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Shrinkage Methods and Variable Selection - Some

Motivation

o Linear Model with a Large Number of Covariates: Consider the
linear regression model

yvi=PBxii+- -+ Bxxkite, i=1...n

Suppose that K is large; in fact, in some applications n < K, but not
all the coefficients may be non-zero.

o Objective: Suppose that K is large; in fact, in some applications
n < K, but not all the coefficients may be non-zero.We would like a
method for selecting the minimal model (i.e., the model whose
specification involving only those covariates associated with non-zero
coefficients).
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Motivation (con't)

@ Remark: If we select the model only on the basis of the unadjusted
R?; then, we know that the model with the largest number of
covariates (K in this case) will win out. Hence, we need to add a
penalty for model complexity in the criterion function, that is, to use
some kind of penalized least squares method. There are a number of
ways in which we can do this.
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Bridge Regression

@ A general family of penalized least squares procedures is given by the
criterion function

K p
Quriee (B) = (v = XB) (v = XB) + Ao o |B | p 20 (1)

Here, A, is a tuning parameter that specifies the “cost" of model
complexity.

@ Remark: Note that for p < 1, the above objective function is not
(globally) convex. To see this, observe that a twice differentiable
function f (x) is convex if

" (x) > 0 for all x.
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Bridge Regression (con't)

e Remark (con’t): Now, consider the case 0 < p < 1; note that

0 ‘,B ‘p P,Bfil . if ;>0
_— . = p—
op; I —p“Bj‘ if B; < 0
and
02 ‘,B ‘p P(P—l)ﬁf_22 if ;>0 “0
_— . e p— . .
a2ﬁj ’ P(P_l)‘ﬁj‘ if g; <0
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Information Criterion Approach

@ Information criteria such as AIC, BIC, etc. could be viewed as solving
a special case of bridge regression where we let p — 0. In this case,
we have the objective function

K
G (B)= (v =XB)' (y =XP)+ A L1{; 20}, (2

where T {B, # 0} is the indicator function such that

{20k ={o 4 e
o Remarks:

(i) Note that the penalty function above is based on the ¢y norm, or
Hamming distance

K

1Bllo = Zl{ﬁj#o}:#{J':ﬁj?éo}-

J=1
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Information Criterion Approach (con't)

e Remarks (con’t):

(i) Strictly speaking, the Hamming distance is obtained from

K
P
Y. 8
j=1
by taking the limit as p — 0. To see this note that
: P 0 :
tim B[ =[] = 1if ; 0
but p
. AP B
i o = 7 =0it, o
Hence,

K K
I8l = 3 fim 65| = 1w # 0}
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Information Criterion Approach (con't)

e Remarks (con’t)

(iii)

Estimating a linear regression with covariates selected by AIC can be
thought of as a special case of the optimization problem given in (2)
above by setting

2
)\n =
n
whereas for BIC, we set
Inn
Ap = —.
n

A problem with the ¢y penalization is that it leads to a nonconvex
optimization problem. In particular, optimization with respect to the
criterion function (2) can only be done by conducting costly
combinatorial searches so that it is not feasible in situations where K,
the number of available covariates or regressors, is moderate or large.
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Ridge Regression

@ Ridge regression is a special case of Bridge regression where we set
p=2.

@ Hence, the objective function for ridge estimation can be written as

Quidge (B) = (y—XB)" (y —XB)+A|Bl
= (y=XB) (y—XB)+Ap"B

@ By simple calculations, we can easily see that the ridge regression
estimator of B obtained by minimizing Qigge (B) with respect to 8
has the closed form representation:

~ridge

B = (xTx +Al)_1 xTy.
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A Principal Component View of Ridge Regression

e We will show that the singular value decomposition (SVD) of the
regressor (or input) matrix X gives us additional insights into the
nature of ridge regression. Recall that the SVD of an N X K matrix
X has the form

X =UDVT.

