’3 [9092 + 9193] (letting 6y = 1)

1
= 07 ) 002
j=0
q—|h|
= ‘73 Z 9j0j+‘h| (given that g=3 and h = 2)
j=0
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MA(q) Process

e Example (con’t): MA (3) process
4. h= -2

Cov ()/t—2v)/t)
= Cov(pu+er—o+ 0163+ 064 + 0365,
pA e+ 0181+ 0r6rp + 0364 3)
920’3 + 91930’3
0‘3 [9092 + 9193] (letting 6o = 1)

1
= 0’3 2919f+2
j=0
q—|hl
= o ) 0;6j4n (given that g =3 and h= —2)
j=0
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MA(q) Process

e Moments of a MA(q) process: More generally, we have

q9
Ye = E[V]+ZQJE[St_J]:],[,
Jj=0

q
Var (y:) = o? 2912 (again letting 0 = 1),
j=0

o9 lhl g o ,
Cov (yermy:) = 7(h) = Yo Ofen W <q
0 if |h| >q

Corr (yr+n yr) = p(h)

— {Zq h'99+|h\/2" 07 if |h| <gq

if |h| >gq
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MA(q) Process

(i)

Remarks:

The above calculations show that the MA (q) process is covariance
stationary and will be strictly stationary (and ergodic) if we assume
that {e;} = i.i.d. (0,02). Moreover, a MA(q) process has q
non-zero autocorrelations, while autocorrelation of order higher than
q are all zero.

A MA (q) process with moderate size g can still have considerably
more complicated dependence than the MA (1) process. One specific
pattern which can be induced by a MA process is smoothing.
Suppose, for example, that the coefficients 6; = 1 for all
j=20,1,...,g; then, y; is a smoothed version of the shocks &;.
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Infinite-Order Moving Average Process

@ An infinite-order moving average process, denoted MA (c0), also
known as a linear process is given by

ye=p+ ) 0jec
j=0

where we assume absolute summability of the moving average
coefficients, i.e.,

(o]
Z |9j| < 0
=0

and where {e;} ~ WN (0, 0?).
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Infinite-Order Moving Average Process

@ Note that the absolute summability condition given above is stronger
than the square summability condition

o0
Z 912 < 00.
j=0
To see that this is true, note first that
o0
Y 16j] <oo= sup 6] < oo

j=0 Jj€Z U{0}

Next, observe that

oo oo 2 (o)
Y 6i =) 161°< sup [6;]) 6] <eo
j=0 j=0 JjeZ {0}y j=0

so that absolute summability implies square summability.
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Infinite-Order Moving Average Process

@ On the other hand, the converse does not hold. To give a
counterexample, consider MA (o) process where 6y = 1 and
0; = 1/j for j > 1. Note that, in this case,

y 02 =1+ i z < 0

J 2

j=0 j=1J

but - ~ 1
Y lojl=1+) ==
Jj=0 j=1J

so that square summability does not necessarily imply absolute
summability.
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Moments of an Infinite-Order Moving Average Process

o It is straightforward to calculate the mean, variance, autocovariances,
and autocorrelations of a linear process

ye=p+)_ 0jec
j=0
under the assumptions that
(i) Yoo 18] < o0
(i) {et} ~ WN (0,03) with 0 < 02 < 0.

In particular, the mean and variance are given by
Ely] =

Var (y:) = 7(0) =02} 67 <o
j=0

(since absolute summability implies square summability)
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Moments of an Infinite-Order Moving Average Process

@ In addition, the autocovariances and autocorrelations are given by

Cov (Yeth, Yt) = 7 (h)

Corr (Yt-i-h:}/t) = ( )
= 01 ) 0,64/ 0 292
N AN
=0 =0
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Lag Operator

o A lag operator, denoted by the symbol L, maps a sequence { X}
into a sequence {Y;};. . such that

Yt = LXt = thl forallt € Z
@ Repeated application leads to
LkX; = X, forall t € Z and k € N

@ Note also that L is a linear operator in the sense that for two
sequences { X} . and {Z:};. . and two scalars « € R and
B €R,

L <0€Xt + ,BZI‘> - OCLXt —|— ’BLZt
= aXi 1+ P21

forall t € Z
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Linear Operator

@ Using the lag operator, we can, for example, give the following,
alternative representation for the MA (q) process

Ye = H+00e+018 1+ +048 g
p+6Ooer +01Lles + - - +9quSt
4 (Bo+01L+- - +04L) ¢
p+0(L)e:,

where
O(L)=060+61L+---+6,4L7

is a egree polynomial in the lag operator L.
is a gt degree poly ial in the lag op L
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