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Canonical Correlation Analysis

Consider the random vector

X
m×1

=

 U
m1×1
V

m2×1


where

E [X ] = 0,

V (X ) = Σ =

 Σ11
m1×m1

Σ12
m1×m2

Σ21
m2×m1

Σ22
m2×m2


with Σ12 = Σ′21 and, without loss of generality, we assume that
m1 ≤ m2.
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Canonical Correlation Analysis

Now, consider a linear combination

Y = α′U

of the components of U and a linear combination

Z = γ′V

of the components of V .

The objective is to find the linear combinations of U and V which
give the maximum correlation.
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Canonical Correlation Analysis

To proceed, note first that correlations are unique only up to a scalar
multiplication since

|Corr (Y ,Z )| =
∣∣∣∣∣ Cov (Y ,Z )√
Var (Y )

√
Var (Z )

∣∣∣∣∣
=

∣∣∣∣∣ ab|ab| Cov (Y ,Z )√
Var (Y )

√
Var (Z )

∣∣∣∣∣
=

∣∣∣∣∣ Cov (aY , bZ )√
Var (aY )

√
Var (bZ )

∣∣∣∣∣
= |Corr (aY , bZ )|

for a, b ∈ R such that a 6= 0 and b 6= 0.
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Canonical Correlation Analysis

It follows that, without loss of generality, we can normalize the
variance of Y and Z as follows:

1 = Var (Y ) = E
[
Y 2
]
= α′E

[
UU ′

]
α = α′Σ11α,

1 = Var (Z ) = E
[
Z 2
]
= γ′E

[
VV ′

]
γ = γ′Σ22γ,

where Var (Y ) = E
[
Y 2
]
and Var (Z ) = E

[
Z 2
]
follow from the fact

that E [Y ] = α′E [U ] = 0 and E [Z ] = γ′E [V ] = 0.

Note that the above normalization is tantamount to setting

a =
1√

Var (Y )
and b =

1√
Var (Z )

.

Under this normalization, correlation between Y and Z is given by the
covariance

E [YZ ] = α′E [UV ] γ = α′Σ12γ.
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Canonical Correlation Analysis

To maximize the correlation, we set up the Lagrangian

L1 = α′Σ12γ−
1
2

λ
(
α′Σ11α− 1

)
− 1
2

µ
(
γ′Σ22γ− 1

)
The first-order conditions are

∂L1
∂α

= Σ12γ− λΣ11α = 0 (1)

∂L1
∂γ

= Σ21α− µΣ22γ = 0 (2)

Premultiply (1) by α′ and (2) by γ′, we get

α′Σ12γ− λα′Σ11α = 0,

γ′Σ21α− µγ′Σ22γ = 0.
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Canonical Correlation Analysis

Next, differentiating L1

L1 = α′Σ12γ−
1
2

λ
(
α′Σ11α− 1

)
− 1
2

µ
(
γ′Σ22γ− 1

)
with respect to λ and µ and setting the partial derivatives equal to
zero, we get

∂L1
∂λ

= −1
2

(
α′Σ11α− 1

)
= 0 implying that α′Σ11α = 1

∂L1
∂µ

= −1
2

(
γ′Σ22γ− 1

)
= 0 implying that γ′Σ22γ = 1
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Canonical Correlation Analysis

It follows that

α′Σ12γ− λα′Σ11α = α′Σ12γ− λ = 0,

γ′Σ21α− µγ′Σ22γ = γ′Σ21α− µ = 0.

Moreover, because α′Σ12γ = γ′Σ′12α = γ′Σ21α, we further deduce
that

λ = µ = α′Σ12γ.

Putting everything together, we can rewrite the first-order conditions

∂L1
∂α

= Σ12γ− λΣ11α = 0

∂L1
∂γ

= Σ21α− µΣ22γ = 0

as (
−λΣ11 Σ12

Σ21 −λΣ22

)(
α
γ

)
= 0 (3)
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Canonical Correlation Analysis

Now, for the system of equations(
−λΣ11 Σ12

Σ21 −λΣ22

)(
α
γ

)
= 0

to have a nontrivial solution, i.e., (α′,γ′)′ 6= 0, it must be that the
matrix on the left-hand side is singular, so that

det
(
−λΣ11 Σ12

Σ21 −λΣ22

)
= 0 (4)

Since our objective is to maximize the correlation λ = α′Σ12γ, we
choose λ1 to be the largest root of the determinantal equation above
and let (α′1,γ

′
1)
′ be the associated eigenvector.
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Canonical Correlation Analysis

Next, we construct

Y1 = α′1U and Z1 = γ′1V

so that Y1 and Z1 are the normalized linear combinations of U and V
which give the maximum correlation, with λ1 being the maximal
(canonical) correlation.