Here, Uis a N x K (N > K) matrix with orthonormal columns, V is
a K x K orthogonal matrx, and D is a K X K diagonal matrix with
diagonal elements d; > dy > - -+ > dx > 0 called the singular values
of X. Note that U spans the column space of X while V spans the
row space of X in the case where X is of full column rank K.
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A Principal Component View of Ridge Regression (con't)

@ Using the SVD, we can write

X = X (XTx+ M) X7y,

— upvT (VDUTUDVT + A/) “vouTy
— upvT (v [02 +AVTV] VT) “vouTy
— UDVTV (D2 + A1) vTvDUTy

— UD(D*+ Al 'DUTy
K d?
J T
= ) Yy
A A

where u; denotes the jt column of U.
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A Principal Component View of Ridge Regression (con't)

o Comparison with OLS: If we were to instead estimate 8 using the
OLS estimator, we would have obtained the fitted (or predicted) value

~ols

Xp

X(XTX>71XTy
UDVT(VDUTUDVT)71VDUTy
UDVT(VD2VT>_1VDUTy
ubvTVv (D?) T vTvDUTy

UDD2DUTy
uuTy

K T
Z ujuiy
j=1
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A Principal Component View of Ridge Regression (con't)

e Comparison with OLS (con’t): Comparing

2

K
~ridge 'j T ~ols
= ————uju; y and X v,
J; AT p Z“f

Xp

we see that like OLS, the ridge regression estimator also computes the
coordinates of y with respect to the orthonormal basis U. However,
unlike the OLS, the ridge regression estimator then shrinks these
coordinates by the factors

2
I forj=1,..,K;
dj2+/\ or j
where
d2
d2+A<1fora|IJ

given that A > 0.
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A Principal Component View of Ridge Regression (con't)

o Claim: Let
X

f(x)=

then, f (x) is a increasing function of x for x € [0, o)

AfoerOand)L>0;

@ Proof of Claim: Take derivative of f (x) with respect to x, we obtain

, 1 X X+ A—x A
f(x) = - 2 = 2 = 7 >0
x+A  (x+A) (x+A) (x+A)

@ Applying the above result to the shrinkage factor

2
i

2
a7 + A

we see that a greater amount of shrinkage is applied to coordinates of
basis vector u; with smaller d?.
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A Principal Component View of Ridge Regression (con't)

@ Question: What does a small value of dj2 mean?

@ As noted before, the SVD of the regressor matrix X is another way of
expressing the principal components of the variables in X. Note that
the sample covariance matrix is given by

XTXx
5= N
and, given the SVD of X, we have
X' = vbuTupv’
vD2v T

which is the eigen decomposition of X7 X (and of S, up to a factor
N). The eigenvector v; (for j =1,..., K) are called the
Karhunen-Loéve directions of X.
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A Principal Component View of Ridge Regression (con't)

@ The first principal component direction v; has the property that
71 = Xv

has the largest sample variance amongst all normalized linear
combinations of the columns of X since

2z W XTXn
N N
- vlT VD2V Ty
N N
T p2
e kD%e
= “(le (given that V is an orthogonal matrix)
_ 4
N
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A Principal Component View of Ridge Regression (con't)

@ Note that
zZ] = XV1 = UDVTV1 = UDelyK = d1 Uel,K = U1d1.

The derived variable z; is called the first principal component of X,
and hence u; is the normalized first principal component. Subsequent
principal components z; have maximum variance dJ-2/N subject to
being orthogonal to the earlier ones. Conversely, the last principal
component has minimum variance. Hence, the small singular values
d; corresponds to directions in the column space of X having small
variance, and ridge regression shrinks these directions the most.
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LASSO - Least Absolute Shrinkage and Selection Operator

@ Lasso can be obtained as a special case of the Bridge class of
penalized least squares problems by setting p = 1. That is, Lasso
minimizes the criterion function

Quasso (B) =y = XBll5 + A 1Bl
= @—X@%y—xm+AﬁH@} (3)
The Lasso estimator is then defined as
By = arg mﬁin QLasso (B)

_ . _ 2
= argmin { Iy — XB5 + 4116l }
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Comparison of LASSO and Ridge

@ Remark 1: It is useful to compare the Lasso estimator to the ridge
regression estimator which is based on the ¢, penalty function instead
of the £1 penalty function. More specifically,

~

Bragen = argmin{lly — XBI5 + AlIBl1 )
K
- argmﬁin{(y—Xﬁ)’(y—XﬁHAZl\Bj\z}

The change in the norm of the penalty may seem like something that
will make only a minor difference; however, the £1-norm turns out to
be significantly different from the f>-norm in several respects.
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Comparison of LASSO and Ridge (con't)

e Remark 1 (con’t): In particular, note that the Lasso objective
function is is not everywhere differetiable since ‘ﬁj‘ is not

differentiable at f; = 0. This is both an advantage and a
disadvantage.

