
Econ 721 Lecture Notes:
Models of Conditional Heteroskedasticity1

John C. Chao

December 2, 2020

1These notes are for instructional purposes only and are not to be distributed outside
of the classroom.

John C. Chao () December 2, 2020 1 / 35



Models of Conditional Heteroskedasticity - Motivation

Consider the AR (1) process

Yt = βYt−1 + εt ,

where |β| < 1 and {εt} ≡ i .i .d .
(
0, σ2

)
.

Note that for this model

E [Yt+1] = 0

but
E [Yt+1|Yt ,Yt−1, ...] = E [Yt+1|Yt ] = βYt ,

so that by using information about current and past values of Yt , this
model allows one to improve on ones forecast of the mean-level of
Yt+1 over that which can be obtained when this information is not
used.
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Models of Conditional Heteroskedasticity - Motivation

Shortcoming of this model: The same improvement is not achieved
when forecasting the error variance with this model since

E
[
ε2t+1|Yt ,Yt−1, ...

]
= E

[
ε2t+1

]
= σ2

Observation: This model is not rich enough to allow for better
prediction of the error variance based on past information. In
particular, the independence assumption on the errors precludes any
forecast improvement.

On the other hand, many financial and macroeconomic time series
exhibit "volatility clustering." Volatility clustering suggests the
possible presence of time dependent variance or time-varying
heteroskedasticty that may be forecastable. Interestingly, this can
occur even if the time series itself is close to being serially
uncorrelated so that the mean-level is diffi cult to forecast.
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Models of Conditional Heteroskedasticity - Empirical
Motivation
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Why would there be interest in forecasting variance?

First, in finance, the variance of the return to an asset is a measure of
the risk of owning that asset. Hence, investors, particularly those who
are risk averse, would naturally be interested in predicting return
variances.

Secondly, the value of some financial derivatives, such as options,
depends on the variance of the underlying assets. Thus, an options
trader would want to obtain good forecasts of future volatility to help
her or him decide on the price at which to buy or sell options.

Thirdly, being able to forecast variance could allow one to have more
accurate forecast intervals that adapt to changing economic
conditions.
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AutoRegressive Conditional Heteroskedasticity (ARCH)
Models

Here, we will discuss two frequently used models of time-varying
heteroskedasticity: the autoregressive conditional
heteroskedasticity (ARCH) model and its extension, the
generalized ARCH (or GARCH) model.
Regression with ARCH errors: Consider the following model

yt = x ′tβ+ εt , for t = 1, ...,T

We make the following assumptions on this model.
Assumptions:

A1 xt is nonstochastic for all t.
A2 T−1X ′X → Qxx > 0 where X

T×k
= (x1, ..., xT )

′.

A3 εt = ut
[
α0 + α1ε

2
t−1 + · · ·+ αpε2t−p

]1/2, where αi > 0 for
i = 0, ..., p and {ut} ≡ i .i .d .N (0, 1) (This assumption specifies an
ARCH(p) error process.)
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AutoRegressive Conditional Heteroskedasticity (ARCH)
Models

Remark 1: We have described here a simple linear regression model
with ARCH errors; but, in principle, an ARCH process can be used to
model the error variance for any time series regression.
Remark 2: Further conditions on the coeffi cients α1, ..., αp will be
given below.
Conditional and Unconditional Moments of the ARCH(1)
Process: Let It−1 = σ (εt−1, εt−2, ...), i.e., the information set
generated by εt−1, εt−2, ... We first consider a special case of the
specification given in A3. More specifically, we will consider a
first-order ARCH (or ARCH(1)) process for the regression errors,
which has the form

εt = ut
[
α0 + α1ε

2
t−1
]1/2

where α0 > 0, 0 < α1 < 1, and {ut} ≡ i .i .d .N (0, 1).
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AutoRegressive Conditional Heteroskedasticity (ARCH)
Models

Conditional Moments:

1. Conditional Mean

E [εt |It−1] =
[
α0 + α1ε

2
t−1
]1/2

E [ut |It−1]

=
[
α0 + α1ε

2
t−1
]1/2

E [ut ]

= 0

2. Conditional Variance

E
[
ε2t |It−1

]
=

[
α0 + α1ε

2
t−1
]
E
[
u2t |It−1

]
=

[
α0 + α1ε

2
t−1
]
E
[
u2t
]

