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Stochastic Process

Definition: A stochastic process {Xt : t ∈ T} is a collection of
random variables, where the variables Xt take values in some set S
called the state space and where the set T is called the index set.

Remarks:

(i) For our purposes, we can think of t as time.

(ii) Note that T can be discrete, e.g., T = {0, 1, 2, ....}, or T can be
continuous, e.g., T = [0,∞); and the same goes for the state space
S . Our discussion here will focus only on stochastic processes for
which the state space is discrete, either S = {s1, s2, ..., sN} or
S = {s1, s2, ....} and for which the index set is T = {0, 1, 2, ....}.
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Markov Chain

Roughly speaking, a Markov chain is a stochastic process for which
the distribution of Xt depends only on Xt−1. More formally, we have
the following definition

Definition: The process {Xn : n ∈ T} is a Markov chain if

Pr (Xn = x |X0, ..,Xn−1) = Pr (Xn = x |Xn−1)

for all n and for all x ∈ S .
Remark: Note that, for a Markov chain, the joint probability mass
function (pmf) factors as follows:

f (x1, ..., xn) = f (x1) f (x2|x1) f (x3|x2)× · · · × f (xn |xn−1) .
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Markov Chain

The key quantities of a Markov chain are the probabilities of jumping
from one state to another. Hence, it is important for us to define the
so-called transition probabilities.
Transition Probabilities: A Markov chain is said to be homogeneous
if Pr (Xn+1 = sj |Xn = si ) does not change with time. Thus, for a
homogenous Markov chain, we have

Pr (Xn+1 = sj |Xn = si ) = Pr (X1 = sj |X0 = si ) .

We will focus our discussion here only on homogeneous Markov
chains.
Definition: The conditional probabilities

pij = Pr (Xn+1 = sj |Xn = si ) for si , sj ∈ S

are called the transition probabilities of the chain. For Markov chain
with finite state space, the matrix P whose (i , j)th element is pij is
called the transition matrix.
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Markov Chain

Some Properties of P:

(i) pij ≥ 0 for all i , j .
(ii) ∑N

j=1 pij = 1 for all i (Hence, each row of P can be viewed as a pmf.)

Remark: It follows from property (ii) that if we let e = (1, 1, .., 1)′

be an N × 1 vector of ones; then,
Pe = e

so that e can be viewed as a (positive) eigenvector of P associated
with a unit eigenvalue.
Furthermore, let

pij (n) = Pr (Xm+n = sj |Xm = si )
= Pr (Xn = sj |X0 = si )

be the probability of going from state si to state sj in n steps. Let Pn
be the matrix whose (i , j)th element is pij (n).
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Markov Chain

The elements of Pn are called the n-step transition probabilities.
Theorem (The Chapman-Kolmogorov equations): The n-step
transition probabilities satisfy

pij (m+ n) =
N

∑
k=1

pik (m) pkj (n)

=
N

∑
k=1

Pr (Xm+n = sj |Xm = sk )Pr (Xm = sk |X0 = si )

for every i , j ∈ {1, ...,N}
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Markov Chain

Proof:

pij (m+ n)

= Pr (Xm+n = sj |X0 = si )

=
N

∑
k=1

Pr (Xm+n = sj ,Xm = sk |X0 = si )

=
N

∑
k=1

Pr (Xm+n = sj |Xm = sk ,X0 = si )Pr (Xm = sk |X0 = si )

=
N

∑
k=1

Pr (Xm+n = sj |Xm = sk )Pr (Xm = sk |X0 = si )

(by Markov property)

=
N

∑
k=1

pik (m) pkj (n)
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Markov Chain

Since the Chapman-Kolmogorov equation holds for every element of
Pm+n, so what we have shown is that

Pm+n = PmPn

By definition, P1 = P. The above result can be used to show that

P2 = P1+1 = P1P1 = P2.

By induction, we have

Pn = Pn = P×P× · · · ×P︸ ︷︷ ︸
product of n transition matrices

.
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Markov Chain

Next, let
µn = (µn (1) , ..., µn (N))

be a row vector where

µn (i) = Pr (Xn = si )

so that µn (i) is the marginal probability that the chain is in state si
at time n.

In particular, µ0 is called the initial distribution.

