

Lecture Notes on Canonical Correlation Analysis

John C. Chao

Econ 721 Lecture Notes

October 11, 2021

Canonical Correlation Analysis

- Consider the random vector

$$X_{m \times 1} = \begin{pmatrix} U_{m_1 \times 1} \\ V_{m_2 \times 1} \end{pmatrix}$$

where

$$E[X] = 0,$$

$$V(X) = \Sigma = \begin{pmatrix} \Sigma_{11}_{m_1 \times m_1} & \Sigma_{12}_{m_1 \times m_2} \\ \Sigma_{21}_{m_2 \times m_1} & \Sigma_{22}_{m_2 \times m_2} \end{pmatrix}$$

with $\Sigma_{12} = \Sigma'_{21}$ and, without loss of generality, we assume that $m_1 \leq m_2$.

Canonical Correlation Analysis

- Now, consider a linear combination

$$Y = \alpha' U$$

of the components of U and a linear combination

$$Z = \gamma' V$$

of the components of V .

- The objective is to find the linear combinations of U and V which give the maximum correlation.

Canonical Correlation Analysis

- To proceed, note first that correlations are unique only up to a scalar multiplication since

$$\begin{aligned} |\text{Corr}(Y, Z)| &= \left| \frac{\text{Cov}(Y, Z)}{\sqrt{\text{Var}(Y)} \sqrt{\text{Var}(Z)}} \right| \\ &= \left| \frac{ab}{|ab|} \frac{\text{Cov}(Y, Z)}{\sqrt{\text{Var}(Y)} \sqrt{\text{Var}(Z)}} \right| \\ &= \left| \frac{\text{Cov}(aY, bZ)}{\sqrt{\text{Var}(aY)} \sqrt{\text{Var}(bZ)}} \right| \\ &= |\text{Corr}(aY, bZ)| \end{aligned}$$

for $a, b \in \mathbb{R}$ such that $a \neq 0$ and $b \neq 0$.

Canonical Correlation Analysis

- It follows that, without loss of generality, we can normalize the variance of Y and Z as follows:

$$\begin{aligned}1 &= \text{Var}(Y) = E[Y^2] = \alpha' E[UU'] \alpha = \alpha' \Sigma_{11} \alpha, \\1 &= \text{Var}(Z) = E[Z^2] = \gamma' E[VV'] \gamma = \gamma' \Sigma_{22} \gamma,\end{aligned}$$

where $\text{Var}(Y) = E[Y^2]$ and $\text{Var}(Z) = E[Z^2]$ follow from the fact that $E[Y] = \alpha' E[U] = 0$ and $E[Z] = \gamma' E[V] = 0$.

- Note that the above normalization is tantamount to setting

$$a = \frac{1}{\sqrt{\text{Var}(Y)}} \text{ and } b = \frac{1}{\sqrt{\text{Var}(Z)}}.$$

- Under this normalization, correlation between Y and Z is given by the covariance

$$E[YZ] = \alpha' E[UV] \gamma = \alpha' \Sigma_{12} \gamma.$$

Canonical Correlation Analysis

- To maximize the correlation, we set up the Lagrangian

$$\mathcal{L}_1 = \alpha' \Sigma_{12} \gamma - \frac{1}{2} \lambda (\alpha' \Sigma_{11} \alpha - 1) - \frac{1}{2} \mu (\gamma' \Sigma_{22} \gamma - 1)$$

- The first-order conditions are

$$\frac{\partial \mathcal{L}_1}{\partial \alpha} = \Sigma_{12} \gamma - \lambda \Sigma_{11} \alpha = 0 \quad (1)$$

$$\frac{\partial \mathcal{L}_1}{\partial \gamma} = \Sigma_{21} \alpha - \mu \Sigma_{22} \gamma = 0 \quad (2)$$

- Premultiply (1) by α' and (2) by γ' , we get

$$\begin{aligned} \alpha' \Sigma_{12} \gamma - \lambda \alpha' \Sigma_{11} \alpha &= 0, \\ \gamma' \Sigma_{21} \alpha - \mu \gamma' \Sigma_{22} \gamma &= 0. \end{aligned}$$

Canonical Correlation Analysis

- Next, differentiating \mathcal{L}_1

$$\mathcal{L}_1 = \alpha' \Sigma_{12} \gamma - \frac{1}{2} \lambda (\alpha' \Sigma_{11} \alpha - 1) - \frac{1}{2} \mu (\gamma' \Sigma_{22} \gamma - 1)$$

with respect to λ and μ and setting the partial derivatives equal to zero, we get

$$\frac{\partial \mathcal{L}_1}{\partial \lambda} = -\frac{1}{2} (\alpha' \Sigma_{11} \alpha - 1) = 0 \text{ implying that } \alpha' \Sigma_{11} \alpha = 1$$

$$\frac{\partial \mathcal{L}_1}{\partial \mu} = -\frac{1}{2} (\gamma' \Sigma_{22} \gamma - 1) = 0 \text{ implying that } \gamma' \Sigma_{22} \gamma = 1$$

