

Markov Chain Monte Carlo

John C. Chao

Econ 721 Lecture Notes

November 16, 2021

- **Problem to be considered:** Suppose we are able to evaluate a possibly un-normalized density function π^* . Our goal is to draw a sample from the (normalized) probability density function

$$\pi(x) = \frac{\pi^*(x)}{C},$$

where the normalization constant

$$C = \int_{\mathcal{S}} \pi^*(x) dx$$

may be unknown to us.

- **Application to Bayesian Econometrics or Statistics:** Let $L(\theta; y)$ be the likelihood function of a statistical experiment with data y and unknown parameter (vector) $\theta \in \Theta$ and let $p(\theta)$ denote the prior density. Then, the target distribution of interest might be the posterior distribution of θ given the data y whose density (up to a normalization constant) can be represented by

$$\pi(\theta|y) \propto L(\theta; y) p(\theta) = \pi^*(\theta|y)$$

- The use of Markov Chain Monte Carlo (MCMC) methods allow us to overcome the following difficulties typically encountered in the implementation of Bayesian procedures
 - (i) The state space \mathcal{S} is typically high-dimensional.
 - (ii) Direct simulation from π is too complex to be feasible.
 - (iii) Computing the normalization constant C is as difficult as the entire simulation problem.

Markov Chain Monte Carlo

- **The MCMC Approach:** Let $\pi(\cdot)$ be a target density on some state space \mathcal{S} (e.g., $\mathcal{S} \subseteq \mathbb{R}^d$). The MCMC approach requires us to construct a Markov chain on \mathcal{S} , i.e., a Markov chain with transition probability

$$P(x, dy) \text{ for } x, y \in \mathcal{S}$$

such that $\pi(\cdot)$ is its stationary distribution, so that

$$\int_{x \in \mathcal{S}} \pi(dx) P(x, dy) = \pi(dy).$$

The hope is that if we run the Markov chain for a long time (starting from some initial value in the state space); then, for n sufficiently large the distribution of X_n will be approximately that of the stationary distribution $\pi(\cdot)$.

- **Metropolis-Hastings Algorithm:** The Metropolis-Hastings algorithm is a particular type of MCMC which requires the choice of a proposal distribution $q(y|x)$ which is a friendly distribution from which we know how to generate a sample. Given $q(y|x)$, the Metropolis-Hastings algorithm creates a sequence of observations X_0, X_1, X_2, \dots based on the following algorithm.
- **Algorithm:** Choose X_0 arbitrarily. Suppose we have generated X_0, \dots, X_n ; then, to generate X_{n+1} , we proceed as follows:
 - ① Generate a proposal or candidate value $Y_{n+1} \sim q(y|x)$
 - ② Evaluate

$$\alpha = \alpha(X_n, Y_{n+1})$$

where

$$\alpha(x, y) = \min \left\{ 1, \frac{\pi(y) q(x|y)}{\pi(x) q(y|x)} \right\}$$

Metropolis-Hastings Algorithm

3. Set

$$X_{n+1} = \begin{cases} Y_{n+1} & \text{with prob } \alpha \\ X_n & \text{with prob } 1 - \alpha \end{cases}$$

i.e., we accept Y_{n+1} as the new value X_{n+1} with probability $\alpha = \alpha(X_n, Y_{n+1})$ or reject Y_{n+1} and set $X_{n+1} = X_n$ (the old value) with probability $1 - \alpha(X_n, Y_{n+1})$.

- **Remarks:**

- (i) A simple way to carry out step 3 above is to generate $U \sim \text{Unif}(0, 1)$. If $U < \alpha$. set $X_{n+1} = Y_{n+1}$; otherwise, set $X_{n+1} = X_n$.

