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Introduction and Motivation

@ Many economic time series, especially macroeconomic time series, are
very persistent; that is, they exhibit certain trend-like behavior.
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Introduction and Motivation

@ Some Important Questions from an Econometric Perspective

1. How do we model this trending behavior?
2. How does our model of trends affect the statistical properties of our
estimators?

@ Two Alternative Models of Trending Behavior:

yi = a+pt+u; (TS),
Ye = a+yr1tu (DS),

where {u;} may be taken to be strictly stationary, ergodic process.

@ Remark: These two alternative models of trending behavior are not
as dissimliar as they might appear at first sight.
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Introduction and Motivation

@ Note that we can rewrite the difference stationary (DS) model as
follows.

Ays = ys—Ys—1 = &+ Us

Summing both sides of the equation above from t = 1 to t, we obtain

Ye —Yo =

Lo
I
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Introduction and Motivation

@ Adding yy to both sides of the equation, we further obtain

t
ye= wt, + Y us  +y
. s=1
linear trend N ,

stochastic trend

Hence, we see that a DS model with an intercept is actually a model
that has both a deterministic linear trend and a stochastic trend.
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Time Series Model with Deterministic Trend

@ Consider the simple linear trend model

ye = a+Ppt+u;
= x0+u;

o 1
“(5) o= (1)
o Assumptions:

(i) {us} =i.id.(0,0?),0<0? < c0.
(i) E[uf] <oo

where
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Time Series Model with Deterministic Trend

@ Remark: The linear trend model looks like a simple, classical linear
regression. However, suppose we try to prove consistency of the OLS
estimator 57 of the parameter vector 6, we will see that we need to
modify the arguments we gave previously for classical linear models a
bit.

@ To see this, write

b - (z) o
)
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Time Series Model with Deterministic Trend

@ so, following the standard argument for classical linear regression, we
would write

v - (373)
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Time Series Model with Deterministic Trend

@ However, this is the wrong way to standardize the “numerator" and
the “denominator" of the OLS estimator in this case since, amongst
other things, we know, by an elementary summation formula that

1 L1 T(T+1)
T= T 2

t=

— o0 as T — oo.

@ Remark: Hence, one challenge with analyzing models with trends is
that sample averages associated with different components of the
model may have different order of magnitude. As we will see, this
will, in turn, lead to estimators of different parameters possibly having
different rates of convergence.

@ To analyze the asymptotic properties of 0 = <ﬁT,BT),, the OLS
estimator of 6, we, thus, introduce the diagonal matrix

. (YT 0
=\ o T1/2)
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Time Series Model with Deterministic Trend

@ Next, write

Dy (87 - 0) =

-1 X T
Dyt ) xeut
t=1

-

-1 /H-1

D7 thxtDT
t=1

o Now,
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Time Series Model with Deterministic Trend

@ Hence, for the off-diagonal terms, we have, as T — oo,

1 & 1 7T(T+1) 1 1 1
= t= —— 7/ = -
L 22T 2

t=1

@ More generally, we have, for positive integer v,

r

1 & 1L /t) 1
_— tV:— — /Vd:
TVHt; TE(T) )T U

o Applying this to the case where v = 2, we have

1
O_V—|—1
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Time Series Model with Deterministic Trend

@ Putting everything together, we then obtain

-
-1 'n—1
D7 Z xex; Dy

t=1
) ( SR VAT )
(T
T2 thl t 77 thl t?

1 1/2
( 1/2 1/3 ) =Q ()

@ Next, we turn our attention to the “numerator"

T ~1/2 T
_ T 0 u
DTl E XUy = ( 0 T—3/2 > ( Z =1 "t >
t=1

Zt:l tuy
-
_ ( T-1/2 7t_lut>
—3/2
T3/ Zt:l tuy
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Time Series Model with Deterministic Trend

@ To show that
-
D;l Z Xt Ut
t=1

converges to an asymptotic normal distribution, we make use of the
Cramér-Wold device and a central limit theorem for martingale
difference array.

@ Cramér-Wold Device: Let Z;, 25, .... be a sequence of k x 1
random vectors. Then, the following statements are equivalent
(i) Z,,i>Zasn—>oo
(i) A'Zy % A Z as n— oo for all A € R¥ such that A # 0
(iil) A'Zy % A'Z as n — oo for all A € RK such that [|A|| = 1.
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Time Series Model with Deterministic Trend

o To proceed, let A = (A1, A2)’ be a (nonrandom) 2 x 1 vector such
that ||A|| = 1 and construct the linear combination

T T t
/D;—l thut = Z |:/\1 +/\2 (>:| us
t=1 =1 T
T
= E Wt,T

t
Wit = [/\1 + Az (Tﬂ ut

@ Remark: Note that the elements of the sum above depend on both t
and T. Hence, to obtain a large sample approximation for the
standardized sum above, we need to talk about a central limit
theorem for triangular array.

