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Models of Conditional Heteroskedasticity - Motivation

o Consider the AR (1) process

Y: = BYi—1 + &,

where |B| < 1 and {¢;} = i.i.d. (0,02).
@ Note that for this model

E[Yira] =0

but
E[Yt+1|yt: Yi-1, ] = E[Yt+1|Yt] = ‘BYt’

so that by using information about current and past values of Y4, this

model allows one to improve on ones forecast of the mean-level of

Yi4+1 over that which can be obtained when this information is not
used.
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Models of Conditional Heteroskedasticity - Motivation

@ Shortcoming of this model: The same improvement is not achieved
when forecasting the error variance with this model since

E[e,4|Ye, Yeor,..] = E [e1,,] =07

Observation: This model is not rich enough to allow for better
prediction of the error variance based on past information. In
particular, the independence assumption on the errors precludes any
forecast improvement.

On the other hand, many financial and macroeconomic time series
exhibit "volatility clustering." Volatility clustering suggests the
possible presence of time dependent variance or time-varying
heteroskedasticty that may be forecastable. Interestingly, this can
occur even if the time series itself is close to being serially
uncorrelated so that the mean-level is difficult to forecast.
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Models of Conditional Heteroskedasticity - Empirical

Motivation

Relative Daily Index Closings
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Why would there be interest in forecasting variance?

@ First, in finance, the variance of the return to an asset is a measure of
the risk of owning that asset. Hence, investors, particularly those who
are risk averse, would naturally be interested in predicting return
variances.

@ Secondly, the value of some financial derivatives, such as options,
depends on the variance of the underlying assets. Thus, an options
trader would want to obtain good forecasts of future volatility to help
her or him decide on the price at which to buy or sell options.

@ Thirdly, being able to forecast variance could allow one to have more
accurate forecast intervals that adapt to changing economic
conditions.
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AutoRegressive Conditional Heteroskedasticity (ARCH)

Models

@ Here, we will discuss two frequently used models of time-varying
heteroskedasticity: the autoregressive conditional
heteroskedasticity (ARCH) model and its extension, the
generalized ARCH (or GARCH) model.

@ Regression with ARCH errors: Consider the following model

Ve = x£ﬁ+£t, fort=1,..., T

We make the following assumptions on this model.
o Assumptions:

Al x; is nonstochastic for all t.
A2 T7IX'X — Qi > 0 where TXk = (X1, ..., XT) -
X

A3 & = uy [(XO —|—061€%_1 4+ 4+ (xpgfip}l/z, where a; > 0 for

i=0,...pand {u} =i.id.N(0, 1) (This assumption specifies an
ARCH(p) error process.)
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AutoRegressive Conditional Heteroskedasticity (ARCH)

Models

@ Remark 1: We have described here a simple linear regression model
with ARCH errors; but, in principle, an ARCH process can be used to
model the error variance for any time series regression.

@ Remark 2: Further conditions on the coefficients «y, ..., a, will be
given below.

e Conditional and Unconditional Moments of the ARCH(1)
Process: Let ;_; = 0 (&¢—1,€¢—2, ...), i.e., the information set
generated by &;_1,¢€:_5, ... We first consider a special case of the
specification given in A3. More specifically, we will consider a
first-order ARCH (or ARCH(1)) process for the regression errors,
which has the form

& = Up [060 + 0(15%71]1/2

where a9 > 0,0 < a; <1, and {u} =i.i.d.N(0,1).
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AutoRegressive Conditional Heteroskedasticity (ARCH)

Models

@ Conditional Moments:

1. Conditional Mean

1/2
E[St“t—l] = [0604-0‘18?71] /

(o +zx15f_1]1/2

=0
2. Conditional Variance

Elflhr] = [0+ o] E[uf]1]
[wo + 1674 ] E [u7]

= [ao + a1€7_4]
(

since by assumption E [uf] = Var (u;) = 1)
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ARCH Models

3. Conditional 4th Moment
Elef|lia] = [ao+aredi]”E [uf|li 1]
[af + 200165y + afey | E [uf]
= 3[af+2aoare;_; +ajel ]
(since E [u‘t‘] = 3 by property of N (0,1))
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ARCH Models

@ Unconditional Moments:
@ Unonditional Mean: By law of iterated expectations
E[gt] = E(E[8t|/t_1]) = E[O] =0.
@ Autocovariances: For any integer j > 1, note that
Elererj] = E(errjE [ed|lia])

(by law of iterated expectations)
E [Stfj X 0]
0.

A similar argument can be used to show that, for negative integer j,
E [e+e,—j] = 0 so that {&;} is serially uncorrelated for this model.