To simulate a Markov chain, it suffi ces to know only µ0 and P using
the following algorithm.

John C. Chao (Econ 721 Lecture Notes) November 1, 2022 9 / 54



Markov Chain

Step 1: Draw X0 ∼ µ0, so that Pr (X0 = si ) = µ0 (i).
Step 2: Suppose that X0 = si . Draw X1 using the conditional distribution

X1 Pr (·|X0 = si )
s1 Pr (X1 = s1|X0 = si )
s2 Pr (X1 = s2|X0 = si )
...

...
sN Pr (X1 = sN |X0 = si )

...

Step 3: Suppose that X1 = sj . Draw X2 using the conditional distribution
X2 Pr (·|X1 = sj )
s1 Pr (X2 = s1|X1 = sj )
s2 Pr (X2 = s2|X1 = sj )
...

...
sN Pr (X2 = sN |X1 = sj )

and so on.
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Markov Chain

The following proposition gives an interpretation for the marginal
distribution µn at time n.

Proposition: The marginal probabilities are given by

µn = µ0P
n
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Markov Chain

Proof: Let ej denote an N × 1 elementary vector whose j th
component is 1 and all other components are 0. Note that for
j = 1, ...,N

µnej = µn (j)

= Pr (Xn = sj )

=
N

∑
i=1
Pr (Xn = sj ,X0 = si )

=
N

∑
i=1
Pr (Xn = sj |X0 = si )Pr (X0 = si )

=
N

∑
i=1

µ0 (i) pij (n)

= µ0Pnej
= µ0P

nej . �
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Markov Chain

Definition: (Hitting Times) Let A be a subset of S . The hitting
time TA of A is defined by

TA = min {n > 0 : Xn ∈ A}

if Xn ∈ A for some n > 0 and by

TA = ∞

if Xn /∈ A for all n > 0.
Set

ρij = Pr (Tj < ∞| X0 = si )
where we abbreviate Tj = Tsj . It follows that ρij denotes the
probability that a Markov chain starting in state si will reach state sj
in some (positive) finite time.
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Markov Chain

Definition: We say that si reaches sj (or sj is accessible from si ) if

ρij = Pr (Tj < ∞| X0 = si ) > 0
and we write

si → sj
If si → sj and sj → si ; then, we say that the states si and sj
communicate and write si ↔ sj .
Theorem: The communication relation satisfies the following
properties.

1 If si ↔ sj , then sj ↔ si . (symmetric property)
2 If si ↔ sj and sj ↔ sk ; then, si ↔ sk . (transitive property)
3 The set of states S can be written as a disjoint union of classes

S = S1 ∪ S2 ∪ · · ·
where two states si and sj communicate with each other if and only if
they are in the same class.
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Markov Chain

If all states communicate with each other, then the chain is called
irreducible.

A set of states is closed if once you enter this set of states you will
never leave.

A closed set consisting of a single state is called an absorbing state.

Example: Suppose that S = {1, 2, 3, 4} and

P =


1/3 2/3 0 0
2/3 1/3 0 0
1/4 1/4 1/4 1/4
0 0 0 1

 .
In this case, the classes are {1, 2}, {3}, and {4} and state 4 is an
absorbing state.
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Markov Chain
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Markov Chain

Definition: State si is recurrent or persistent if

ρii = Pr (Ti < ∞| X0 = si ) = 1.

Otherwise, state si is said to be transient.

Define

In (i) =
{
1 if Xn = si
0 if Xn 6= si

and note that the number of times that the chain is in state si is
given by

N (i) =
∞

∑
n=1

In (i)

Moreover, note that the event {N (i) ≥ 1} (i.e., that the chain is in
state si at least once) is the same as the event {Ti < ∞} (i.e., that
the hitting time for state si is finite).
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Markov Chain

Theorem:

(a) Suppose that state si is recurrent. Then,

Pr (N (i) = ∞| X0 = si ) = 1 and
∞

∑
n=1

pii (n) = ∞

(b) Suppose that state si is transient. Then,

Pr (N (i) < ∞| X0 = si ) = 1 and
∞

∑
n=1

pii (n) < ∞

Here,

pii (n) = Pr (Xm+n = si |Xm = si ) = Pr (Xn = si |X0 = si ) .

