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Inversion Method

It is well-known that there exist very good pseudo-random number
generators for making i .i .d . draws from a uniform distribution. See,
for example, Knuth (1997). How do we make draws from a
non-uniform distribution, however? In principle, we can use the
uniform pseudo-random number generator to make draws from any
distribution for which the cumulative distribution function (cdf) is
known by making use of the so-called inversion method, as given by
the lemma below.
Lemma: Let

U ∼ Uniform [0, 1]
and let F (·) be a one-dimensional cdf. Then,

X ∼ F− (U)

has the distribution F . Here, we define

F− (u) = inf {x : u ≤ F (x)} .
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Inversion Method

Proof: We will prove the lemma only for the case where F (·) is
continuous and strictly increasing, i.e., X is a continuously distributed
random variable. In this case, note that

Pr (X ≤ x) = Pr
(
F−1 (U) ≤ x

)
= Pr (U ≤ F (x))
= F (x)

where the last inequality follows from the fact that U is uniformly
distributed on the interval [0, 1].

Remark: In practice, however, for many distributions (including the
normal distribution), F (·) is not known in closed form, so it is
diffi cult to implement the inversion method directly.
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Rejection (or Acceptance/Rejection) Method

This method, due to von Neumann (1951) can be applied to make
draws from any finite dimensional probability distribution with a
density that is specified up to a normalization constant.
Consider the following situation.

1 Suppose that we wish to make draws from π (x), which is a density
function or a probability mass function, but we do not know how to
do that directly.

2 Suppose that, given x , it is at least easy to compute (or evaluate) the
function

l (x) = aπ (x)

for some possibly positive constant a.
3 Finally, suppose that it is easy to draw from a sampling distribution
g (x), and there exists a “covering constant" M such that the
following envelop property holds

l (x) ≤ Mg (x) for all x .
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Rejection (or Acceptance/Rejection) Method

In this setting, we can apply the following algorithm:

(i) Draw x from g (·) and compute the ratio

p (x) =
l (x)
Mg (x)

(≤ 1 given the envelope property)

(ii) Draw u from Uniform[0, 1] and

Accept x as one of the draws if u ≤ p (x) =
l (x)
Mg (x)

Reject x and go back to step (i) if u > p (x) =
l (x)
Mg (x)

(iii) Iterate between steps (i) and (ii) until we have collected the needed
sample.
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Rejection (or Acceptance/Rejection) Method

We will show that the accepted sample generated by the algorithm
above follows the target distribution π (x).
To proceed, let IX denote an indicator function such that

IX =

{
1 if X drawn from g (·) is accepted
0 if X drawn from g (·) is rejected

Note that

Pr {IX = 1} =
∫
Pr {IX = 1|X = x} g (x) dx

=
∫ l (x)
Mg (x)

g (x) dx =
∫ l (x)

M
dx

=
a
M

∫ l (x)
a
dx

=
a
M

∫
π (x) dx =

a
M
.
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Rejection (or Acceptance/Rejection) Method

It follows that

p (x |IX = 1) =
Pr {IX = 1|X = x} g (x)

Pr {IX = 1}
(by Bayes rule)

= a
(

1
Mg (x)

l (x)
a

)
g (x) /

a
M

= π (x) .

Remark (i): Note that the above calculations imply that we must
have a ≤ M.
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Rejection (or Acceptance/Rejection) Method

Remark (ii): Note also that our decision to accept or reject is based
essentially on a draw from a Bernoulli distribution with probability of
success (or acceptance) given by

p = p (x) =
l (x)
Mg (x)

conditional on X = x . On the other hand, the unconditional
probability of acceptance obtained by averaging with respect to the
distribution g (x) is given by

p = Eg [p (x)] =
a
M
= Pr {IX = 1} .

Remark (iii): Hence, if we think this algorithm as being more
effi cient if we get high acceptance on average, then a good trial
distribution g (x) is one which gives a small M (since there is in
general nothing we can do about the size of a, which might even be
unknown).
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Rejection (or Acceptance/Rejection) Method

Remark (iv): We can also calculate the expected number of draws
before we would obtain the first acceptance. To do this, note first
that the probability of getting the first success in the y th trial when
the probability of success for each trial is

p = Pr {IX = 1} =
a
M

is given by the probability distribution of a geometric random variable
Y , i.e.,

Pr {Y = y} = p (1− p)y−1 for y = 1, 2, ...
The expected value of this random variable can be calculated as

E [Y ] =
1
p
=
M
a
.

It follows that, if a ≈ 1, then M is approximately the expected
number of draws before we obtain the first acceptance.
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Monte Carlo Integration

Suppose that we want to compute the expectation (or integral)

µ = Eπ [h (X )] =
∫
X
h (x)π (x) dx .