(i) Advantage: The sharp, non-differentiable corners of the ¢;-ball could
produce parsimonious models with sufficiently large values of A.

(i) Disadvantage: unlike the ridge regression, the Lasso optimization
problem does not have an analytic solution, so that it is both more
difficult to compute and more difficult to obtain theoretical results for
this estimator.
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Comparison of LASSO and Ridge (con't)

e Remark 1 (con’t):

) -
/ _.- ™ .' -{x"_.__._\
__.- _., i _u"l
I_I'I 1 - s
e v
.r.-" I /.-' & ar
fiz ., ?..-,/ A
S
| A
| // / I-. Ih-."'/
| =
R -
C —t— W
i fis
Lawso Regnesson Fadge Regresson
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Comparison of LASSO and Ridge (con't)

@ Remark 2: Note that ordinary least squares and ridge regression,
under some conditions, have what are called analytical solutions, i.e.,
we can write down an explicit formula for what the estimators are

BOLS = (X/X)il Xl-y and Bridge,)\ = (X/X + A/K)il X,-y

On the other hand, estimation of generalized linear models, such as
logit and probit, by maximum likelinood is typically done using
(numerical) iterative methods which produces only numerical
solutions. More specifically, we run numerical algorithms which, after
enough iterations, produces a solution with reasonable accuracy. As
we will show, Lasso estimation lies somewhere in between these two
extremes, as it has a direct numerical solution in the sense that,
although we cannot write down the Lasso estimator in explicit
analytic form, the algorithm used to produce the Lasso estimator is
not iterative and could in principle produce the exact solution in one
step given a machine with infinite precision.
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Subderivative and Subdifferential

o Definition of Subderivative. Let / be an open interval of R. Then,
a subderivative of a convex function h:/ — R at a point xp in the
open interval [ is a real number ¢ such

h(x)—h(xp) > c(x—xp) forall xin [.

@ Remark: One can show that the set of subderivatives at xy for a
convex function is a nonempty closed interval [a, b], where a and b
are the one-sided limits

X=Xy X — X0
b= fim 1) =h00)
x—>x(;r X — X0

which are guaranteed to exist and satisfy a < b.
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Subderivative and Subdifferential (con't)

o Definition of Subdifferential: The set [a, b] of all subderivatives at
Xo is called the subdifferential of the function h at xg and is denoted

ah (X0>, i.e.,
Vx € I}

Less formally, the subdifferential at xp is the set of all slopes which
are tangent to the function h at the point xg. Note that if h is convex
and its subdifferential at xp contains exactly one subderivative; then h
is differentible at xg.

h(x) = h(x)

ah(xo):{celR:M §‘
X — X0
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Subderivative and Subdifferential (con't)

o Example: The subdifferential of the absolute value function

h(x) = |x]| is
-1 x<0
oh(x) = [—1,1] x=0
1 x>0

The subdifferential can be generalized to higher dimensions in a
straightforward manner as follows: let U be a convex open set in IRY
and let h: U — R be a convex function; then, a vector g € R9 is
called a subgradient at a point xy € U if for any point x € U

h(x) = h(x) > g (x—xo)

The set of all subgradients at xq is called the subdifferential of the
function h at xg, i.e.,

oh(x0) = {g €RI: h(x) —h(x) > g (x—x) forall x € U}

The subdifferntial is always a nonempty convex compact set.
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Subderivative and Subdifferential (con't)

@ Three Properties of Subdifferential: The following three properties
of the subdifferential of a convex function h will be of interest to us in
subsequent discussions:

@ The gradient V (h) exists a the point xp if and only if 0h (xo) is equal
to a single value, which is equal to V (h) (x) .

@ For every point xg, the set V (h) (x0) is a nonempty convex compact
set.

