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Unit Root Processes - Introduction

Another approach to modeling trending behavior in economic time
series is to use what are called integrated processes, which must be
differenced in order to induce stationarity

Definition: A series {Xt} with no deterministic component which
has a stationary invertible ARMA representation after differencing d
times is said to be an integrated process of order d , denoted by

Xt ∼ I (d) .

See Engle and Granger (1987).

We will focus our discussion here primarily on I (1) processes (and
also on I (0) process) because they seem to be the most relevant for
applications in economics.
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Unit Root Processes - Introduction

Consider an AR (1) process

Yt = ρYt−1 + ut , t = 1, ..., n

Under the assumptions that |ρ| < 1 and {ut} ≡ i .i .d .
(
0, σ2

)
, the

asymptotic distribution of the OLS estimator ρ̂n of the autoregressive
parameter ρ is given by

√
n (ρ̂n − ρ)

d→ N
(
0, 1− ρ2

)
as n→ ∞

This seems to suggest that for ρ = 1

√
n (ρ̂n − 1)

p→ 0 as n→ ∞

so that the rate of convergence of the OLS estimator ρ̂n is faster than√
n when the true parameter ρ = 1. It turns out that this intuition is

correct.
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Functional Central Limit Theorem (FCLT)

To analyze the limiting behavior of ρ̂n in the unit root case, we need
to employ functional central limit theorems which are limit results on
partial sums considered as random elements on certain functional
spaces. The two functional spaces of interest are

1 C [0, 1] - space of real-valued continuous functions on the [0, 1]
interval.

2 D [0, 1] - space of real-valued functions on [0, 1] which are right
continuous and have left limits (or CADLAG functions from the French
acronym continue à droite, limites à gauche).

Clearly, C [0, 1] ⊂ D [0, 1].
We want to give these spaces a certain structure that makes them as
close as possible to (R, de ). This is achieved by endowing them with
metrics that makes them complete and separable.
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Functional Central Limit Theorem (FCLT)

Cauchy sequence: A sequence {xn} of points in a metric space
(M, d) is a Cauchy sequence if for all ε > 0, ∃ Nε such that

d (xn, xm) < ε whenever n,m ≥ Nε.

A metric space (M, d) is complete if it contains all of its limit points
(i.e., the limits of all Cauchy sequences).

A subset A of a metric space M is said to be dense in M if each
point in M can be “well-approximated" by points in A. Formally, A is
dense in M if for each element m ∈M and each ε > 0, ∃a ∈ A such
that d (m, a) < ε.

A metric space (M, d) is separable if it contains a countable dense
subset (i.e., it is well approximated by some countable subset).
Hence, a space is not separable if it contains a noncountable discrete
(points separated) subset. Separability is important because if it does
not hold then not all the Borel sets of the space are measurable.
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Functional Central Limit Theorem (FCLT)

It can be shown that C [0, 1] is complete and separable metric space
when endowed with the uniform metric

du (f , g) = sup
t∈[0,1]

|f (t)− g (t)| , f , g ∈ C [0, 1] .

However, D [0, 1] is not a separable metric space under the uniform
metric du . This can be seen from the following example: consider the
set of functions

fθ (t) =
{
0 t < θ
1 t ≥ θ

θ ∈ [0, 1) .

Note that the set of functions {fθ (t) : θ ∈ [0, 1)} is uncountable, but

du (fθ, fθ′) = 1 ∀θ 6= θ′,

so that the elements of this set are all a discrete distance apart.
Hence, (D [0, 1] , du) is not separable.
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Functional Central Limit Theorem (FCLT)

Of interest to us is the (standardized) partial sum process

Xn (r) =
1√
n

[nr ]

∑
j=1
uj =

1√
n
S[nr ]

where [nr ] denotes the integar part of nr (i.e., the largest integer
≤ nr), r ∈ [0, 1], and {uj} ≡ I (0). Note that, for all finite n, the
realizations of Xn (r) are not continuous but are elements of D [0, 1].

Example: n = 3

X3 (r) =


0 for 0 ≤ r < 1/3

u1/
√
3 for 1/3 ≤ r < 2/3

(u1 + u2) /
√
3 for 2/3 ≤ r < 1

(u1 + u2 + u3) /
√
3 for r = 1
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Functional Central Limit Theorem (FCLT)

Although realizations of Xn (r) are not elements of D [0, 1], Xn (r) can
be approximated by a random element of C [0, 1] via the interpolation

X ∗n (r) =
1√
n
S[nr ] +

nr − [nr ]√
n

u[nr ]+1 ∈ C [0, 1]

Here, the jumps in
(
1/
√
n
)
S[nr ] are eliminated by line segments that

connect the partial sums at each r = k/n for k = 0, 1, ..., n. Note
that for (k − 1) /n ≤ r < k/n,

0 ≤ nr − [nr ] < 1

so that

nr − [nr ]√
n

= O
(
1√
n

)
uniformly in r ∈

[
k − 1
n

,
k
n

)
.

It follows that the asymptotic behavior of X ∗n (r) is the same as that
of Xn (r).

John C. Chao (Econ 721 Lecture Notes) September 26, 2022 8 / 141



Donsker’s Theorem

We now state a functional central limit theorem for partial sums of
i.i.d. sequences
Theorem 1: Suppose that {uj} ≡ i .i .d .

(
0, σ2

)
, 0 < σ2 < ∞; then,

Xn (r)
σ

=
1√
nσ

[nr ]

∑
j=1
uj =⇒ W (r) ≡ BM (1) .

Here, W (r) denotes the Wiener process, or standard Brownian
motion, on C [0, 1]. Recall that W (r) is completely defined by its
properties

(i) W (0) = 0;
(ii) W (r) ≡ N (0, r);
(iii) W (s) is independent of W (r)−W (s) for 0 ≤ s < r ≤ 1;
(iv) W (r) has continuous sample path with probability one.
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Donsker’s Theorem

Remark: Note that the Donsker’s theorem is obtained under the
same assumptions as the Lindeberg-Lévy central limit theorem. In
fact, the former contains the latter as a special case since setting
r = 1, we have

Xn (1)
σ

=
1√
nσ

n

∑
j=1
uj =⇒ W (1) ≡ N (0, 1) .
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Continuous Mapping Theorem

To analyze estimators and test statistics associated with unit root
models, we need results that not only give us the limiting behavior of
partial sums but also that of continuous functional of partial sums.

Theorem 2: Let h (·) be any continuous functional on D [0, 1]. If

Xn (r) =⇒ B (r) on D [0, 1] ,

where B (r) ≡ σW (r) ≡ BM
(
σ2
)
. Then,

h (Xn (r)) =⇒ h (B (r)) .

Example: Suppose that Xn (r) =⇒ B (r); then,

h (Xn (r)) =
∫ 1

0
Xn (r) dr =⇒

∫ 1

0
B (r) dr = h (B (r))

since the integral here is a continuous functional.
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Asymptotics for Integrated Processes with i.i.d.
Innovations

Consider the simple I (1) process

Yt = Yt−1 + ut , t = 1, ..., n;

To illustrate some of the basic ideas behind the asymptotics of unit
root processes, we will first show that

1
n3/2

n

∑
t=1
Yt =⇒

∫ 1

0
B (r) dr as n→ ∞.

Remark: Note that, unlike a law of large numbers result for
stationary, weakly dependent processes; here, we have to divide by
n3/2 instead of n. Even so, this “average"

1
n3/2

n

∑
t=1
Yt

does not stabilize to some population mean as n→ ∞ but instead
goes to some random limit.
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Asymptotics for Integrated Processes with i.i.d.
Innovations

To proceed, write

Yt =
t

∑
j=1
uj + Y0 = St + Y0 ≡ I (1) ,

Xn (r) =
1√
n

[nr ]

∑
j=1
uj =

1√
n
S[nr ] ∈ D [0, 1]

Note that

Xn (r) =



0 for 0 ≤ r < 1/n
u1/
√
n for 1/n ≤ r < 2/n

(u1 + u2) /
√
n for 2/n ≤ r < 3/n

...
...

(u1 + u2 + · · ·+ un) /
√
n for r = 1
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Asymptotics for Integrated Processes with i.i.d.
Innovations

Given that the realizations of Xn (r) is a step function, it is apparent
that ∫ t/n

(t−1)/n
Xn (r) dr =

1
n

t−1
∑
j=1
uj/
√
n =

1
n3/2 St−1

Now, define S0 = 0, and note that
n

∑
t=1
Yt =

n

∑
t=1
[St−1 + ut + Y0]

= n3/2
n

∑
t=1

[
1
n3/2 St−1

]
+

n

∑
t=1
ut + nY0

= n3/2
n

∑
t=1

[∫ t/n

(t−1)/n
Xn (r) dr

]
+

n

∑
t=1
ut + nY0

= n3/2
∫ 1

0
Xn (r) dr +

n

∑
t=1
ut + nY0
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Asymptotics for Integrated Processes with i.i.d.
Innovations

Hence, by the Donsker’s Theorem and the continuous mapping
theorem, we have conditional on Y0,

1
n3/2

n

∑
t=1
Yt =

∫ 1

0
Xn (r) dr +

1
n3/2

n

∑
t=1
ut +

1√
n
Y0

=
∫ 1

0
Xn (r) dr + op (1)

=⇒
∫ 1

0
B (r) dr as n→ ∞.

where B (r) ≡ σW (r) ≡ BM
(
σ2
)

Similarly, one can show that

1
n3/2

[nr ]

∑
t=1
Yt =⇒

∫ r

0
B (s) ds as n→ ∞.
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Asymptotic Distribution of the OLS Estimator

Consider estimating by OLS the coeffi cient ρ of the AR (1) model

Yt = ρYt−1 + ut ,

where the true value ρ0 = 1 and where {ut} ≡ i .i .d .
(
0, σ2

)
, with

0 < σ2 < ∞.
The OLS estimator in this case is given by

ρ̂n =
∑n
t=2 Yt−1Yt

∑n
t=2 Y

2
t−1

By the usual regression algebra, we can write the deviation of ρ̂n from
the true value as

ρ̂n − 1 =
∑n
t=2 Yt−1ut

∑n
t=2 Y

2
t−1
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Asymptotic Distribution of the OLS Estimator

It turns out that the rate of convergence of ρ̂n in this case is n, so
that, upon appropriate standardization, we obtain

n (ρ̂n − 1) =
n−1 ∑n

t=2 Yt−1ut

n−2 ∑n
t=2 Y

2
t−1

We first examine the limiting behavior of the denominator on the
right-hand side of the expression above. Note that

X 2n (r) =



0 for 0 ≤ r < 1/n
u21/n for 1/n ≤ r < 2/n

(u1 + u2)
2 /n for 2/n ≤ r < 3/n

...
...

