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Unit Root Processes - Introduction

@ Another approach to modeling trending behavior in economic time
series is to use what are called integrated processes, which must be
differenced in order to induce stationarity

o Definition: A series {X;} with no deterministic component which
has a stationary invertible ARMA representation after differencing d
times is said to be an integrated process of order d, denoted by

X~ 1(d).

See Engle and Granger (1987).

@ We will focus our discussion here primarily on / (1) processes (and
also on / (0) process) because they seem to be the most relevant for
applications in economics.
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Unit Root Processes - Introduction

o Consider an AR (1) process
YI‘ = th—l + us, t = 1, .o n

Under the assumptions that |p| < 1 and {u;} = i.i.d. (0,0?), the
asymptotic distribution of the OLS estimator p, of the autoregressive
parameter p is given by

Vn(p,—p) <, N (0,1—p*) asn— oo
@ This seems to suggest that for p = 1
Vn(p, —1) 2 0asn— oo

so that the rate of convergence of the OLS estimator p,, is faster than
\/n when the true parameter p = 1. It turns out that this intuition is
correct.
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Functional Central Limit Theorem (FCLT)

e To analyze the limiting behavior of p, in the unit root case, we need
to employ functional central limit theorems which are limit results on
partial sums considered as random elements on certain functional
spaces. The two functional spaces of interest are

@ C0,1] - space of real-valued continuous functions on the [0, 1]
interval.
@ D0, 1] - space of real-valued functions on [0, 1] which are right

continuous and have left limits (or CADLAG functions from the French
acronym continue a droite, limites 3 gauche).

e Clearly, C[0,1] C D0, 1].

@ We want to give these spaces a certain structure that makes them as
close as possible to (IR, de). This is achieved by endowing them with
metrics that makes them complete and separable.
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Functional Central Limit Theorem (FCLT)

e Cauchy sequence: A sequence {x,} of points in a metric space
(M, d) is a Cauchy sequence if for all € > 0, 3 N such that

d (Xn, Xm) < € whenever n, m > N.

@ A metric space (M, d) is complete if it contains all of its limit points
(i.e., the limits of all Cauchy sequences).

@ A subset A of a metric space M is said to be dense in M if each
point in IM can be “well-approximated" by points in A. Formally, A is
dense in IM if for each element m € M and each ¢ > 0, Jda € A such
that d (m, a) < e.

e A metric space (MM, d) is separable if it contains a countable dense
subset (i.e., it is well approximated by some countable subset).
Hence, a space is not separable if it contains a noncountable discrete
(points separated) subset. Separability is important because if it does
not hold then not all the Borel sets of the space are measurable.
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Functional Central Limit Theorem (FCLT)

@ It can be shown that C [0, 1] is complete and separable metric space
when endowed with the uniform metric

%U£)=£%HNO—gMLﬁgECNH-

e However, D [0,1] is not a separable metric space under the uniform
metric d,. This can be seen from the following example: consider the
set of functions

0 t<40
fe(t)Z{l i>g 0€l01).

Note that the set of functions {fy (t) : 6 € [0,1)} is uncountable, but
dy (fy. fy) =1V0 # 6,

so that the elements of this set are all a discrete distance apart.
Hence, (D[0,1],d,) is not separable.
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Functional Central Limit Theorem (FCLT)

@ Of interest to us is the (standardized) partial sum process
[nr 1

1 ]
Xn (r) = /n 2“] = ﬁs[nr]
J:

where [nr] denotes the integar part of nr (i.e., the largest integer

< nr), r €[0,1], and {u;} = 1(0). Note that, for all finite n, the

realizations of X, (r) are not continuous but are elements of D [0, 1].
o Example: n=3

0 for0<r<1/3

X (1) = n/V3 for1/3<r<2/3

(i +w) /3 for2/3<r<1
(U1+U2+U3)/\/§ forr=1
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Functional Central Limit Theorem (FCLT)

o Although realizations of X, (r) are not elements of D [0, 1], X, (r) can
be approximated by a random element of C [0, 1] via the interpolation

—LS +nr—[nr]
SV

Here, the jumps in (1/\/5) S[,,,] are eliminated by line segments that
connect the partial sums at each r = k/n for k =0,1, ..., n. Note
that for (k —1) /n<r < k/n,

X: (I‘) Ulpr]+1 eC [0, 1]

0<nr—|[nr] <1

so that

It follows that the asymptotic behavior of X (r) is the same as that
of X, (r).
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Donsker’'s Theorem

@ We now state a functional central limit theorem for partial sums of
i.i.d. sequences
Theorem 1: Suppose that {u;} = i.i.d. (0,02), 0 < 02 < o0; then,

. ]
X”U( ) \/1,02%3 W (r)=BM(1).

@ Here, W (r) denotes the Wiener process, or standard Brownian
motion, on C [0, 1]. Recall that W (r) is completely defined by its

properties

(i) W(0)=0;

(i) W(r)=N(0,r);

(i) W (s) is independent of W (r) — W (s) for 0 <s < r < 1;
(iv) W (r) has continuous sample path with probability one.
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Donsker’'s Theorem

@ Remark: Note that the Donsker’s theorem is obtained under the
same assumptions as the Lindeberg-Lévy central limit theorem. In
fact, the former contains the latter as a special case since setting
r =1, we have

X (1)
o f(f

ZuJ:>W( )= N(0,1).
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Continuous Mapping Theorem

@ To analyze estimators and test statistics associated with unit root
models, we need results that not only give us the limiting behavior of
partial sums but also that of continuous functional of partial sums.

e Theorem 2: Let h(-) be any continuous functional on D [0, 1]. If
X, (r) = B (r) on D[0,1],
where B (r) = oW (r) = BM (02). Then,
h(X,(r)) = h(B(r)).

e Example: Suppose that X, (r) == B (r); then,

/X dr:>/B( dr = h(B(r))

since the integral here is a continuous functional.
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Asymptotics for Integrated Processes with i.i.d.

Innovations

o Consider the simple / (1) process
Yi=Yi1+u, t=1,...,nm

To illustrate some of the basic ideas behind the asymptotics of unit
root processes, we will first show that

1 ¢ !
W;Ytﬁ/o B(r)dr asn— .

@ Remark: Note that, unlike a law of large numbers result for
stationary, weakly dependent processes; here, we have to divide by
n3/2 instead of n. Even so, this “average"

1 n
n3/2 t—Z:l Ye

does not stabilize to some population mean as n — oo but instead
goes to some random limit.
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Asymptotics for Integrated Processes with i.i.d.