The analysis can then proceed further with finding a second linear
combination of U, say Y2 = α′2U, and a second linear combination of
V , say Z2 = γ′2V , which have maximum correlation among all pairs
not correlated with Y1 and Z1.
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Canonical Correlation Analysis

To proceed, we again set up a Lagrangian

L2 = α′Σ12γ−
1
2

λ
(
α′Σ11α− 1

)
− 1
2

µ
(
γ′Σ22γ− 1

)
+να′Σ11α1 + θγ′Σ22γ1

In looking at the above Lagrangian, you may wonder why there are
constraints only for Cov (Y2,Y1) = α′2Σ11α1 = 0 and
Cov (Z2,Z1) = γ′2Σ22γ1 = 0 and not for either
Cov (Y2,Z1) = α′2Σ12γ1 = 0 and Cov (Z2,Y1) = γ′2Σ21α1 = 0. It
turns out that if the former two constraints are satisfied, then the
latter two are automatically satisfied.
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Canonical Correlation Analysis

To see this, recall the first-order conditions from step 1 above

∂L1
∂α

= Σ12γ1 − λ1Σ11α1 = 0

∂L1
∂γ

= Σ21α1 − λ1Σ22γ1 = 0

Given these relations, note that, if Cov (Y2,Y1) = α′2Σ11α1 = 0, then

Cov (Y2,Z1) = α′2Σ12γ1 = λ1α
′
2Σ11α1 = 0.

In addition, if Cov (Z2,Z1) = γ′2Σ22γ1 = 0, then

Cov (Y1,Z2) = γ′2Σ21α1 = λ1γ
′
2Σ22γ1 = 0.
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Canonical Correlation Analysis

Next, note that the first-order conditions associated with L2 are

∂L2
∂α

= Σ12γ2 − λ2Σ11α2 + ν2Σ11α1 = 0 (5)

∂L2
∂γ

= Σ21α2 − µ2Σ22γ2 + θ2Σ22γ1 = 0 (6)

Premultiply (5) by α′1 and (6) by γ′1, we get

α′1Σ12γ2 − λ2α
′
1Σ11α2 + ν2α

′
1Σ11α1 = ν2 = 0,

γ′1Σ21α2 − µ2γ
′
1Σ22γ2 + θ2γ

′
1Σ22γ1 = θ2 = 0.

Hence, the last two constraints in L2 are not binding.
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Canonical Correlation Analysis

It follows finding this second linear combination pair involves solving
the same eigenvalue problem that was given by(

−λΣ11 Σ12
Σ21 −λΣ22

)(
α
γ

)
= 0

and

det
(
−λΣ11 Σ12

Σ21 −λΣ22

)
= 0

In particular, let λ2 be the second largest root of the determinantal
equation above and let (α′2,γ

′
2)
′ be the associated eigenvector; then,

Y2 = α′2U,

Z2 = γ′2V

are the normalized linear combination pair which yields the highest
correlation among all pairs not correlated with Y1 and Z1 and λ2
gives the value of their correlation.
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Canonical Correlation Analysis

We can proceed in this way to obtain

Canonical Correlations Weights Y Z
(Eigenvalues) (Eigenvalues)

λ1 (α′1,γ
′
1)
′ Y1 = α′1U Z1 = γ′1V

λ2 (α′2,γ
′
2)
′ Y2 = α′2U Z2 = γ′2V

...
...

...
...

λm1
(
α′m1 ,γ

′
m1

)′ Ym1 = α′m1U Zm1 = γ′m1V
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Canonical Correlation Analysis

As a final remark, we note that the equations(
−λΣ11 Σ12

Σ21 −λΣ22

)(
α
γ

)
= 0

and

det
(
−λΣ11 Σ12

Σ21 −λΣ22

)
= 0

can be written in a different form which may be more convenient for
cointegration analysis.
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Canonical Correlation Analysis

In particular, note that, since λ = µ, we can rewrite the first-order
conditions given by equations (1) and (2) as

Σ12γ− λΣ11α = 0 (7)

Σ21α− λΣ22γ = 0 (8)

Premultiplying expression (8) above by Σ12Σ−122 yields

Σ12Σ−122 Σ21α− λΣ12Σ−122 Σ22γ = Σ12Σ−122 Σ21α− λΣ12γ = 0

or
Σ12Σ−122 Σ21α = λΣ12γ = λ2Σ11α

where the last equality above follows from (7).
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Canonical Correlation Analysis

It follows that, alternatively, we can obtain the squared canonical
correlations and the eigenvectors αi (i = 1, ...,m1) as solutions of the
system of equations (

λ2Σ11 − Σ12Σ−122 Σ21
)

α = 0

where λ2i (i = 1, ...,m1), i.e., the squared canonical correlations, are
the roots of the determinantal equation

det
(
λ2Σ11 − Σ12Σ−122 Σ21

)
= 0.

Similarly, it can be shown that λ2i and γi (i = 1, ...,m1) can be
obtained as the solutions of the system of equations(

λ2Σ22 − Σ21Σ−111 Σ12
)

γ = 0

with λ2i (i = 1, ...,m1) being the m1 largest roots of

det
(
λ2Σ22 − Σ21Σ−111 Σ12

)
= 0.
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