=
[
α0 + α1ε

2
t−1
](

since by assumption E
[
u2t
]
= Var (ut ) = 1

)
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ARCH Models

3. Conditional 4th Moment

E
[
ε4t |It−1

]
=

[
α0 + α1ε

2
t−1
]2
E
[
u4t |It−1

]
=

[
α20 + 2α0α1ε

2
t−1 + α21ε

4
t−1
]
E
[
u4t
]

= 3
[
α20 + 2α0α1ε

2
t−1 + α21ε

4
t−1
](

since E
[
u4t
]
= 3 by property of N (0, 1)

)
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ARCH Models

Unconditional Moments:

1 Unonditional Mean: By law of iterated expectations

E [εt ] = E (E [εt |It−1]) = E [0] = 0.
2 Autocovariances: For any integer j ≥ 1, note that

E [εt εt−j ] = E (εt−jE [εt |It−1])
(by law of iterated expectations)

= E [εt−j × 0]
= 0.

A similar argument can be used to show that, for negative integer j ,
E [εt εt−j ] = 0 so that {εt} is serially uncorrelated for this model.
Remark: Interestingly, an ARCH process is serially uncorrelated but
not independent. These features are important for the modeling of
asset returns.
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ARCH Models

Claim: The unconditional 4th moment of an ARCH(1) process with
α0 > 0 and α1 > 0 exists if and only if 3α21 < 1. Under these
conditions, the (unconditional) 2nd and 4th moments have the
explicit form

E
[
ε2t
]
=

α0
1− α1

,

E
[
ε4t
]
=

[
3α20

(1− α1)
2

] [
1− α21
1− 3α21

]
Proof (Sketch): Define wt =

(
ε4t , ε

2
t

)′, and write
E [wt |It−1] =

(
E
[
ε4t |It−1

]
E
[
ε2t |It−1

] )
=

(
3α20
α0

)
+

(
3α21 6α0α1
0 α1

)(
ε4t−1
ε2t−1

)
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ARCH Models

Proof (con’t): More succinctly,

E [wt |It−1] = b+ Awt−1,

where

b =
(
3α20
α0

)
and A =

(
3α21 6α0α1
0 α1

)
It follows by the law of iterated expectations that

E [wt ] = b+ AE [wt−1]

or, if we let γt = E [wt ],

γt = b+ Aγt−1

so that, after rearranging, we can write

(I2 − AL) γt = b
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ARCH Models

Proof (con’t): If the roots of the determinantal equation

det (I2 − Az) = 0
are all outside the unit circle (i.e., if all roots have modulus greater
than one); then, we can further invert the lag operator and write

γt = (I2 − AL)
−1 b = (I2 − A)−1 b.

Now,

det (I2 − Az) = det
{(

1 0
0 1

)
−
(
3α21z 6α0α1z
0 α1z

)}
= det

{(
1− 3α21z −6α0α1z

0 1− α1z

)}
=

(
1− 3α21z

)
(1− α1z)

so the roots are
z =

1
3α21

and z =
1
α1
.
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ARCH Models

Proof (con’t): Hence, |z | > 1 if and only if 3α21 < 1. Moreover, by
direct calculation using the law of iterated expectations, we obtain

E [wt ] =

(
E
[
ε4t
]

E
[
ε2t
] )

= (I2 − A)−1 b

=

(
1− 3α21 −6α0α1
0 1− α1

)−1 (
3α20
α0

)
=

1
(1− 3α21) (1− α1)

(
1− α1 6α0α1
0 1− 3α21

)(
3α20
α0

)
=

1
(1− 3α21) (1− α1)

(
(1− α1) 3α20 + 6α20α1(

1− 3α21
)

α0

)
=

1
(1− 3α21) (1− α1)

(
3α20 (1+ α1)(
1− 3α21

)
α0

)
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ARCH Models

Proof (con’t): It follows that

E [wt ] =

(
E
[
ε4t
]

E
[
ε2t
] )

=

(
3α20

(1−α1)
1+α1
(1−3α21)
α0
1−α1

)

=

 [
3α20

(1−α1)
2

] [
1−α21
(1−3α21)

]
α0
1−α1


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ARCH Models

Remark (i): Note that a property of the normal random variable is

that if η ∼ N
(
0, σ2η

)
; then, E

[
η4
]
= 3σ4η. On the other hand, if

{εt} follows an ARCH(1) process; then,

E
[
ε4t
]
=

[
3α20

(1− α1)
2

] [
1− α21
1− 3α21

]
>

3α20

(1− α1)
2 = 3

(
E
[
ε2t
])2

.