Metropolis-Hastings Algorithm

- **Remarks:**

(ii) A common choice for $q(y|x)$ is to specify it to be the pdf of $N(x, \omega^2)$ for some $\omega > 0$. This means that the proposal is drawn from a normal distribution centered at the current value x . Since in this case

$$q(y|x) = \frac{1}{\omega\sqrt{2\pi}} \exp\left\{-\frac{1}{2\omega^2}(y-x)^2\right\}$$

we see that the proposal density is symmetric, i.e., $q(y|x) = q(x|y)$. Hence, in this case, α simplifies to

$$\begin{aligned}\alpha &= \alpha(X_n, Y_{n+1}) = \min\left\{1, \frac{\pi(Y_{n+1}) q(X_n|Y_{n+1})}{\pi(X_n) q(Y_{n+1}|X_n)}\right\} \\ &= \min\left\{1, \frac{\pi(Y_{n+1})}{\pi(X_n)}\right\}.\end{aligned}$$

Metropolis-Hastings Algorithm

- **Remarks (con't):**

(iii) Note also that since $\alpha(x, y)$ only depends on the ratio $\pi(y)/\pi(x) = \pi^*(y)/\pi^*(x)$, we would not need to know the normalization constant C in order to implement this algorithm.

- **Claim:** Given that

$$\alpha(x, y) = \min \left\{ 1, \frac{\pi(y) q(x|y)}{\pi(x) q(y|x)} \right\}$$

the resulting Markov chain is reversible with respect to $\pi(\cdot)$.

Metropolis-Hastings Algorithm

- **Proof of Claim (Sketched):** We need to show that

$$\pi(dx) P(x, dy) = \pi(dy) P(y, dx) \text{ for all } x, y \in \mathcal{S}.$$

It suffices to assume that $x \neq y$ since otherwise it is trivial. Note that $P(x, dy)$ is the probability of jumping from x to y . To do so requires two things: (i) $y \in dy$ is generated in accordance with the conditional distribution $q(y|x)$ and (ii) y is accepted. Hence, we have roughly

$$\begin{aligned}\pi(dx) P(x, dy) &= \pi(x) dx \alpha(x, y) q(y|x) dy \\ &= \pi(x) q(y|x) \min \left\{ 1, \frac{\pi(y) q(x|y)}{\pi(x) q(y|x)} \right\} dx dy \\ &= \min \{ \pi(x) q(y|x), \pi(y) q(x|y) \} dx dy \\ &= \pi(y) q(x|y) \min \left\{ \frac{\pi(x) q(y|x)}{\pi(y) q(x|y)}, 1 \right\} dx dy \\ &= \pi(y) dy \alpha(y, x) q(x|y) dx \\ &= \pi(dy) P(y, dx).\end{aligned}$$

Metropolis-Hastings Algorithm

- **Example:** Suppose that the target distribution is the Cauchy with pdf given by

$$\pi(x) = \frac{1}{\pi} \frac{1}{1+x^2}$$

Here, we can take $q(y|x)$ to be $N(x, \omega^2)$ and because $q(y|x) = q(x|y)$ in this case, we have

$$\alpha(x, y) = \min \left\{ 1, \frac{\pi(y)}{\pi(x)} \right\} = \min \left\{ 1, \frac{1+x^2}{1+y^2} \right\}$$

Hence, the Metropolis-Hastings algorithm in this case is to draw

$$Y_{n+1} \sim N(x, \omega^2)$$

and set

$$X_{n+1} = \begin{cases} Y_{n+1} & \text{with prob } \alpha(X_n, Y_{n+1}) \\ X_n & \text{with prob } 1 - \alpha(X_n, Y_{n+1}) \end{cases}$$

Metropolis-Hastings Algorithm

- **Example (con't):** Wasserman (2004) showed the results of an experiment where three chains of length $T = 1000$ were generated using

$$\omega = 0.1, 1, 10.$$

He found that setting $\omega = 0.1$ requires the chain to take steps that were too small, so that it does not "explore" much of the state space. On the other hand, setting $\omega = 10$ often results in proposals that are in the tails of the distribution, leading to small values of $\alpha(X_n, Y_{n+1})$ and, thus, frequent rejection of the proposals. Hence, the chain ends up "getting stuck" in the same place quite often. The choice $\omega = 1$ turns out to avoid the two extremes and results in a chain that performs much better. Hence, we can think of ω as a tuning parameter whose selection will affect the efficiency of the algorithm.

