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MCMC

Problem to be considered: Suppose we are able to evaluate a
possibly un-normalized density function π∗. Our goal is to draw a
sample from the (normalized) probability density function

π (x) =
π∗ (x)
C

,

where the normalization constant

C =
∫
S

π∗ (x) dx

may be unknown to us.
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MCMC

Application to Bayesian Econometrics or Statistics: Let L (θ; y)
be the likelihood function of a statistical experiment with data y and
unknown parameter (vector) θ ∈ Θ and let p (θ) denote the prior
density. Then, the target distributon of interest might be the
posterior distribution of θ given the data y whose density (up to a
normalization constant) can be represented by

π (θ|y) ∝ L (θ; y) p (θ) = π∗ (θ|y)

The use of Markov Chain Monte Carlo (MCMC) methods allow us to
overcome the following diffi culties typically encountered in the
implementation of Bayesian procedures

(i) The state space S is typically high-dimensional.
(ii) Direct simulation from π is too complex to be feasible.
(iii) Computing the normalization constant C is as diffi cult as the entire

simulation problem.
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Markov Chain Monte Carlo

The MCMC Approach: Let π (·) be a target density on some state
space S (e.g., S ⊆ Rd ). The MCMC approach requires us to
construct a Markov chain on S , i.e., a Markov chain with transition
probability

P (x , dy) for x , y ∈ S
such that π (·) is its stationary distribution, so that∫

x∈S
π (dx)P (x , dy) = π (dy) .

The hope is that if we run the Markov chain for a long time (starting
from some initial value in the state space); then, for n suffi ciently
large the distribution of Xn will be approximately that of the
stationary distribution π (·).
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MCMC

Metropolis-Hastings Algorithm: The Metropolis-Hasting algorithm
is a particular type of MCMC which requires the choice of a proposal
distribution q (y |x) which is a friendly distribution from which we
know how to generate a sample. Given q (y |x), the
Metropolis-Hasting algorithm creates a sequence of observations
X0,X1,X2, .... based on the following algorithm.

Algorithm: Choose X0 arbitrarily. Suppose we have generated
X0, ...,Xn; then, to generate Xn+1, we proceed as follows:

1 Generate a proposal or candidate value Yn+1 ∼ q (y |x)
2 Evaluate

α = α (Xn,Yn+1)

where

α (x , y) = min
{
1,

π (y) q (x |y)
π (x) q (y |x)

}
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Metropolis-Hastings Algorithm

3. Set

Xn+1 =
{
Yn+1 with prob α
Xn with prob 1− α

i.e., we accept Yn+1 as the new value Xn+1 with probability
α = α (Xn,Yn+1) or reject Yn+1 and set Xn+1 = Xn (the old value)
with probability 1− α (Xn,Yn+1).

Remarks:

(i) A simple way to carry out step 3 above is to generate U ∼Unif(0, 1).
If U < α. set Xn+1 = Yn+1; otherwise, set Xn+1 = Xn.
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Metropolis-Hastings Algorithm

Remarks:

(ii) A common choice for q (y |x) is to specify it to be the pdf of
N
(
x ,ω2

)
for some ω > 0. This means that the proposal is drawn

from a normal distribution centered at the current value x . Since in
this case

q (y |x) = 1

ω
√
2π

exp
{
− 1
2ω2 (y − x)

2
}

we see that the proposal density is symmetric, i.e., q (y |x) = q (x |y).
Hence, in this case, α simplifies to

α = α (Xn,Yn+1) = min
{
1,

π (Yn+1) q (Xn |Yn+1)
π (Xn) q (Yn+1|Xn)

}
= min

{
1,

π (Yn+1)
π (Xn)

}
.
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Metropolis-Hastings Algorithm

Remarks (con’t):

(iii) Note also that since α (x , y) only depends on the ratio
π (y) /π (x) = π∗ (y) /π∗ (x), we would not need to know the
normalization constant C in order to implement this algorithm.

Claim: Given that

α (x , y) = min
{
1,

π (y) q (x |y)
π (x) q (y |x)

}
the resulting Markov chain is reversible with respect to π (·).
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Metropolis-Hastings Algorithm

Proof of Claim (Sketched): We need to show that

π (dx)P (x , dy) = π (dy)P (y , dx) for all x , y ∈ S .
It suffi ces to assume that x 6= y since otherwise it is trivial. Note that
P (x , dy) is the probability of jumping from x to y . To do so requires
two things: (i) y ∈ dy is generated in accordance with the conditional
distribution q (y |x) and (ii) y is accepted. Hence, we have roughly

π (dx)P (x , dy) = π (x) dxα (x , y) q (y |x) dy

= π (x) q (y |x)min
{
1,

π (y) q (x |y)
π (x) q (y |x)

}
dxdy

= min {π (x) q (y |x) ,π (y) q (x |y)} dxdy

= π (y) q (x |y)min
{

π (x) q (y |x)
π (y) q (x |y) , 1

}
dxdy

= π (y) dyα (y , x) q (x |y) dx
= π (dy)P (y , dx) .
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Metropolis-Hastings Algorithm