(u1 + u2 + · · ·+ un)2 /n for r = 1
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Asymptotic Distribution of the OLS Estimator

Given that the realizations of X 2n (r) is also a step function, we can
write ∫ t/n

(t−1)/n
X 2n (r) dr =

1
n

(
t−1
∑
j=1
uj/
√
n

)2
=
1
n2
S2t−1

Next, write

n

∑
t=1
Y 2t−1 =

n

∑
t=1
[St−1 + Y0]

2

=
n

∑
t=1

[
S2t−1 + 2St−1Y0 + Y

2
0

]
= n2

n

∑
t=1

[
1
n2
S2t−1

]
+ 2Y0

n

∑
t=1
St−1 + nY 20

= n2
n

∑
t=1

[∫ t/n

(t−1)/n
X 2n (r) dr

]
+ 2Y0

n

∑
t=1
St−1 + nY 20
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Asymptotic Distribution of the OLS Estimator

so that

n

∑
t=1
Y 2t−1 = n2

n

∑
t=1

[∫ t/n

(t−1)/n
X 2n (r) dr

]
+ 2Y0

n

∑
t=1
St−1 + nY 20

= n2
∫ 1

0
X 2n (r) dr + 2Y0

n

∑
t=1
St−1 + nY 20

Dividing by n2 and conditioning on Y0, we obtain

1
n2

n

∑
t=1
Y 2t−1 =

∫ 1

0
X 2n (r) dr + 2Y0

1
n2

n

∑
t=1
St−1 +

Y 20
n

=
∫ 1

0
X 2n (r) dr + op (1)

=⇒
∫ 1

0
[B (r)]2 dr = σ2

∫ 1

0
[W (r)]2 dr as n→ ∞.
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Asymptotic Distribution of the OLS Estimator

Next, to get a handle on the numerator on the right-hand side of the
expression

n (ρ̂n − 1) =
n−1 ∑n

t=2 Yt−1ut

n−2 ∑n
t=2 Y

2
t−1

we first write

Yt−1 =
t−1
∑
j=1
uj + Y0 = St−1 + Y0

Note that, conditional on Y0,

1
n

n

∑
t=1
Yt−1ut =

1
n

n

∑
t=1
St−1ut + Y0

1
n

n

∑
t=1
ut

=
1
n

n

∑
t=1
St−1ut + op (1)
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Asymptotic Distribution of the OLS Estimator

Moreover, note that

S2n =

(
n

∑
j=1
uj

)2

=
n

∑
j=1
u2j + 2

n

∑
i=2

i−1
∑
j=1
ujui

=
n

∑
j=1
u2j + 2

n

∑
i=2
Si−1ui

This, in turn, implies that

1
n

n

∑
i=2
Si−1ui =

1
2

(
1
n
S2n −

1
n

n

∑
j=1
u2j

)
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Asymptotic Distribution of the OLS Estimator

It follows that

1
n

n

∑
t=1
Yt−1ut =

1
n

n

∑
t=1
St−1ut + op (1)

=
1
2

(
1
n
S2n −

1
n

n

∑
t=1
u2t

)
+ op (1)

=
1
2

(
1√
n

n

∑
t=1
ut

)2
− 1
2
1
n

n

∑
t=1
u2t + op (1)

=
1
2
(Xn (1))

2 − 1
2
1
n

n

∑
t=1
u2t + op (1)

=⇒ 1
2

(
B (1)2 − σ2

)
=
1
2

σ2
(
χ2 (1)− 1

)
where B (1) = σW (1) ≡ N

(
0, σ2

)
and χ2 (1) denotes a Chi-square

random variable with one degree of freedom.
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Asymptotic Distribution of the OLS Estimator

Putting the pieces together and invoking the continuous mapping
theorem, we have that

n (ρ̂n − 1) =
n−1 ∑n

t=2 Yt−1ut

n−2 ∑n
t=2 Y

2
t−1

=⇒ (1/2) σ2
(
χ2 (1)− 1

)
σ2
∫ 1

0
[W (r)]2 dr

≡ (
1/2)

(
χ2 (1)− 1

)∫ 1

0
[W (r)]2 dr

.
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Asymptotic Distribution of the OLS Estimator

Note that the asymptotic distribution of n (ρ̂n − 1) is nonstandard
but nuisance parameter free, so that, at least in the case with i.i.d.
innovations, n (ρ̂n − 1) itself can be used as a statistic for testing the
null hypothesis

H0 : ρ0 = 1

Observe also that the probability that a χ2 (1) random variable is less
than one is 0.68. since∫ 1

0
[W (r)]2 dr > 0 a.s.,

the probability of n (ρ̂n − 1) being negative approaches 0.68 as n
approaches infinity. Hence, in contrast to the stationary or stable
case, the limiting distribution of n (ρ̂n − 1) in this case is skewed to
the left.
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Extension to Integrated Processes with Serially Correlated
Innovations

We consider now an extension of the Donsker Theorem to cases with
serially correlated innovations based on the approach of Phillips and
Solo (1992). In particular, we want to establish a FCLT for partial
sums of a general linear process

Some Notations:
1 Let L be a lag operator, so that Lεt = εt−1 and, more generally,
Lj εt = εt−j .

2 Define

C (L) =
∞

∑
j=0

cjL
j .
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Extension to Integrated Processes with Serially Correlated
Innovations

Consider the linear process

ut = C (L) εt =
∞

∑
j=0
cj εt−j

Assumption LP:

(i) {εt} ≡ i .i .d .
(
0, σ2

)
, 0 < σ2 < ∞

(ii)
∞

∑
j=0

√
j
∣∣cj ∣∣ < ∞

Remark: Note that the condition ∑∞
j=0

√
j |cj | < ∞ is stronger than

absolute summability, i.e., ∑∞
j=0 |cj | < ∞, so that Assumption LP(ii)

above requires faster decay in the coeffi cient cj as j → ∞.
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Extension to Integrated Processes with Serially Correlated
Innovations

Theorem (Phillips and Solo, Annals of Statistics, 1992): Under
Assumption LP,

1√
n

[nr ]

∑
t=1
ut =⇒ B (r) ≡ BM

(
ω2) ,

where

ω2 = σ2C (1)2 = σ2

(
∞

∑
j=0
cj

)2
is the long-run variance.

John C. Chao (Econ 721 Lecture Notes) September 26, 2022 27 / 141



Extension to Integrated Processes with Serially Correlated
Innovations

Rough Outline of Proof: By the Beveridge-Nelson (BN)
decomposition, we have that

C (L) = C (1)− C̃ (L) (1− L)

where

C̃ (L) =
∞

∑
j=0
c̃jLj and c̃j =

∞

∑
s=j+1

cs

We will give a more explicit derivation of the BN decomposition later,
but note first that, by making use of this decomposition, we can write

ut = C (L) εt

= C (1) εt − C̃ (L) (εt − εt−1)

= C (1) εt − (̃εt − ε̃t−1)

where ε̃t = C̃ (L) εt .
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Extension to Integrated Processes with Serially Correlated
Innovations

Rough Outline of Proof (con’t): It follows that

1√
n

[nr ]

∑
t=1
ut = C (1)

1√
n

[nr ]

∑
t=1

εt −
1√
n

[nr ]

∑
t=1
(̃εt − ε̃t−1)

= C (1)
1√
n

[nr ]

∑
t=1

εt −
1√
n

(
ε̃[nr ] − ε̃0

)
(
since

[nr ]

∑
t=1
(̃εt − ε̃t−1) is a telescoping sum

)
Next, note that, by the Donsker Theorem (i.e., FCLT for i .i .d .
sequence),

1√
n

[nr ]

∑
t=1

εt =⇒ σW (r) ≡ BM
(
σ2
)
.
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Extension to Integrated Processes with Serially Correlated
Innovations

Rough Outline of Proof (con’t): Application of the continuous
mapping theorem yields

C (1)
1√
n

[nr ]

∑
t=1

εt =⇒ σC (1)W (r) ≡ BM
(
ω2) .

Moreover, we can show that

sup
r∈[0,1]

∣∣∣∣ ε̃[nr ] − ε̃0√
n

∣∣∣∣ p→ 0 as n→ ∞

from which it follows that

1√
n

[nr ]

∑
t=1
ut = C (1)

1√
n

[nr ]

∑
t=1

εt −
1√
n

(
ε̃[nr ] − ε̃0

)
=⇒ BM

(
ω2) .
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Extension to Integrated Processes with Serially Correlated
Innovations

Beveridge-Nelson Decomposition: An explicit derivation of the BN
decomposition can be given as follows. Let c̃j = ∑∞

s=j+1 cs as
previously defined and write

C (L)

=
∞

∑
j=0
cjLj

=
∞

∑
j=0
cj −

∞

∑
j=1
cj +

(
∞

∑
j=1
cj −

∞

∑
j=2
cj

)
L+

(
∞

∑
j=2
cj −

∞

∑
j=3
cj

)
L2 + · · ·

=
∞

∑
j=0
cj −

∞

∑
j=1
cj (1− L)−

∞

∑
j=2
cjL (1− L)−

∞

∑
j=3
cjL2 (1− L)− · · ·

=
∞

∑
j=0
cj −

∞

∑
j=0
c̃jLj (1− L) = C (1)− C̃ (L) (1− L)
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Extension to Integrated Processes with Serially Correlated
Innovations

Lemma: Let C̃ (L) = ∑∞
j=0 c̃jL

j and c̃j = ∑∞
s=j+1 cs . Then,

(a)
∞

∑
j=0

c̃2j < ∞ if
∞

∑
j=0

√
j
∣∣cj ∣∣ < ∞

(b)
∞

∑
j=0

∣∣c̃j ∣∣ < ∞ if
∞

∑
j=0

j
∣∣cj ∣∣ < ∞.
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Phillips-Perron Unit Root Test

Consider the time series model

Yt = α+ ρYt−1 + ut ,

where {ut} follows a linear process, i.e.,

ut = C (L) εt =
∞

∑
j=0
cj εt−j

Assumptions:

(i) {εt} ≡ i .i .d .
(
0, σ2

)
, where 0 < σ2 < ∞

(ii)
∞

∑
j=0

√
j
∣∣cj ∣∣ < ∞
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Phillips-Perron Unit Root Test

Suppose we wish to test the null hypothesis

H0 : α = 0, ρ = 1

versus the alternative hypothesis

H1 : α > 0, |ρ| < 1

Remark: Note that, for the model studied here, i.e.,

Yt = α+ ρYt−1 + ut ,

the regressor Yt−1 is correlated with the error ut since ut is serially
correlated. Ordinarily, in models involving I (0) variables, the OLS
estimator of the regresssion coeffi cients will be inconsistent in this
case, and we will be looking to estimate this model by some
instrumental variable (IV) methods. However, we will see that, in the
I (1) case, OLS will still be consistent, and this fact was exploited by
the Phillips-Perron approach to this problem.
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Phillips-Perron Unit Root Test

The Phillips-Perron approach in this setting is to proceed by first
analyzing the limiting distribution of the OLS estimator of ρ under
H0. As we will see, the OLS estimator of ρ will still be consistent
under the unit root null hypothesis but will have an asymptotic
distribution that is not nuisance parameter free. Hence, the
Phillips-Perron appoarch involves modifying the usual test statistics
so that the resulting test procedure will be asymptotically similar, or
nuisance parameter free.