@ Remark: Interestingly, an ARCH process is serially uncorrelated but
not independent. These features are important for the modeling of
asset returns.
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ARCH Models

e Claim: The unconditional 4th moment of an ARCH(1) process with
ag > 0 and w3 > 0 exists if and only if 30&% < 1. Under these
conditions, the (unconditional) 2nd and 4th moments have the
explicit form

X0
Elef] =
[St] 1-— K1 '
33 1—a?
Elef] = Y. [ 12}
(1 — D‘l) 1-— 3&1
o Proof (Sketch): Define w; = (f,?)’, and write

Efwelh-] = ( E[e;i1 t1] )
3
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ARCH Models

e Proof (con’t): More succinctly,

E [Wt|lt—1] =b+ Aw;_1,

2 2
b:(?’%)andA:(&xl 60c00c1>
&o 0 K1

It follows by the law of iterated expectations that

where

E [Wt] - b+ AE [Wtf]_]
or, if we let v, = E [wy],
Ye=b+ Ay
so that, after rearranging, we can write

(h—AL)y,=0b
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ARCH Models

@ Proof (con’t): If the roots of the determinantal equation
det(h —Az) =0
are all outside the unit circle (i.e., if all roots have modulus greater
than one); then, we can further invert the lag operator and write
Yo =(h—AL) " b= (h—A) b

Now,

B 10 3a2z 6wonrz
det (h — Az) = det{(0 1)—( 0 w1z

B 1—3a3z —6aon;z

= det { ( 0 1— n1Z

= (1-3ajz) (1—a2)

so the roots are
1 1
z=_— and z = —.
3ug X1
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ARCH Models

e Proof (con’t): Hence, |z| > 1 if and only if 322 < 1. Moreover, by
direct calculation using the law of iterated expectations, we obtain

e = (£6)

B 1—3a2 —6aga; ! 3a2
a 0 1-— 15} xQ

_ 1 1—w;  6agag 3a3
 (1-3a?)(1—a) 0 1-3a2 g

_ 1 ( (1 —a1)3a3 + 6a3a; )
(1—3a2) (1 —ay) (1—3a3) o

_ 1 ( 303 (1+a1) )
(1—3a2)(1—ap) \ (1—3af)ao
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ARCH Models

@ Proof (con’t): It follows that
_ ( Ele]
el = ((Ef
33 1+aq
= ( (1—061) (1-30{%) )
g
1—061

= ( [(13%)2][(11305%)] )
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ARCH Models

e Remark (i): Note that a property of the normal random variable is
thatif y ~ N (0,0’%); then, E [174] = 30;‘7. On the other hand, if
{&+} follows an ARCH(1) process; then,

2 2 2
e = | 2| [ 2 s
(1—a1) 1—3a7 (1—a1)
since (1 —af) /(1 —3a%) > 1. Hence, the ARCH error process has
“fatter-tails" than that implied by the normal distribution.

o Remark (ii): Note that the stronger condition 3a2 < 1 is used to
ensure the existence of the (unconditional) fourth moment. If we only
wish to specify the existence of the (unconditional) second moment,
then we only need to require the weaker condition a3 < 1. In the
discussion of higher order ARCH processes below, we shall focus only
on cases where we make enough assumptions to ensure the existence
of the second moments; hence, the conditions given for higher order
ARCH processes will be the analogue of the condition 0 < a1 <-1.
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ARCH(p) Processes

@ The ARCH(1) process described above can be readily generalized to
one with an arbitrary finite lag order p

2 2 1/2
e = U (o +argf |+ Faper ]

@ Assumptions:
(i) {u} =1i.id.N(0,1).
(i) a; >0 fori=0,1,..,p.
(i) a(z) =1—mz— - —apzP =0 = |z| > 1.

e Claim: Assumptions (ii) and (iii) above imply that a1 4 - - +a, < 1.
e Proof of Claim: To proceed, take derivative of a (z) with respect to
z, and we obtain

& (z) = — (w1 + 20z + - -+ + payzP 1) <0

for z > 0 given that o; >0 fori=20,1,..., p.

