

# Monte Carlo Statistical Methods

John C. Chao

Econ 721 Lecture Notes

October 18, 2022

# Inversion Method

- It is well-known that there exist very good pseudo-random number generators for making *i.i.d.* draws from a uniform distribution. See, for example, Knuth (1997). How do we make draws from a non-uniform distribution, however? In principle, we can use the uniform pseudo-random number generator to make draws from any distribution for which the cumulative distribution function (cdf) is known by making use of the so-called inversion method, as given by the lemma below.

- Lemma:** Let

$$U \sim \text{Uniform} [0, 1]$$

and let  $F(\cdot)$  be a one-dimensional cdf. Then,

$$X \sim F^-(U)$$

has the distribution  $F$ . Here, we define

$$F^-(u) = \inf \{x : u \leq F(x)\}.$$

# Inversion Method

- **Proof:** We will prove the lemma only for the case where  $F(\cdot)$  is continuous and strictly increasing, i.e.,  $X$  is a continuously distributed random variable. In this case, note that

$$\begin{aligned}\Pr(X \leq x) &= \Pr(F^{-1}(U) \leq x) \\ &= \Pr(U \leq F(x)) \\ &= F(x)\end{aligned}$$

where the last inequality follows from the fact that  $U$  is uniformly distributed on the interval  $[0, 1]$ .

- **Remark:** In practice, however, for many distributions (including the normal distribution),  $F(\cdot)$  is not known in closed form, so it is difficult to implement the inversion method directly.

## Rejection (or Acceptance/Rejection) Method

- This method, due to von Neumann (1951) can be applied to make draws from any finite dimensional probability distribution with a density that is specified up to a normalization constant.
- Consider the following situation.
  - ① Suppose that we wish to make draws from  $\pi(x)$ , which is a density function or a probability mass function, but we do not know how to do that directly.
  - ② Suppose that, given  $x$ , it is at least easy to compute (or evaluate) the function

$$I(x) = a\pi(x)$$

for some possibly positive constant  $a$ .

- ③ Finally, suppose that it is easy to draw from a sampling distribution  $g(x)$ , and there exists a “covering constant”  $M$  such that the following envelop property holds

$$I(x) \leq Mg(x) \text{ for all } x.$$

# Rejection (or Acceptance/Rejection) Method

- In this setting, we can apply the following algorithm:

- (i) Draw  $x$  from  $g(\cdot)$  and compute the ratio

$$p(x) = \frac{I(x)}{Mg(x)} \quad (\leq 1 \text{ given the envelope property})$$

- (ii) Draw  $u$  from Uniform[0, 1] and

Accept  $x$  as one of the draws if  $u \leq p(x) = \frac{I(x)}{Mg(x)}$

Reject  $x$  and go back to step (i) if  $u > p(x) = \frac{I(x)}{Mg(x)}$

- (iii) Iterate between steps (i) and (ii) until we have collected the needed sample.

# Rejection (or Acceptance/Rejection) Method

- We will show that the accepted sample generated by the algorithm above follows the target distribution  $\pi(x)$ .
- To proceed, let  $\mathbb{I}_X$  denote an indicator function such that

$$\mathbb{I}_X = \begin{cases} 1 & \text{if } X \text{ drawn from } g(\cdot) \text{ is accepted} \\ 0 & \text{if } X \text{ drawn from } g(\cdot) \text{ is rejected} \end{cases}$$

- Note that

$$\begin{aligned}\Pr \{\mathbb{I}_X = 1\} &= \int \Pr \{\mathbb{I}_X = 1 | X = x\} g(x) dx \\ &= \int \frac{I(x)}{Mg(x)} g(x) dx = \int \frac{I(x)}{M} dx \\ &= \frac{a}{M} \int \frac{I(x)}{a} dx \\ &= \frac{a}{M} \int \pi(x) dx = \frac{a}{M}.\end{aligned}$$

# Rejection (or Acceptance/Rejection) Method

- It follows that

$$\begin{aligned} p(x|\mathbb{I}_X = 1) &= \frac{\Pr\{\mathbb{I}_X = 1|X = x\} g(x)}{\Pr\{\mathbb{I}_X = 1\}} \text{ (by Bayes rule)} \\ &= a \left( \frac{1}{Mg(x)} \frac{I(x)}{a} \right) g(x) / \frac{a}{M} \\ &= \pi(x). \end{aligned}$$

- Remark (i):** Note that the above calculations imply that we must have  $a \leq M$ .