Canonical Correlation Analysis

- It follows that

$$\begin{aligned}\alpha' \Sigma_{12} \gamma - \lambda \alpha' \Sigma_{11} \alpha &= \alpha' \Sigma_{12} \gamma - \lambda = 0, \\ \gamma' \Sigma_{21} \alpha - \mu \gamma' \Sigma_{22} \gamma &= \gamma' \Sigma_{21} \alpha - \mu = 0.\end{aligned}$$

Moreover, because $\alpha' \Sigma_{12} \gamma = \gamma' \Sigma'_{12} \alpha = \gamma' \Sigma_{21} \alpha$, we further deduce that

$$\lambda = \mu = \alpha' \Sigma_{12} \gamma.$$

- Putting everything together, we can rewrite the first-order conditions

$$\begin{aligned}\frac{\partial \mathcal{L}_1}{\partial \alpha} &= \Sigma_{12} \gamma - \lambda \Sigma_{11} \alpha = 0 \\ \frac{\partial \mathcal{L}_1}{\partial \gamma} &= \Sigma_{21} \alpha - \mu \Sigma_{22} \gamma = 0\end{aligned}$$

as

$$\begin{pmatrix} -\lambda \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & -\lambda \Sigma_{22} \end{pmatrix} \begin{pmatrix} \alpha \\ \gamma \end{pmatrix} = 0 \quad (3)$$

Canonical Correlation Analysis

- Now, for the system of equations

$$\begin{pmatrix} -\lambda \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & -\lambda \Sigma_{22} \end{pmatrix} \begin{pmatrix} \alpha \\ \gamma \end{pmatrix} = 0$$

to have a nontrivial solution, i.e., $(\alpha', \gamma')' \neq 0$, it must be that the matrix on the left-hand side is singular, so that

$$\det \begin{pmatrix} -\lambda \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & -\lambda \Sigma_{22} \end{pmatrix} = 0 \quad (4)$$

- Since our objective is to maximize the correlation $\lambda = \alpha' \Sigma_{12} \gamma$, we choose λ_1 to be the largest root of the determinantal equation above and let $(\alpha'_1, \gamma'_1)'$ be the associated eigenvector.

Canonical Correlation Analysis

- Next, we construct

$$Y_1 = \alpha'_1 U \text{ and } Z_1 = \gamma'_1 V$$

so that Y_1 and Z_1 are the normalized linear combinations of U and V which give the maximum correlation, with λ_1 being the maximal (canonical) correlation.

- The analysis can then proceed further with finding a second linear combination of U , say $Y_2 = \alpha'_2 U$, and a second linear combination of V , say $Z_2 = \gamma'_2 V$, which have maximum correlation among all pairs not correlated with Y_1 and Z_1 .

Canonical Correlation Analysis

- To proceed, we again set up a Lagrangian

$$\begin{aligned}\mathcal{L}_2 = & \alpha' \Sigma_{12} \gamma - \frac{1}{2} \lambda (\alpha' \Sigma_{11} \alpha - 1) - \frac{1}{2} \mu (\gamma' \Sigma_{22} \gamma - 1) \\ & + \nu \alpha' \Sigma_{11} \alpha_1 + \theta \gamma' \Sigma_{22} \gamma_1\end{aligned}$$

- In looking at the above Lagrangian, you may wonder why there are constraints only for $\text{Cov}(Y_2, Y_1) = \alpha_2' \Sigma_{11} \alpha_1 = 0$ and $\text{Cov}(Z_2, Z_1) = \gamma_2' \Sigma_{22} \gamma_1 = 0$ and not for either $\text{Cov}(Y_2, Z_1) = \alpha_2' \Sigma_{12} \gamma_1 = 0$ and $\text{Cov}(Z_2, Y_1) = \gamma_2' \Sigma_{21} \alpha_1 = 0$. It turns out that if the former two constraints are satisfied, then the latter two are automatically satisfied.

Canonical Correlation Analysis

- To see this, recall the first-order conditions from step 1 above

$$\begin{aligned}\frac{\partial \mathcal{L}_1}{\partial \alpha} &= \Sigma_{12}\gamma_1 - \lambda_1\Sigma_{11}\alpha_1 = 0 \\ \frac{\partial \mathcal{L}_1}{\partial \gamma} &= \Sigma_{21}\alpha_1 - \lambda_1\Sigma_{22}\gamma_1 = 0\end{aligned}$$

Given these relations, note that, if $\text{Cov}(Y_2, Y_1) = \alpha_2'\Sigma_{11}\alpha_1 = 0$, then

$$\text{Cov}(Y_2, Z_1) = \alpha_2'\Sigma_{12}\gamma_1 = \lambda_1\alpha_2'\Sigma_{11}\alpha_1 = 0.$$

In addition, if $\text{Cov}(Z_2, Z_1) = \gamma_2'\Sigma_{22}\gamma_1 = 0$, then

$$\text{Cov}(Y_1, Z_2) = \gamma_2'\Sigma_{21}\alpha_1 = \lambda_1\gamma_2'\Sigma_{22}\gamma_1 = 0.$$