Example: Suppose that the target distribution is the Cauchy with
pdf given by

π (x) =
1
π

1
1+ x2

Here, we can take q (y |x) to be N
(
x ,ω2

)
and because

q (y |x) = q (x |y) in this case, we have

α (x , y) = min
{
1,

π (y)
π (x)

}
= min

{
1,
1+ x2

1+ y2

}
Hence, the Metropolis-Hastings algorithm in this case is to draw

Yn+1 ∼ N
(
x ,ω2)

and set

Xn+1 =
{
Yn+1 with prob α (Xn,Yn+1)
Xn with prob 1− α (Xn,Yn+1)
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Metropolis-Hastings Algorithm

Example (con’t): Wasserman (2004) showed the results of an
experiment where three chains of length T = 1000 were generated
using

ω = 0.1, 1, 10.

He found that setting ω = 0.1 requires the chain to take steps that
were too small, so that it does not “explore" much of the state space.
On the other hand, setting ω = 10 often results in proposals that are
in the tails of the distribution, leading to small values of α (Xn,Yn+1)
and, thus, frequent rejection of the proposals. Hence, the chain ends
up “getting stuck" in the same place quite often. The choice ω = 1
turns out to avoid the two extremes and results in a chain that
performs much better. Hence, we can think of ω as a tuning
parameter whose selection will affect the effi ciency of the algorithm.
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Gibbs Sampling

Two-Variables Case: Starting at (X0,Y0) and suppose we have
drawn (X0,Y0) , ..., (Xn,Yn); then, the Gibbs sampler for getting
(Xn+1,Yn+1) is

Xn+1 ∼ f (x |Yn) ,
Yn+1 ∼ f (y |Xn+1) .

the Gibbs sampling process then involves iteration on this step until
we obtain the needed sample.
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Gibbs Sampling

General Case: Suppose that the target distribution is π (x) where x
is d-dimensional, say x ∈ S ⊆ Rd . Let

x = (x1, x2, ..., xd )
′ ,

x (n) =
(
x (n)1 , x (n)2 , ..., x (n)d

)′
- x obtained in the nth iteration

x[−i ] = (x1, ..., xi−1, xi+1, ..., xd )
′ ,

x (n)
[−i ] =

(
x (n)1 , ..., x (n)i−1, x

(n)
i+1, ..., x

(n)
d

)′
and let π

(
x |x (n)

[−i ]

)
be the conditional density of x given x (n)

[−i ].
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Gibbs Sampling

There are two versions of Gibbs sampling.

1 Random-Scan Gibbs Sampler: Given that in the nth iteration we
obtain x (n), we perform the following steps to obtain x (n+1).

(i) Randomly select a coordinate i ∈ {1, 2, ..., d} according to some
probability vector (p1, .., pd ), e.g. (p1, .., pd ) = (1/d , ...., 1/d).

(ii) Draw x (n+1)i from the conditional distribution

Pi = P
(
x (n)
[−i ], dxi

)
= π

(
xi |x

(n)
[−i ]

)
dxi and leave the remaining

components unchanged, i.e., let

x (n) =
(
x (n)1 , ..., x (n)i−1, x

(n+1)
i , x (n)i+1..., x

(n)
d

)′
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Gibbs Sampling

2. Systematic-Scan Gibbs Sampler: Given that in the nth iteration we
obtain x (n), we draw

x (n+1)1 ∼ π
(
x1|x (n)[−1]

)
x (n+1)2 ∼ π

(
x2|x (n+1)1 , x (n)3 , ..., x (n)d

)
...

x (n+1)d ∼ π
(
xd |x (n+1)1 , x (n+1)2 , ..., x (n+1)d−1

)
Remark: When d = 2, the systematic-scan Gibbs sampler reduces to

x (n+1)1 ∼ π
(
x1|x (n)2

)
,

x (n+1)2 ∼ π
(
x2|x (n+1)1

)
We do this repeatedly from some initial value x (0)2 to get the sequence

x (1)1 , x (1)2 , x (2)1 , x (2)2 , ..., x (T )1 , x (T )2 .
John C. Chao (Econ 721 Lecture Notes) November 16, 2021 15 / 25



Gibbs Sampling

Example: Let

x =
(
x1
x2

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
where |ρ| < 1 so that(

1 ρ
ρ 1

)
> 0 (i.e., it is positive definite).

In this case, the Markov chain is generated by iterating

x (n+1)1 |x (n)2 ∼ N
(

ρx (n)2 , 1− ρ2
)
,

x (n+1)2 |x (n+1)1 ∼ N
(

ρx (n+1)1 , 1− ρ2
)
.
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Gibbs Sampling

Example (con’t): The marginal distribution of x (n) =
(
x (n)1 , x (n)2

)′
can be shown to be(

x (n)1
x (n)2

)

∼ N

( ρ2n−1x (0)2
ρ2nx (0)2

)
,

 1− ρ2(2n−1) ρ
(
1− ρ2(2n−1)

)
ρ
(
1− ρ2(2n−1)

)
1− ρ4n


so that (

x (n)1
x (n)2

)
d→ N

((
0
0

)
,

(
1 ρ
ρ 1

))
as n→ ∞.