## Rejection (or Acceptance/Rejection) Method

- **Remark (ii):** Note also that our decision to accept or reject is based essentially on a draw from a Bernoulli distribution with probability of success (or acceptance) given by

$$p = p(x) = \frac{I(x)}{Mg(x)}$$

conditional on  $X = x$ . On the other hand, the unconditional probability of acceptance obtained by averaging with respect to the distribution  $g(x)$  is given by

$$\bar{p} = E_g [p(x)] = \frac{a}{M} = \Pr \{ \mathbb{I}_X = 1 \} .$$

- **Remark (iii):** Hence, if we think this algorithm as being more efficient if we get high acceptance on average, then a good trial distribution  $g(x)$  is one which gives a small  $M$  (since there is in general nothing we can do about the size of  $a$ , which might even be unknown).

# Rejection (or Acceptance/Rejection) Method

- **Remark (iv):** We can also calculate the expected number of draws before we would obtain the first acceptance. To do this, note first that the probability of getting the first success in the  $y^{th}$  trial when the probability of success for each trial is

$$\bar{p} = \Pr \{ \mathbb{I}_X = 1 \} = \frac{a}{M}$$

is given by the probability distribution of a geometric random variable  $Y$ , i.e.,

$$\Pr \{ Y = y \} = \bar{p} (1 - \bar{p})^{y-1} \text{ for } y = 1, 2, \dots$$

The expected value of this random variable can be calculated as

$$E [Y] = \frac{1}{\bar{p}} = \frac{M}{a}.$$

It follows that, if  $a \approx 1$ , then  $M$  is approximately the expected number of draws before we obtain the first acceptance.

# Monte Carlo Integration

- Suppose that we want to compute the expectation (or integral)

$$\mu = \mathbb{E}_\pi [h(X)] = \int_{\mathcal{X}} h(x) \pi(x) dx.$$

It would seem that a natural way to proceed is to draw an *i.i.d.* sample  $(X^{(1)}, \dots, X^{(m)})$  from  $\pi$  and approximate  $\mathbb{E}_\pi [h(X)]$  using the empirical average

$$\tilde{\mu} = \frac{1}{m} \sum_{i=1}^m h(x^{(i)})$$

- Assume the moment condition

$$E_\pi [|h(X)|] = \int_{\mathcal{X}} |h(x)| \pi(x) dx < \infty;$$

then, by the strong law of large numbers (SLLN)

$$\frac{1}{m} \sum_{i=1}^m h(x^{(i)}) \xrightarrow{a.s.} \mathbb{E}_\pi [h(X)] \text{ as } m \rightarrow \infty.$$

# Monte Carlo Integration

- Suppose a stronger (2nd) moment condition holds, i.e.,

$$E_{\pi} \left\{ [h(X)]^2 \right\} < \infty;$$

then, by the Lindeberg-Lévy central limit theorem (CLT), we further obtain

$$\sqrt{m} \left( \frac{\tilde{\mu} - \mathbb{E}_{\pi} [h(X)]}{\hat{\sigma}_{h,m}} \right) \xrightarrow{d} N(0, 1) \text{ as } m \rightarrow \infty,$$

where

$$\hat{\sigma}_{h,m}^2 = \frac{1}{m} \sum_{i=1}^m \left[ h(x^{(i)}) - \tilde{\mu} \right]^2$$

# Monte Carlo Integration

- Note that the central limit theorem also provides us with a rate of convergence, so that, under the second moment condition, we have

$$\tilde{\mu} - \mathbb{E}_\pi [h(X)] = O_p \left( \frac{1}{\sqrt{m}} \right)$$

- Interestingly, the rate of convergence depends only on  $m$ , the number of draws, and not on  $\dim(x)$ . This is why people are interested in Monte Carlo methods as a way of computing high-dimensional integral. Monte Carlo methods allow one to, in some sense, circumvent the so-called curse of dimensionality.