© The point xp is a global minimum of h if and only if the
subdifferential contains 0; in other words,

0e ah(Xo).
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Algorithm for Computing LASSO Estimators

o Consider the special case where X’X = Ix and also consider the
modified objective function

Quasso (B) = Ily = XBll5 + 27 |1Bll,

- <y—Xﬁ>’<y—Xﬂ>+2A.:Zl!ﬁf!

Since the Lasso objective function is convex, the natural thing to do
is to calculate the subdifferential and determine what B gives us

oh (B) such that
0 € dh (B) .
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Algorithm for Computing LASSO Estimators (con't)

@ To proceed, write
B K
QLasso (,B) = y/y - 2y/X,B +:B/;B +2A Z ‘IB_]’
j=1

Note first that the j© component of th subdifferential is given by
—2y'xj +2B;+21 if ;>0

ah; (@) = { 2y +[-24,2)] ifB; =0
—2y'x;+2B; — 21 if B; <0
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Algorithm for Computing LASSO Estimators (con't)

e Subcase 1 Bj (A) > 0: In this subcase, dh; (ﬁj> should satisfy the
first-order condition

dh; (,B) = 2% +2B; (A) +214 =0
or N
ﬁj (A) = ){/{y —A
Since we assume Bj > 0 in this case, we must also have

xfy—/\>00rxfy>)\.

Moreover, since A is taken to be positive, it is clear the Bj (A) can
only be positive if
Xfy >A>0.
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Algorithm for Computing LASSO Estimators (con't)

e Subcase 2 Bj (A) < 0: For this subcase, dh; <,BJ) should satisfy the
first-order condition

dh; (,3) = 2% +2B;(A) —24 =0

or R
B, (A) = XJ{}/+)\

Since BJ. (A) < 0 in this case and A > 0, we must have
Xfy-l-)\<00rxfy< —-A <0

or
—xjy >A>0

- . . . l
so that B; () is only negative if x{y <O0.
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Algorithm for Computing LASSO Estimators (con't)

@ Combining the results given for subcases 1 and 2, we see that, in the
case where B, (1) # 0, we must have

0<A<}Xfy‘

and

~

B; (A) = ij — sgn (ij) A.
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Algorithm for Computing LASSO Estimators (con't)

@ Subcase 3 Bj (A) = 0: Now, consider the case where Bj (A)=0.In

this case, the first-order condition requires that
0 € —2y'x; + [—2A,2A]
which implies that both
—2xfy—2)x <0orA> —xfy

and
—2xfy+2/\ >0orA> xfy

hold.
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Algorithm for Computing LASSO Estimators (con't)

e Subcase 3 Bj (A) =0 (con’t): Since if x'y < 0, we will always have
A > ><ny holding given that A > 0, it follows that, in this case, what
we need is

Az =Xy = |xy|

Moreover, if x'y > 0, we will always have A > —x{y holding given
that A > 0, it follows that ,in this case, what we need is

A2 xjy =[xy

Combining these two subcases, we see that, when Bj (A) =0, the
first-order condition requires that

A > |xjy|
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Algorithm for Computing LASSO Estimators (con't)

o Final Step: Putting everyting together, we see that, in the case
where XX = I, the Lasso estimator f; (1) for B; is given by

. 0 if A > |xy
ﬁj(/\): , YA A /
xjy—sgn<xjy) I < |Xy
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Choice of Lambda

@ Choice of A: To proceed, define

1 ifx>0
Sgn (x) = 0 ifx=0
-1 ifx<0

and le
t By = {j san (B (1)) £0)

be the active set of BL (A). Furthermore, let # (BB,) denote the
cardinality of the set I3), and we can choose A, by first estimating
using the Lasso method over grid of values of A

/\0>)t1>/\2>"'>/\020

such that for all A > Ao, B, (A) = 0.
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Choice of Lambda (con't)

@ Optimal Choice of A: We can estimate the “optimal" A using either

AIC or BIC as follows:

AIC R
A =arg N, )mi”rha}AlC (A)
where
AIC () =~ ly = XBy (WIZ + 24 (B)
BIC R
A =arg Ae{)(?,i..r?,)\q} BIC (M)
where

Inn

BIC (V) = ~ lly = XB, (W) + -4 (By)

John C. Chao (Econ 721 Lecture Notes) December 8, 2022

36 /



	Creating Beamer presentations in Scientific WorkPlace and Scientific Word
	What is Beamer?