Innovations

@ To proceed, write

t
Y: = ZUj—l-Yo:St-i—YoEl(l),

j=1
[nr] 1
Xn(r) = ZUJ 5[,,, e DI0,1]
@ Note that
0 for0<r<1/n
u/+\/n forl/n<r<2/n
X, (r) = (u1+U2)/ﬁ for2/n<r<3/n
(i1 +up+-- —I—Un)/\/ﬁ forr=1
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Asymptotics for Integrated Processes with i.i.d.

Innovations

@ Given that the realizations of X, (r) is a step function, it is apparent

that
t/n 1t1
/( Xy (r)dr ==Y uj/\/n= 3,2 o

t—l)/n nj—].
@ Now, define Sy = 0, and note that

ZYt = Zst1+ut+Y0]
= 3/22[ 3/25t—1:| —i—Zut—i-nYo
= 3/2Z|:/ dr}—i—Zut—i—nYO

3/2/ X, (F)dr + Y ue + n¥s
t=1
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Asymptotics for Integrated Processes with i.i.d.

Innovations

@ Hence, by the Donsker's Theorem and the continuous mapping
theorem, we have conditional on Y,

1 n
m;yt = /X dr+ 3/22Ut+7Y0
- /()X()dr+op(1)

1

= B(r)dr as n— oo.
0

where B (r) = oW (r) = BM (0?)
@ Similarly, one can show that

(]

n3/2ZYt:>/(;B(S)dS as n — 0.
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Asymptotic Distribution of the OLS Estimator

o Consider estimating by OLS the coefficient p of the AR (1) model
Y =pYi-1+ ug,

where the true value p, = 1 and where {u;} = i.i.d. (0,0?), with
0<0? < oo

@ The OLS estimator in this case is given by

~ 2:22 Yt—l Yt
P = r wa
Zt:2 Yffl

@ By the usual regression algebra, we can write the deviation of p, from

the true value as
n
Zt:2 Ye-1ue

ﬁn -1= n
Zt:2 Yt{l
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Asymptotic Distribution of the OLS Estimator

o It turns out that the rate of convergence of p, in this case is n, so
that, upon appropriate standardization, we obtain

— n
nt thz Yeo1ue
_ n 2
2 Zt:2 thl
@ We first examine the limiting behavior of the denominator on the
right-hand side of the expression above. Note that

n(p,—1) =

0 for0<r<1/n

uz/n for1/n<r<2/n

X2 (r) = (U1+U2)2/n for2/n<r<3/n
(U1+U2+"-+un)2/n forr=1
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Asymptotic Distribution of the OLS Estimator

e Given that the realizations of X2 (r) is also a step function, we can
write

o Next, write

n
Z Yt2—1 =
t=1

[ :|+2Y025t1+nyo

t

i
_ ;[/ )dr]+2YoZSt1+nY0
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Asymptotic Distribution of the OLS Estimator

@ so that

ny_l _ Z[/ " )dr]+2Y025t1+nY0
t=1

t

- n2/ X2 (r)dr+2Y0 Y. Ses + ¥
0 t=1

e Dividing by n? and conditioning on Yp, we obtain

1 & y?2
?;YE_I _ /x2 dr+2Y0225t1+ To

= /Oxs (r) dr + 0 (1)

== /()1[B(r)]2dr:(72/01[W(r)]2dr as n — 0.
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Asymptotic Distribution of the OLS Estimator

@ Next, to get a handle on the numerator on the right-hand side of the

expression
—1 n
n Zt:2 Ye-1ue

", -1 =R
Ve

we first write .
tf

Yie1=) uj+Yo=S5_1+Y
=1

@ Note that, conditional on Yj,
1 & 1Z
- 2 Yioiur = t—1Ur + Yo— 2 ut
ni= m=

t—1Ut + Op (1)

1 n
-) S
1 n
-) S
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Asymptotic Distribution of the OLS Estimator

@ Moreover, note that

2
S = (ZUJ)
j=1
n i—1

= Z“ +2ZZUJUI

=2 j=
= Z UJ-2 +2 25,-_1u,-
j=1 i=2
@ This, in turn, implies that
1

1 11, 184,
ni:Z;S,’_lul':z(nSn—nZUj)

j=1
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Asymptotic Distribution of the OLS Estimator

o It follows that

18 18
— Z Yt_lut = — Z St_lut -+ Op (1)
mi= mi=

—

where B (1) = cW (1) = N (0,02) and x? (1) denotes a Chi-square
random variable with one degree of freedom.
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Asymptotic Distribution of the OLS Estimator

@ Putting the pieces together and invoking the continuous mapping
theorem, we have that

nY L, Vet
n-? Z::2 Y,
(1/2)e* (x¥* (1) -1) _ (1/2) (x* (1) — 1)_

02/1 (W (r)]2 dr /01 (W (r)] dr

0

n@,-1) =
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Asymptotic Distribution of the OLS Estimator

o Note that the asymptotic distribution of n(p, — 1) is nonstandard
but nuisance parameter free, so that, at least in the case with i.i.d.
innovations, n(p, — 1) itself can be used as a statistic for testing the
null hypothesis

HO Py = 1

@ Observe also that the probability that a x? (1) random variable is less
than one is 0.68. since

1
/0 (W (r)]2dr >0 as.,

the probability of n(p, — 1) being negative approaches 0.68 as n
approaches infinity. Hence, in contrast to the stationary or stable
case, the limiting distribution of n(p, — 1) in this case is skewed to
the left.
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Extension to Integrated Processes with Serially Correlated

Innovations

@ We consider now an extension of the Donsker Theorem to cases with
serially correlated innovations based on the approach of Phillips and
Solo (1992). In particular, we want to establish a FCLT for partial
sums of a general linear process

@ Some Notations:

O Let L be a lag operator, so that Le; = ;1 and, more generally,
Uer =& ;.
@ Define

C(L)y=Y gl
j=0
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Extension to Integrated Processes with Serially Correlated

Innovations

o Consider the linear process

[ ]

ur = - (L) & = Z Ci€t—j
j=0

@ Assumption LP:
(i) {ee} =i.i.d.(0,0%),0<0? < o0

(i) Y Vilg| <o
j=0

e Remark: Note that the condition Z;io V/Jj|¢j| < oo is stronger than

absolute summability, i.e., Z;'io |¢j| < o0, so that Assumption LP(ii)
above requires faster decay in the coefficient ¢; as j — oo.