To consolidate notations a bit, write

Yt = α+ ρYt−1 + ut
= X ′t β+ ut ,

where Xt = (1,Yt−1)
′ and β = (α, ρ)′. Also, let β̂n = (α̂n, ρ̂n)

′,
where α̂n and ρ̂n are the OLS estimators of α and ρ, respectively, and
let β0 = (α0, ρ0)

′ = (0, 1)′ be the value of α and ρ under H0.
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Phillips-Perron Unit Root Test

Using these notations, we have, by the usual regression algebra, that
under H0

β̂n − β0 =

(
α̂n

ρ̂n − 1

)

=


n

n

∑
t=1
Yt−1

n

∑
t=1
Yt−1

n

∑
t=1
Y 2t−1


−1

n

∑
t=1
ut

n

∑
t=1
Yt−1ut


=

(
n

∑
t=1
XtX ′t

)−1 n

∑
t=1
Xtut

It turns out that the proper standardization in this case is to
premultiply β̂n − β0 by the diagonal matrix

Dn =
( √

n 0
0 n

)
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Phillips-Perron Unit Root Test

Hence,( √
nα̂n

n (ρ̂n − 1)

)
= Dn

(
β̂n − β0

)
=

(
D−1n

n

∑
t=1
XtX ′tD

−1
n

)−1
D−1n

n

∑
t=1
Xtut

=


1 n−3/2

n

∑
t=1
Yt−1

n−3/2
n

∑
t=1
Yt−1 n−2

n

∑
t=1
Y 2t−1


−1

n−1/2
n

∑
t=1
ut

n−1
n

∑
t=1
Yt−1ut



John C. Chao (Econ 721 Lecture Notes) September 26, 2022 37 / 141



Phillips-Perron Unit Root Test

The results of Phillips (1987) and Phillips and Perron (1988) show
that the following convergence results hold jointly

1
n3/2

n

∑
t=1
Yt−1 =⇒ ω

∫ 1

0
W (r) dr ,

1
n2

n

∑
t=1
Y 2t−1 =⇒ ω2

∫ 1

0
[W (r)]2 dr

1√
n

n

∑
t=1
ut =⇒ ωW (1) ≡ N

(
0,ω2) ,

1
n

n

∑
t=1
Yt−1ut =⇒ 1

2

[
ω2 (W (1))2 − γ0

]
≡ 1
2

[
ω2χ2 (1)− γ0

]
,

where ω2 = σ2C (1)2 = σ2
(
∑∞
j=0 cj

)2
(long-run variance) and

γ0 = E
[
u2t
]
= σ2 ∑∞

j=0 c
2
j .
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Phillips-Perron Unit Root Test

By the continuous mapping theorem

( √
nα̂n

n (ρ̂n − 1)

)
=⇒

 1 ω
∫ 1

0
W (r) dr

ω
∫ 1

0
W (r) dr ω2

∫ 1

0
[W (r)]2 dr


−1

×
(

ωW (1)
1
2

[
ω2χ2 (1)− γ0

] )
as n→ ∞
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Phillips-Perron Unit Root Test

It follows by elementary calculations that, as n→ ∞,

n (ρ̂n − 1) =⇒
1
2

[
ω2χ2 (1)− γ0

]
−ω2W (1)

∫ 1

0
W (r) dr

ω2

{∫ 1

0
[W (r)]2 dr −

(∫ 1

0
W (r) dr

)2}

=

1
2

[
χ2 (1)− γ0/ω2

]
−W (1)

∫ 1

0
W (r) dr∫ 1

0
[W (r)]2 dr −

(∫ 1

0
W (r) dr

)2
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Phillips-Perron Unit Root Test

or

n (ρ̂n − 1) =⇒
1
2

[
χ2 (1)− 1

]
−W (1)

∫ 1

0
W (r) dr∫ 1

0
[W (r)]2 dr −

(∫ 1

0
W (r) dr

)2
+

1
2

(
ω2 − γ0

)
/ω2∫ 1

0
[W (r)]2 dr −

(∫ 1

0
W (r) dr

)2
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Phillips-Perron Unit Root Test

Remark 1: Note that in the special case where C (L) = 1, we have
ut = εt , so that {ut} ≡ i .i .d .

(
0, σ2

)
. Moreover, in this case,

ω2 = σ2C (1)2 = σ2 and γ0 = E
[
u2t
]
= σ2.

Hence, from previous results, we know that, in this case,

n (ρ̂n − 1) =⇒
1
2

[
χ2 (1)− 1

]
−W (1)

∫ 1

0
W (r) dr∫ 1

0
[W (r)]2 dr −

(∫ 1

0
W (r) dr

)2
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Phillips-Perron Unit Root Test

Remark 1(con’t): It follows that the second term

1
2

(
ω2 − γ0

)
/ω2∫ 1

0
[W (r)]2 dr −

(∫ 1

0
W (r) dr

)2
is a second-order bias due to the serial correlation in the process
{ut}. As mentioned before, unlike in the I (0) case, ρ̂n is consistent
even in the presence of serial correlation in ut , and the effect of this
serial correlation shows up only as a second-order bias.

Remark 2: Note also that, unlike the case with i .i .d . innovations,
n (ρ̂n − 1) cannot be used directly as a statistic for testing the unit
root null hypothesis since its asymptotic distribution now involves the
nuisance parameters ω2 and γ0, whose true values are in general
unknown.
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Phillips-Perron Unit Root Test

Remark 3: We can estimate γ0 = E
[
u2t
]
consistently using the

estimator

s2n =
1

n− 2
n

∑
t=1
û2t

where ût = Yt − α̂n − ρ̂nYt−1 is the OLS residual.
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Phillips-Perron Unit Root Test

Estimation of Long-Run Variance: To consistently estimate ω2,
note first that

ω2 = σ2C (1)2

= σ2

(
∞

∑
j=0
cj

)2
= E

[
u2t
]
+ 2

∞

∑
j=1
E [utut−j ]

= γ0 + 2
∞

∑
j=1

γj
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Phillips-Perron Unit Root Test

Remark: Note that ω2 depends on an infinite number of unknown
parameters, i.e., γ0,γ1,γ2, .... Realistically, with finite data, we
cannot hope to estimate an infinite number of unknown parameters.
However, we could pursue a strategy where we try to estimate a finite
number of γj’s and consider an estimation framework where we allow
the dimension of the parameter space to increase as sample size
increases.
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Phillips-Perron Unit Root Test

Newey-West Estimator: We can estimate ω2 using an estimator
proposed by Newey and West (1987), which in the special case we are
dealing with here has the form

ω̂2 = γ̂0 + 2
q(n)

∑
j=1

[
1− j

q (n) + 1

]
γ̂j ,

where

γ̂j =
1
n

n

∑
t=j+1

ût ût−j for j = 0, 1, ..., q (n) .

For the unit root testing problem, Phillips (1987), under some
additional conditions, show that

ω̂2 p→ ω2 if q (n)→ ∞ as n→ ∞ such that
q (n)
n1/4 → 0.
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Phillips-Perron Unit Root Test

Remark: One might think that a natural estimator for ω2 is

ω̃2 = γ̂0 + 2
q(n)

∑
j=1

γ̂j ,

However, it turns out that while ω̃2 will be consistent under some
conditions, it is not necessarily non-negative in finite sample. On the
other hand, the Newey-West estimator ω̂2 is guaranteed to be
non-negative as we will show below.
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Phillips-Perron Unit Root Test

Non-negativity of ω̂2: Also, define

Ût ,q =


ût
ût−1
...

ût−q(n)+1
ût−q(n)

 ,

where ûj = 0 for j = n+ 1, ..., n+ q (n) and
j = −q (n) + 1, ...,−1, 0.
Also, define

Γ̂ =
1
n

n+q(n)

∑
t=1

Ût ,qÛ ′t ,q

John C. Chao (Econ 721 Lecture Notes) September 26, 2022 49 / 141



Phillips-Perron Unit Root Test

Non-negativity of ω̂2: It is easily check that, under the above
definition for Γ̂, we have

Γ̂ =



γ̂0 γ̂1 · · · γ̂q(n)−1 γ̂q(n)

γ̂1 γ̂0
. . . γ̂q(n)−1

...
. . . . . . . . .

...

