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Moving Average Processes

MA (1) Process: The first-order moving average process, or MA (1)
process is given by

yt = µ+ εt + θεt−1,

where {εt} ∼ WN
(
0, σ2ε

)
. This model is called a “moving average"

process because yt is a weighted average of the shocks εt and εt−1.

Remark: Recall that a white noise process is not necessarily i .i .d .
Rather, {εt} ∼ WN

(
0, σ2ε

)
if it is mean zero, is serially uncorrelated,

and is covariance stationary with homoskedastic variance σ2ε .

Moments: It is straightforward to calculate the first two moments of
a MA (1) process. Note that

E [yt ] = E [µ] + E [εt ] + θE [εt−1] = µ,
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Moving Average Processes

Moments (con’t):

Var (yt ) = Var (µ+ εt + θεt−1)

= Var (εt ) + θ2Var (εt−1) + 2θCov (εt , εt−1)

=
(
1+ θ2

)
σ2ε

= γ (0) .

and

Cov (yt+1, yt ) = Cov (µ+ εt+1 + θεt , µ+ εt + θεt−1)

= θVar (εt )

= θσ2ε

= γ (1) .
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Moving Average Processes

Autocorrelation:

Corr (yt+1, yt ) =
Cov (yt+1, yt )√

Var (yt+1)
√
Var (yt )

=
γ (1)
γ (0)

=
θσ2ε(

1+ θ2
)

σ2ε

=
θ(

1+ θ2
)

= ρ (1) .
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Moving Average Processes

Higher-Order Autocovariance and Autocorrelation: For h ≥ 2

Cov (yt+h, yt ) = Cov (µ+ εt+h + θεt+h−1, µ+ εt + θεt−1)

= 0

= γ (h)

It follows that

ρ (h) = Corr (yt+h, yt ) =
γ (h)
γ (0)

= 0 for h ≥ 2.

Remark: Note that the MA (1) process with θ 6= 0 has a non-zero
first-order autocorrelation, but all higher-order autocorrelations are
zero. If θ > 0; then, yt+1 and yt are positively correlated while, if
θ < 0, yt+1 and yt are negatively correlated. Under the assumption
that {εt} ∼ WN

(
0, σ2ε

)
, it is covariance stationary, as the

calculations above have shown, but it is not necessarily strictly
stationary.
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Moving Average Processes

Remark (con’t): On the other hand, if we assume that
{εt} ≡ i .i .d .

(
0, σ2ε

)
; then, {yt} will be strictly stationary (and

ergodic). That this is true is given in the following two theorems.
Theorem 1: Suppose that

(i) {Xt} is strictly stationary;
(ii) ϕ (·) : R∞ → R is measurable;
(iii) Yt = ϕ (....,Xt−1,Xt ,Xt+1, ...)

Then, {Yt} is strictly stationary.
Theorem 2: Suppose that

(i) {Xt} is strictly stationary and ergodic;
(ii) ϕ (·) : R∞ → R is measurable;
(iii) Yt = ϕ (....,Xt−1,Xt ,Xt+1, ...)

Then, {Yt} is strictly stationary and ergodic.
(Econ 624) February 15, 2021 6 / 20



MA(q) Process

The qth- order moving average process, or MA (q) process is given by

yt = µ+ εt + θ1εt−1 + · · ·+ θqεt−q

= µ+ θ0εt + θ1εt−1 + · · ·+ θqεt−q (letting θ0 = 1)

= µ+
q

∑
j=0

θj εt−j

wherre {εt} ∼ WN
(
0, σ2ε

)
.
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MA(q) Process

Example: MA (3) process

yt = µ+ εt + θ1εt−1 + θ2εt−2 + θ3εt−3

It is straightforward to calculate the following autocovariances

1 h = 1

Cov (yt+1, yt )

= Cov (µ+ εt+1 + θ1εt + θ2εt−1 + θ3εt−2,

µ+ εt + θ1εt−1 + θ2εt−2 + θ3εt−3)

= θ1σ
2
ε + θ1θ2σ

2
ε + θ2θ3σ

2
ε

= σ2ε [θ0θ1 + θ1θ2 + θ2θ3] (letting θ0 = 1)

= σ2ε

2

∑
j=0

θj θj+1

= σ2ε

q−|h|

∑
j=0

θj θj+|h| (given that q = 3 and h = 1)
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MA(q) Process

Example (con’t): MA (3) process

2. h = −1

Cov (yt−1, yt )

= Cov (µ+ εt−1 + θ1εt−2 + θ2εt−3 + θ3εt−4,

µ+ εt + θ1εt−1 + θ2εt−2 + θ3εt−3)

= θ1σ
2
ε + θ1θ2σ

2
ε + θ2θ3σ

2
ε

= σ2ε [θ0θ1 + θ1θ2 + θ2θ3] (letting θ0 = 1)

= σ2ε

2

∑
j=0

θj θj+1

= σ2ε

q−|h|

∑
j=0

θj θj+|h| (given that q = 3 and h = −1)
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MA(q) Process

Example (con’t): MA (3) process

3. h = 2

Cov (yt+2, yt )

= Cov (µ+ εt+2 + θ1εt+1 + θ2εt + θ3εt−1,

µ+ εt + θ1εt−1 + θ2εt−2 + θ3εt−3)

= θ2σ
2
ε + θ1θ3σ

2
ε

= σ2ε [θ0θ2 + θ1θ3] (letting θ0 = 1)

= σ2ε

1

∑
j=0

θj θj+2

= σ2ε

q−|h|

∑
j=0

θj θj+|h| (given that q = 3 and h = 2)
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MA(q) Process