Note also that the rate of convergence is very fast in this case.
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Metropolis within Gibbs Algorithm:

To implement the Gibbs sampling algorithm, we must be able to draw
from the conditional distributions. If that is not the case; then, we
can still implement the Gibbs sampling algorithm by drawing each
observation using a Metropolis-Hastings step using q as a proposal
distribution to draw x and q̃ a proposal distribution to draw y .

Metropolis within Gibbs Algorithm: Choose X0 arbitrarily.
Suppose we have generated X0,X1, ...,Xn; then, to generate Xn+1, we
proceed as follows

1 Generate a proposal or candidate value Z ∼ q (z |Xn)
2 Evaluate

αX = α (Xn,Yn) = min
{
1,

π (Z ,Yn) q (Xn |Z )
π (Xn,Yn) q (Z |Xn)

}
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Metropolis within Gibbs Algorithm:

Metropolis within Gibbs Algorithm (con’t):

3. Set

Xn+1 =
{
Z with prob αX
Xn with prob 1− αX

4. Generate a proposal or candidate value Z ∼ q̃ (z |Yn)
5. Evaluate

αY = α (Xn+1,Yn) = min
{
1,

π (Xn+1,Z ) q̃ (Yn |Z )
π (Xn+1,Yn) q̃ (Z |Yn)

}
6. Set

Yn+1 =
{
Z with prob αY
Yn with prob 1− αY
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Convergence Diagnostics

The theory of Markov chains tells us thta an irreducible, aperiodic
Markov chain will eventually converge to its stationary distribution.
However, a more practical question that needs to be answered is how
do we know that our chain has approximately converged after T
draws? Below are some of the common methods used to perform
convergence diagnostics.
Traceplots:
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Convergence Diagnostics

Autocorrelations: Another way to assess convergence is to look at
the sample autocorrelations between the draws of the Markov chain.
Let

ρ̂k =
∑T−k
t=1

(
Xt − X

) (
Xt+k − X

)
∑T
t=1

(
Xt − X

)2
When k is large, we would expect the k th lag autocorrelation to be
small, so if ρ̂k is still relatively high when k is large, this indicates
that the chain is mixing slowly as there is a high level of correlation in
our draws.

Gelman and Rubin Multiple Sequence Diagnostics:
Steps (for each parameter)

(i) Run m ≥ 2 chains of length 2n from overdispersed starting values.

(ii) Discard the first n draws in each chain
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Convergence Diagnostics

(iii) Calculate the within-chain and between chain variances as follows:
Within Chain Variance:

W =
1
m

m

∑
j=1
s2j

where

s2j =
1

n− 1
n

∑
t=1

(
θtj − θj

)2
with θj =

1
n

n

∑
t=1

θtj

Note that W is likely to underestimate the true variance of the
stationary distribution since with a finite number of draws our chains
have probably not reached all the points of the stationary distribution
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Convergence Diagnostics

(iii) Between Chain Variance:

B =
n

m− 1
m

∑
j=1

(
θj − θ

)2
where

θ =
1
m

m

∑
j=1

θj .

It follows that B/n is an estimate of the between chain variance.
Estimated Variance of the Stationary Distribution:

σ̂2θ =

(
1− 1

n

)
W +

1
n
B

Because of overdispersion of the initial values, σ̂2θ is likely to
overestimate the true variance. On the other hand, if the initial
distribution happens to be the stationary distribution, then this is an
unbiased estimator.
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Convergence Diagnostics

(iii) Potential Scale Reduction Factor:

R̂ =
σ̂θ√
W

If R̂ is high (say, greater than 1.1 or 1.2); then, we need to run our
chains out longer in order to ensure approximate convergence.

Remarks:

(i) If we have more than one parameter, then we need to calculate R̂ for
each parameter.

(ii) We should run our chains long enough so that all the R̂’s are small
enough.

(iii) We can then combine the mn total draws from our chains to produce
one chain from the stationary distribution.
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Convergence Diagnostics

Geweke’s Method (based on Geweke, 1992)
Suppose we are interested in estimating by MCMC the function g (θ)
of the parameter θ. Geweke proposes using the test statistic

T =
gnA − gnB

σ̂
where

gnA =
1
nA

nA

∑
t=1
g
(

θ(t)
)
, gnB =

1
nB

n

∑
t=n−nB+1

g
(

θ(t)
)

σ̂2 =
ŜnA (0)
nA

+
ŜnB (0)
nB

Under the null hypothesis that
{
g
(

θ(t)
)}

is strictly stationary and
ergodic, we should have

T
d→ N (0, 1)

as nA, nB , and n→ ∞ such that nA ∼ n and nB ∼ n.
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