Gibbs Sampling

- **Two-Variables Case:** Starting at (X_0, Y_0) and suppose we have drawn $(X_0, Y_0), \dots, (X_n, Y_n)$; then, the Gibbs sampler for getting (X_{n+1}, Y_{n+1}) is

$$\begin{aligned} X_{n+1} &\sim f(x|Y_n), \\ Y_{n+1} &\sim f(y|X_{n+1}). \end{aligned}$$

the Gibbs sampling process then involves iteration on this step until we obtain the needed sample.

Gibbs Sampling

- **General Case:** Suppose that the target distribution is $\pi(x)$ where x is d -dimensional, say $x \in \mathcal{S} \subseteq \mathbb{R}^d$. Let

$$x = (x_1, x_2, \dots, x_d)',$$

$$x^{(n)} = \left(x_1^{(n)}, x_2^{(n)}, \dots, x_d^{(n)} \right)' - x \text{ obtained in the } n^{\text{th}} \text{ iteration}$$

$$x_{[-i]} = (x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_d)',$$

$$x_{[-i]}^{(n)} = \left(x_1^{(n)}, \dots, x_{i-1}^{(n)}, x_{i+1}^{(n)}, \dots, x_d^{(n)} \right)'$$

and let $\pi(x|x_{[-i]}^{(n)})$ be the conditional density of x given $x_{[-i]}^{(n)}$.

Gibbs Sampling

- There are two versions of Gibbs sampling.
- ① **Random-Scan Gibbs Sampler:** Given that in the n^{th} iteration we obtain $x^{(n)}$, we perform the following steps to obtain $x^{(n+1)}$.
 - (i) Randomly select a coordinate $i \in \{1, 2, \dots, d\}$ according to some probability vector (p_1, \dots, p_d) , e.g. $(p_1, \dots, p_d) = (1/d, \dots, 1/d)$.
 - (ii) Draw $x_i^{(n+1)}$ from the conditional distribution $P_i = P\left(x_{[-i]}^{(n)}, dx_i\right) = \pi\left(x_i | x_{[-i]}^{(n)}\right) dx_i$ and leave the remaining components unchanged, i.e., let

$$x^{(n)} = \left(x_1^{(n)}, \dots, x_{i-1}^{(n)}, x_i^{(n+1)}, x_{i+1}^{(n)}, \dots, x_d^{(n)} \right)'$$

Gibbs Sampling

2. **Systematic-Scan Gibbs Sampler:** Given that in the n^{th} iteration we obtain $x^{(n)}$, we draw

$$x_1^{(n+1)} \sim \pi(x_1 | x_{[-1]}^{(n)})$$

$$x_2^{(n+1)} \sim \pi(x_2 | x_1^{(n+1)}, x_3^{(n)}, \dots, x_d^{(n)})$$

⋮

$$x_d^{(n+1)} \sim \pi(x_d | x_1^{(n+1)}, x_2^{(n+1)}, \dots, x_{d-1}^{(n+1)})$$

- **Remark:** When $d = 2$, the systematic-scan Gibbs sampler reduces to

$$x_1^{(n+1)} \sim \pi(x_1 | x_2^{(n)}),$$

$$x_2^{(n+1)} \sim \pi(x_2 | x_1^{(n+1)})$$

We do this repeatedly from some initial value $x_2^{(0)}$ to get the sequence $x_1^{(1)}, x_2^{(1)}, x_1^{(2)}, x_2^{(2)}, \dots, x_1^{(T)}, x_2^{(T)}$.

Gibbs Sampling

- **Example:** Let

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \sim N \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \right)$$

where $|\rho| < 1$ so that

$$\begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} > 0 \text{ (i.e., it is positive definite).}$$

In this case, the Markov chain is generated by iterating

$$\begin{aligned} x_1^{(n+1)} | x_2^{(n)} &\sim N \left(\rho x_2^{(n)}, 1 - \rho^2 \right), \\ x_2^{(n+1)} | x_1^{(n+1)} &\sim N \left(\rho x_1^{(n+1)}, 1 - \rho^2 \right). \end{aligned}$$