John C. Chao (Econ 721 Lecture Notes) September 26, 2022 26 / 141



Extension to Integrated Processes with Serially Correlated

Innovations

e Theorem (Phillips and Solo, Annals of Statistics, 1992): Under
Assumption LP,

where

is the long-run variance.
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Extension to Integrated Processes with Serially Correlated

Innovations

@ Rough Outline of Proof: By the Beveridge-Nelson (BN)
decomposition, we have that

C(L)y=C(1)—C(L)(1—L)

where
o0

C(L) = Y Gl/andg= Y o
=0 s=+1

We will give a more explicit derivation of the BN decomposition later,
but note first that, by making use of this decomposition, we can write
u = C(L)e
= C(1)er—C(L) (e —&r-1)
C(1l)er — (& —€—1)
where & = C (L) &;.
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Extension to Integrated Processes with Serially Correlated

Innovations

e Rough Outline of Proof (con’t): It follows that

1 [nr] 1 [nr] 1 [nr] N N
= C(l)ith—i (St_et—l)

= us
Vn t=1 n.= n=
[

Next, note that, by the Donsker Theorem (i.e., FCLT for i.i.d.

sequence),
1 [nr]
— Y ee=oW(r)=BM(c?).
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Extension to Integrated Processes with Serially Correlated

Innovations

e Rough Outline of Proof (con’t): Application of the continuous
mapping theorem yields

o]
C(1)in Y e = oC (1) W(r) = BM («?) .

t=1

Moreover, we can show that

S[n,} — & p
sup —0asn— o0
n

relo,1]

NG

from which it follows that
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Extension to Integrated Processes with Serially Correlated

Innovations

o Beveridge-Nelson Decomposition: An explicit derivation of the BN

- . ~ [ee)
decomposition can be given as follows. Let ¢; = Zs:jJrl Cs as

previously defined and write

C(L)

= iCjU
j=0

= ZCJ—ZCJ—F(ZQ—ZCJ')L—F(ZQ—ZCJ')LZ‘F“‘
j=0 j=1 j=1 j=2 Jj=2 j=3

= Y ¢g-Yqg-0=-YgLA-0)=) gl?(1—-L)—---
j=0 j=1 j=2 j=3

_ écj_izjua—uzc<1>—c<L><1—L)
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Extension to Integrated Processes with Serially Correlated

Innovations

o Lemma: Let C (L) = Zji
()

OEJ-LJ and ¢; = Zoo i1 © . Then,

Mg

EJ < o0 |fz\/|cj|<oo

0

J

(b)

Mg

|CJ| < oo if ZJ|CJ| < 00,
j=0

.
I
o
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Phillips-Perron Unit Root Test

@ Consider the time series model
Ye=a+pYio1 + ug,

where {u;} follows a linear process, i.e.,
(o]
ug = C (L) & = Z ngt—j
j=0

@ Assumptions:
(i) {et} =i.id. (0,02), where 0 < 02 < oo
(e )

(i) Y Vilg| < oo
j=0
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Phillips-Perron Unit Root Test

@ Suppose we wish to test the null hypothesis
Hy:a=0p=1
versus the alternative hypothesis
Hi:a>0, |p| <1
@ Remark: Note that, for the model studied here, i.e.,
Ye=a+pYio1 + ug,

the regressor Y;_1 is correlated with the error u; since u; is serially
correlated. Ordinarily, in models involving I(O) variables, the OLS
estimator of the regresssion coefficients will be inconsistent in this
case, and we will be looking to estimate this model by some
instrumental variable (IV) methods. However, we will see that, in the
I (1) case, OLS will still be consistent, and this fact was exploited by
the Phillips-Perron approach to this problem.
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Phillips-Perron Unit Root Test

@ The Phillips-Perron approach in this setting is to proceed by first
analyzing the limiting distribution of the OLS estimator of p under
Ho. As we will see, the OLS estimator of p will still be consistent
under the unit root null hypothesis but will have an asymptotic
distribution that is not nuisance parameter free. Hence, the
Phillips-Perron appoarch involves modifying the usual test statistics
so that the resulting test procedure will be asymptotically similar, or
nuisance parameter free.

@ To consolidate notations a bit, write
Yi = a+pYei1tu
= X,B+ut,

where X; = (1, Y;_1) and B = (a,p)’. Also, let Bn = (@,p0,),
where &, and p, are the OLS estimators of « and p, respectively, and
let B, = (ao,po)/ = (0, 1)' be the value of a and p under Hp.
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Phillips-Perron Unit Root Test

@ Using these notations, we have, by the usual regression algebra, that
under Hy

Bn_‘BO - (/p\nail>

n -1 n
n 2 Yi1 E Ut
— t=1 t=1
n n n
Z Vi1 Z Yt271 Z Yi-1Ut
t=1 t=1 t=1
n -1,
= ( XtXt/> Z XtUt
t=1 t=1

@ It turns out that the proper standardization in this case is to
premultiply B, — B, by the diagonal matrix

n 0
o= (%" )
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Phillips-Perron Unit Root Test

@ Hence,
(ot )
n(p,— 1)
= D <Bn - :BO>
~1
= (Dnl ZXtXl{Dn]-) D;l ZXtUt
t=1

t=1

n -1 n
1 n—3/2 Z Yi_1 n~1/2 Z Uz
— t=1 t=1
- n n n
—-3/2 -2 2 -1
n / E th]_ n E Yl’—l n Z th]_ut
t=1 t=1 t=1
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Phillips-Perron Unit Root Test

@ The results of Phillips (1987) and Phillips and Perron (1988) show
that the following convergence results hold jointly

1 & 1
m;\/tf]_ — CU/O W (r)dr

1 ¢y 2 [ 2

? Z Yt—l — W /0 [W r

Zut = wW (1) =N (0,w?),

g

, nlyr e = @2 -] = S ) ).

=

o 2
where w? = 02C (1)* = ¢ (ijo cj) (long-run variance) and

Yo = E [uf] =07 Ejio Cj2'
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Phillips-Perron Unit Root Test

@ By the continuous mapping theorem

(n(\ﬁ/,,ﬁ?nl)> — /01 1 r) dr ww//[W
g ( %[w;;c?zl()l)— o) )

as n— o
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Phillips-Perron Unit Root Test

o |t follows by elementary calculations that, as n — oo,
1
L w2 (1) = 7o —w2W(1)/0 W (r) dr

w2{/01[W(r)]2dr— (/01W(r)dr>2}

3 X (1) =7/ =W (1) /01W(r) dr

[wepa—([wea)

N, 1) =
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Phillips-Perron Unit Root Test
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Phillips-Perron Unit Root Test

e Remark 1: Note that in the special case where C (L) = 1, we have
ur = &, so that {u;} =i.i.d. (0,(72). Moreover, in this case,

w? =02C(1)> =02 and 7y = E [v?] = 2.
Hence, from previous results, we know that, in this case,
10,2 '
L2 (1) —1] - W(l)/0 W (r) dr

wRa ([ wi dr)2

n(p\n_]'):>
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Phillips-Perron Unit Root Test

e Remark 1(con’t): It follows that the second term

3 (@ =) /@

/Ol[W(r)]zdr— </01W(r)dr>2

is a second-order bias due to the serial correlation in the process
{ur}. As mentioned before, unlike in the / (0) case, p, is consistent
even in the presence of serial correlation in u:, and the effect of this
serial correlation shows up only as a second-order bias.