γ̂q(n)−1
. . . . . . γ̂1

γ̂q(n) γ̂q(n)−1 · · · γ̂1 γ̂0


.

where

γ̂j =
1
n

n

∑
t=j+1

ût ût−j for j = 0, 1, ..., q (n) .
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Phillips-Perron Unit Root Test

Non-negativity of ω̂2: Moreover, note that
Γ̂ = n−1 ∑n+q(n)

t=1 Ût ,qÛ ′t ,q is positive semidefinite. Hence, let ι be an
(q (n) + 1)× 1 vector of ones, i.e., ι = (1, 1, ..., 1)′, and we have that

0 ≤ ι′Γ̂ι

q (n) + 1

=
1

q (n) + 1

{
(q (n) + 1) γ̂0 + 2q (n) γ̂1 + · · ·+ 2γ̂q(n)

}
=

1
q (n) + 1

{
(q (n) + 1) γ̂0 + 2

q(n)

∑
j=1
[(q (n) + 1)− j ] γ̂j

}

= γ̂0 + 2
q(n)

∑
j=1

[
1− j

q (n) + 1

]
γ̂j

= ω̂2
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Phillips-Perron Unit Root Test

Modified Test Statistic for Testing the Unit Root Null
Hypothesis:

First, define

s2n =
1

n− 2
n

∑
t=1
û2t , σ̂2ρ̂ =

s2n

∑n
t=2

(
Yt−1 − Y −1

)2 ,
ω̂2 = γ̂0 + 2

q(n)

∑
j=1

[
1− j

q (n) + 1

]
γ̂j , and Tn =

ρ̂n − 1
σ̂ρ̂

where

ût = Yt − α̂n − ρ̂nYt−1 and Y −1 =
1

n− 1
n

∑
t=2
Yt−1.
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Phillips-Perron Unit Root Test

Modified Test Statistic for Testing the Unit Root Null
Hypothesis (con’t): Phillips and Perron (1988) proposed the
following modified test statistics, which are designed to remove the
effect of the second-order bias in the asymptotic distribution of the
OLS estimator

Zρ = n (ρ̂n − 1)−
1
2

(
n2σ̂2ρ̂
s2n

)(
ω̂2 − s2n

)
Zt =

( sn
ω̂

)
Tn −

1
2

(
nσ̂ρ̂

sn

)(
ω̂2 − s2n

ω̂

)
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Phillips-Perron Unit Root Test

Modified Test Statistic for Testing the Unit Root Null
Hypothesis (con’t): In addition, Phillips and Perron (1988) showed
that, under H0 : ρ0 = 1,

Zρ =⇒
1
2

[
χ2 (1)− 1

]
−W (1)

∫ 1

0
W (r) dr∫ 1

0
[W (r)]2 dr −

(∫ 1

0
W (r) dr

)2

Zt =⇒
1
2

[
χ2 (1)− 1

]
−W (1)

∫ 1

0
W (r) dr√∫ 1

0
[W (r)]2 dr −

(∫ 1

0
W (r) dr

)2
Remark: Note that, unlike the asymptotic distribution of n (ρ̂n − 1),
these two modified test statistics have asymptotic null distributions
that are free of nuisance parameters.

John C. Chao (Econ 721 Lecture Notes) September 26, 2022 54 / 141



Augmented Dickey-Fuller Test for Unit Root

Dickey and Fuller (1979) approaches the problem of testing for a unit
root by by specifing an AR (p) model(

1− φ1L− φ2L
2 − · · · − φpL

p
)
Yt = φ (L)Yt = εt

or
Yt = φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + εt

where {εt} ≡ i .i .d .
(
0, σ2

)
.

Define

ρ = φ1 + · · ·+ φp ,

ζ j = −
(

φj+1 + · · ·+ φp

)
for j = 1, ..., p − 1
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Augmented Dickey-Fuller Test for Unit Root

It follows by essentially the Beveridge-Nelson decomposition for
finite-order lag polynomial that we can write

1− φ1L− φ2L
2 − · · · − φpL

p

= 1−
[(

φ1 + φ2 + · · ·+ φp

)
−
(

φ2 + · · ·+ φp

)]
L

−
[
−
(

φ3 + · · ·+ φp

)
+
(

φ2 + · · ·+ φp

)]
L2

· · · −
[
−φp +

(
φp−1 + φp

)]
Lp−1 − φpL

p

= 1− [ρ+ ζ1] L− [ζ2 − ζ1] L
2 − · · · −

[
ζp−1 − ζp−2

]
Lp−1

+ζp−1L
p

= 1− ρL− ζ1L (1− L)− · · · − ζp−1L
p−1 (1− L)

= (1− ρL)−
(
ζ1L+ · · · ·+ζp−1L

p−1) (1− L)
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Augmented Dickey-Fuller Test for Unit Root

Given this decomposition, we can rewrite the AR (p) model as[
(1− ρL)−

(
ζ1L+ · · · ·+ζp−1L

p−1) (1− L)]Yt = εt

or
Yt = ρYt−1 + ζ1∆Yt−1 + · · ·+ ζp−1∆Yt−p+1 + εt

To see why this transformation of the AR (p) model yields a useful
representation for unit root testing, suppose that the pth order
polynomial equation

1− φ1z − φ2z
2 − · · · − φpz

p = 0

contains a single unit root, and all other roots are outside the unit
circle. Then, by the fact that z = 1 is a root, we have

1− φ1 − φ2 − · · · − φp = 0
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Augmented Dickey-Fuller Test for Unit Root

or
1 = φ1 + · · ·+ φp = ρ

Hence, by rewriting the model in this way, we have transformed a null
hypothesis about the root of a pth-degree polynomial to a hypothesis
which imposes a simple restriction on a single parameter ρ. The latter
is obviously much easier to test.
Moreover, under the null hypothesis that ρ = 1, we have

1− φ1z − φ2z
2 − · · · − φpz

p

= (1− z)−
(
ζ1z + · · · ·+ζp−1z

p−1) (1− z)
=

(
1− ζ1z − · · · · −ζp−1z

p−1) (1− z) ,
so that it must be true that all roots of the equation

1− ζ1z − · · · · −ζp−1z
p−1 = 0

are outside the unit circle.
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Augmented Dickey-Fuller Test for Unit Root

Furthermore, we can write(
1− ζ1L− · · · · −ζp−1L

p−1) (1− L)Yt = εt

or (
1− ζ1L− · · · · −ζp−1L

p−1)∆Yt = εt

Given that all roots of the polynomial equation

1− ζ1z − · · · · −ζp−1z
p−1 = 0

are outside the unit circle, we can invert the lag polynomial to obtain
the moving-average representation

∆Yt =
(
1− ζ1L− · · · · −ζp−1L

p−1)−1 εt

= ψ (L) εt

= ut
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Augmented Dickey-Fuller Test for Unit Root

Recall that the Phillips-Perron setup considered the equation

Yt = ρYt−1 + ut

where

ut = C (L) εt =
∞

∑
j=0
cj εt−j

Hence, under H0 : ρ = 1, we have

Yt = Yt−1 + ut

or

∆Yt = ut =
∞

∑
j=0
cj εt−j
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Augmented Dickey-Fuller Test for Unit Root

Comparing the Dickey-Fuller setup with the Phillips-Perron setup, we
see that, under H0,
(i) the Dickey-Fuller model has the moving-average representation

∆Yt = ψ (L) εt

=
(
1− ζ1L− · · · · −ζp−1L

p−1
)−1

εt

which depends on a finite set of unknown parameters ζ1, ..., ζp−1,
whereas

(ii) the Phillips-Perron model has the moving-average representation

∆Yt = ut =
∞

∑
j=0

cj εt−j

which can potentially depend on an infinite number of unknown
parameters c0, c1, c2, ....

It is in the sense that one may consider the Phillips-Perron framework
for unit root testing to be more general.
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Augmented Dickey-Fuller Test for Unit Root

Now, consider again testing the null hypothesis

H0 : α = 0, ρ = 1

versus
H1 : α > 0, |ρ| < 1

To implement the augmented Dickey-Fuller test in this case, one
would first estimate the parameters of the regression

Yt = α+ ρYt−1 + ζ1∆Yt−1 + · · ·+ ζp−1∆Yt−p+1 + εt

by OLS.
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Augmented Dickey-Fuller Test for Unit Root

It turns out that the OLS estimator ρ̂n, obtained from running the
regression above, has the following large sample property under H0

n (ρ̂n − 1) =⇒ ψ (1)


1
2

[
χ2 (1)− 1

]
−W (1)

∫ 1

0
W (r) dr∫ 1

0
[W (r)]2 dr −

(∫ 1

0
W (r) dr

)2


where
ψ (1) = 1− ζ1 − · · · · −ζp−1
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Augmented Dickey-Fuller Test for Unit Root

It follows, by the Cramér Convergence Theorem, that under H0

n (ρ̂n − 1)
1− ζ̂1 − · · · · −ζ̂p−1

=⇒


1
2

[
χ2 (1)− 1

]
−W (1)

∫ 1

0
W (r) dr∫ 1

0
[W (r)]2 dr −

(∫ 1

0
W (r) dr

)2


where ζ̂1, ...., ζ̂p−1 denote OLS estimators of the parameters
ζ1, ...., ζp−1.
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Augmented Dickey-Fuller Test for Unit Root

Moreover, the t-statistic, under H0, has the following asymptotic
distribution

Tn =⇒
1
2

[
χ2 (1)− 1

]
−W (1)

∫ 1

0
W (r) dr√∫ 1

0
[W (r)]2 dr −

(∫ 1

0
W (r) dr

)2
Hence, both the Tn statistic and the statistic

n (ρ̂n − 1)
1− ζ̂1 − · · · · −ζ̂p−1

have asymptotic null distributions that are free of nuisance parameter.
Hence, both statistics can be used to implement a test of the unit
root null hypothesis.
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Spurious Regression

Consider the m× 1 vector I (1) process

Yt = Yt−1 + ut , t = 1, ...., n,

where {ut} follows a general linear process, i.e.,

ut = Ψ (L) εt =
∞

∑
j=0

Ψj εt−j .

Assumptions:

(i) {εt} ≡ i .i .d . (0,Σε), where Σε > 0 (i.e., Σε is positive definite);
(ii) max1≤k≤m E

(
ε4kt
)
< ∞;

(iii)
∞

∑
j=1
j ‖Ψj‖ < ∞;

(iv) Ψ (1) is nonsingular (as we will see, this is an assumption of the
absence of cointegration)
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Spurious Regression

Multivariate Partial Sum Process: A multivariate extension of the
partial sum process can be defined as

Xn (r) =
1√
n

[nr ]

∑
j=1
uj ∈ D [0, 1]m

where D [0, 1]m is a product space of m copies of D [0, 1].
One can show that the vector linear process

ut = Ψ (L) εt =
∞

∑
j=0

Ψj εt−j

under Assumptions (i)-(iv) satisfies a multivariate FCLT, so that, as
n→ ∞,

Xn (r) =⇒ B (r) ≡ BM (Ω)
where

Ω = Ψ (1)ΣεΨ (1)
′

is the long-run covariance matrix.
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Spurious Regression

Remark: Observe that, under Assumptions (i) and (iv), Ω > 0.