Definition: A Markov chain is called a transient chain if all its states
are transient and a recurrent chain if all its states are recurrent.
Remark: A Markov chain having a finite state space must have at
least one recurrent state, so it cannot possibly be a transient chain.
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Positive and Non-negative Matrices

Definition: The set of distinct eigenvalues of an N ×N matrix A,
denoted by σ (A), is called the spectrum of A.
Definition: For N ×N matrix A, the number

ρ (A) = max
λ∈ σ(A)

|λ|

is called the spectral radius of A.
Review of Multiplicities: For A (N ×N) and
λ ∈ σ (A) = {λ1,λ2, ...,λs}, we adopt the following definitions

(a) The algebraic multiplicity of λ is the number of times it is repeated as
a root of the characteristic polynomial. In other words,

alg multA (λi ) = ai for i = 1, ..., s

if and only if
(x − λ1)

a1 × · · · × (x − λs )
as = 0

is the characteristic polynomial of A.
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Positive and Non-negative Matrices

(a) Note that here
s

∑
i=1
ai = N.

(b) When alg multA (λ) = 1, it is called a simple eigenvalue.
(c) The geometric multiplicity of λ is dimN (A− λI ) (i.e., the dimension

of the null space, or kernel, of A− λI ). In other words, geo multA (λ)
is the maximal number of linearly independent eigenvectors associated
with λ.

(d) Eigenvalues such that

alg multA (λ) = geo multA (λ)

are called semisimple eigenvalues of A. A simple eigenvalue is always
semisimple, but not conversely.

Multiplicity Inequality: For each A ∈ RN×N and for each λ ∈ σ (A),

geo multA (λ) ≤ alg multA (λ)
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Positive Matrices

Perron’s Theorem (PT): If A is an N ×N matrix such that A >e 0
and let r = ρ (A), then the following statements are true.

(i) r > 0.

(ii) r ∈ σ (A) (i.e., r is an eigenvalue or root of A, it is commonly called
the Perron root).

(iii) alg multA (r) = 1

(iv) There exists an eigenvector x >e 0 such that Ax = rx (this part does
not assert uniqueness)

(v) The Perron vector is the unique vector defined by

Ap = rp, p >e 0 and ‖p‖1 = 1

and except for positive multiples of p, there are no other non-negative
eigenvectors for A, regardless of the eigenvalue.

(vi) r is the only eigenvalue on the spectral circle of A.
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Non-negative Matrices

Now, suppose we allow zeros to creep into the matrix, and we wish to
investigate to what extend Perron’s theorem can be generalized to
non-negative matrices with at least one zero entry. Suppose we
sacrifice the existence of a positive eigenvector (among other things),
then we get the following result.

Theorem (Non-negative Eigenpair): Suppose that A is an N ×N
matrix such that A ≥e 0 and let r = ρ (A); then, the following
statements are true.

(i) r ∈ σ (A) (i.e., r is still an eigenvalue or root of A but r = 0 is now
possible)

(ii) Az = rz for some z ∈ N = {x |x ≥e 0 with x 6= 0}.
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Non-negative Matrices

Remarks: Note that this is as far as Perron’s theorem will generalize
to non-negative matrices without additional condition. Comparing
with Perron’s theorem (which holds for positive matrices), we see that
we have lost the following properties

r > 0 (PT part (i));

alg multA (r) = 1 (PT part (iii));

positivity of eigenvector (PT part (iv))

r being the only eigenvalue on the spectral circle (PT part (vi)).
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Non-negative Matrices

That we will not have these other properties in general for
non-negative matrices can be shown by the following counterexamples

(a) Counterexample 1:

A =
(
0 1
0 0

)
Here, the eigenvalues are λ = 0, 0 (i.e., the root 0 occurs with an
algebraic multiplicity of 2). Moreover, there is only one linearly
independent eigenvector given by

x =
(
x1
x2

)
= α

(
1
0

)
so that the geometric multiplicity in this case is 1, and we have in this
case

1 = geo multA (λ) < alg multA (λ) = 2.
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Non-negative Matrices

(a) Counterexample 1 (con’t): Note that, in this example,
r = ρ (A) = 0 (not positive, so property PT(i) does not hold), the
algebraic multiplicity of r is 2 (so property PT (iii) does not hold),
and eigenvectors are only non-negative and not positive (so property
PT (iv) does not hold).