@ Remark 2: Note also that, unlike the case with i.i.d. innovations,
n(p, — 1) cannot be used directly as a statistic for testing the unit
root null hypothesis since its asymptotic distribution now involves the
nuisance parameters w? and 7,, whose true values are in general
unknown.
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Phillips-Perron Unit Root Test

e Remark 3: We can estimate 7, = E [u?] consistently using the

estimator
1

n
~2
n—2t§1ut

where Uy = Y; — &, —p, Y;—1 is the OLS residual.

2 __
S, =
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Phillips-Perron Unit Root Test

o Estimation of Long-Run Variance: To consistently estimate w?,
note first that

w? = ?C(1)?

= E[uf]+2) Elueve ]
j=1

= 'Yo+22’)’j
=1
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Phillips-Perron Unit Root Test

e Remark: Note that w? depends on an infinite number of unknown
parameters, i.e., g, Y1, V2, -... Realistically, with finite data, we
cannot hope to estimate an infinite number of unknown parameters.
However, we could pursue a strategy where we try to estimate a finite
number of 7y;'s and consider an estimation framework where we allow
the dimension of the parameter space to increase as sample size
increases.
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Phillips-Perron Unit Root Test

o Newey-West Estimator: We can estimate w? using an estimator

proposed by Newey and West (1987), which in the special case we are
dealing with here has the form

) q(n) j
o ; g(m+1] 7
where
- I & .
’)/J: ; 2 Utut,j fOrj:O,l.---yq(n)-

t=j+1

@ For the unit root testing problem, Phillips (1987), under some
additional conditions, show that

q(n)
Y7 0.

£ w? if g(n) — o as n — o such that
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Phillips-Perron Unit Root Test

e Remark: One might think that a natural estimator for w? is

)
=% t+2) 7
j=1

Q
—~
3>

However, it turns out that while @> will be consistent under some
conditions, it is not necessarily non-negative in finite sample. On the
other hand, the Newey-West estimator @2 is guaranteed to be
non-negative as we will show below.
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Phillips-Perron Unit Root Test

o Non-negativity of @*: Also, define

Ut —q(n)+1
Ut—q(n)

where U4 =0 for j =n+1,...,n+q(n) and
j=—q(n)+1,..,—1,0.

@ Also, define
n+q

Z UeaU;

=)
||
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Phillips-Perron Unit Root Test

o Non-negativity of @ Itis easily check that, under the above
definition for I', we have

?O ?1 T ?q(n)—l ,A)/q(n)
T Yo ?q(n)—l
P -
?q(n)fl ?1
,)/q(n) ,)/q(n)—l T T Yo

where
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Phillips-Perron Unit Root Test

° Non negatwnty of aJ Moreover, note that
n~1 Znﬂ Ut qU is positive semidefinite. Hence, let ¢ be an
( ( )+ 1) x 1 vector of ones, i.e., t=(1,1,.., 1)/, and we have that

/T
ETOES
1 ~ ~ ~
= q(n)H{(q(n)+1)’yo+2q(n)ryl+...+27q(n)}
q(n)
_ q(n;H{(q(n)+1)%+2;[(q(n)+1)—jmj}

- n j -
= 42 1——J |35
T2 ), [ q<n>+1] g
&\)2
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Phillips-Perron Unit Root Test

o Modified Test Statistic for Testing the Unit Root Null

Hypothesis:
First, define
1 n R 2
Sr21 - — 2 ﬁ?, Uf) - n Sn — 2
" t=1 thz (Yt*1 - Yfl)
q(n) : =
~2 ~ J Pn— 1
w: = +2 1-— ,and T, = —-
"o Z[ q<n>+1h "5
where

n

- PO - 1
Ue = Ye =8 —p,Ye-rand Yo = — Z; Y1
t—=

September 26, 2022
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Phillips-Perron Unit Root Test

o Modified Test Statistic for Testing the Unit Root Null
Hypothesis (con’t): Phillips and Perron (1988) proposed the
following modified test statistics, which are designed to remove the
effect of the second-order bias in the asymptotic distribution of the
OLS estimator

~ 1[5 [
z, = n<pn—1>—2( sgp)(cf—ss)
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Phillips-Perron Unit Root Test

o Modified Test Statistic for Testing the Unit Root Null

Hypothesis (con’t): In addition, Phillips and Perron (1988) showed
that, under Hp : o, = 1,

N[—=

W -1-w) [ Wi
/OI[W(r)]2dr— (/Olvv(r)dr>2

TP —1] - W(l)/01W(r)dr

\// dr—(/01W(r)dr>2

e Remark: Note that, unlike the asymptotic distribution of n(p, — 1)

these two modified test statistics have asymptotic null distributions
that are free of nuisance parameters.

Z, —
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Augmented Dickey-Fuller Test for Unit Root

@ Dickey and Fuller (1979) approaches the problem of testing for a unit
root by by specifing an AR (p) model

(1=gsL=gpl? = =g, L7) Vi= (L) Vi =&

or
Ye=¢ Vi1t P, Ve 2+ +(Ppyt7p+8t

where {¢;} = i.i.d. (0,02?).
@ Define
po= it Tt
gj = —<¢j+1+---+(pp> forj=1,...,p—1
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Augmented Dickey-Fuller Test for Unit Root

o |t follows by essentially the Beveridge-Nelson decomposition for
finite-order lag polynomial that we can write

1= L=yl —- - — ¢ [P

= 1= [(er et +9,) (9 ++0,)|L
S S P
e {_¢p+ (4’;,71 +¢p)} Pt ¢ 1P

= 1_[p+€1]L_[C2_Cl]L2_”'_[€p71_€p72]Lp_1
+€pfle
LGl 1)~ - g P (1 D)

= (L—pl) = (Gl+- -+ L) (1-1)
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Augmented Dickey-Fuller Test for Unit Root

@ Given this decomposition, we can rewrite the AR (p) model as
[(L=pL) = (Gl 4T, P (1= 1)] Vi = &

or
Ye=pYi1+AY 1+ -+, 1 AYpr1 e

@ To see why this transformation of the AR (p) model yields a useful
representation for unit root testing, suppose that the pt" order
polynomial equation

