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Introduction and Motivation

Many economic time series, especially macroeconomic time series, are
very persistent; that is, they exhibit certain trend-like behavior.
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Introduction and Motivation

Some Important Questions from an Econometric Perspective

1. How do we model this trending behavior?
2. How does our model of trends affect the statistical properties of our
estimators?

Two Alternative Models of Trending Behavior:

yt = α+ βt + ut (TS),

yt = α+ yt−1 + ut (DS),

where {ut} may be taken to be strictly stationary, ergodic process.
Remark: These two alternative models of trending behavior are not
as dissimliar as they might appear at first sight.
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Introduction and Motivation

Note that we can rewrite the difference stationary (DS) model as
follows.

∆ys = ys−ys−1 = α+ us

Summing both sides of the equation above from t = 1 to t, we obtain

yt − y0 =
t

∑
s=1

∆ys

=
t

∑
s=1

α+
t

∑
s=1

us

= αt +
t

∑
s=1

us
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Introduction and Motivation

Adding y0 to both sides of the equation, we further obtain

yt = αt︸︷︷︸
linear trend

+
t

∑
s=1

us︸ ︷︷ ︸
stochastic trend

+ y0

Hence, we see that a DS model with an intercept is actually a model
that has both a deterministic linear trend and a stochastic trend.
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Time Series Model with Deterministic Trend

Consider the simple linear trend model

yt = α+ βt + ut
= x ′tθ + ut

where

θ =

(
α
β

)
and xt =

(
1
t

)
Assumptions:

(i) {ut} ≡ i .i .d .
(
0, σ2

)
, 0 < σ2 < ∞.

(ii) E
[
u4t
]
< ∞
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Time Series Model with Deterministic Trend

Remark: The linear trend model looks like a simple, classical linear
regression. However, suppose we try to prove consistency of the OLS
estimator θ̂T of the parameter vector θ, we will see that we need to
modify the arguments we gave previously for classical linear models a
bit.

To see this, write

θ̂T =

(
T

∑
t=1
xtx ′t

)−1 T

∑
t=1
xtyt

=

(
T

∑
t=1
xtx ′t

)−1 T

∑
t=1
xt
(
x ′tθ + ut

)
= θ +

(
T

∑
t=1
xtx ′t

)−1 T

∑
t=1
xtut
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Time Series Model with Deterministic Trend

so, following the standard argument for classical linear regression, we
would write

θ̂T − θ =

(
α̂T − α

β̂T − β

)

=

(
1
T

T

∑
t=1
xtx ′t

)−1
1
T

T

∑
t=1
xtut

=

(
1
T

T

∑
t=1

[
1
t

] [
1 t

])−1 1
T

T

∑
t=1

[
1
t

]
ut

=

(
T−1 ∑T

t=1 1 T−1 ∑T
t=1 t

T−1 ∑T
t=1 t T−1 ∑T

t=1 t
2

)−1 (
T−1 ∑T

t=1 ut
T−1 ∑T

t=1 tut

)
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Time Series Model with Deterministic Trend

However, this is the wrong way to standardize the “numerator" and
the “denominator" of the OLS estimator in this case since, amongst
other things, we know, by an elementary summation formula that

1
T

T

∑
t=1
t =

1
T
T (T + 1)

2
→ ∞ as T → ∞.

Remark: Hence, one challenge with analyzing models with trends is
that sample averages associated with different components of the
model may have different order of magnitude. As we will see, this
will, in turn, lead to estimators of different parameters possibly having
different rates of convergence.

To analyze the asymptotic properties of θ̂T =
(

α̂T , β̂T

)′
, the OLS

estimator of θ, we, thus, introduce the diagonal matrix

DT =
( √

T 0
0 T 3/2

)
.
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Time Series Model with Deterministic Trend

Next, write

DT
(

θ̂T − θ
)
=

[
D−1T

T

∑
t=1
xtx ′tD

−1
T

]−1
D−1T

T

∑
t=1
xtut

Now,

D−1T
T

∑
t=1
xtx ′tD

−1
T

=

(
T−1/2 0
0 T−3/2

)(
T ∑T

t=1 t

∑T
t=1 t ∑T

t=1 t
2

)(
T−1/2 0
0 T−3/2

)

=

(
1 T−2 ∑T

t=1 t

T−2 ∑T
t=1 t T−3 ∑T

t=1 t
2

)
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Time Series Model with Deterministic Trend