To consider the phenomenon known as “spurious regression",
partition the random vector Yt as follows

Yt =

 y1t
1×1
Y2t
g×1

 ≡ I (1)
where g = m− 1. Also, partition B (r) and Ω conformably with
Yt =

(
y1t Y ′2t

)′
as

B (r) =

 B1 (r)1×1
B2 (r)
g×1

 , Ω =

 ω11
1×1

ω12
1×g

ω21
g×1

Ω22
g×g


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Spurious Regression

Consider the least squares regression

y1t = β̂
′
nY2t + v̂t

Note that, if ω21 = 0, then the variables y1t and Y2t have stochastic
trends but are unrelated in the long run. Indeed, in the prototypical
Granger-Newbold spurious regression setup examined in Granger and
Newbold (1974), {ut} ≡ i .i .d .N (0, Im) are unrelated at any
frequency. Hence, in these cases, one might expect that β̂n will
converge in probability to a zero vector. However, that turns out not
to be the case. In fact, even if ω21 6= 0, the relationship between the
series is not in general strong enough to permit β̂n to converge to any
constant value.
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Spurious Regression

More precisely, it can be shown that

β̂n =

(
1
n2

n

∑
t=1
Y2tY ′2t

)−1 (
1
n2

n

∑
t=1
Y2ty1t

)

=⇒
(∫ 1

0
B2 (r)B2 (r)

′ dr
)−1 ∫ 1

0
B2 (r)B1 (r) dr .
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Spurious Regression

In addition, let

s2 =
1
n

n

∑
t=1
v̂2t ,

and it can be shown that

s2

n
=⇒

∫ 1

0
[B1 (r)]

2 dr

−
(∫ 1

0
B1 (r)B2 (r)

′ dr
(∫ 1

0
B2 (r)B2 (r)

′ dr
)−1

×
∫ 1

0
B2 (r)B1 (r) dr

)
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Spurious Regression

Thus, s2 diverges as n↗ ∞; more precisely,

s2 = Op (n)

Intuitively, this is because v̂t ≡ I (1) in this case.
Moreover, since (

n

∑
t=1
Y2tY ′2t

)−1
= Op

(
1
n2

)
It follows that

σ̂2
β̂i
= s2

( n

∑
t=1
Y2tY ′2t

)−1
ii

= Op

(
1
n

)
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Spurious Regression

Hence, in this case,

σ̂2
β̂i
= s2

( n

∑
t=1
Y2tY ′2t

)−1
ii

p→ 0 as n→ ∞

An important consequence of this is that

Tn =
β̂i
σ̂β̂i

diverges with probability approaching one.

The above result holds even if ω21 = 0 and {ut} ≡ i .i .d .N (0, Im) as
in the original Granger-Newbold spurious regression setup. Hence,
even if y1t and Y2t are unrelated at any frequency, testing the null
hypothesis H0 : βi = 0 using the usual t-statistic might nevertheless
give a false sense of regression significance.
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Cointegration

Consider an m× 1 vector time series Yt such that

Yt ≡ I (1) .

Yt is said to be cointegrated if there exists at least one nonzero (and
nonrandom) m× 1 vector a such that

a′Yt ≡ I (0) .

In this case, a is called a cointegrating vector.
Remark: For simplicity, consider first the case where m = 2.
Intuitively, cointegration in this bivariate system means that the two
components of the random vector Yt = (Y1t ,Y2t )

′ share a common
stochastic trend. By taking linear combination with respect to a
cointegrating vector, this common stochastic trend is elminated or
annihilated, so that

a1Y1t + a2Y2t ≡ I (0)
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Cointegration

Remark (con’t): In fact, if a1 6= 0, i.e., the cointegration is
nontrivial, then we can normalize by dividing through by a1 to obtain

Y1t +
a2
a1
Y2t = ut ≡ I (0)

or
Y1t = βY2t + ut

where
β = −a2

a1
Hence, with appropriate normalization, cointegration relationship can
be reframed as a regression relationship. However, note that, unlike
spurious regression, here ut ≡ I (0).
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Cointegration

If m > 2, then there may be more than one (linearly independent)
cointegrating vectors. Hence, we define the cointegrating rank as the
number of linearly independent cointegrating vectors in a multivariate
system.
More precisely, suppose that

A = (a1, ..., ar )

is an m× r matrix with rank r < m such that

A′Yt ≡ I (0) ,

and suppose further that

a′Yt ≡ I (1)

for any other m× 1 vector a that is linearly independent of the
columns of A, then we say that the cointegrating rank is r .
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Cointegration

Note that the cointegrating vectors (a1, .., ar ) are not unique since if

A′Yt ≡ I (0) ;

then,
b′A′Yt ≡ I (0) ,

for any nonzero r × 1 vector b. Hence, d = Ab is also a cointegrating
vector.

Note that in the case where the cointegrating rank = m; then, Yt
must itself be I (0) as well, since in this case

A′Yt = ut ≡ I (0)

and A is an m×m nonsingular matrix, implying that

Yt =
(
A′
)−1 ut ≡ I (0) .
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Cointegration

An interpretation for cointegration may be given as follows. Suppose
that

A′Yt = 0

describes some long-run “equilibrium" relationship. Then,

A′Yt = ut ≡ I (0)

measures the “equilibrium error" or the extent that the system is out
of equilibrium. We would then expect this error to be I (0).
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Cointegration

Restrictions Implied by Cointegration: Consider the m× 1 vector
process

∆Yt = µ+Ψ (L) εt

where ∆ = 1− L is the first difference operator and where

{εt} ≡ i .i .d . (0,Ω) , Ω > 0 and

Ψ (L) =
∞

∑
j=0

ΨjLj with Ψ0 = Im .

We want to show that, for A′Yt to be I (0), it must be true that

(i) A′Ψ (1) = 0 and (ii) A′µ = 0.
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Cointegration

To proceed, note first that, by the Beveridge-Nelson decomposition,
we have

Ψ (L) = Ψ (1)− Ψ̃ (L) (1− L) ,
where

Ψ̃ (L) =
∞

∑
j=0

Ψ̃jLj with Ψ̃j =
∞

∑
s=j+1

Ψs .

We assume that ∑∞
j=0

√
j ‖Ψj‖ < ∞ which implies that

∑∞
j=0

∥∥∥Ψ̃j

∥∥∥2 < ∞.
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Cointegration

Given this setup, we can write

∆Yj = µ+Ψ (L) εj

= µ+Ψ (1) εj − Ψ̃ (L) (1− L) εj

= µ+Ψ (1) εj − Ψ̃ (L) (εj − εj−1)

= µ+Ψ (1) εj − (̃εj − ε̃j−1)

where ε̃j = Ψ̃ (L) εj .

Summing both sides of the above equation from j = 1 to t, we get

t

∑
j=1

∆Yj =
t

∑
j=1

µ+Ψ (1)
t

∑
j=1

εj −
t

∑
j=1
(̃εj − ε̃j−1)

or

Yt − Y0 = µt +Ψ (1)
t

∑
j=1

εj − (̃εt − ε̃0)
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Cointegration

or

Yt = Y0 + µt +Ψ (1)
t

∑
j=1

εj − (̃εt − ε̃0)

From the above equation, it is apparent that the nonstationary
components of Yt come from
(i) the linear trend term: µt and
(ii) the stochastic trend term: Ψ (1)∑t

j=1 εj

Premultiplying the above equation by A′, we get

A′Yt = A′Y0 + A′µt + A′Ψ (1)
t

∑
j=1

εj − A′ (̃εt − ε̃0)

from which it is apparent that for A′Yt to be I (0), it must be that

A′Ψ (1) = 0 (stochastic cointegration restriction)

A′µ = 0 (deterministic cointegration restriction)
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Cointegration

Remark: Note also that

A′Ψ (1) = 0

implies that
|Ψ (z)| = 0 when z = 1

i.e., z = 1 is a root of the determinantal equation |Ψ (z)| = 0.
Hence, Ψ (z) is noninvertible. This, in turn, implies that a
cointegrated system cannot be represented by a finite order vector
autoregression in the first differenced data ∆Yt .
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Cointegration

Additional Restrictions Implied by Cointegration: Note that,
although a VAR in first differences is not compatible with a
cointegrated system, a VAR in levels could be. Now, suppose that
vector moving average process

∆Yt = µ+Ψ (L) εt

has a VAR representation in levels, i.e.,

Yt = α+Φ1Yt−1 + · · ·+ΦpYt−p + εt

More succinctly, we can write

Φ (L)Yt = α+ εt

where Φ (L) = Im −Φ1L− · · · −ΦpLp .
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Cointegration

Additional Restrictions Implied by Cointegration (con’t):
We want to show that if the cointegrating rank equals r , then, it

is possible to write

Φ (1) = −BA′ (i.e., Φ (1) is of reduced rank)

where Φ (1) = Im −Φ1 − · · · −Φp , where A (m× r) is the
cointegrating matrix and where B (m× r) is called the loading
matrix.
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Cointegration

To show this, we first multiply both sides of

∆Yt = µ+Ψ (L) εt

by Φ (L) to obtain

(1− L)Φ (L)Yt = Φ (1) µ+Φ (L)Ψ (L) εt

Now, substituting the right-hand side of the equation
Φ (L)Yt = α+ εt into the equation above, we get

(1− L) (α+ εt ) = Φ (1) µ+Φ (L)Ψ (L) εt

or
(1− L) εt = Φ (1) µ+Φ (L)Ψ (L) εt

since (1− L) α = 0.
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Cointegration

Since the above equation must hold for all realization of εt , this
suggests that

Φ (1) µ = 0

and
(1− z) Im = Φ (z)Ψ (z)

for all z = e iω with −π ≤ ω ≤ π. In particular, for ω = 0 or z = 1,
we have

Φ (1)Ψ (1) = 0

Let φ′i (1×m) be the i th row of Φ (1); then,

φ′iµ = 0,

φ′iΨ (1) = 0.

so that φi is a cointegrating vector.
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Cointegration

Let the cointegrating rank equals r and let a1, ..., ar form a basis for
the space of cointegrating vectors, then there exists a r × 1 vector b∗i
such that

φi = (a1, .., ar ) b∗i
= A

m×r
b∗i
r×1
.

Doing this for all rows of Φ (1), we have

Φ (1)′ = (φ1, ..., φm) = A (b
∗
1 , ..., b

∗
m) = AB

∗′

or
Φ (1) = B∗A′ = −BA′,

where B = −B∗.
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Vector Error-Correction Model (VECM)

Consider the VAR(p) model

Yt = α+Φ1Yt−1 + · · ·+ΦpYt−p + εt

where {εt} ≡ i .i .d . (0,Ω) with Ω > 0.

Using a Beveridge-Nelson type decomposition of the matrix
polynomial Φ (z) = Im −Φ1z − · · · −Φpzp , we can rewrite this VAR
model as

Yt = α+HYt−1 + Γ1∆Yt−1 + · · ·+ Γp−1∆Yt−p+1 + εt ,

where

H = Φ1 + · · ·+Φp

Γi =

{
−Φp for i = p − 1

− [Φi+1 + · · ·+Φp ] for i = 1, ..., p − 2

}
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Vector Error-Correction Model (VECM)

Subtracting Yt−1 from both sides of the equation

Yt = α+HYt−1 + Γ1∆Yt−1 + · · ·+ Γp−1∆Yt−p+1 + εt ,

we further obtain

∆Yt = α+ΠYt−1 + Γ1∆Yt−1 + · · ·+ Γp−1∆Yt−p+1 + εt ,

where

Π = H − Im
= (Φ1 + · · ·+Φp)− Im
= −Φ (1)

If there are r linearly independent cointegrating relations (i.e., if the
cointegrating rank = r), it follows from our previous result that

Π = −Φ (1) = BA′.
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Vector Error-Correction Model (VECM)

Imposing this reduced rank restriction, and we have arrived at the
vector error-correction representation

∆Yt = α+ BA′Yt−1 + Γ1∆Yt−1 + · · ·+ Γp−1∆Yt−p+1 + εt ,

Remark (i): In the case where A is known, all regressors on the
right-hand side of the vector error-correction model given above are
I (0).