1_4)12_4)222_..._¢pzp:0

contains a single unit root, and all other roots are outside the unit
circle. Then, by the fact that z =1 is a root, we have

L=g1=p ==, =0
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Augmented Dickey-Fuller Test for Unit Root

L=+t g,=p
Hence, by rewriting the model in this way, we have transformed a null
hypothesis about the root of a pt"-degree polynomial to a hypothesis
which imposes a simple restriction on a single parameter p. The latter
is obviously much easier to test.
@ Moreover, under the null hypothesis that p = 1, we have

L= 12— ¢,2" = = 9,2
= (1—2)—(Gyz+---- +Cp_1zp_1) (1-2)
= (1—512— e —Cp,lzpfl) (1—2z),
so that it must be true that all roots of the equation
1-Ciz—---- —ép_lzp_l =0

are outside the unit circle.
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Augmented Dickey-Fuller Test for Unit Root

@ Furthermore, we can write

(I—=gL—- =0, P (1=L) Y, =&
or
(1 —gL—-- —§p_1Lp_1) AY, = ¢
@ Given that all roots of the polynomial equation
1—Cyz—--- _gp_lzpfl =0

are outside the unit circle, we can invert the lag polynomial to obtain
the moving-average representation

AY, = (1-gL—- =g, P ) e
= ¢(L)e
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Augmented Dickey-Fuller Test for Unit Root

@ Recall that the Phillips-Perron setup considered the equation
Yi=pYi-1+ ut
where .
uy — C (L) & = Z ngtfj
j=0
Hence, under Hp : p = 1, we have
Ye = Yi—1+ u;

or
[ee]
AYt = Uy = Z ngtfj
Jj=0
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Augmented Dickey-Fuller Test for Unit Root

@ Comparing the Dickey-Fuller setup with the Phillips-Perron setup, we
see that, under Hp,
(i) the Dickey-Fuller model has the moving-average representation

AYy = ¢ (L)e
-1
— (1—C1L—----—Cp,1Lp*1) &
which depends on a finite set of unknown parameters (y, ..., Cp—ly

whereas
(i) the Phillips-Perron model has the moving-average representation

)
Ayt = ur = Z cjet,j
Jj=0

which can potentially depend on an infinite number of unknown
parameters ¢y, ¢1, €9, ...
@ It is in the sense that one may consider the Phillips-Perron framework
for unit root testing to be more general.
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Augmented Dickey-Fuller Test for Unit Root

@ Now, consider again testing the null hypothesis
Hy:a=0 p=1

Versus
Hi:a>0, [p| <1

@ To implement the augmented Dickey-Fuller test in this case, one
would first estimate the parameters of the regression

Ye=a+pYi1+0AY a1+ + 0 1AY e pr1 T &

by OLS.
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Augmented Dickey-Fuller Test for Unit Root

o It turns out that the OLS estimator p,, obtained from running the
regression above, has the following large sample property under Hy

Hem -1 -w [ w

Aﬁwvﬂm—(éwuwﬂ

YL =1= ==

n(p,—1) = ¢(1)

where
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Augmented Dickey-Fuller Test for Unit Root

o It follows, by the Cramér Convergence Theorem, that under Hy

D é[x2<1>—1]—w<1>/01w<r>ir
1=~ —py /01 W ()2 dr — (/01W(r) dr>

where Zl, ..... Zp_l denote OLS estimators of the parameters

Civeon Cpot-
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Augmented Dickey-Fuller Test for Unit Root

@ Moreover, the t-statistic, under Hp, has the following asymptotic
distribution

L2 W(l)/01W(r)dr

\// dr—(/OIW(r)dr>2

@ Hence, both the T, statistic and the statistic

R

have asymptotic null distributions that are free of nuisance parameter.
Hence, both statistics can be used to implement a test of the unit
root null hypothesis.
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Spurious Regression

o Consider the m x 1 vector / (1) process
Ye=Yi14+u, t=1,.

where {u;} follows a general linear process, i.e.,

Y (L)e = Z‘I’ €r_j.

@ Assumptions:

) {&:} =1i.i.d.(0,%), where X, > 0 (i.e., X, is positive definite);
(i) maxi<k<m E (€f,) < o0

(i) 7 1% < oo
j=1

(iv) ¥ (1) is nonsingular (as we will see, this is an assumption of the
absence of cointegration)
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Spurious Regression

o Multivariate Partial Sum Process: A multivariate extension of the
partial sum process can be defined as

1 [nr]
= — ui € D0, 1]™
) N [0, 1]

where D [0,1]™ is a product space of m copies of D [0, 1].
@ One can show that the vector linear process

ur = b4 (L) &t = Z‘Fjef—j
j=0

Xn (r

under Assumptions (i)-(iv) satisfies a multivariate FCLT, so that, as
n — oo,
Xy (r) = B(r) = BM(Q)
where
Q=Y (1)Z.¥ (1)

is the long-run covariance matrix.
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Spurious Regression

e Remark: Observe that, under Assumptions (i) and (iv), Q > 0.

@ To consider the phenomenon known as “spurious regression",
partition the random vector Y; as follows

Vit

Y,=| U | =11
‘ Yot (1)
gx1

where g = m — 1. Also, partition B (r) and Q) conformably with
/ /
Yi=(yir Y3 ) as

) el

B(r) = * , O = x 8
(r) B> (r) wor O
gx1 gx1l gXxg
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Spurious Regression

@ Consider the least squares regression
-~/ ~
Yie = 5,, Yor + V¢

@ Note that, if wp; = 0, then the variables yi; and Y5; have stochastic
trends but are unrelated in the long run. Indeed, in the prototypical
Granger-Newbold spurious regression setup examined in Granger and
Newbold (1974), {u:} = i.i.d.N (0, I,) are unrelated at any
frequency. Hence, in these cases, one might expect that Bn will
converge in probability to a zero vector. However, that turns out not
to be the case. In fact, even if wy; # 0, the relationship between the
series is not in general strong enough to permit Bn to converge to any
constant value.
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Spurious Regression

@ More precisely, it can be shown that

el )
(/ B, (r) By (r ) /B2 ) dr.
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Spurious Regression

@ In addition, let

and it can be shown that

2 1

% = /[Bl(r)] dr
</Bl ) B (r (/Bg ) By (r dr)1
x/o B, (r) Bi (r) dr)
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Spurious Regression

@ Thus, s? diverges as n /' 0o; more precisely,
s’ = 0p (n)

Intuitively, this is because V; = / (1) in this case.