since
(
1− α21

)
/
(
1− 3α21

)
> 1. Hence, the ARCH error process has

“fatter-tails" than that implied by the normal distribution.
Remark (ii): Note that the stronger condition 3α21 < 1 is used to
ensure the existence of the (unconditional) fourth moment. If we only
wish to specify the existence of the (unconditional) second moment,
then we only need to require the weaker condition α1 < 1. In the
discussion of higher order ARCH processes below, we shall focus only
on cases where we make enough assumptions to ensure the existence
of the second moments; hence, the conditions given for higher order
ARCH processes will be the analogue of the condition 0 < α1 < 1.
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ARCH(p) Processes

The ARCH(1) process described above can be readily generalized to
one with an arbitrary finite lag order p

εt = ut
[
α0 + α1ε

2
t−1 + · · ·+ αpε2t−p

]1/2

Assumptions:

(i) {ut} ≡ i .i .d .N (0, 1).
(ii) αi > 0 for i = 0, 1, ..., p.
(iii) α (z) = 1− α1z − · · · − αpzp = 0 =⇒ |z | > 1.

Claim: Assumptions (ii) and (iii) above imply that α1 + · · ·+ αp < 1.
Proof of Claim: To proceed, take derivative of α (z) with respect to
z , and we obtain

α′ (z) = −
(
α1 + 2α2z + · · ·+ pαpzp−1

)
< 0

for z > 0 given that αi > 0 for i = 0, 1, ..., p.
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ARCH(p) Processes

Proof of Claim (con’t): Moreover, since α (0) = 1 and
limz→∞ α (z) = −∞ and since α (z) is continuous, it follows that the
polynomial equation α (z) = 0 has only one positive real root, say z∗.
Next, note that since all roots of α (z) = 0 are outside the unit circle,
it must be that z∗ > 1. Now, by the fact that α (z) is monotonically
decreasing for z ∈ [0,∞), we have that

α (1) = 1− α1 − · · · − αp > α (z∗) = 0

from which it follows immediately that

1 > α1 + · · ·+ αp

as required. �
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ARCH(p) Processes

Some Properties of the ARCH(p) process: Similar to the
ARCH(1) case, it is straightforward to show that if {εt} follows an
ARCH(p) process, then

1 E [εt |It−1] = 0 and so E [εt ] = 0.
2 {εt} is serially uncorrelated.
3 E

[
ε2t |It−1

]
= α0 + α1ε

2
t−1 + · · ·+ αpε2t−p .

Unconditional Variance: Moreover, note that

E
[
ε2t
]

= E
{
E
[
ε2t |It−1

]}
= E

{[
α0 + α1ε

2
t−1 + · · ·+ αpε2t−p

]
E
[
u2t |It−1

]}
= E

{[
α0 + α1ε

2
t−1 + · · ·+ αpε2t−p

]
E
[
u2t
]}

= α0 + α1E
[
ε2t−1

]
+ · · ·+ αpE

[
ε2t−p

]
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ARCH(p) Processes

Unconditional Variance (con’t): Now, define Vt−j = E
[
ε2t−j

]
for

j = 0, ..., p, and we can write the above relationship in terms of the
pth order difference equation

Vt = α0 + α1Vt−1 + · · ·+ αpVt−p

or
(1− α1L− · · · − αpLp)Vt = α0

Given the condition α (z) = 1− α1z − · · · − αpzp = 0 =⇒ |z | > 1,
we can invert the lag polynomial to obtain

Vt = (1− α1L− · · · − αpLp)
−1 α0

=
α0

1− α1 − · · · − αp
> 0

since α0 > 0 by assumption and α1 + · · ·+ αp < 1, as previously
shown.
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Effects of ARCH Errors on Estimation of Regression
Coeffi cients

Consider again the linear regression model

yt = x ′tβ+ εt

whose error term εt follows an ARCH(p) process. In this case,

yt |It−1 ∼ N
(
x ′tβ, ht

)
where

ht = α0 + α1ε
2
t−1 + · · ·+ αpε2t−p .
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Effects of ARCH Errors on Estimation of Regression
Coeffi cients

The log-likelihood function for this model can be written as

l (β, α) =
1
T

T

∑
t=1
lt (β, α)

where α = (α0, α1, ..., αp)
′ and

lt (β, α) = const − 1
2
ln ht −

1
2

ε2t /ht

= const − 1
2
ln ht −

1
2

(
yt − x ′tβ

)2 /ht
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Effects of ARCH Errors on Estimation of Regression
Coeffi cients