Canonical Correlation Analysis

- Next, note that the first-order conditions associated with \mathcal{L}_2 are

$$\frac{\partial \mathcal{L}_2}{\partial \alpha} = \Sigma_{12}\gamma_2 - \lambda_2\Sigma_{11}\alpha_2 + \nu_2\Sigma_{11}\alpha_1 = 0 \quad (5)$$

$$\frac{\partial \mathcal{L}_2}{\partial \gamma} = \Sigma_{21}\alpha_2 - \mu_2\Sigma_{22}\gamma_2 + \theta_2\Sigma_{22}\gamma_1 = 0 \quad (6)$$

Premultiply (5) by α'_1 and (6) by γ'_1 , we get

$$\alpha'_1\Sigma_{12}\gamma_2 - \lambda_2\alpha'_1\Sigma_{11}\alpha_2 + \nu_2\alpha'_1\Sigma_{11}\alpha_1 = \nu_2 = 0,$$

$$\gamma'_1\Sigma_{21}\alpha_2 - \mu_2\gamma'_1\Sigma_{22}\gamma_2 + \theta_2\gamma'_1\Sigma_{22}\gamma_1 = \theta_2 = 0.$$

- Hence, the last two constraints in \mathcal{L}_2 are not binding.

Canonical Correlation Analysis

- It follows finding this second linear combination pair involves solving the same eigenvalue problem that was given by

$$\begin{pmatrix} -\lambda\Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & -\lambda\Sigma_{22} \end{pmatrix} \begin{pmatrix} \alpha \\ \gamma \end{pmatrix} = 0$$

and

$$\det \begin{pmatrix} -\lambda\Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & -\lambda\Sigma_{22} \end{pmatrix} = 0$$

In particular, let λ_2 be the second largest root of the determinantal equation above and let $(\alpha'_2, \gamma'_2)'$ be the associated eigenvector; then,

$$Y_2 = \alpha'_2 U,$$

$$Z_2 = \gamma'_2 V$$

are the normalized linear combination pair which yields the highest correlation among all pairs not correlated with Y_1 and Z_1 and λ_2 gives the value of their correlation.

Canonical Correlation Analysis

- We can proceed in this way to obtain

Canonical Correlations (Eigenvalues)	Weights (Eigenvalues)	Y	Z
λ_1	$(\alpha'_1, \gamma'_1)'$	$Y_1 = \alpha'_1 U$	$Z_1 = \gamma'_1 V$
λ_2	$(\alpha'_2, \gamma'_2)'$	$Y_2 = \alpha'_2 U$	$Z_2 = \gamma'_2 V$
\vdots	\vdots	\vdots	\vdots
λ_{m_1}	$(\alpha'_{m_1}, \gamma'_{m_1})'$	$Y_{m_1} = \alpha'_{m_1} U$	$Z_{m_1} = \gamma'_{m_1} V$

Canonical Correlation Analysis

- As a final remark, we note that the equations

$$\begin{pmatrix} -\lambda \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & -\lambda \Sigma_{22} \end{pmatrix} \begin{pmatrix} \alpha \\ \gamma \end{pmatrix} = 0$$

and

$$\det \begin{pmatrix} -\lambda \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & -\lambda \Sigma_{22} \end{pmatrix} = 0$$

can be written in a different form which may be more convenient for cointegration analysis.

Canonical Correlation Analysis

- In particular, note that, since $\lambda = \mu$, we can rewrite the first-order conditions given by equations (1) and (2) as

$$\Sigma_{12}\gamma - \lambda\Sigma_{11}\alpha = 0 \quad (7)$$

$$\Sigma_{21}\alpha - \lambda\Sigma_{22}\gamma = 0 \quad (8)$$

- Premultiplying expression (8) above by $\Sigma_{12}\Sigma_{22}^{-1}$ yields

$$\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}\alpha - \lambda\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{22}\gamma = \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}\alpha - \lambda\Sigma_{12}\gamma = 0$$

or

$$\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}\alpha = \lambda\Sigma_{12}\gamma = \lambda^2\Sigma_{11}\alpha$$

where the last equality above follows from (7).

Canonical Correlation Analysis

- It follows that, alternatively, we can obtain the squared canonical correlations and the eigenvectors α_i ($i = 1, \dots, m_1$) as solutions of the system of equations

$$(\lambda^2 \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}) \alpha = 0$$

where λ_i^2 ($i = 1, \dots, m_1$), i.e., the squared canonical correlations, are the roots of the determinantal equation

$$\det(\lambda^2 \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}) = 0.$$

- Similarly, it can be shown that λ_i^2 and γ_i ($i = 1, \dots, m_1$) can be obtained as the solutions of the system of equations

$$(\lambda^2 \Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}) \gamma = 0$$

with λ_i^2 ($i = 1, \dots, m_1$) being the m_1 largest roots of

$$\det(\lambda^2 \Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}) = 0.$$