John C. Chao () December 2, 2020 17 / 35



ARCH(p) Processes

@ Proof of Claim (con’t): Moreover, since « (0) = 1 and
lim, e & (z) = —o0 and since a (z) is continuous, it follows that the
polynomial equation & (z) = 0 has only one positive real root, say z*.
Next, note that since all roots of & (z) = 0 are outside the unit circle,
it must be that z* > 1. Now, by the fact that a (z) is monotonically
decreasing for z € [0, o0), we have that

a(l)=1-a;—---—ap,>a(z")=0
from which it follows immediately that
1 > 151 + tee + lxp

as required. [
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ARCH(p) Processes

e Some Properties of the ARCH(p) process: Similar to the
ARCH(1) case, it is straightforward to show that if {e;} follows an
ARCH(p) process, then

@ E[et|li—1] =0 and so E [¢¢] = 0.
@ {&:} is serially uncorrelated.
Q E[&|l—1] =ao+are?  + - +ape?

t—p-

@ Unconditional Variance: Moreover, note that

E [et]

E{E [efle—]}

E{|ao+ wy€2 4 (xpsf_p] E [uf|lt,1] }
E{[wo+a1ef 1+ +aper ] E[uf]}

ao +a1E [e5 1]+ +apE [ ]
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ARCH(p) Processes

e Unconditional Variance (con’t): Now, define V;_; = E [sfﬁ-] for
j=0,...,p, and we can write the above relationship in terms of the

pth order difference equation
Vi=agt+arVea+--+apVip
or
(I—aL—---—aplP) Vi =g
Given the condition a (z) =1 — a1z — - - —ap,zP =0 = |z| > 1,
we can invert the lag polynomial to obtain
Vi = (1—al—---—a,lP) tag
X0
l—ay—---—ap
> 0

since ag > 0 by assumption and a1 + - - -+ &, < 1, as previously
shown.
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Effects of ARCH Errors on Estimation of Regression

Coefficients

@ Consider again the linear regression model
Yo = X{p+ &
whose error term ¢; follows an ARCH(p) process. In this case,
yille—1 ~ N (XZ,B ht)

where
he = ag + are2_q + -+ + ape?
t 0 1¢t1 pct—p-
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Effects of ARCH Errors on Estimation of Regression

Coefficients

@ The log-likelihood function for this model can be written as

1 T
[(p.0) = 2 Yk (B.0)
t=1
where & = (ap, a1, ..., a,)" and

1 1
le (B,a) = const— 5 In hy — Esg/ht

1 1
= const — 5 Inh; — 5 (Yt —Xgﬁ)z /ht
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Effects of ARCH Errors on Estimation of Regression

Coefficients

@ Under our assumptions, it is easily seen that

ElylX] = X8,

VC (y|X) = o?It
where y = (y1, ...,yT)/, X = (x1, ...,xT)/, and 02/7. Hence, the
conditions of the Gauss-Markov theorem is satisfied and the OLS
estimator of § is the best linear unbiased estimator. It is also
consistent. However, it is easy to show that the maximum likelihood
(ML) estimator of B in this case is different from the OLS estimator
and is asymptotically more efficient in the sense that the ML
estimator achieves the Cramér-Rao lower bound but the OLS
estimator does not.
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ARCH-in-Mean Specification

@ Asset pricing theory suggests that portfolio with higher perceived risk
would have to compensate by yielding higher expected returns.
Hence, let

re =, + &,
where i, = E [r¢|l;—1]. One may want to have a model where p, is
related to the conditional variance or volatility of the model. One
such model, the ARCH-in-mean (or ARCH-M) regression model, was
introduced by Engle, Lilien, and Robins (1987). This model takes the

form
Yt = X;,B‘}'(Sht—i‘ﬁt,
& = \/EUt
hy = wap+ lesf_l + -+ ocpsf_p

for t =1, ..., T. Here, again, we assume that

{u} =iid.N(0,1).
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Generalized AutoRegressive Conditional Heteroskedasticity

(GARCH) Process

o GARCH(p.q) process: A useful generalization of the ARCH model
is the following GARCH model due to Bollerslev (1986).

where
he =ag+01h 1+ -+ he,+ae2 |+ +aper .
@ Assumptions:
Gl ag >0andw; >0 (for i=1,.., m)
G2 4;>0(forj=1,...r).
G3 {u} =i.id.N(0,1);
e Remark: Note that even a GARCH(1,1) model will allow h; to
depend on €2 from the distant past. Thus, GARCH provides a clever

way of capturing slowly changing variances without having to specify
a model that has a lot of parameters to estimate.
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GARCH

o Remark: Like ARCH, GARCH can also be estimated using the
method of maximum likelihood.

e Example: GARCH(1,1)
In this case,

he = &g +01h 1 +ae? 1, 0<é<land0<a; <1
Substituting recursively, we have

ht = ap+ (51 (IXO + (51 ht72 + 0618%_2) + a1€%_1
= Oho+ag (1+81+---+67")
+aq (s%,l 40182 4+ (557183)
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GARCH

e Remark (i): In practical applications, we need to estimate hg.
Approaches taken in the literature include treating hg as an extra
parameter of the likelihood function and estimate it jointly with the
other parameters. Another approach is to suppose that it is equal to
the unconditional variance and estimate it using the formula