Remark (ii): Note also that, in the error-correction representation
given above, the change in Yt (i.e., ∆Yt) depends not only on its
lagged values but also on the magnitude of the “equilibrium error"
A′Yt−1.
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Vector Error-Correction Model (VECM)

Remark (iii): In the absence of additional restrictions (or
normalization), B and A are not separately identified since, for any
nonsingular r × r matrix F , we have

BA′ = (BF )
(
F−1A′

)
= BA

′

where B = BF and A = AF ′−1. That is (B,A) is observationally
equivalent to

(
B,A

)
in the sense that they would give rise to the

same value of the likelihood function.
Remark (iv): In practice, a normalization that is often used to
achieve identification is to set

A′
r×m

=
[
Ir
r×r

−Γ
r×(m−r )

]
Partition Yt conformably, we get

Yt
m×1

=

 Y1t
r×1
Y2t

(m−r )×1


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Vector Error-Correction Model (VECM)

Remark (iv) (con’t): It follows that, under this normalization, we
have

A′Yt =
[
Ir −Γ

] [ Y1t
Y2t

]
= Y1t − ΓY2t = ut ≡ I (0)

or

Y1t = ΓY2t + ut (a multivariate regression representation)

This is known as Phillips’Triangular Representation (cf. Phillips,
1990).
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Vector Error-Correction Model (VECM)

Remark (v): In the case where the cointegrating matrix A is not
known, it can be shown that the usual estimators of A (OLS or ML)
will be super-consistent in the sense that the convergence rate will be
n instead of

√
n, provided that A can be identified by the

normalization restriction discussed earlier. Hence, one can envision a
two-step procedure where one first gets an estimate of A, say
Â =

[
Ir −Γ̂

]
, by running the regression

Y1t = ΓY2t + ut

and then plug this estimate into the VECM specification and then
estimate the remaining parameters by running the second-stage
regression

∆Yt = α+ BÂ′Yt−1 + Γ1∆Yt−1 + · · ·+ Γp−1∆Yt−p+1 + ε̂t ,
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Vector Error-Correction Model (VECM)

Rewriting the vector error-correction model

∆Yt = α+ BA′Yt−1 + Γ1∆Yt−1 + · · ·+ Γp−1∆Yt−p+1 + εt ,

as

∆Yt − Γ1∆Yt−1 − · · · − Γp−1∆Yt−p+1 = α+ BA′Yt−1 + εt

and taking expectation on both sides of the above equation, we get

(Im − Γ1 − · · · − Γp−1) µ = α− Bµ∗1

where µ∗1 = −E [A′Yt−1] and µ = E [∆Yt ]. (Recall that
∆Yt = µ+Ψ (L) εt).
Since the roots of ∣∣Im − Γ1z − · · · − Γp−1zp−1

∣∣ = 0
are all outside the unit circle, i.e., z = 1 is not a root of the
determinantal equation given above, it follows that
(Im − Γ1 − · · · − Γp−1) is invertible.
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Vector Error-Correction Model (VECM)

Hence, we can write

µ = (Im − Γ1 − · · · − Γp−1)
−1 (α− Bµ∗1)

where µ∗1 = −E [A′Yt−1] and µ = E [∆Yt ]. (Recall that
∆Yt = µ+Ψ (L) εt). It follows that, for this system to have no drift
in any of the variables (i.e., µ = 0), we would have to impose the
restriction

α = Bµ∗1.

Otherwise, there are potentially m− r separate time trends in Yt .
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Testing the Null Hypothesis of No Cointegration

Suppose that Yt
m×1
≡ I (1) but suppose that economic theory suggests

that the possible existence of a particular cointegrating vector a
m×1

.

(Note that, here, a is a known vector) In this case, the null hypothesis
of no cointegration can be tested in a straightforward manner as
follows:

(i) Construct ut = a′Yt .

(ii) Test the null hypothesis that ut ≡ I (1) using either the
Phillips-Perron test of the augmented Dickey-Fuller test.

(iii) If the null hypothesis that ut ≡ I (1) is rejected; then, there is
evidence in favor of cointegration. Otherwise, one finds evidence for
an absence of cointegration.
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Testing the Null Hypothesis of No Cointegration

Example - Testing Purchasing Power Parity (PPP): This theory
asserts that apart from transportation cost, goods should be sold for
the same price in two countries. To be more specific, let

Pt - index of price level in U.S. (in dollars per good)

P∗t - index of price level in the U.K. (in pounds per good)

St - rate of exchange between the two currencies (in dollars per pound)

Under PPP, we would have

Pt = StP∗t

so that, upon taking a logarithmic transformation on both sides of the
above equation, we get

lnPt = ln St + lnP∗t .
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Testing the Null Hypothesis of No Cointegration

Example - Testing Purchasing Power Parity (con’t): However,
since in practice various reasons (such as errors in measuring prices,
transportation costs, and differences in quality) prevent PPP from
holding exactly in every time period t, a weaker but empiricallly more
plausible version of PPP may be formulated as

lnPt − ln St − lnP∗t = ut ≡ I (0) ,

i.e., lnPt , ln St , and lnP∗t are cointegrated with cointegrating vector
a = (1,−1,−1)′. Given data on Pt , St , and P∗t ; the sequence {ut} is
an observed time series, so one can test the null hypothesis that
ut ≡ I (1) (i.e., the weak form of PPP does not hold) versus the
alternative hypothesis that ut ≡ I (0) (i.e., the weak form of PPP
does hold) using either the Phillips-Perron test or the augmented
Dickey-Fuller test.
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Testing the Null Hypothesis of No Cointegration

Case 2- Cointegrating Vector Must Be Estimated: Consider now
the case where the true value of the cointegrating vector is unknown
and must be estimated. More precisely, let {Yt} denote an m× 1
vector time series such that Yt ≡ I (1). Partition Yt as follows

Yt =

 y1t
1×1
Y2t
g×1


and consider the time series regression

y1t = β′Y2t + vt

Note that we would expect that

vt ≡ I (0) if Yt is cointegrated

vt ≡ I (1) if Yt is not cointegrated
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Residual Based Tests of Cointegration

Hence, it seems that we can design a test for cointegration based on
estimating the regression

y1t = β′Y2t + vt

and then testing the residual process

v̂t = y1t − β̂
′
nY2t

for the presence of a unit root using either the Phillips-Perron test or
the augmented Dickey-Fuller test. Here, β̂n denotes the OLS
estimator of β in the regression above. One complication with this
test strategy is that, under the null hypothesis, vt ≡ I (1) (i.e., Yt is
not cointegrated), so that we have a spurious regression situation. As
we have discussed previously, in this case, β̂n is not a consistent
estimtor of any population quantity and v̂t is also not a residual in the
ordinary sense.
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Residual Based Tests of Cointegration

It turns out, however, that the Phillips-Perron test and the
augmented Dickey-Fuller test can still be applied in this situation but
the asymptotic critical values are different from those used in the
usual applications of these tests.

To implement the Phillips-Perron test, we estimate the regression

v̂t = ρv̂t−1 + et , t = 2, ..., n;

from which we obtain the OLS estimator

ρ̂n =
∑n
t=2 v̂t−1v̂t

∑n
t=2 v̂

2
t−1
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Residual Based Tests of Cointegration

The null hypothesis that ρ = 1 can now be tested using the statistics

Zρ = (n− 1) (ρ̂n − 1)−
1
2

{
(n− 1)2 σ̂2ρ̂n

s2n

}(
ω̂2 − s2n

)
,

Zt =
( sn

ω̂

)
Tn −

1
2

{
(n− 1) σ̂ρ̂n

sn

}[
ω̂2 − s2n

ω̂

]

where

s2n =
1

n− 1
n

∑
t=2
ê2t (OLS estimate of the variance of et)

σ̂2ρ̂n =
s2n

∑n
t=2 v̂

2
t−1

(the usual OLS formula for the sample variance of ρ̂n)
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Residual Based Tests of Cointegration

ω̂2 = γ̂0 + 2
q(n)

∑
j=1

[
1− j

q (n) + 1

]
γ̂j (Newey-West estimator)

Tn =
ρ̂n − 1

σ̂ρ̂n

where êt = v̂t − ρ̂n v̂t−1 and where

γ̂j =
1

n− 1
n

∑
t=j+2

êt êt−j for j = 0, 1, ..., q (n) .
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Residual Based Tests of Cointegration

Phillips and Ouliaris (1990) show that if q (n)→ ∞ as n→ ∞ such
that q (n) /n→ 0, then under some additional conditions

Zρ =⇒
∫ 1

0
R (r) dR (r) and Zt =⇒

∫ 1

0
R (r) dS (r)

where

R (r) =
Q (r)[∫ 1

0
[Q (r)]2 dr

]1/2 , S (r) =
Q (r)

(κ′κ)1/2 ,

Q (r) = W1 (r)

−
[(∫ 1

0
W1 (r)W2 (r)

′ dr
)(∫ 1

0
W2 (r)W2 (r)

′ dr
)−1

×W2 (r)]
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Residual Based Tests of Cointegration

κ′
1×g

=

(
1,−

(∫ 1

0
W1 (r)W2 (r)

′ dr
)(∫ 1

0
W2 (r)W2 (r)

′ dr
)−1)

, and

W (r) =

(
W1 (r)
1×1

W2 (r)
1×g

′
)′
≡ BM (Im) .

To implement the augmented Dickey-Fuller test, we estimate the
regression

v̂t = ρv̂t−1 + γ1∆v̂t−1 + · · ·+ γp−1∆v̂t−p+1 + ηt
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Residual Based Tests of Cointegration

The null hypothesis H0 : ρ = 1 can be tested using the t-statistic

Tn =
ρ̂n − 1√

s2n
(
v̂ ′−1MX v̂−1

)−1
where

s2n =
1

n− p
n

∑
t=p+1

(
v̂t − ρ̂n v̂t−1 − γ̂1∆v̂t−1 − · · · − γ̂p−1∆v̂t−p+1

)2
X =

 x ′1
...
x ′n

 , with xt = (∆v̂t−1, ....,∆v̂t−p+1)′ .
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Residual Based Tests of Cointegration

Phillips and Ouliaris (1990) show that

Tn =⇒
∫ 1

0
R (r) dS (r)

if p → ∞ as n→ ∞ such that

p = o
(
n1/3

)
.
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Johansen’s Maximum Likelihood Procedure

Consider the m-variate error-correction model

∆Yt = Γ0Yt−1 + Γ1∆Yt−1 + · · ·+ Γp−1∆Yt−p+1 + εt

where
{εt} ≡ i .i .d .N (0,Ω) with Ω > 0.