(b) Counterexample 2:

A =
(
0 1
1 0

)
Here, the eigen-pairs are

λ1 = 1, x1 =
(
x1,1
x1,2

)
= α

(
1
1

)
and

λ2 = −1, x1 =
(
x2,1
x2,2

)
= α

(
1
−1

)
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Non-negative Matrices

(b) Counterexample 2 (con’t): Here, we do have r = ρ (A) = 1 > 0
(so property PT (i) does hold); the algebraic multiplicity of r is 1 (so
property PT (iii) does hold), and there does exist a positive
eigenvector associated with r = 1, i.e.,

x =
(
x1
x2

)
=

(
1
1

)
(so property PT (iv) does hold). However, there are more than one
eigenvalues on the spectral circle, i.e., λ = 1 and λ = −1 (so that
property PT (vi) does not hold).

John C. Chao (Econ 721 Lecture Notes) November 1, 2022 26 / 54



Non-negative Matrices

An interesting extension of Perron’s theorem was given by Frobenius,
who introduced the additional hypothesis of irreducibility. Frobenius
recognized that what prevents the generalization of the original
Perron’s theorem for positive matrices to the case of non-negative
matrices is not so much the existence of zero entries but rather the
positions of the zero entries. For example, property PT (iii) (i.e., alg
multA (r) = 1) and property PT (iv) (i.e., the existence of a positive
eigenvector) does not hold for

A =
(
1 0
1 1

)
but does hold for

A =
(
1 1
1 0

)
.
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Non-negative Matrices

Note that the matrix

A =
(
1 0
1 1

)
has eigenvalues λ = 1, 1 so r = 1 has an algebraic multiplicity of 2. In
addition, there is only one linearly independent eigenvector given by

x =
(
x1
x2

)
= α

(
0
1

)
which is a non-negative but not a positive eigenvector.
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Non-negative Matrices

On the other hand, the matrix

Ã =
(
1 1
1 0

)
has eigenvalues

λ1 =
1+
√
5

2
≈ 1.62 and λ1 =

1−
√
5

2
≈ −0.62

so that r =
(
1+
√
5
)

/2 > 0 has an algebraic multiplicity of 1.
Moreover, the eigenvector associated with the eigenvalue
r =

(
1+
√
5
)

/2 > 0 can be shown to be

x1 =
(
x1,1
x1,2

)
=

( (
1+
√
5
)

/2
1

)
>e 0

so it is a positive eigenvector.
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Perron-Frobenius Theorem (PFT)

Theorem: Suppose that the N ×N matrix A is non-negative (i.e.,
A ≥e 0). Suppose also that A is irreducible, and let r = ρ (A). Then,
the following statements are true.

(i) r ∈ σ (A) (i.e., r is an eigenvalue) and r > 0.

(ii) alg multA (r) = 1.

(iii) There exists an eigenvector x >e 0 such that Ax = rx (this part does
not assert uniqueness).

(iv) The unique vector defined by

Ap = rp,p >e 0, and ‖p‖1 = 1

is called the Perron vector. There are no other non-negative
eigenvectors for A, except for positive multiples of p, regardless of the
eigenvalue.
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Perron-Frobenius Theorem (PFT)

Remark: Comparing PFT and PT, note that by imposing
irreducibility, the only property which we cannot recover from PT is
(vi) which asserts that there is only one eigenvalue on the the spectral
circle. Indeed, the matrix

A =
(
0 1
1 0

)
is non-negative and irreducible, but the eigenvalues ±1 are both on
the unit circle. The property of not having a unique eigenvalue on the
spectral circle divides the set of non-negative irreducible matrices into
two important classes.
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Primitive Matrices

Definition: A non-negative, irreducible matrix A having only one
eigenvalue

r = ρ (A) ,

on its spectral circle is said to be a primitive matrix.