1
n 1
(Z Y2tyzlr> = 0p (nz>

t=1

@ Moreover, since

It follows that
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Spurious Regression

@ Hence, in this case,

-1
n
72 = §2 (Z YgtYQ’t> L 0asn— o
Bi —
t=1 .
1
@ An important consequence of this is that

o~

T, = =L diverges with probability approaching one.
7B,
@ The above result holds even if wy; =0 and {u;} = i.i.d.N (0, /) as
in the original Granger-Newbold spurious regression setup. Hence,
even if y1;+ and Y5; are unrelated at any frequency, testing the null

hypothesis Hp : B; = 0 using the usual t-statistic might nevertheless
give a false sense of regression significance.
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Cointegration

@ Consider an m x 1 vector time series Y; such that
Ye=1(1).

Y: is said to be cointegrated if there exists at least one nonzero (and
nonrandom) m x 1 vector a such that

a/Yt = I(O) .

In this case, a is called a cointegrating vector.

@ Remark: For simplicity, consider first the case where m = 2.
Intuitively, cointegration in this bivariate system means that the two
components of the random vector Y; = (Yi, th)/ share a common
stochastic trend. By taking linear combination with respect to a
cointegrating vector, this common stochastic trend is elminated or
annihilated, so that

dai Ylt + an th =1 (0)
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Cointegration

e Remark (con’t): In fact, if a; # 0, i.e., the cointegration is
nontrivial, then we can normalize by dividing through by a; to obtain

a
Y1t+;jY2t =u =1(0)

or
Yie = BYor + ut

where
2

-2

1

Hence, with appropriate normalization, cointegration relationship can
be reframed as a regression relationship. However, note that, unlike
spurious regression, here u; = 1 (0).
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Cointegration

e If m > 2, then there may be more than one (linearly independent)
cointegrating vectors. Hence, we define the cointegrating rank as the
number of linearly independent cointegrating vectors in a multivariate
system.

@ More precisely, suppose that
A= (a1, ..., ar)
is an m X r matrix with rank r < m such that
A'Yy =1(0),
and suppose further that
avYy=1(1)

for any other m x 1 vector a that is linearly independent of the
columns of A, then we say that the cointegrating rank is r.
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Cointegration

o Note that the cointegrating vectors (a1, .., a,) are not unique since if
AY, =1(0);

then,
bAY, =1(0),

for any nonzero r X 1 vector b. Hence, d = Ab is also a cointegrating
vector.

@ Note that in the case where the cointegrating rank = m; then, Y;
must itself be / (0) as well, since in this case

AYy=u =1(0)
and A is an m X m nonsingular matrix, implying that

Y= (A) 7w =1(0).
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Cointegration

@ An interpretation for cointegration may be given as follows. Suppose
that
AI Yt - O

describes some long-run “equilibrium" relationship. Then,
A/Yt = U = /(0)

measures the “equilibrium error" or the extent that the system is out
of equilibrium. We would then expect this error to be / (0).
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Cointegration

o Restrictions Implied by Cointegration: Consider the m x 1 vector

process
Ayt = ]/l‘{‘"F(L)gt

where A =1 — L is the first difference operator and where
{&:} = i.id.(0,QQ), Q>0and

Y (L) = Y ¥l with ¥o = /In.
j=0

We want to show that, for A'Y; to be / (0), it must be true that

(i) A¥ (1) =0 and (ii) A'u = 0.
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Cointegration

@ To proceed, note first that, by the Beveridge-Nelson decomposition,

we have N
Y()=¥(1)-F(L)(1-1),
where -
¥ (L) =Y YU with ¥; = Z Y.
j=0 s=j+1

We assume that Z;OZO VI Y|l < oo which implies that
o [~ |12
ZJIO H‘YJH < 0.
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Cointegration

@ Given this setup, we can write

AY; = u+Y(L)g
pAY(1)eg—F(L)(1-L)g
= p+Y W)y —F (L) (g —g1)
p+¥(1)e — (& —%-1)

where & = ¥ (L) g;.

@ Summing both sides of the above equation from j = 1 to t, we get

or

t
Y:— Yy = yt+‘I’(1) Zﬁj — <Et —Eo)
=1
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Cointegration

or

Yi=Yo+ut+¥(1 ZeJ (2: — %)

From the above equation, it is apparent that the nonstationary
components of Y; come from
(i) the linear trend term: ut and

t

(ii) the stochastic trend term: ¥ (1) Zj:l g
Premultiplying the above equation by A’, we get

t
AY,=AYo+Aut+AY (1)) ¢ — A (8 — %)

from which it is apparent that for A'Y; to be /(0), it must be that

A'Y (1) = 0 (stochastic cointegration restriction)

A'u = 0 (deterministic cointegration restriction)
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Cointegration

@ Remark: Note also that
AY (1) =0
implies that
¥ (z)| =0whenz=1

i.e., z=1is a root of the determinantal equation |¥ (z)| = 0.
Hence, ¥ (z) is noninvertible. This, in turn, implies that a
cointegrated system cannot be represented by a finite order vector
autoregression in the first differenced data AY;.
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Cointegration

o Additional Restrictions Implied by Cointegration: Note that,
although a VAR in first differences is not compatible with a
cointegrated system, a VAR in levels could be. Now, suppose that
vector moving average process

AYy =pu+9(L)¢e
has a VAR representation in levels, i.e.,
Yi=a+P1 Y1+ -+ P,V p+ &
More succinctly, we can write
O(L)Yi=a+e

where @ (L) = Iy, —P1L— - — D, LP.
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Cointegration

o Additional Restrictions Implied by Cointegration (con’t):
We want to show that if the cointegrating rank equals r, then, it
is possible to write

® (1) = —BA" (i.e., (1) is of reduced rank)

where ® (1) = I, — P — - - - — P, where A (m x r) is the
cointegrating matrix and where B (m x r) is called the loading
matrix.
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Cointegration

@ To show this, we first multiply both sides of
AYy =pu+Y(L)e
by @ (L) to obtain
1-LDPL)Y:=2(L)u+d (L)Y (L)e:

Now, substituting the right-hand side of the equation
® (L) Y: = a + ¢ into the equation above, we get

(1-L)(a+e)=2L)u+P(L)Y (L) e

" (1—L)ee=d1)p+® (L)Y (L)e

since (1—L)a =0.
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Cointegration

@ Since the above equation must hold for all realization of ¢, this

suggests that
P ()pu=0

and
(1=2)In=P(2)¥(2)

for all z = e with —r < w < 7. In particular, for w =0 or z = 1,

we have
P(1)¥(1)=0

Let ¢! (1 x m) be the i" row of @ (1); then,
gip = 0,
¢t (1) =

so that ¢, is a cointegrating vector.
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Cointegration