Following the approach of Johansen (1988), we will derive a likelihood
ratio test for the null hypothesis that the cointegrating rank = r , in
which case we have the reduced rank restriction

Γ0 = BA′

where A and B are m× r matrices of full column rank r < m. As
noted previously, A is the cointegrating matrix whereas B is called the
loading matrix.
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Johansen’s Maximum Likelihood Procedure

Conditional Log-likelihood Function: Conditional on the initial
observations (Y−p+1,Y−p+2, ....,Y0), we can write the log-likelihood
function for the vector error-correction model as

ln L (Ω, Γ0, Γ1, ...., Γp−1)

= −nm
2
ln 2π − n

2
ln |Ω|

−1
2

n

∑
t=1

{
(∆Yt − Γ0Yt−1 − Γ1∆Yt−1 − · · · − Γp−1∆Yt−p+1)

′Ω−1

× (∆Yt − Γ0Yt−1 − Γ1∆Yt−1 − · · · − Γp−1∆Yt−p+1)}
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Johansen’s Maximum Likelihood Procedure

Johansen (1988) maximizes this log-likelihood function in steps.
Step 1:

(a) Regress ∆Yt on ∆Yt−1, ....,∆Yt−p+1 by OLS to obtain the m× 1
vector of residuals ût from the estimated regression

∆Yt = Π̂1∆Yt−1 + · · ·+ Π̂p−1∆Yt−p+1 + ût

(b) Also, regress Yt−1 on ∆Yt−1, ....,∆Yt−p+1 by OLS to obtain the
m× 1 vector of residuals v̂t from the estimated regression

Yt−1 = Θ̂1∆Yt−1 + · · ·+ Θ̂p−1∆Yt−p+1 + v̂t

(c) Concentrate the log-likelihood function with respect to Γ1, ..., Γp−1 to
obtain

ln L (Ω, Γ0)

= −nm
2
ln 2π − n

2
ln |Ω| − 1

2

n

∑
t=1
(ût − Γ0v̂t )

′Ω−1 (ût − Γ0v̂t )
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Johansen’s Maximum Likelihood Procedure

Step 1:

(c) Moreover, under the null hypothesis

H0 : cointegrating rank = r

we have Γ0 = BA′, so that we can further write the concentrated
log-likelihood function as

ln L (Ω,A,B)

= −nm
2
ln 2π − n

2
ln |Ω| − 1

2

n

∑
t=1

(
ût − BA′v̂t

)′Ω−1 (ût − BA′v̂t) .
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Johansen’s Maximum Likelihood Procedure

Before discussing step 2, we first define some notations which will be
useful. Let

Z0t
m×1

= ∆Yt , Z1t
m×1

= Yt−1, and Z2t
m(p−1)×1

=
(
∆Y ′t−1, ....,∆Y

′
t−p+1

)′
Also, define

Mij =
1
n

n

∑
t=1
ZitZ ′jt i , j = 0, 1, 2

Note that, based on these notations, we have

ût = Z0t −M02M−122 Z2t ,

v̂t = Z1t −M12M−122 Z2t .
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Johansen’s Maximum Likelihood Procedure

Further define

Suu

=
1
n

n

∑
t=1
ût û′t

=
1
n

n

∑
t=1

(
Z0t −M02M−122 Z2t

) (
Z0t −M02M−122 Z2t

)′
=

1
n

n

∑
t=1
Z0tZ ′0t −M02M−122

1
n

n

∑
t=1
Z2tZ ′0t −

1
n

n

∑
t=1
Z0tZ ′2tM

−1
22 M20

+M02M−122
1
n

n

∑
t=1
Z2tZ ′2tM

−1
22 M20

= M00 −M02M−122 M20
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Johansen’s Maximum Likelihood Procedure

Similarly, we have

Suv =
1
n

n

∑
t=1
ût v̂ ′t = M01 −M02M−122 M21,

Svv =
1
n

n

∑
t=1
v̂t v̂ ′t = M11 −M12M−122 M21.
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Johansen’s Maximum Likelihood Procedure

Step 2: To further concentrate the function

ln L (Ω,A,B)

= −nm
2
ln 2π − n

2
ln |Ω| − 1

2

n

∑
t=1

(
ût − BA′v̂t

)′Ω−1 (ût − BA′v̂t) .
we will, for a fixed A, maximize ln L (Ω,A,B) with respect to B and
Ω by regressing ût on A′v̂t to obtain

B̂ (A) =
1
n

n

∑
t=1
ût v̂ ′tA

(
A′
[
1
n

n

∑
t=1
v̂t v̂ ′t

]
A

)−1
= SuvA

(
A′SvvA

)−1
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Johansen’s Maximum Likelihood Procedure

and

Ω̂ (A)

=
1
n

n

∑
t=1

(
ût − B̂ (A)A′v̂t

) (
ût − B̂ (A)A′v̂t

)′
=

1
n

n

∑
t=1
ût û′t − B̂ (A)A′

1
n

n

∑
t=1
v̂t û′t −

1
n

n

∑
t=1
ût v̂ ′tAB̂ (A)

′

+B̂ (A)A′
1
n

n

∑
t=1
v̂t v̂ ′tAB̂ (A)

′

= Suu − 2SuvA
(
A′SvvA

)−1 A′Svu
+SuvA

(
A′SvvA

)−1 (A′SvvA) (A′SvvA)−1 A′Svu
= Suu − SuvA

(
A′SvvA

)−1 A′Svu
= Suu − SuvA

(
A′SvvA

)−1 (A′SvvA) (A′SvvA)−1 A′Svu
= Suu − B̂ (A)

(
A′SvvA

)
B̂ (A)′ .
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Johansen’s Maximum Likelihood Procedure

Substituting B̂ (A) and Ω̂ (A) into

ln L (Ω,A,B)

= −nm
2
ln 2π − n

2
ln |Ω| − 1

2

n

∑
t=1

(
ût − BA′v̂t

)′Ω−1 (ût − BA′v̂t) ,
we obtain

ln L (A)

= −nm
2
ln 2π − n

2
ln
∣∣∣Ω̂ (A)∣∣∣

−1
2

n

∑
t=1

(
ût − B̂ (A)A′v̂t

)′
Ω̂ (A)−1

(
ût − B̂ (A)A′v̂t

)
= −nm

2
ln 2π − n

2
ln
∣∣∣Ω̂ (A)∣∣∣

−1
2

n

∑
t=1
tr
{

Ω̂ (A)−1
(
ût − B̂ (A)A′v̂t

) (
ût − B̂ (A)A′v̂t

)′}
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Johansen’s Maximum Likelihood Procedure

or

ln L (A)

= −nm
2
ln 2π − n

2
ln
∣∣∣Ω̂ (A)∣∣∣

−n
2
tr

Ω̂ (A)−1
n

∑
t=1

(
ût − B̂ (A)A′v̂t

) (
ût − B̂ (A)A′v̂t

)′
n


= −nm

2
ln 2π − n

2
ln
∣∣∣Ω̂ (A)∣∣∣− n

2
tr
{

Ω̂ (A)−1 Ω̂ (A)
}

= −nm
2
ln 2π − n

2
ln
∣∣∣Ω̂ (A)∣∣∣− n

2
tr {Im}

= −nm
2
ln 2π − n

2
ln
∣∣∣Ω̂ (A)∣∣∣− nm

2

= C − n
2
ln
∣∣∣Suu − SuvA (A′SvvA)−1 A′Svu ∣∣∣

where C = − nm2 (ln 2π + 1).
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Johansen’s Maximum Likelihood Procedure

Step 3: From the concentrated log-likelihood function

ln L (A) = C − n
2
ln
∣∣∣Suu − SuvA (A′SvvA)−1 A′Svu ∣∣∣

it is clear that maximizing ln L (A) with respect to A is the same as
minimizing

ln
∣∣∣Suu − SuvA (A′SvvA)−1 A′Svu ∣∣∣

with respect to A. Moreover, note that from a standard result for
determinants of partitioned matrices, i.e.,∣∣∣∣ A11 A12

A21 A22

∣∣∣∣ = |A11|
∣∣A22 − A21A−111 A12∣∣

= |A22|
∣∣A11 − A12A−122 A21∣∣ ,
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Johansen’s Maximum Likelihood Procedure

Step 3 (con’t): we have that∣∣∣∣ Suu SuvA
A′Svu A′SvvA

∣∣∣∣ = |Suu |
∣∣A′SvvA− A′SvuS−1uu SuvA∣∣

=
∣∣A′SvvA∣∣ ∣∣∣Suu − SuvA (A′SvvA)−1 A′Svu ∣∣∣

from which it follows that∣∣∣Suu − SuvA (A′SvvA)−1 A′Svu ∣∣∣
=
|Suu |

∣∣A′ (Svv − SvuS−1uu Suv )A∣∣
|A′SvvA|

It follows that maximizing ln L (A) with respect to A is equivalent to
minmizing the objective function

Q (A) =

∣∣A′ (Svv − SvuS−1uu Suv )A∣∣
|A′SvvA|

with respect to A.
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Johansen’s Maximum Likelihood Procedure

To do so, we make use of the following lemma
Lemma: Let M be an m×m symmetric and positive semidefinite
matrix and let N be an m×m symmetric and positive definite matrix.
The function

Q (X ) =
|X ′MX |
|X ′NX |

is maximized (alternatlvely, minimized) among all m× r matrices
(with r < m) by X̂ = (x̂1, .., x̂r )(
alternatively, X̂ = (x̂m−r+1, .., x̂m)

)
and the maximal (alternatively,

minimal) value is

r

∏
i=1

λi

(
alternatively,

m

∏
i=m−r+1

λi

)
where λi and x̂i (i = 1, ...,m) are solutions of the generalized
eignevalue problem

Mx̂i = λiNx̂i .
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Johansen’s Maximum Likelihood Procedure

Here, λ1 ≥ · · · ≥ λm ≥ 0 can be obtained as the roots of the
determinantal equation

|λN −M | = 0

where x̂1, ..., x̂r are the associated eigenvectors.