== LY ()"
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GARCH

e Remark (ii): If we envision a situation where the GARCH(1,1)
process arises from the infinite past; then, continuing the backward
substitution process described previously, we obtain the representation

ht = ||m 51

€t—1fj

assuming that lims_,c 87 hy = 0. It follows that the GARCH(1,1)
model provides a parsimonious way for allowing h; to depend on an
infinite number of lagged €2's
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Some Properties of the GARCH (r,m) Process

o If {&:} follows the GARCH (r,m) process given by
& = h}/2ut,
where
he =ag+01he 1+ +8h,+a1e |+ Fames_,.

then, {&:} has mean zero and is serially uncorrelated. To see this,
note that by direct calculation

E [8t|lt71]
= ht"?E [u]lp]

= [wo+Orhe 1+ +0h toare et amed ]
X E [Ut“tf]_]
2 2 1/2
(g +01he—y + -+ 0rhe—p + o165 1 + -+ amer_ | E [ug]
0.
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Some Properties of the GARCH (r,m) Process

o |t follows by the law of iterated expectations that
E [St] - E(E [St“t—l]) - 0
Moreover, it follows from the law of iterated expectations that for
integer j > 1
E [Stst_j] == E (Et_jE [et"/t—l]) = 0
e A Useful Representation for the GARCH (r,m) Process:
Although it may seem that a GARCH (r,m) process is similar to an

ARMA (r,m) process; surprisingly, it is actually more analogous to an
ARMA (p, r) process where p = max{r, m}. To see this, define

Ve = 8% — ht
so that
Evelle—1]) = E[ef|le—1] — E [he]le—1]
ht - ht = 0
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Some Properties of the GARCH (r,m) Process

o It follows from the same argument as above that {v;} is a mean zero
and serially uncorrelated process. Now, substituting h; = &2 — v; into

hy =ag+d1hy 1+ -+ b+ 0618%,1 +- 1+ D€m€§7mv
we get
S% — Vi
= o +01 (55_1 — thl) 4+ 44, (Ef_r — Vt—r)
tare? A aper

= ao+ (S1+ar)el 4+ (Sp+ap) el ,
=01V g — =0V,
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Some Properties of the GARCH (r,m) Process

@ or
et
= ag+ (S1+ar)er 4+ (Gp+ap)er,
+vi —01ve—1 — s =0pve—y

where in the representation above, we have defined §; = 0 for j > r
and a; =0 for j > m.

@ In light of the ARMA-type representation given above, it seems
natural to impose the condition that

P(z)=1—(01+a1)z—---—(6p+ua,) 2P =0=|z| > L
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Some Properties of the GARCH (r,m) Process

@ Under this condition, we can invert the lag polynomial operator

p(L)=1—(1+ar)L—---—(0p+ap)LP
to obtain a MA-type representation
&= [L= Grta)l—e— (Gt a) L (a0 +77)
where
Ny =Vt — O1Ve1— " =0, Vit
It follows that
X0
Ele] =
[St] 1— (01 +ar)—-—(0p+ap)
FE{L= (01t a) Lo = (6 ) L] 1y,
1—(br+a) == (6p+uap)

since {77,} is a mean zero process given that {v;} is mean zero.
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Some Properties of the GARCH (r,m) Process

@ Suppose we maintain the assumptions

Gl wo>0and a; >0 (for i =1,...,m).
G2 4;>0(forj=1,...r)
Then, a sufficient condition for 0 < E [¢?] < oo is that
P(z)=1—-(1+m)z—--—(0p+ap) 2P =0=|z| > 1.
which, based on argument given earlier, implies that

(Or+a)+--+(6p+ap) <1

@ Note also that the unconditional variance

X9
E[&] =
[t] 1—((514-0(1)—---—((5,,4-0&,,)
does not depend on t, so there is no unconditional heteroskedasticity.
Coupled with our earlier observations that E [e;] = 0 and
E [erer—j] = 0, we see that {e;} is covariance stationary.
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Empirical lllustration

e Tsay (2010) provided an empirical illustration using time series data
on monthly excess returns of the S&P 500 index. His data set runs
from 1926-1991 and has 792 total observations. More specifically, he
estimated an AR(3) model with an error process that is GARCH(1,1),

i.e.,
re=p+pPpre—1+Part—2+ P3re—3 + &
where
& = h%/zut,
he = ao+a1es_q +61he1.

@ He obtained the following coefficient estimates

rr = 0.0078 +0.032r;_1; — 0.029r;_» — 0.008r;_3
h; = 0.000084 +0.1213¢2_, 4 0.8523h; 1
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