Hence, for the off-diagonal terms, we have, as T → ∞,

1
T 2

T

∑
t=1
t =

1
T 2
T (T + 1)

2
=
1
2
+

1
2T
→ 1
2

More generally, we have, for positive integer v ,

1
T v+1

T

∑
t=1
tv =

1
T

T

∑
t=1

(
t
T

)v
→
∫ 1

0
r vdr =

r v+1

v + 1

∣∣∣∣1
0
=

1
v + 1

Applying this to the case where v = 2, we have

1
T 3

T

∑
t=1
t2 → 1

3
as T → ∞
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Time Series Model with Deterministic Trend

Putting everything together, we then obtain

D−1T
T

∑
t=1
xtx ′tD

−1
T

=

(
1 T−2 ∑T

t=1 t

T−2 ∑T
t=1 t T−3 ∑T

t=1 t
2

)

→
(

1 1/2
1/2 1/3

)
= Q (say)

Next, we turn our attention to the “numerator"

D−1T
T

∑
t=1
xtut =

(
T−1/2 0
0 T−3/2

)(
∑T
t=1 ut

∑T
t=1 tut

)

=

(
T−1/2 ∑T

t=1 ut
T−3/2 ∑T

t=1 tut

)
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Time Series Model with Deterministic Trend

To show that

D−1T
T

∑
t=1
xtut

converges to an asymptotic normal distribution, we make use of the
Cramér-Wold device and a central limit theorem for martingale
difference array.

Cramér-Wold Device: Let Z1,Z2, .... be a sequence of k × 1
random vectors. Then, the following statements are equivalent

(i) Zn
d→ Z as n→ ∞

(ii) λ′Zn
d→ λ′Z as n→ ∞ for all λ ∈ Rk such that λ 6= 0

(iii) λ′Zn
d→ λ′Z as n→ ∞ for all λ ∈ Rk such that ‖λ‖ = 1.
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Time Series Model with Deterministic Trend

To proceed, let λ = (λ1,λ2)
′ be a (nonrandom) 2× 1 vector such

that ‖λ‖ = 1 and construct the linear combination

λ′D−1T
T

∑
t=1
xtut =

1√
T

T

∑
t=1

[
λ1 + λ2

(
t
T

)]
ut

=
1√
T

T

∑
t=1
Wt ,T

where

Wt ,T =

[
λ1 + λ2

(
t
T

)]
ut

Remark: Note that the elements of the sum above depend on both t
and T . Hence, to obtain a large sample approximation for the
standardized sum above, we need to talk about a central limit
theorem for triangular array.
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Review of Martingale Difference Array and MDACLT

Let {WtT : t = 0, ...,T ,T ≥ 1} be a triangular array of random
variables defined on a probability space (Ω,F ,P) and let
{FtT : t = 0, ...,T ,T ≥ 1} be a triangular array of nested σ-fields
such that

F0T ⊆ F1T ⊆ F2T ⊆ · · · ⊆ FTT ⊆ F .
This is known as a filtration. If WtT is FtT -measurable for every t
and T ; then, the triangular array {WtT } is said to be adapted to
{FtT } and the pair {WtT ,FtT } is called an adapted triangular array.
Definition: An adapted triangular array {WtT ,FtT } is called a
martingale difference array (or m.d.a. for short) if

(a) There exists positive constant C such that E |WtT | ≤ C < ∞ for all t
and T .

(b) E [WtT |Ft−1,T ] = 0 a.s.for all t and T .
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Remarks of Martingale Difference Array and MDACLT

Note that conditions (a) and (b) and the law of iterated expectations
imply that

E [WtT ] = 0 for all t and T .

Along with an appropriate moment condition, conditions (a) and (b)
also imply that

Cov (WtT , φ (Wt−1,T ,Wt−2,T , ...,W0,T )) = 0

for any Borel-measurable, integrable function of the arguments.