Definition: A non-negative, irreducible matrix A having h > 1
eigenvalues on its spectral circle is called imprimitive and h is referred
to as the index of imprimitivity.
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Periodic and Non-periodic Markov Chain

The positive integer d is said to be a divisor of the positive integer n
if n/d is an integer. If I is a nonempty set of positive integers, the
greatest common divisor of I , denoted by g .c .d . I , is defined to be
the largest integer d such that d is a divisor of every integer in I . It
follows that

1 ≤ g .c .d .I ≤ min {n : n ∈ I} .
Note, in particular, that if 1 ∈ I , then g .c .d . I = 1, and the greatest
common divisor of the set of even positive integers is 2.
Let si be the state of a Markov chain such that

pii (n) = Pr (Xm+n = si |Xm = si )
= Pr (Xn = si |X0 = si )
> 0

for some finite n ≥ 1, i.e., such that
ρii = Pr (Ti < ∞| X0 = si ) > 0.
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Periodic and Non-periodic Markov Chain

In this case, we can define the period d (i) to be

d (i) = g .c.d . {n ≥ 1 : pii (n) > 0} .

Note that
1 ≤ d (i) ≤ min {n ≥ 1 : pii (n) > 0}

so that if

pii = Pr (Xn = si |Xn−1 = si )
= Pr (X1 = si |X0 = si )
> 0

then d (i) = 1.

Definition: State si is periodic if d (i) > 1 and aperiodic if d (i) = 1.
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Periodic and Non-periodic Markov Chain

Claim: Given a homogeneous, irreducible Markov chain, let si and sj
be any two states in its state space S ; then,

d (i) = d (j) .

Example 1 (Periodic Chain): Consider the transition matrix

P =

 0 1 0
0.5 0 0.5
0 1 0

 .
It can be readily shown that P is irreducible, σ (P) = {−1, 0, 1}, and
the left-hand Perron vector is

π =
(
0.25 0.5 0.25

)
.
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Periodic and Non-periodic Markov Chain

Example 1 (con’t): Note, however, that

P2 =

 0 1 0
0.5 0 0.5
0 1 0

 0 1 0
0.5 0 0.5
0 1 0

 =

 0.5 0 0.5
0 1 0
0.5 0 0.5


P3 =

 0.5 0 0.5
0 1 0
0.5 0 0.5

 0 1 0
0.5 0 0.5
0 1 0

 =

 0 1 0
0.5 0 0.5
0 1 0


P4 =

 0 1 0
0.5 0 0.5
0 1 0

 0 1 0
0.5 0 0.5
0 1 0

 =

 0.5 0 0.5
0 1 0
0.5 0 0.5


and so on. As n increases, Pn oscillates between these two cases, and
so this chain does not converge.
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Periodic and Non-periodic Markov Chain

Remark: An irreducible Markov chain is said to be a periodic chain
when its transition matrix P is imprimitive (with the period of the
chain being given by the index of imprimitivity for P). On the other
hand, an irreducible Markov chain for which P is primitive is called an
aperiodic chain.

Example 2: aperiodic Markov chain

P =

 0 0.5 0.5
1 0 0
0 1 0


Here, σ (P) = {1,−0.5+ 0.5i ,−0.5− 0.5i}.
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Periodic and Non-periodic Markov Chain

Example 3: Periodic Markov chain with a period of 2

P =

 0 0.5 0.5
1 0 0
1 0 0


In this case, σ (P) = {−1, 0, 1}, and note that

P2 =

 1 0 0
0 0.5 0.5
0 0.5 0.5

 , P3=
 0 0.5 0.5
1 0 0
1 0 0

 ,
P4 =

 1 0 0
0 0.5 0.5
0 0.5 0.5

 , ..

John C. Chao (Econ 721 Lecture Notes) November 1, 2022 38 / 54



Periodic and Non-periodic Markov Chain

Theorem 8.5.3 of Horn and Johnson (1985): Let A be an N ×N
matrix such that A is non-negative and irreducible, and let [Pi ]
denote the set of nodes of the directed graph Γ (A). Denote by

Li =
{
k (i )1 , k

(i )
2 , ...