It would seem that a natural way to proceed is to draw an i .i .d .
sample

(
X (1), ....,X (m)

)
from π and approximate Eπ [h (X )] using

the empirical average

µ̃ =
1
m

m

∑
i=1
h
(
x (i )
)

Assume the moment condition

Eπ [|h (X )|] =
∫
X
|h (x)|π (x) dx < ∞;

then, by the strong law of large numbers (SLLN)

1
m

m

∑
i=1
h
(
X (i )

)
a.s .→ Eπ [h (X )] as m→ ∞.
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Monte Carlo Integration

Suppose a stronger (2nd) moment condition holds, i.e.,

Eπ

{
[h (X )]2

}
< ∞;

then, by the Lindeberg-Lévy central limit theorem (CLT), we further
obtain

√
m
(

µ̃−Eπ [h (X )]
σ̂h,m

)
d→ N (0, 1) as m→ ∞,

where

σ̂2h,m =
1
m

m

∑
i=1

[
h
(
x (i )
)
− µ̃

]2
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Monte Carlo Integration

Note that the central limit theorem also provides us with a rate of
convergence, so that, under the second moment condition, we have

µ̃−Eπ [h (X )] = Op

(
1√
m

)
Interestingly, the rate of convergence depends only on m, the number
of draws, and not on dim (x). This is why people are interested in
Monte Carlo methods as a way of computing high-dimensional
integral. Monte Carlo methods allow one to, in some sense,
circumvent the so-called curse of dimensionality.
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Importance Sampling

Some Motivation

A problem with the Monte Carlo strategy discussed so far is that it
could be very ineffi cient from a computational standpoint. In
particular, if the support of h (x) and π (x) are substantially different,
by drawing from the distribution π (x), we could be wasting a lot of
effort in regions of the integral where the product h (x)π (x) (i.e.,
the integrand) is very close to zero.
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Importance Sampling

A second potential drawback of the above strategy is that we might
want to evaluate not one but a family of related integrals, i.e.,∫

X
h1 (x)π1 (x) dx ,∫
X
h2 (x)π2 (x) dx ,

...∫
X
hJ (x)πJ (x) dx ,

If we estimate each integral∫
X
hi (x)πi (x) dx

by drawing from a separate distribution πi (x), this could again be
ineffi cient and could lead to a lot of draws. Hence, we may want to
have a method where we can draw one sample and possibly use it for
several related problems.
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Importance Sampling

The method of importance sampling is an evaluation of the integral

µ = Eπ [h (X )] =
∫
X
h (x)π (x) dx .

based on generating a sample
(
X (1), ....,X (m)

)
from a given

distribution g and approximating µ with

µ =
1
m

m

∑
i=1

h
(
X (i )

)
π
(
X (i )

)
g
(
X (i )

)
=

1
m

m

∑
i=1
w
(
X (i )

)
h
(
X (i )

)
where

w
(
X (i )

)
=

π
(
X (i )

)
g
(
X (i )

)
are the importance weights.
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Importance Sampling

The intuition behind the importance sampling method is based on
(alternative) representation of the integral of interest

Eπ [h (X )] =
∫
X

h (x)π (x)
g (x)

g (x) dx

which is called the importance sampling fundamental identity.

For this method to work, we need a support condition

supp (π) ⊂ supp (g)

John C. Chao (Econ 721 Lecture Notes) October 18, 2022 16 / 28



Importance Sampling

Unbiasedness: Suppose we draw an i .i .d . sample
(
X (1), ....,X (m)

)
from g . Note that

Eg [µ] =
1
m

m

∑
i=1

Eg

h
(
X (i )

)
π
(
X (i )

)
g
(
X (i )

)


=
1
m

m

∑
i=1

∫
Xg

h (x)π (x)
g (x)

g (x) dx

=
1
m

m

∑
i=1

∫
Xg
h (x)π (x) dx

=
1
m

m

∑
i=1

∫
Xπ

h (x)π (x) dx (since supp (π) ⊂ supp (g))

=
1
m

m

∑
i=1

Eπ [h (X )]

= µ.
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Importance Sampling

Unbiasedness (con’t): Hence, µ is an unbiased (Monte Carlo)
estimator of µ when the expectation is taken with respect to g .

Suppose, in addition, that

Eg

∣∣∣∣∣∣
h
(
X (i )

)
π
(
X (i )

)
g
(
X (i )

)
∣∣∣∣∣∣


=
∫
Xg

∣∣∣∣h (x)π (x)
g (x)

∣∣∣∣ g (x) dx
=

∫
Xg
|h (x)|π (x) dx

=
∫
Xπ

|h (x)|π (x) dx (since supp (π) ⊂ supp (g))
< ∞.
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Importance Sampling

Then, by the SLLN, we have

µ =
1
m

m

∑
i=1

h
(
X (i )

)
π
(
X (i )

)
g
(
X (i )

) a.s .→ µ as m→ ∞

Remark (i): Given the support condition, the moment condition
needed for the strong consistency of µ, i.e., the condition

Eπ [|h (X )|] =
∫
X
|h (x)|π (x) dx < ∞

is the same as moment condition which ensures the strong
consistency of µ̃, even though we are now drawing from the
distribution g instead of the distribution π.
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Importance Sampling