## Some Motivation

- A problem with the Monte Carlo strategy discussed so far is that it could be very inefficient from a computational standpoint. In particular, if the support of  $h(x)$  and  $\pi(x)$  are substantially different, by drawing from the distribution  $\pi(x)$ , we could be wasting a lot of effort in regions of the integral where the product  $h(x)\pi(x)$  (i.e., the integrand) is very close to zero.

# Importance Sampling

- A second potential drawback of the above strategy is that we might want to evaluate not one but a family of related integrals, i.e.,

$$\int_{\mathcal{X}} h_1(x) \pi_1(x) dx,$$

$$\int_{\mathcal{X}} h_2(x) \pi_2(x) dx,$$

⋮

$$\int_{\mathcal{X}} h_J(x) \pi_J(x) dx,$$

If we estimate each integral

$$\int_{\mathcal{X}} h_i(x) \pi_i(x) dx$$

by drawing from a separate distribution  $\pi_i(x)$ , this could again be inefficient and could lead to a lot of draws. Hence, we may want to have a method where we can draw one sample and possibly use it for several related problems.

# Importance Sampling

- The method of importance sampling is an evaluation of the integral

$$\mu = \mathbb{E}_\pi [h(X)] = \int_{\mathcal{X}} h(x) \pi(x) dx.$$

based on generating a sample  $(X^{(1)}, \dots, X^{(m)})$  from a given distribution  $g$  and approximating  $\mu$  with

$$\begin{aligned}\bar{\mu} &= \frac{1}{m} \sum_{i=1}^m \frac{h(X^{(i)}) \pi(X^{(i)})}{g(X^{(i)})} \\ &= \frac{1}{m} \sum_{i=1}^m w(X^{(i)}) h(X^{(i)})\end{aligned}$$

where

$$w(X^{(i)}) = \frac{\pi(X^{(i)})}{g(X^{(i)})}$$

are the importance weights.

# Importance Sampling

- The intuition behind the importance sampling method is based on (alternative) representation of the integral of interest

$$\mathbb{E}_{\pi} [h(X)] = \int_{\mathcal{X}} \frac{h(x) \pi(x)}{g(x)} g(x) dx$$

which is called the importance sampling fundamental identity.

- For this method to work, we need a support condition

$$\text{supp}(\pi) \subset \text{supp}(g)$$

# Importance Sampling

- **Unbiasedness:** Suppose we draw an *i.i.d.* sample  $(X^{(1)}, \dots, X^{(m)})$  from  $g$ . Note that

$$\begin{aligned}\mathbb{E}_g [\bar{\mu}] &= \frac{1}{m} \sum_{i=1}^m \mathbb{E}_g \left[ \frac{h(X^{(i)}) \pi(X^{(i)})}{g(X^{(i)})} \right] \\ &= \frac{1}{m} \sum_{i=1}^m \int_{\mathcal{X}_g} \frac{h(x) \pi(x)}{g(x)} g(x) dx \\ &= \frac{1}{m} \sum_{i=1}^m \int_{\mathcal{X}_g} h(x) \pi(x) dx \\ &= \frac{1}{m} \sum_{i=1}^m \int_{\mathcal{X}_\pi} h(x) \pi(x) dx \quad (\text{since } \text{supp}(\pi) \subset \text{supp}(g)) \\ &= \frac{1}{m} \sum_{i=1}^m \mathbb{E}_\pi [h(X)] \\ &= \mu.\end{aligned}$$

# Importance Sampling

- **Unbiasedness (con't):** Hence,  $\bar{\mu}$  is an unbiased (Monte Carlo) estimator of  $\mu$  when the expectation is taken with respect to  $g$ .
- Suppose, in addition, that

$$\begin{aligned} & \mathbb{E}_g \left[ \left| \frac{h(X^{(i)})}{g(X^{(i)})} \right| \right] \\ &= \int_{\mathcal{X}_g} \left| \frac{h(x) \pi(x)}{g(x)} \right| g(x) dx \\ &= \int_{\mathcal{X}_g} |h(x)| \pi(x) dx \\ &= \int_{\mathcal{X}_\pi} |h(x)| \pi(x) dx \quad (\text{since } \text{supp}(\pi) \subset \text{supp}(g)) \\ &< \infty. \end{aligned}$$