}
the set of lengths of all directed paths in Γ (A) that both starts and
ends at the node Pi , i = 1, ...,N. Denote by gi the greatest common
divisor of all the lengths in Li . Then, A is primitive if and only if

gi = 1 for every i ∈ {1, ...,N} .
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Convergence of Markov Chain

Let A be an N ×N (not necessarily non-negative) matrix. We want
to first consider in what situations limn→∞ An exists. It turns out that
if some of the eigenvalues of A are such that |λ| > 1; then, this limit
does not exist. On the other hand, we have the following result for
the case where all eigenvalues are such that |λ| < 1.
Proposition: For A ∈ CN×N

lim
n→∞

An = 0

if and only if
ρ (A) < 1.
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Convergence of Markov Chain

Now, consider the case where some of the eigenvalues are on the unit
circle, i.e., |λ| = 1, while the remaining eigenvalues are inside, i.e.,
|λ| < 1. In this case, it turns out that limn→∞ An exists if and only if
there exists a nonsingular N ×N matrix B such that the Jordan form
has the structure

J = B−1AB =
(
Iq 0
0 K

)
,

where
q = alg multA (1) and ρ (K ) < 1.

Define
C = B−1,

and partition

B =
[
B1
N×q

B2
N×(N−q)

]
, C =

[
C ′1 (q ×N)

C ′2 ((N − q)×N)

]
.
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Convergence of Markov Chain

Note that

An =
(
BJB−1

)
×
(
BJB−1

)
× · · · ×

(
BJB−1

)︸ ︷︷ ︸
product of n matrices of the form BJB−1

= BJnB−1

so that

lim
n→∞

An = lim
n→∞

B
(
Iq 0
0 K n

)
B−1

= B
(
Iq 0
0 0

)
B−1

=
[
B1 B2

] ( Iq 0
0 0

) [
C ′1
C ′2

]
= B1C ′1.
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Convergence of Markov Chain

In the special case where q = 1 (i.e., alg multA (1) = 1, so that
λ = 1 is a simple eigenvalue), we have

lim
n→∞

An = b1c ′1.

Claim: A′c1 = c1, so that c1 is an eigenvector of A′ associated with
the eigevalue of 1.

Proof of Claim: Note that, since σ (A′) = σ (A), 1 is also an
eigenvalue of A′. In fact, it is of course the largest eigenvalue, in
modulus, of A′.) Moreover, form the relationship

J = B−1AB = CAB

we have that

J ′ = B ′A′C ′ =⇒ B ′−1J ′ = A′C ′ =⇒ C ′J ′ = A′C ′.
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Convergence of Markov Chain

Proof of Claim (con’t): Writing this out, we have[
c1 C2

] ( 1 0
0 K ′

)
= A′

[
c1 C2

]
which implies that [

c1 C2K ′
]
=
[
A′c1 A′C2

]
from which we deduce that

A′c1 = c1. �

Remark: Transposing the equation above, we have

c ′1A = c
′
1.

It follows that we can call c ′1 the left-hand eigenvector of A associated
with the eigenvalue 1.
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Convergence of Markov Chain

Returning to the convergence of Markov chains, we give the following
definition. Let

π = (π1,π2, ...,πN )

such that

πi ≥ 0 for i = 1, ...,N;
N

∑
i=1

πi = 1

so that π can be thought of as a probability mass function.

Definition: π is said to be a stationary (or invariant) distribution if

π = πP.
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Convergence of Markov Chain

Remark: The intuition behind the above definition is that if we draw
X0 from µ0 = π, where π is the stationary distribution. Then, next
period if we were to draw X1 from the next period marginal
distribution µ1, we would have

X1 ∼ µ1 = µ0P = πP = π.

Similarly,
X2 ∼ µ2 = µ0P

2= πP = π.

Continuing in this way

Xn ∼ µn = µ0P
n= πPn= π.

Hence, if at any time, the Markov chain has distribution π, it will
then have this distribution in all subsequent periods.
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Convergence of Markov Chain

Theorem (Fundamental Theorem of Markov Chain): If a Markov
chain P is irreducible and aperiodic, then it has a unique stationary
distribution π. this is the unique (normalized such that the entries
sum to one) left-hand eigenvector of P associated with the eigenvalue
λ = 1. Moreover,

Pn → ιNπ as n→ ∞,

where

ιN
N×1

=


1
1
...
1

 .
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General State Space

For a general Markov chain with a state space that possibly contains
an uncountable number of elements, we can define the transition
kernel as follows.

Definition: A transition kernel is a function K defined on S × B (S)
such that

(i) ∀x ∈ S , K (x , ·) is a probability measure;
(ii) ∀A ∈ B (S), K (·,A) is measurable.