Under our assumptions, it is easily seen that

E [y |X ] = X β,

VC (y |X ) = σ2IT

where y = (y1, ..., yT )
′, X = (x1, ..., xT )

′, and σ2IT . Hence, the
conditions of the Gauss-Markov theorem is satisfied and the OLS
estimator of β is the best linear unbiased estimator. It is also
consistent. However, it is easy to show that the maximum likelihood
(ML) estimator of β in this case is different from the OLS estimator
and is asymptotically more effi cient in the sense that the ML
estimator achieves the Cramér-Rao lower bound but the OLS
estimator does not.
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ARCH-in-Mean Specification

Asset pricing theory suggests that portfolio with higher perceived risk
would have to compensate by yielding higher expected returns.
Hence, let

rt = µt + εt ,

where µt = E [rt |It−1]. One may want to have a model where µt is
related to the conditional variance or volatility of the model. One
such model, the ARCH-in-mean (or ARCH-M) regression model, was
introduced by Engle, Lilien, and Robins (1987). This model takes the
form

yt = x ′tβ+ δht + εt ,

εt =
√
htut

ht = α0 + α1ε
2
t−1 + · · ·+ αpε2t−p

for t = 1, ...,T . Here, again, we assume that

{ut} ≡ i .i .d .N (0, 1) .
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Generalized AutoRegressive Conditional Heteroskedasticity
(GARCH) Process

GARCH(p,q) process: A useful generalization of the ARCH model
is the following GARCH model due to Bollerslev (1986).

εt = h
1/2
t ut ,

where

ht = α0 + δ1ht−1 + · · ·+ δrht−r + α1ε
2
t−1 + · · ·+ αmε2t−m .

Assumptions:

G1 α0 > 0 and αi ≥ 0 (for i = 1, ...,m).
G2 δj ≥ 0 (for j = 1, ..., r).
G3 {ut} ≡ i .i .d .N (0, 1);

Remark: Note that even a GARCH(1,1) model will allow ht to
depend on ε2t from the distant past. Thus, GARCH provides a clever
way of capturing slowly changing variances without having to specify
a model that has a lot of parameters to estimate.
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GARCH

Remark: Like ARCH, GARCH can also be estimated using the
method of maximum likelihood.

Example: GARCH(1,1)
In this case,

ht = α0 + δ1ht−1 + α1ε
2
t−1, 0 < δ1 < 1 and 0 < α1 < 1

Substituting recursively, we have

ht = α0 + δ1
(
α0 + δ1ht−2 + α1ε

2
t−2
)
+ α1ε

2
t−1

= δt1h0 + α0
(
1+ δ1 + · · ·+ δt−11

)
+α1

(
ε2t−1 + δ1ε

2
t−2 + · · ·+ δt−11 ε20

)
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GARCH

Remark (i): In practical applications, we need to estimate h0.
Approaches taken in the literature include treating h0 as an extra
parameter of the likelihood function and estimate it jointly with the
other parameters. Another approach is to suppose that it is equal to
the unconditional variance and estimate it using the formula

ĥ0 = σ̂2 =
1

T + 1

T

∑
t=1

(
yt − x ′t β̂

)2.
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GARCH

Remark (ii): If we envision a situation where the GARCH(1,1)
process arises from the infinite past; then, continuing the backward
substitution process described previously, we obtain the representation

ht = lim
s→∞

δs1h0 +
α0

1− δ1
+ α1

∞

∑
j=0

δj1ε
2
t−1−j

=
α0

1− δ1
+ α1

∞

∑
j=0

δj1ε
2
t−1−j

assuming that lims→∞ δs1h0 = 0. It follows that the GARCH(1,1)
model provides a parsimonious way for allowing ht to depend on an
infinite number of lagged ε2t ’s.
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Some Properties of the GARCH (r,m) Process

If {εt} follows the GARCH (r,m) process given by

εt = h
1/2
t ut ,

where

ht = α0 + δ1ht−1 + · · ·+ δrht−r + α1ε
2
t−1 + · · ·+ αmε2t−m .

then, {εt} has mean zero and is serially uncorrelated. To see this,
note that by direct calculation

E [εt |It−1]
= h1/2

t E [ut |It−1]
=

[
α0 + δ1ht−1 + · · ·+ δrht−r + α1ε

2
t−1 + · · ·+ αmε2t−m

]1/2

×E [ut |It−1]
=

[
α0 + δ1ht−1 + · · ·+ δrht−r + α1ε

2
t−1 + · · ·+ αmε2t−m

]1/2
E [ut ]