Example (con’t): MA (3) process

4. h = −2

Cov (yt−2, yt )

= Cov (µ+ εt−2 + θ1εt−3 + θ2εt−4 + θ3εt−5,

µ+ εt + θ1εt−1 + θ2εt−2 + θ3εt−3)

= θ2σ
2
ε + θ1θ3σ

2
ε

= σ2ε [θ0θ2 + θ1θ3] (letting θ0 = 1)

= σ2ε

1

∑
j=0

θj θj+2

= σ2ε

q−|h|

∑
j=0

θj θj+|h| (given that q = 3 and h = −2)
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MA(q) Process

Moments of a MA (q) process: More generally, we have

yt = E [µ] +
q

∑
j=0

θjE [εt−j ] = µ,

Var (yt ) = σ2ε

q

∑
j=0

θ2j (again letting θ0 = 1) ,

Cov (yt+h, yt ) = γ (h) =

{
σ2ε ∑q−|h|

j=0 θj θj+|h| if |h| ≤ q
0 if |h| > q

,

Corr (yt+h, yt ) = ρ (h)

=

{
∑q−|h|
j=0 θj θj+|h|/ ∑q

j=0 θ2j if |h| ≤ q
0 if |h| > q
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MA(q) Process

Remarks:

(i) The above calculations show that the MA (q) process is covariance
stationary and will be strictly stationary (and ergodic) if we assume
that {εt} ≡ i .i .d .

(
0, σ2ε

)
. Moreover, a MA (q) process has q

non-zero autocorrelations, while autocorrelation of order higher than
q are all zero.

(ii) A MA (q) process with moderate size q can still have considerably
more complicated dependence than the MA (1) process. One specific
pattern which can be induced by a MA process is smoothing.
Suppose, for example, that the coeffi cients θj = 1 for all
j = 0, 1, ..., q; then, yt is a smoothed version of the shocks εt .
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Infinite-Order Moving Average Process

An infinite-order moving average process, denoted MA (∞), also
known as a linear process is given by

yt = µ+
∞

∑
j=0

θj εt−j

where we assume absolute summability of the moving average
coeffi cients, i.e.,

∞

∑
j=0
|θj | < ∞

and where {εt} ∼ WN
(
0, σ2ε

)
.
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Infinite-Order Moving Average Process

Note that the absolute summability condition given above is stronger
than the square summability condition

∞

∑
j=0

θ2j < ∞.

To see that this is true, note first that

∞

∑
j=0
|θj | < ∞ =⇒ sup

j∈Z+∪{0}
|θj | < ∞

Next, observe that

∞

∑
j=0

θ2j =
∞

∑
j=0
|θj |2 ≤ sup

j∈Z+∪{0}
|θj |

∞

∑
j=0
|θj | < ∞

so that absolute summability implies square summability.
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Infinite-Order Moving Average Process

On the other hand, the converse does not hold. To give a
counterexample, consider MA (∞) process where θ0 = 1 and
θj = 1/j for j ≥ 1. Note that, in this case,

∞

∑
j=0

θ2j = 1+
∞

∑
j=1

1
j2
< ∞

but
∞

∑
j=0
|θj | = 1+

∞

∑
j=1

1
j
= ∞

so that square summability does not necessarily imply absolute
summability.
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Moments of an Infinite-Order Moving Average Process

It is straightforward to calculate the mean, variance, autocovariances,
and autocorrelations of a linear process

yt = µ+
∞

∑
j=0

θj εt−j

under the assumptions that

(i) ∑∞
j=0 |θj | < ∞

(ii) {εt} ∼ WN
(
0, σ2ε

)
with 0 < σ2ε < ∞.

In particular, the mean and variance are given by

E [yt ] = µ,

Var (yt ) = γ (0) = σ2ε

∞

∑
j=0

θ2j < ∞

(since absolute summability implies square summability)
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Moments of an Infinite-Order Moving Average Process

In addition, the autocovariances and autocorrelations are given by

Cov (yt+h, yt ) = γ (h)

= σ2ε

∞

∑
j=0

θj θj+|h|

Corr (yt+h, yt ) =
γ (h)
γ (0)

= σ2ε

∞

∑
j=0

θj θj+|h|/σ2ε

∞

∑
j=0

θ2j

=
∞

∑
j=0

θj θj+|h|/
∞

∑
j=0

θ2j
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Lag Operator

A lag operator, denoted by the symbol L, maps a sequence {Xt}∞
t=−∞

into a sequence {Yt}∞
t=−∞ such that

Yt = LXt = Xt−1 for all t ∈ Z

Repeated application leads to

LkXt = Xt−k for all t ∈ Z and k ∈N

Note also that L is a linear operator in the sense that for two
sequences {Xt}∞

t=−∞ and {Zt}∞
t=−∞ and two scalars α ∈ R and

β ∈ R,

L (αXt + βZt ) = αLXt + βLZt
= αXt−1 + βZt−1

for all t ∈ Z
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Linear Operator

Using the lag operator, we can, for example, give the following,
alternative representation for the MA (q) process

yt = µ+ θ0εt + θ1εt−1 + · · ·+ θqεt−q

= µ+ θ0εt + θ1Lεt + · · ·+ θqLqεt

= µ+ (θ0 + θ1L+ · · ·+ θqLq) εt

= µ+ θ (L) εt ,

where
θ (L) = θ0 + θ1L+ · · ·+ θqLq

is a qth degree polynomial in the lag operator L.
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