@ Let the cointegrating rank equals r and let a1, ..., a, form a basis for
the space of cointegrating vectors, then there exists a r X 1 vector b}
such that

(PI- = (al,..,a,)b?‘
A b

errxl
@ Doing this for all rows of ® (1), we have
<I>(1)' = (¢g, . p,) = A(b}, ... b)) = AB*

or
@ (1) = B*A = —BA,

where B = —B*,
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Vector Error-Correction Model (VECM)

o Consider the VAR(p) model

Ye=a+P1Ye1+ -+ DY p+ &

where {&;} =i.i.d. (0,Q) with QO > 0.
@ Using a Beveridge-Nelson type decomposition of the matrix

polynomial ® (z) = I, — Pz — - - - — P,zP, we can rewrite this VAR
model as

Ye=a+HY; 1 +T1AY 1+ -+ T 1AY_pi1 + &,

where

r. - —d, fori=p—1
! —[®Pip1+- -+ Dy fori=1,..,p—2
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Vector Error-Correction Model (VECM)

@ Subtracting Y;_1 from both sides of the equation
Yi=a+HY; 1 +T1AY 1+ -+ T 1AYpi1 + &,
we further obtain
AYe =a+ 11V +T1AY o1 4+ - + T p1AYepy1 + &,
where

1 = H—I,
= (P14 +Dp) —In
= —o()

o If there are r linearly independent cointegrating relations (i.e., if the
cointegrating rank = r), it follows from our previous result that

I1=—®(1) = BA.
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Vector Error-Correction Model (VECM)

@ Imposing this reduced rank restriction, and we have arrived at the
vector error-correction representation

Ayt = + BA/YI—_]_ +rlAYt—_1 + ctt + rp_lAYt_p+1 + Et,

@ Remark (i): In the case where A is known, all regressors on the
right-hand side of the vector error-correction model given above are
1(0).

e Remark (ii): Note also that, in the error-correction representation
given above, the change in Y; (i.e., AY}:) depends not only on its
lagged values but also on the magnitude of the “equilibrium error"
AY; 1.
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Vector Error-Correction Model (VECM)

e Remark (iii): In the absence of additional restrictions (or
normalization), B and A are not separately identified since, for any
nonsingular r X r matrix F, we have

BA' = (BF) (F'A') = BA

where B = BF and A = AF'~!. That is (B, A) is observationally
equivalent to (B, A) in the sense that they would give rise to the
same value of the likelihood function.

e Remark (iv): In practice, a normalization that is often used to
achieve identification is to set

)

rxm rxrrx(m=r)

/

Partition Y; conformably, we get

Ylf
Yt _ rXx
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Vector Error-Correction Model (VECM)

e Remark (iv) (con’t): It follows that, under this normalization, we
have

Yie

AY,=[1 -T =Yie—-IYe=u=1(0
= ln T | e ra—w=10
or

Y1t = I'Yo: + u;y (a multivariate regression representation)

This is known as Phillips” Triangular Representation (cf. Phillips,
1990).
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Vector Error-Correction Model (VECM)

e Remark (v): In the case where the cointegrating matrix A is not
known, it can be shown that the usual estimators of A (OLS or ML)
will be super-consistent in the sense that the convergence rate will be
n instead of 1/n, provided that A can be identified by the
normalization restriction discussed earlier. Hence, one can envision a
two-step procedure where one first gets an estimate of A, say
A= [ l, —T } by running the regression

Yie =TYor + uy

and then plug this estimate into the VECM specification and then
estimate the remaining parameters by running the second-stage
regression

AYy=a+BAY, 1 +T1AYe 1+ +Tp 1A pp1 +2,
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Vector Error-Correction Model (VECM)

@ Rewriting the vector error-correction model
AYy =a+BAY; 1 +T1AY 1+ -+ Tp1AYepi1 + e,
as
AY; —T1AYi1 — - —Tp1AY pr1 =a+ BA Y1 + &
and taking expectation on both sides of the above equation, we get
(I =Ty =+ =Tpa)p=a— By
where i = —E [A'Y;_1] and p = E[AY}]. (Recall that
AYy =u+Y (L)e).
@ Since the roots of
‘Im —Tyz—--- —Fp_lzpfll =0
are all outside the unit circle, i.e., z =1 is not a root of the

determinantal equation given above, it follows that
(Im—T1—---—=Tp_1) is invertible.
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Vector Error-Correction Model (VECM)

@ Hence, we can write
p=(n—T1—---=Tp1)"" (= Byj)

where i = —E [A'Y;_1] and yu = E[AY}]. (Recall that
AY: = u+Y(L)e). It follows that, for this system to have no drift
in any of the variables (i.e., = 0), we would have to impose the
restriction

a = Byj.

Otherwise, there are potentially m — r separate time trends in Y;.
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Testing the Null Hypothesis of No Cointegration

@ Suppose that Y; = /(1) but suppose that economic theory suggests
mx1

that the possible existence of a particular cointegrating vector a v
mX

(Note that, here, a is a known vector) In this case, the null hypothesis
of no cointegration can be tested in a straightforward manner as
follows:

Construct u; = a'Ys.

Test the null hypothesis that u; = /(1) using either the
Phillips-Perron test of the augmented Dickey-Fuller test.

If the null hypothesis that u; = I (1) is rejected; then, there is
evidence in favor of cointegration. Otherwise, one finds evidence for
an absence of cointegration.
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Testing the Null Hypothesis of No Cointegration

e Example - Testing Purchasing Power Parity (PPP): This theory
asserts that apart from transportation cost, goods should be sold for
the same price in two countries. To be more specific, let

P: - index of price level in U.S. (in dollars per good)
P;- index of price level in the U.K. (in pounds per good)

S; - rate of exchange between the two currencies (in dollars per pou
Under PPP, we would have
Pt - S.t—F)E,k

so that, upon taking a logarithmic transformation on both sides of the
above equation, we get

InPy =1InS; +In P;.