= 0.
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Some Properties of the GARCH (r,m) Process

It follows by the law of iterated expectations that

E [εt ] = E (E [εt |It−1]) = 0.
Moreover, it follows from the law of iterated expectations that for
integer j ≥ 1

E [εt εt−j ] = E (εt−jE [εt |It−1]) = 0.
A Useful Representation for the GARCH (r,m) Process:
Although it may seem that a GARCH (r,m) process is similar to an
ARMA (r,m) process; surprisingly, it is actually more analogous to an
ARMA (p, r) process where p = max {r ,m}. To see this, define

vt = ε2t − ht
so that

E [vt |It−1] = E
[
ε2t |It−1

]
− E [ht |It−1]

= ht − ht = 0.
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Some Properties of the GARCH (r,m) Process

It follows from the same argument as above that {vt} is a mean zero
and serially uncorrelated process. Now, substituting ht = ε2t − vt into

ht = α0 + δ1ht−1 + · · ·+ δrht−r + α1ε
2
t−1 + · · ·+ αmε2t−m ,

we get

ε2t − vt
= α0 + δ1

(
ε2t−1 − vt−1

)
+ · · ·+ δr

(
ε2t−r − vt−r

)
+α1ε

2
t−1 + · · ·+ αmε2t−m

= α0 + (δ1 + α1) ε2t−1 + · · ·+ (δp + αp) ε2t−p
−δ1vt−1 − · · · · −δr vt−r
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Some Properties of the GARCH (r,m) Process

or

ε2t

= α0 + (δ1 + α1) ε2t−1 + · · ·+ (δp + αp) ε2t−p
+vt − δ1vt−1 − · · · · −δr vt−r

where in the representation above, we have defined δj ≡ 0 for j > r
and αj ≡ 0 for j > m.
In light of the ARMA-type representation given above, it seems
natural to impose the condition that

ψ (z) = 1− (δ1 + α1) z − · · · − (δp + αp) zp = 0 =⇒ |z | > 1.
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Some Properties of the GARCH (r,m) Process

Under this condition, we can invert the lag polynomial operator

ψ (L) = 1− (δ1 + α1) L− · · · − (δp + αp) Lp

to obtain a MA-type representation

ε2t = [1− (δ1 + α1) L− · · · − (δp + αp) Lp ]
−1 (α0 + ηt )

where
ηt = vt − δ1vt−1 − · · · · −δr vt−r .

It follows that

E
[
ε2t
]
=

α0
1− (δ1 + α1)− · · · − (δp + αp)

+E
{
[1− (δ1 + α1) L− · · · − (δp + αp) Lp ]

−1 ηt

}
=

α0
1− (δ1 + α1)− · · · − (δp + αp)

since {ηt} is a mean zero process given that {vt} is mean zero.
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Some Properties of the GARCH (r,m) Process

Suppose we maintain the assumptions

G1 α0 > 0 and αi ≥ 0 (for i = 1, ...,m).
G2 δj ≥ 0 (for j = 1, ..., r);

Then, a suffi cient condition for 0 < E
[
ε2t
]
< ∞ is that

ψ (z) = 1− (δ1 + α1) z − · · · − (δp + αp) zp = 0 =⇒ |z | > 1.

which, based on argument given earlier, implies that

(δ1 + α1) + · · ·+ (δp + αp) < 1

Note also that the unconditional variance

E
[
ε2t
]
=

α0
1− (δ1 + α1)− · · · − (δp + αp)

does not depend on t, so there is no unconditional heteroskedasticity.
Coupled with our earlier observations that E [εt ] = 0 and
E [εt εt−j ] = 0, we see that {εt} is covariance stationary.
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Empirical Illustration

Tsay (2010) provided an empirical illustration using time series data
on monthly excess returns of the S&P 500 index. His data set runs
from 1926-1991 and has 792 total observations. More specifically, he
estimated an AR(3) model with an error process that is GARCH(1,1),
i.e.,

rt = µ+ ρ1rt−1 + ρ2rt−2 + ρ3rt−3 + εt

where

εt = h1/2
t ut ,

ht = α0 + α1ε
2
t−1 + δ1ht−1.

He obtained the following coeffi cient estimates

r̂t = 0.0078+ 0.032rt−1 − 0.029rt−2 − 0.008rt−3
ĥt = 0.000084+ 0.1213ε2t−1 + 0.8523ht−1
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