Gibbs Sampling

- **Example (con't):** The marginal distribution of $x^{(n)} = (x_1^{(n)}, x_2^{(n)})'$ can be shown to be

$$\begin{pmatrix} x_1^{(n)} \\ x_2^{(n)} \end{pmatrix} \sim N \left(\begin{pmatrix} \rho^{2n-1} x_2^{(0)} \\ \rho^{2n} x_2^{(0)} \end{pmatrix}, \begin{pmatrix} 1 - \rho^{2(2n-1)} & \rho(1 - \rho^{2(2n-1)}) \\ \rho(1 - \rho^{2(2n-1)}) & 1 - \rho^{4n} \end{pmatrix} \right)$$

so that

$$\begin{pmatrix} x_1^{(n)} \\ x_2^{(n)} \end{pmatrix} \xrightarrow{d} N \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \right) \text{ as } n \rightarrow \infty.$$

Note also that the rate of convergence is very fast in this case.

Metropolis within Gibbs Algorithm:

- To implement the Gibbs sampling algorithm, we must be able to draw from the conditional distributions. If that is not the case; then, we can still implement the Gibbs sampling algorithm by drawing each observation using a Metropolis-Hastings step using q as a proposal distribution to draw x and \tilde{q} a proposal distribution to draw y .
- **Metropolis within Gibbs Algorithm:** Choose X_0 arbitrarily. Suppose we have generated X_0, X_1, \dots, X_n ; then, to generate X_{n+1} , we proceed as follows
 - ① Generate a proposal or candidate value $Z \sim q(z|X_n)$
 - ② Evaluate

$$\alpha_X = \alpha(X_n, Y_n) = \min \left\{ 1, \frac{\pi(Z, Y_n) q(X_n|Z)}{\pi(X_n, Y_n) q(Z|X_n)} \right\}$$

Metropolis within Gibbs Algorithm:

- **Metropolis within Gibbs Algorithm (con't):**

3. Set

$$X_{n+1} = \begin{cases} Z & \text{with prob } \alpha_X \\ X_n & \text{with prob } 1 - \alpha_X \end{cases}$$

4. Generate a proposal or candidate value $Z \sim \tilde{q}(z|Y_n)$

5. Evaluate

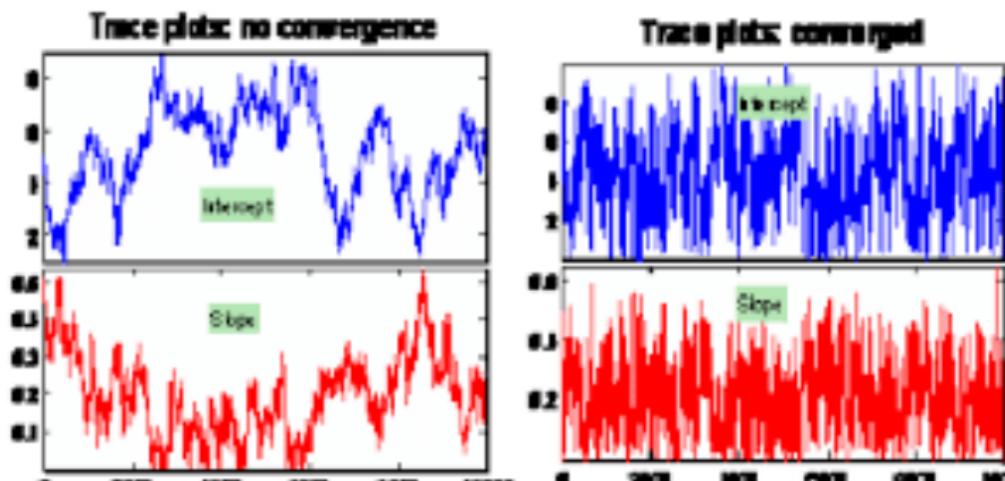
$$\alpha_Y = \alpha(X_{n+1}, Y_n) = \min \left\{ 1, \frac{\pi(X_{n+1}, Z) \tilde{q}(Y_n|Z)}{\pi(X_{n+1}, Y_n) \tilde{q}(Z|Y_n)} \right\}$$

6. Set

$$Y_{n+1} = \begin{cases} Z & \text{with prob } \alpha_Y \\ Y_n & \text{with prob } 1 - \alpha_Y \end{cases}$$