It is tempting to view the martingale difference property as being
intermediate between uncorrelatednesss and independence. However,
the definition of m.d.a. allows for a possible asymmetry with respect
to time. While reversing the direction of time will not affect the
concept of uncorrelatedness or independence, reversing the time
ordering on a m.d.a. (i.e, treating the future as the past and vice
versa) will not in general result in a m.d.a.
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Review of Martingale Difference Array and MDACLT

The importance of m.d.a.to modern probability theory has to do with
the fact that it allows us to introduce some dependence and yet still
be able to, under rather general conditions, prove central limit results,
very similar to the “classical" ones.
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Review of Martingale Difference Array and MDACLT

Theorem: Let {WtT ,FtT } be a martingale difference array with
finite unconditional variances

{
σ2tT
}
, where σ2tT = E

[
W 2
tT

]
. Let

ω2
T =

T

∑
t=1

σ2tT

Suppose that, as T → ∞, the following conditions hold
(a)

1
ω2T

T

∑
t=1

W 2
tT

p→ 1;

(b) for some δ > 0
T

∑
t=1

E

[∣∣∣∣WtT
ωT

∣∣∣∣2+δ
]
→ 0

Then,

ST =
1

ωT

T

∑
t=1
WtT

d→ N (0, 1) as T → ∞.
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Review of Martingale Difference Array and MDACLT

Note that condition (b) above is sometimes known as Liapunov’s
condition. The condition is stronger than the well-known Lindeberg’s
condition, i.e., for any ε > 0

T

∑
t=1
E
[
W 2
tT

ω2
T

I

{∣∣∣∣WtT

ωT

∣∣∣∣ > ε

}]
→ 0 as T → ∞

This can be seen from the fact that for every t and T

T

∑
t=1
E
[
W 2
tT

ω2
T

I

{∣∣∣∣WtT

ωT

∣∣∣∣ > ε

}]
≤

T

∑
t=1
E

[∣∣∣∣WtT

ωT

∣∣∣∣2 ∣∣∣∣WtT /ωT

ε

∣∣∣∣δ I

{∣∣∣∣WtT

ωT

∣∣∣∣ > ε

}]

=
1
εδ

T

∑
t=1
E

[∣∣∣∣WtT

ωT

∣∣∣∣2+δ

I

{∣∣∣∣WtT

ωT

∣∣∣∣ > ε

}]
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Review of Martingale Difference Array and MDACLT

so that

T

∑
t=1
E
[
W 2
tT

ω2
T

I

{∣∣∣∣WtT

ωT

∣∣∣∣ > ε

}]
≤ 1

εδ

T

∑
t=1
E

[∣∣∣∣WtT

ωT

∣∣∣∣2+δ

I

{∣∣∣∣WtT

ωT

∣∣∣∣ > ε

}]

≤ 1
εδ

T

∑
t=1
E

[∣∣∣∣WtT

ωT

∣∣∣∣2+δ
]
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Review of Martingale Difference Array and MDACLT

The situations where the Liapunov condition and the Lindeberg
condition are designed to rule out are ones where the behavior of a
finite subset of the sequence (or array) elements dominates the
behavior of all others, even in the limit. Suppose, for example, a
substantial number of σ2tT is zero or tends toward zero such that

ω2
T =

T

∑
t=1

σ2tT

is bounded in T . In such cases, the specified condition would not
hold.
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Asymptotic Normality of OLS Estimator of Linear Trend
Model

We can verify the conditions of this central limit theorem for
martingale difference array to show that

1√
T

T

∑
t=1

[
λ1 + λ2

(
t
T

)]
ut

d→ N
(
0, σ2λ′Qλ

)
for any .λ = (λ1,λ2)

′ ∈ R2 such that ‖λ‖ = 1. As defined
previously,

Q =
(

1 1/2
1/2 1/3

)
.

The Cramér-Wold device then allows us to deduce that

D−1T
T

∑
t=1
xtut =

(
T−1/2 ∑T

t=1 ut
T−1/2 ∑T

t=1

( t
T

)
ut

)
d→ N

(
0, σ2Q

)
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Asymptotic Normality of OLS Estimator of Linear Trend
Model

Finally, applying the continuous mapping theorem, we obtain, as
T → ∞

DT
(

θ̂T − θ
)

=

[
D−1T

T

∑
t=1
xtx ′tD

−1
T

]−1
D−1T

T

∑
t=1
xtut

d→ Q−1N
(
0, σ2Q

)
More succinctly, we have

DT
(

θ̂T − θ
)

d→ N
(
0, σ2Q−1

)
as T → ∞.
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Asymptotic Normality of OLS Estimator of Linear Trend
Model

Remark: Since

DT
(

θ̂T − θ
)
=

[ √
T (α̂T − α)

T 3/2
(

β̂T − β
) ]

this result shows that

α̂T − α = Op

(
1√
T

)
,

β̂T − β = Op

(
1

T 3/2

)
,

so that α̂T and β̂T have different rates of convergence.
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