# Importance Sampling

- Then, by the SLLN, we have

$$\bar{\mu} = \frac{1}{m} \sum_{i=1}^m \frac{h(X^{(i)})}{g(X^{(i)})} \pi(X^{(i)}) \xrightarrow{a.s.} \mu \text{ as } m \rightarrow \infty$$

- Remark (i):** Given the support condition, the moment condition needed for the strong consistency of  $\bar{\mu}$ , i.e., the condition

$$E_{\pi}[|h(X)|] = \int_{\mathcal{X}} |h(x)| \pi(x) dx < \infty$$

is the same as moment condition which ensures the strong consistency of  $\tilde{\mu}$ , even though we are now drawing from the distribution  $g$  instead of the distribution  $\pi$ .

# Importance Sampling

- **Remark (ii):** Note that the importance sampling fundamental identity is a very general representation which expresses the fact that a given integral is not intrinsically associated with a given distribution. Importance sampling is therefore of considerable interest since it is a methodology that puts very little restriction on the choice of the instrumental distribution  $g$ , which can be conveniently chosen to be one that is easy to simulate from. Moreover, it may be possible to use the same sample (generated from  $g$ ) repeatedly, not only for different functions  $h$  but also for different densities  $\pi$ , a feature that is particularly attractive for robustness and Bayesian sensitivity analysis.

# Importance Sampling

- **Finite Variance Importance Sampler:** Although, in principle, to implement the importance sampling algorithm, we can sample from any distribution  $g$  that satisfies the support condition

$$\text{supp}(\pi) \subset \text{supp}(g),$$

in practice some choices might be better than others. More specifically, to get a CLT-type result, i.e.,

$$\sqrt{m} \left( \frac{\bar{\mu} - \mathbb{E}_\pi[h(X)]}{\bar{\sigma}_{h,m}} \right) \xrightarrow{d} N(0, 1) \text{ as } m \rightarrow \infty,$$

where

$$\bar{\mu} = \frac{1}{m} \sum_{i=1}^m \frac{h(X^{(i)}) \pi(X^{(i)})}{g(X^{(i)})},$$

$$\bar{\sigma}_{h,m}^2 = \frac{1}{m} \sum_{i=1}^m \left[ h(X^{(i)}) - \bar{\mu} \right]^2$$

we also need a second moment condition.

# Importance Sampling

- In this case, the variance is finite if

$$\begin{aligned}\mathbb{E}_g \left[ \frac{h^2(X) \pi^2(X)}{g^2(X)} \right] &= \int_{\mathcal{X}_g} \frac{h^2(x) \pi^2(x)}{g^2(x)} g(x) dx \\ &= \int_{\mathcal{X}_g} \frac{h^2(x) \pi(x)}{g(x)} \pi(x) dx \\ &= \int_{\mathcal{X}_\pi} \frac{h^2(x) \pi(x)}{g(x)} \pi(x) dx \\ &\quad (\text{since } \text{supp}(\pi) \subset \text{supp}(g)) \\ &= \mathbb{E}_\pi \left[ \frac{h^2(X) \pi(X)}{g(X)} \right] \\ &< \infty.\end{aligned}$$

# Importance Sampling

- It follows that instrumental distributions with tails lighter than those of  $\pi$  (that is, those with unbounded ratios  $\pi/g$ ) are not appropriate for importance sampling. In fact, in these cases, the variances of the corresponding estimators

$$\begin{aligned}\bar{\mu} &= \frac{1}{m} \sum_{i=1}^m \frac{h(X^{(i)}) \pi(X^{(i)})}{g(X^{(i)})} \\ &= \frac{1}{m} \sum_{i=1}^m w(X^{(i)}) h(X^{(i)})\end{aligned}$$

will be infinite for many functions  $h$ .