Remark (ii): Note that the importance sampling fundamental
identity is a very general representation which expresses the fact that
a given integral is not intrinsically associated with a given distribution.
Importance sampling is therefore of considerable interest since it is a
methodology that puts very little restriction on the choice of the
instrumental distribution g , which can be conveniently chosen to be
one that is easy to simulate from. Moreover, it may be possible to use
the same sample (generated from g) repeatedly, not only for different
functions h but also for different densities π, a feature that is
particularly attractive for robustness and Bayesian sensitivity analysis.
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Importance Sampling

Finite Variance Importance Sampler: Although, in principle, to
implement the importance sampling algorithm, we can sample from
any distribution g that satisfies the support condition

supp (π) ⊂ supp (g) ,
in practice some choices might be better than others. More
specifically, to get a CLT-type result, i.e.,

√
m
(

µ−Eπ [h (X )]
σh,m

)
d→ N (0, 1) as m→ ∞,

where

µ =
1
m

m

∑
i=1

h
(
X (i )

)
π
(
X (i )

)
g
(
X (i )

) ,

σ2h,m =
1
m

m

∑
i=1

[
h
(
x (i )
)
− µ

]2
we also need a second moment condition.
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Importance Sampling

In this case, the variance is finite if

Eg

[
h2 (X )π2 (X )

g2 (X )

]
=

∫
Xg

h2 (x)π2 (x)
g2 (x)

g (x) dx

=
∫
Xg

h2 (x)π (x)
g (x)

π (x) dx

=
∫
Xπ

h2 (x)π (x)
g (x)

π (x) dx

(since supp (π) ⊂ supp (g))

= Eπ

[
h2 (X )π (X )

g (X )

]
< ∞.
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Importance Sampling

It follows that instrumental distributions with tails lighter than those
of π (that is, those with unbounded ratios π/g) are not appropriate
for importance sampling. In fact, in these cases, the variances of the
corresponding estimators

µ =
1
m

m

∑
i=1

h
(
X (i )

)
π
(
X (i )

)
g
(
X (i )

)
=

1
m

m

∑
i=1
w
(
X (i )

)
h
(
X (i )

)
will be infinite for many functions h.
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Importance Sampling

More generally, if the ratio

w =
π

g

is unbounded, the weights w
(
x (i )
)
= π

(
x (i )
)

/g
(
x (i )
)
may vary

widely and possibly give too much importance to a few x (i ) values.
This, in turn, could lead to the value of the estimate µ changing
abruptly from one iteration to the next, even after many iterations.
Conversely, specifying an instrumental distribution g with thicker tails
than π could lead to more stable results.

Geweke (1989) gives two types of suffi cient conditions to ensure the
finiteness of Eπ

[
h2π/g

]
(i) w (x) = π (x) /g (x) < M < ∞ for all x ∈ X and Eπ

[
h2
]
< ∞

(ii) X is compact, π (x) < C < ∞ and g (x) > ε > 0 for all x ∈ X .
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Importance Sampling

A natural question to ask at this point is that, amongst all
distributions g leading to finite variances for the estimator

µ =
1
m

m

∑
i=1

h
(
X (i )

)
π
(
X (i )

)
g
(
X (i )

)
what is the form of the optimal distribution given a particular
function h and a fixed distribution π? The answer is provided by the
following theorem from Rubinstein (1981).

Theorem: The choice of g that minimizes the variance of the
estimator µ is

g ∗ (x) =
|h (x)|π (x)∫

Xπ

|h (x)|π (x) dx
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Importance Sampling

Proof of Theorem: Note first that

varg

[
h (X )π (X )
g (X )

]
= Eg

[
h2 (X )π2 (X )

g2 (X )

]
−
(

Eg

[
h (X )π (X )
g (X )

])2
= Eg

[
h2 (X )π2 (X )

g2 (X )

]
−
(∫
Xg

h (x)π (x)
g (x)

g (x) dx
)2

= Eg

[
h2 (X )π2 (X )

g2 (X )

]
−
(∫
Xπ

h (x)π (x) dx
)2

= Eg

[
h2 (X )π2 (X )

g2 (X )

]
− (Eπ [h (X )])

2

so that the second term does not depend on g . Hence, to minimize
the variance, we only need to choose g to minimize the first term.
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Importance Sampling

Proof of Theorem (con’t): From Jensen’s inequality, it follows that

Eg

[
h2 (X )π2 (X )

g2 (X )

]
≥

(
Eg

[∣∣∣∣h (X )π (X )
g (X )

∣∣∣∣])2
=

(
Eg

[
|h (X )|π (X )

g (X )

])2
=

(∫
Xπ

|h (x)|π (x) dx
)2

which provides a lower bound that is independent of g .
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Importance Sampling

Proof of Theorem (con’t): Now, take g = g ∗, and we have

Eg ∗

[
h2 (X )π2 (X )

(g ∗ (X ))2

]

= Eg ∗

[
h2 (X )π2 (X )
h2 (X )π2 (X )

(∫
Xπ

|h (x)|π (x) dx
)2]

=

(∫
Xπ

|h (x)|π (x) dx
)2

so that setting g = g ∗ satisfies the lower bound and, thus, is optimal.
�
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