Convergence Diagnostics

- The theory of Markov chains tells us that an irreducible, aperiodic Markov chain will eventually converge to its stationary distribution. However, a more practical question that needs to be answered is how do we know that our chain has approximately converged after T draws? Below are some of the common methods used to perform convergence diagnostics.
- **Traceplots:**



Convergence Diagnostics

- **Autocorrelations:** Another way to assess convergence is to look at the sample autocorrelations between the draws of the Markov chain. Let

$$\hat{\rho}_k = \frac{\sum_{t=1}^{T-k} (X_t - \bar{X})(X_{t+k} - \bar{X})}{\sum_{t=1}^T (X_t - \bar{X})^2}$$

When k is large, we would expect the k^{th} lag autocorrelation to be small, so if $\hat{\rho}_k$ is still relatively high when k is large, this indicates that the chain is mixing slowly as there is a high level of correlation in our draws.

- **Gelman and Rubin Multiple Sequence Diagnostics:**
Steps (for each parameter)

- (i) Run $m \geq 2$ chains of length $2n$ from overdispersed starting values.
- (ii) Discard the first n draws in each chain

Convergence Diagnostics

(iii) Calculate the within-chain and between chain variances as follows:

Within Chain Variance:

$$W = \frac{1}{m} \sum_{j=1}^m s_j^2$$

where

$$s_j^2 = \frac{1}{n-1} \sum_{t=1}^n (\theta_{tj} - \bar{\theta}_j)^2 \text{ with } \bar{\theta}_j = \frac{1}{n} \sum_{t=1}^n \theta_{tj}$$

Note that W is likely to underestimate the true variance of the stationary distribution since with a finite number of draws our chains have probably not reached all the points of the stationary distribution

Convergence Diagnostics

(iii) Between Chain Variance:

$$B = \frac{n}{m-1} \sum_{j=1}^m \left(\bar{\theta}_j - \bar{\bar{\theta}} \right)^2$$

where

$$\bar{\bar{\theta}} = \frac{1}{m} \sum_{j=1}^m \bar{\theta}_j.$$

It follows that B/n is an estimate of the between chain variance.

Estimated Variance of the Stationary Distribution:

$$\hat{\sigma}_\theta^2 = \left(1 - \frac{1}{n} \right) W + \frac{1}{n} B$$

Because of overdispersion of the initial values, $\hat{\sigma}_\theta^2$ is likely to overestimate the true variance. On the other hand, if the initial distribution happens to be the stationary distribution, then this is an unbiased estimator.

(iii) Potential Scale Reduction Factor:

$$\hat{R} = \frac{\hat{\sigma}_\theta}{\sqrt{W}}$$

If \hat{R} is high (say, greater than 1.1 or 1.2); then, we need to run our chains out longer in order to ensure approximate convergence.

• Remarks:

- (i) If we have more than one parameter, then we need to calculate \hat{R} for each parameter.
- (ii) We should run our chains long enough so that all the \hat{R} 's are small enough.
- (iii) We can then combine the mn total draws from our chains to produce one chain from the stationary distribution.

Convergence Diagnostics

- **Geweke's Method (based on Geweke, 1992)**

Suppose we are interested in estimating by MCMC the function $g(\theta)$ of the parameter θ . Geweke proposes using the test statistic

$$T = \frac{\bar{g}_{n_A} - \bar{g}_{n_B}}{\hat{\sigma}}$$

where

$$\begin{aligned}\bar{g}_{n_A} &= \frac{1}{n_A} \sum_{t=1}^{n_A} g(\theta^{(t)}), \quad \bar{g}_{n_B} = \frac{1}{n_B} \sum_{t=n-n_B+1}^n g(\theta^{(t)}) \\ \hat{\sigma}^2 &= \frac{\hat{S}_{n_A}(0)}{n_A} + \frac{\hat{S}_{n_B}(0)}{n_B}\end{aligned}$$

Under the null hypothesis that $\{g(\theta^{(t)})\}$ is strictly stationary and ergodic, we should have

$$T \xrightarrow{d} N(0, 1)$$

as n_A , n_B , and $n \rightarrow \infty$ such that $n_A \sim n$ and $n_B \sim n$.