# Importance Sampling

- More generally, if the ratio

$$w = \frac{\pi}{g}$$

is unbounded, the weights  $w(x^{(i)}) = \pi(x^{(i)}) / g(x^{(i)})$  may vary widely and possibly give too much importance to a few  $x^{(i)}$  values. This, in turn, could lead to the value of the estimate  $\bar{\mu}$  changing abruptly from one iteration to the next, even after many iterations. Conversely, specifying an instrumental distribution  $g$  with thicker tails than  $\pi$  could lead to more stable results.

- Geweke (1989) gives two types of sufficient conditions to ensure the finiteness of  $\mathbb{E}_\pi [h^2 \pi / g]$

- $w(x) = \pi(x) / g(x) < M < \infty$  for all  $x \in \mathcal{X}$  and  $\mathbb{E}_\pi [h^2] < \infty$
- $\mathcal{X}$  is compact,  $\pi(x) < C < \infty$  and  $g(x) > \epsilon > 0$  for all  $x \in \mathcal{X}$ .

# Importance Sampling

- A natural question to ask at this point is that, amongst all distributions  $g$  leading to finite variances for the estimator

$$\bar{\mu} = \frac{1}{m} \sum_{i=1}^m \frac{h(X^{(i)}) \pi(X^{(i)})}{g(X^{(i)})}$$

what is the form of the optimal distribution given a particular function  $h$  and a fixed distribution  $\pi$ ? The answer is provided by the following theorem from Rubinstein (1981).

- **Theorem:** The choice of  $g$  that minimizes the variance of the estimator  $\bar{\mu}$  is

$$g^*(x) = \frac{|h(x)| \pi(x)}{\int_{\mathcal{X}_\pi} |h(x)| \pi(x) dx}$$

# Importance Sampling

- **Proof of Theorem:** Note first that

$$\begin{aligned} & \text{var}_g \left[ \frac{h(X) \pi(X)}{g(X)} \right] \\ = & \mathbb{E}_g \left[ \frac{h^2(X) \pi^2(X)}{g^2(X)} \right] - \left( \mathbb{E}_g \left[ \frac{h(X) \pi(X)}{g(X)} \right] \right)^2 \\ = & \mathbb{E}_g \left[ \frac{h^2(X) \pi^2(X)}{g^2(X)} \right] - \left( \int_{\mathcal{X}_g} \frac{h(x) \pi(x)}{g(x)} g(x) dx \right)^2 \\ = & \mathbb{E}_g \left[ \frac{h^2(X) \pi^2(X)}{g^2(X)} \right] - \left( \int_{\mathcal{X}_\pi} h(x) \pi(x) dx \right)^2 \\ = & \mathbb{E}_g \left[ \frac{h^2(X) \pi^2(X)}{g^2(X)} \right] - (\mathbb{E}_\pi [h(X)])^2 \end{aligned}$$

so that the second term does not depend on  $g$ . Hence, to minimize the variance, we only need to choose  $g$  to minimize the first term.

# Importance Sampling

- **Proof of Theorem (con't):** From Jensen's inequality, it follows that

$$\begin{aligned}\mathbb{E}_g \left[ \frac{h^2(X) \pi^2(X)}{g^2(X)} \right] &\geq \left( \mathbb{E}_g \left[ \left| \frac{h(X) \pi(X)}{g(X)} \right| \right] \right)^2 \\ &= \left( \mathbb{E}_g \left[ \frac{|h(X)| \pi(X)}{g(X)} \right] \right)^2 \\ &= \left( \int_{\mathcal{X}_\pi} |h(x)| \pi(x) dx \right)^2\end{aligned}$$

which provides a lower bound that is independent of  $g$ .

# Importance Sampling

- **Proof of Theorem (con't):** Now, take  $g = g^*$ , and we have

$$\begin{aligned}& \mathbb{E}_{g^*} \left[ \frac{h^2(X) \pi^2(X)}{(g^*(X))^2} \right] \\&= \mathbb{E}_{g^*} \left[ \frac{h^2(X) \pi^2(X)}{h^2(X) \pi^2(X)} \left( \int_{\mathcal{X}_\pi} |h(x)| \pi(x) dx \right)^2 \right] \\&= \left( \int_{\mathcal{X}_\pi} |h(x)| \pi(x) dx \right)^2\end{aligned}$$

so that setting  $g = g^*$  satisfies the lower bound and, thus, is optimal.

□