ﬂ\

3\

where

John C. Chao (Econ 721 Lecture Notes) September 1, 2020 14 / 24



Review of Martingale Difference Array and MDACLT

o Let {Wir:t=0,.., T, T > 1} be a triangular array of random
variables defined on a probability space (Q), F, P) and let
{Fir :t=0,..., T, T > 1} be a triangular array of nested o-fields
such that
For CFTCFrC---CFrr CF.

This is known as a filtration. If W, is F;7-measurable for every t
and T; then, the triangular array {WtT} is said to be adapted to
{Fir} and the pair {W,r, Fi7} is called an adapted triangular array.

o Definition: An adapted triangular array { W;r, Fi1} is called a
martingale difference array (or m.d.a. for short) if
(a) There exists positive constant C such that E |W;7| < C < oo for all ¢

and T.
(b) E[Wir|Fi—1,7] =0asforall tand T.
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Remarks of Martingale Difference Array and MDACLT

@ Note that conditions (a) and (b) and the law of iterated expectations
imply that
E[W;r]=0forall tand T.

@ Along with an appropriate moment condition, conditions (a) and (b)
also imply that

COV (WtT,(P(Wtfl,Ty Wt72,Tv ] WO,T)) =0

for any Borel-measurable, integrable function of the arguments.

@ It is tempting to view the martingale difference property as being
intermediate between uncorrelatednesss and independence. However,
the definition of m.d.a. allows for a possible asymmetry with respect
to time. While reversing the direction of time will not affect the
concept of uncorrelatedness or independence, reversing the time
ordering on a m.d.a. (i.e, treating the future as the past and vice
versa) will not in general result in a m.d.a.
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Review of Martingale Difference Array and MDACLT

@ The importance of m.d.a.to modern probability theory has to do with
the fact that it allows us to introduce some dependence and yet still
be able to, under rather general conditions, prove central limit results,
very similar to the “classical" ones.
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Review of Martingale Difference Array and MDACLT

o Theorem: Let {W;r, F;r} be a martingale difference array with
finite unconditional variances {0’%7—}, where afT =E [WET]. Let

-
2 _ 2
wr = ZUtT

t=1

Suppose that, as T — oo, the following conditions hold

(a)
1 L o P
o Y Wi =1
T t=1
(b) for some § >0
T 2+6
Z E Wit ] 0
t=1 wr
Then,
1 L d
Str=—Y Wi = N(0,1) as T — co.
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Review of Martingale Difference Array and MDACLT

@ Note that condition (b) above is sometimes known as Liapunov's
condition. The condition is stronger than the well-known Lindeberg's
condition, i.e., for any ¢ > 0

Wit

re o

This can be seen from the fact that for every t and T

Le[o[Er]-4]

>€}:| —0as T —

< iE WtT ‘WtT/wT H{'WtT >€}]
t=1 wT
1 & W,r |20 (W,

_ = Z E tT I {‘ tT > 8}
S =1 wT wT
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Review of Martingale Difference Array and MDACLT

@ so that
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Review of Martingale Difference Array and MDACLT

@ The situations where the Liapunov condition and the Lindeberg
condition are designed to rule out are ones where the behavior of a
finite subset of the sequence (or array) elements dominates the
behavior of all others, even in the limit. Suppose, for example, a
substantial number of 0'%7— is zero or tends toward zero such that

-
2 _ 2
wr = ZUtT

t=1

is bounded in T. In such cases, the specified condition would not
hold.

John C. Chao (Econ 721 Lecture Notes) September 1, 2020 21 /24



Asymptotic Normality of OLS Estimator of Linear Trend

Model

@ We can verify the conditions of this central limit theorem for
martingale difference array to show that

T t
7 Y [Al + Ay (Tﬂ ue % N (0,0%1'QA)
for any .A = (A1, A2)" € R? such that ||A|| = 1. As defined

previously,
_ 1 1/2
Q= < 1/2 1/3 )

@ The Cramér-Wold device then allows us to deduce that

T T 1/2
D;lZXtUt: < —1/2 Zt 1 ) iI\/(O,OQ(Q)
t=1 Zt 1
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Asymptotic Normality of OLS Estimator of Linear Trend

Model

o Finally, applying the continuous mapping theorem, we obtain, as
T — o0

Dr (87 -0)
= D;l thut i) Q_IN (0,020)

t=1

-
—-1 /-1
D+ thxtDT
t=1
More succinctly, we have

Dr (87 —0) % N (0,02Q7) as T — oo
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Asymptotic Normality of OLS Estimator of Linear Trend

Model

@ Remark: Since

Dt (ET - 9)

this result shows that

I/X\T—Oé = Op(

Br_ﬁ = O (.,_3/2)

so that @7 and BT have different rates of convergence.
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