Remark: For the case where Xn is a continuous random variable, the
terminology kernel is also used sometimes to denote the conditional
density K (x , x ′), i.e.,

Pr (Xn = A|Xn−1 = x) =
∫
A
K
(
x , x ′

)
dx ′.
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General State Space

Definition: A probability distribution π is the invariant (or
stationary) distribution for the Markov chain with transition
probabilities P (x , ·) if

π (A) =
∫
S
P (y ,A)π (dy)

=
∫
S
P (y ,A)π (y) dy

for all A ∈ B (S) where B (S) denotes the Borel sigma field of S .
To study the question of whether a Markov chain will converge to a
stationary distribution if it starts from some arbitrary initial
distribution µ0, we need a measure of the sensitivity of the Markov
chain to initial condition. As we have seen in the finite state space
case, a key concept here is that of irreducibility.
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General State Space

However, note that in the discrete case, the chain is irreducible if all
states communicate, i.e.,

Pr (Tj < ∞|X0 = si ) > 0 ∀si , sj ∈ S
with Tj being the first time sj is visited. In the more general cases
(such as the case of an uncountable state space),
Pr (Ty < ∞|X0 = x) may be uniformly equal to zero. Hence, it is
necessary to introduce a slightly modified notion of irreducibility.
Definition: A Markov chain {Xn} with transition probability P (x , ·)
is said to be ϕ-irreducible if there exists a measure ϕ such that for
every A ∈ B (S) with ϕ (A) > 0, the condition

Pr (TA < ∞|X0 = x) > 0
is satisfied for all x ∈ S .
Remark: Note that in words ϕ-irreducibility means that any
non-negligible set (i.e., one with positive ϕ measure) can be reached
with positive probability from any starting point x .
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General State Space

Convergence of Markov chain in general state space is usually stated
in terms of total variation distance. Note that, given two probability
measures µ and v , their total variation distance is given by

‖µ− v‖TV = sup
A∈B(S )

|µ (A)− v (A)|

General Definition of Aperiodicity: A Markov chain is aperiodic if
there does not exist a partition

S = S1 ∪ · · · ∪ Sd , d ≥ 2, Si ∩ Sj = ∅ for all i 6= j

such that

P (x ,Si+1) = 1 for all x ∈ Si for i = 1, ..., d − 1

and
P (x ,S1) = 1 for all x ∈ Sd .
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General State Space

Example:

P =

 0 0.5 0.5
1 0 0
1 0 0


Here, we take

S1 = {s1} and S2 = {s2, s3} so d = 2.

Lemma: If a Markov chain is ϕ-irreducible and has a stationary
distribution π, then ϕ� π (ϕ is absolutely continuous with respect
to π, i.e., ϕ (A) > 0 then π (A) > 0 (alternatlvely, π (A) = 0 implies
that ϕ (A) = 0).
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General State Space

Theorem: Let P (x , dy) be the transition probabilities for a
ϕ-irreducible, aperiodic Markov chain on a general state space S ,
having a stationary distribution π. Then, for π-a.e. x ∈ S , we have

lim
n→∞
‖Pn (x , ·)− π (·)‖TV = 0,

where Pn (x , ·) denotes the n-step transition probability given by

Pn (x , ·) =
∫
S
P (y ,A)Pn−1 (x , dy)

=
∫
S
P (y ,A) pn−1 (x , y) dy .

Remark: Note that another way to write

lim
n→∞
‖Pn (x , ·)− π (·)‖TV = 0,

for π-a.e. x ∈ S , is

π
(
x ∈ S : lim

n→∞
‖Pn (x , ·)− π (·)‖TV = 0

)
= 1
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General State Space

Definition: A Markov chain is reversible (or said to satisfy detailed
balance) with respect to π (·) if

π (dx)P (x , dy) = π (dy)P (y , dx) for all x , y ∈ S .

Claim: If a Markov chain is reversible with respect to π (·), then
π (·) is stationary or invariant.
Proof of Claim: If π (·) is reversible, then∫

x∈S
π (dx)P (x , dy) =

∫
x∈S

P (x , dy)π (x) dx

=
∫
x∈S

π (dy)P (y , dx)

= π (dy)
∫
x∈S

p (y , x) dx

= π (dy) . �
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