Remark: We can also choose X̂ times any nonsingular r × r matrix as
the maximizing (alternatively, minimizing) argument. To see this, let

X̂ = argminQ (X ) = argmin
|X ′MX |
|X ′NX |

and let B is any nonsingular r × r matrix. Let

X̃ = X̂B.
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Johansen’s Maximum Likelihood Procedure

Remark (con’t): Then,

Q
(
X̃
)
=

∣∣∣X̃ ′MX̃ ∣∣∣∣∣∣X̃ ′NX̃ ∣∣∣ =
∣∣∣B ′X̂ ′MX̂B∣∣∣∣∣∣B ′X̂ ′NX̂B∣∣∣

=
|B |
∣∣∣X̂ ′MX̂ ∣∣∣ |B |

|B |
∣∣∣X̂ ′NX̂ ∣∣∣ |B | =

∣∣∣X̂ ′MX̂ ∣∣∣∣∣∣X̂ ′NX̂ ∣∣∣
= Q

(
X̂
)

so that X̃ also minimizes Q (X ).
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Johansen’s Maximum Likelihood Procedure

Now, in light of the lemma above, to minimize the objective function

Q (A) =

∣∣A′ (Svv − SvuS−1uu Suv )A∣∣
|A′SvvA|

,

we need to solve the (generalized) eigenvalue problem∣∣ρSvv − (Svv − SvuS−1uu Suv )∣∣ = 0
for the r smallest roots.
Moreover, set λ = 1− ρ and note that solving the above eigenvalue
problem is the same as solving the slightly modified eigenvalue
problem ∣∣λSvv − SvuS−1uu Suv ∣∣ = 0
for the r largest eigenvalues λ̂1, ..., λ̂r and the associated eigenvectors
x̂1, ..., x̂r which satisfy the equation

λ̂iSvv x̂i = SvuS−1uu Suv x̂i .
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Johansen’s Maximum Likelihood Procedure

Next, we impose that normalization

x̂ ′j Svv x̂i =
{
1 for i = j
0 for i 6= j

so that
X̂ ′Svv X̂ = Ir

From the equation

λ̂iSvv x̂i = SvuS−1uu Suv x̂i ,

we also see that

x̂ ′j SvuS
−1
uu Suv x̂i =

{
λ̂i for i = j
0 for i 6= j
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Johansen’s Maximum Likelihood Procedure

Hence,
X̂ ′SvuS−1uu Suv X̂ = Λ̂r = diag

(
λ̂1, ..., λ̂r

)
Let Âr = X̂ and note that

ln L
(
Âr
)

= −nm
2
(ln 2π + 1)− n

2
ln

 |Suu |
∣∣∣Â′r (Svv − SvuS−1uu Suv ) Âr ∣∣∣∣∣∣Â′rSvv Âr ∣∣∣



John C. Chao (Econ 721 Lecture Notes) September 26, 2022 127 / 141



Johansen’s Maximum Likelihood Procedure

so that

ln L
(
Âr
)

= −nm
2
(ln 2π + 1)− n

2
ln |Suu |

−n
2
ln


∣∣∣Â′r (Svv − SvuS−1uu Suv ) Âr ∣∣∣∣∣∣Â′rSvv Âr ∣∣∣


= −nm

2
(ln 2π + 1)− n

2
ln |Suu | −

n
2
ln

[
r

∏
i=1

(
1− λ̂i

)]
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Johansen’s Maximum Likelihood Procedure

It further follows that

L
(
Âr
)
= C ′

[
r

∏
i=1

(
1− λ̂i

)]−n/2

,

where
C ′ = (2π)−nm/2 |Suu |−n/2 exp

{
−nm
2

}
.
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Johansen’s Likelihood Ratio Test

Suppose we wish to test

H0 : cointegrating rank = r

versus
H1 : cointegrating rank > r

The likelihood ratio test statistic for testing the above null hypothesis
is given by

LR =
L
(
Âr
)

L
(
Âm
) = C ′

[
r

∏
i=1

(
1− λ̂i

)]−n/2

C ′
[
m

∏
i=1

(
1− λ̂i

)]−n/2
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Johansen’s Likelihood Ratio Test

Simplifying, we have

LR =

C ′
[
r

∏
i=1

(
1− λ̂i

)]−n/2

C ′
[
m

∏
i=1

(
1− λ̂i

)]−n/2

=

[
m

∏
i=1

(
1− λ̂i

)]n/2

[
r

∏
i=1

(
1− λ̂i

)]n/2

=

[
m

∏
i=r+1

(
1− λ̂i

)]n/2
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Johansen’s Likelihood Ratio Test

Johansen (1988) showed that, under H0,

−2 ln LR

= −n
m

∑
i=r+1

ln
(
1− λ̂i

)
= n

m

∑
i=r+1

λ̂i + op (1)

= tr

{[∫ 1

0
W (r) dW (r)′

]′ [∫ 1

0
W (r)W (r)′ dr

]
×
[∫ 1

0
W (r) dW (r)′

]}
where W (r) ≡ BM (Im−r ).
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Johansen’s Sequential Procedure for Cointegrating Rank
Determination

Johansen (1992) proposes estimating the cointegrating rank using a
sequence of likelihood ratio tests

Test H0 : r = 0
reject−→ Test H0 : r = 1

reject−→ · · ·
fail to reject ↓ fail to reject ↓

r̂ = 0 r̂ = 1

· · · reject−→ Test H0 : r = m− 1 reject−→ r̂ = m
fail to reject ↓
r̂ = m− 1
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Asymptotic Properties of the Johansen Sequential
Procedure

If all tests are performed using a fixed significance level α; then,
results given in Johansen (1992) show that his sequential procedure
produces an estimator r̂ of the cointegrating rank with the following
asymptotic properties

(i) Pr
(
r̂ = r0

)
→ 1− α as n→ ∞.

(ii) Pr
(
r̂ < r0

)
→ 0 as n→ ∞.

(iii) Pr
(
r̂ > r0

)
→ α as n→ ∞.

Here, r0 denotes the true cointegrating rank.
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Joint Estimation of Cointegrating Rank and VAR Lag
Order Using Order Selection Methods

Consider a family of the m-variate vector error correction models
(VECMs)

Mp,r : ∆Yt = BrA′rYt−1 + Γ1∆Yt−1 + · · ·+ Γp−1∆Yt−p+1 + εt

where

P = {0, 1, ..., p} , R = {0, 1, ...,m} ,
{εt} ≡ i .i .d .N (0,Ω) with Ω > 0.

Suppose we impose the à priori normalization

A′r
r×m

=

[
Ir
r×r

A
′
r

r×(m−r )

]
,

ForMp,r ,

# of free parameters = mr + r (m− r) +m2 (p − 1)
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Joint Estimation of Cointegrating Rank and VAR Lag
Order Using Order Selection Methods

The VECM can be estimated by the maximum likelihood method
from which we obtain the residual vector

ε̂t (p, r) = ∆Yt − B̂r Â′rYt−1 − Γ̂1∆Yt−1 − · · · − Γ̂p−1∆Yt−p+1,

Here,
B̂r , Âr =

[
Ir Â

′
r

]
, Γ̂1, ..., Γ̂p−1

denote, respectively, the maximum likelihood estimates of the loading
matrix, the cointegrating matrix, and the coeffi cient matrices of the
short-run dynamics.
Using the residual vectors, we can also define the maximum likelihood
estimate of the error covariance matrix Ω, viz

Ω̂ (p, r) =
1
n

n

∑
t=1

ε̂t (p, r) ε̂t (p, r)
′
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Joint Estimation of Cointegrating Rank and VAR Lag
Order Using Order Selection Methods

Chao and Phillips (1999) proposed jointly estimating p and r using
information criteria. In particular, the paper analyzed the large sample
properties of the following information criteria for estimating p and r .

(a) AIC (Akaike Information Criterion)
Criterion:

AIC (p, r) = ln
∣∣∣Ω̂ (p, r)∣∣∣+ {mr + r (m− r) +m2 (p − 1)} 2

n

Order Estimates:

(p̂AIC , r̂AIC ) = arg min
p∈P , r∈R

AIC (p, r)

where
P = {0, 1, ..., p} , R = {0, 1, ...,m}
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Joint Estimation of Cointegrating Rank and VAR Lag
Order Using Order Selection Methods

(b) BIC (Bayesian Information Criterion - also known as the Schwarz
Criterion)
Criterion:

BIC (p, r) = ln
∣∣∣Ω̂ (p, r)∣∣∣+ {mr + r (m− r) +m2 (p − 1)} ln n

n

Order Estimates:

(p̂BIC , r̂BIC ) = arg min
p∈P , r∈R

BIC (p, r)

where
P = {0, 1, ..., p} , R = {0, 1, ...,m}
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Joint Estimation of Cointegrating Rank and VAR Lag
Order Using Order Selection Methods

(c) PIC (Posterior Information Criterion)
Criterion:

PIC (p, r)

= ln
∣∣∣Ω̂ (p, r)∣∣∣+ m

n
ln
∣∣∣Û ′Û∣∣∣+ r

n
ln
∣∣Y ′2,−1Y2,−1∣∣

+
(m− r)
n

ln
∣∣∣B̂ ′r Ω̂ (p, r) B̂r ∣∣∣

= ln
∣∣∣Ω̂ (p, r)∣∣∣+ m

n
ln nr+m(p−1) +

r
n
ln n2(m−r ) +Op

(
n−1

)
= ln

∣∣∣Ω̂ (p, r)∣∣∣+ {mr + 2r (m− r) +m2 (p − 1)} ln n
n
+Op

(
n−1

)
Order Estimates:

(p̂PIC , r̂PIC ) = arg min
p∈P , r∈R

PIC (p, r)
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(c) PIC (Posterior Information Criterion)
Here,

Ût
[r+m(p−1)]×1

=


Â′rYt−1
r×1

∆Yt−1
...

∆Yt−p+1

 =

Y1,t−1 − Â

′
rY2,t−1

∆Yt−1
...

∆Yt−p+1

 ,

Û
n×[r+m(p−1)]

=


Û ′1
Û ′2
...
Û ′n

 and Y2,−1
n×(m−r )

=


Y ′2,0
Y ′2,1
...

Y ′2,n−1


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Asymptotic Properties:

(a) AIC:
p̂AIC

p9 p0 and r̂AIC
p9 r0 as n→ ∞

(b) BIC:
p̂BIC

p→ p0 and r̂BIC
p→ r0 as n→ ∞

(c) PIC:
p̂PIC

p→ p0 and r̂PIC
p→ r0 as n→ ∞
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