John C. Chao (Econ 721 Lecture Notes) September 26, 2022 98 / 141



Testing the Null Hypothesis of No Cointegration

e Example - Testing Purchasing Power Parity (con’t): However,
since in practice various reasons (such as errors in measuring prices,
transportation costs, and differences in quality) prevent PPP from
holding exactly in every time period t, a weaker but empiricallly more
plausible version of PPP may be formulated as

InP;—1InS; —InP; =u =1(0),

i.e., In P, InS¢, and In P} are cointegrated with cointegrating vector
a=(1-1, —1)/. Given data on P;, S¢, and P;; the sequence {u;} is
an observed time series, so one can test the null hypothesis that

ur = 1 (1) (i.e., the weak form of PPP does not hold) versus the
alternative hypothesis that u; =/ (0) (i.e., the weak form of PPP
does hold) using either the Phillips-Perron test or the augmented
Dickey-Fuller test.
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Testing the Null Hypothesis of No Cointegration

o Case 2- Cointegrating Vector Must Be Estimated: Consider now
the case where the true value of the cointegrating vector is unknown
and must be estimated. More precisely, let {Y;} denote an m x 1
vector time series such that Y; =/ (1). Partition Y; as follows

Yit

Yt — 1x1
Yor

gx1

and consider the time series regression
!/
yit = B Yor + v
Note that we would expect that

ve = 1(0) if Y; is cointegrated
ve = [(1) if Y; is not cointegrated
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Residual Based Tests of Cointegration

@ Hence, it seems that we can design a test for cointegration based on
estimating the regression

Yit = ,Bly2t + v;

and then testing the residual process

—~ A/
Vi = Yit — ,Bn Yor

for the presence of a unit root using either the Phillips-Perron test or
the augmented Dickey-Fuller test. Here, Bn denotes the OLS
estimator of B in the regression above. One complication with this
test strategy is that, under the null hypothesis, vi = /(1) (i.e., Y is
not cointegrated), so that we have a spurious regression situation. As
we have discussed previously, in this case, Bn is not a consistent
estimtor of any population quantity and V; is also not a residual in the
ordinary sense.
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Residual Based Tests of Cointegration

@ It turns out, however, that the Phillips-Perron test and the
augmented Dickey-Fuller test can still be applied in this situation but
the asymptotic critical values are different from those used in the
usual applications of these tests.

@ To implement the Phillips-Perron test, we estimate the regression
/\71» = p’\?hl + €¢, t= 2, L Ny

from which we obtain the OLS estimator

Zn ~ o~
p—p Vt—1Vt

ﬁn = n ~2
Zt:2 Vi1
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Residual Based Tests of Cointegration

@ The null hypothesis that p = 1 can now be tested using the statistics

n—1)202
z, = <n—1><ﬁn—1)—§{<”""}(a2—ss).

ss
sy 1 [(0=15,) [ -2
zZ = (2)T-5 d —
! w/ "2 Sn w
where

1 n

s2 = 7 t;@f (OLS estimate of the variance of e;)

~2 Sn

Pn n 2
Zt:2 Vie1

(the usual OLS formula for the sample variance of p,)
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Residual Based Tests of Cointegration

o
. N q(n) j R .
we = Y+ 2}; [1 — q(n)+1] 7; (Newey-West estimator)
T, = ﬁ%j !
On

where & = V; —p,V;—1 and where

. 1

n
’YJ: 1 Z E{ét_j forjIO,l,...,CI(n)-
t=+2
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Residual Based Tests of Cointegration

@ Phillips and Ouliaris (1990) show that if g (n) — o0 as n — oo such
that g (n) /n — 0, then under some additional conditions

Zp:>/01R(r)dR(r) and zt:>/ r) dS (r)
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Residual Based Tests of Cointegration

K= (1—(/ Wi (r) W (r) )(/ Ws (r) W (r)’ dr)_1>

W(r) = (Wl(’) W2(r)/>/EBI\/I(Im).

1x1 1xg

@ To implement the augmented Dickey-Fuller test, we estimate the
regression

Vi = P/‘;tfl + ’YlA/‘;tfl + -+ ’)/pflA/‘;tfanl + /R
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Residual Based Tests of Cointegration

@ The null hypothesis Hy : p = 1 can be tested using the t-statistic

~

T, = Pr—1
\/53 (?/—1MXV71)_1
where
5 1 SN PN ~ ~ 2
s, = Z (Vt — 0 Vi1 — Y1 AVe1 — - — ,)/p—lAVt—p-‘rl)
n—=Pi=pt1

x|
X = D] with xe = (AVe—1, .o, AV p11)

X/
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Residual Based Tests of Cointegration

@ Phillips and Ouliaris (1990) show that

Tn:>/01R(r) ds (r)

if p — 00 as n — oo such that

p:o(n1/3>.
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Johansen’'s Maximum Likelihood Procedure

@ Consider the m-variate error-correction model
AY; =ToYi1 +T1AY 1+ -+ T 1AYpi1 + &

where
{e:} =i.i.d.N(0,Q) with O > 0.

Following the approach of Johansen (1988), we will derive a likelihood
ratio test for the null hypothesis that the cointegrating rank = r, in
which case we have the reduced rank restriction

To = BA

where A and B are m X r matrices of full column rank r < m. As
noted previously, A is the cointegrating matrix whereas B is called the
loading matrix.
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Johansen’'s Maximum Likelihood Procedure

o Conditional Log-likelihood Function: Conditional on the initial
observations (Y_p+1, Y_p+2, ey Yo), we can write the log-likelihood
function for the vector error-correction model as

|n[_(Q,ro,r1, ..... l“p_l)

= —?Inbt—gln\ﬂf
1Z B
) Z {(AYt —IoYe 1 —T1AY; 1 — - — Fp_1AYt_p+1)/Q 1
t=1

X (AYt — FOthl — rlAthl — = rpflAtherl)}
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Johansen’'s Maximum Likelihood Procedure

@ Johansen (1988) maximizes this log-likelihood function in steps.
o Step 1:

(a) Regress AY; on AY;_1,....,AY;_p41 by OLS to obtain the m x 1
vector of residuals U; from the estimated regression
AYy =ThAY ey + - 4+ Tl 1 A pr + T
(b) Also, regress Y;—1 on AY;_1,....,AY:_p41 by OLS to obtain the
m x 1 vector of residuals V; from the estimated regression
Y1 =01AY 1+ + épflAthp+1 + v
(c) Concentrate the log-likelihood function with respect to I'y, ..., I',—1 to

obtain

InL(Q,To)

nm n 1 -~ ~ 1 “~
= —7|n27'[—§|n|ﬂ|—Etzzl(ut—rovt),ﬂ 1(Ut—r()Vt)
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Johansen’'s Maximum Likelihood Procedure

o Step 1:
(c) Moreover, under the null hypothesis
Hp : cointegrating rank =r

we have 'y = BA/, so that we can further write the concentrated
log-likelihood function as

InL(Q, A B)
nm n 1& . ~ RPN ~
= —7|n27-[_§|n‘0’—Et;(Ut—BA/Vt),Q l(Ut—BA/Vt).
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Johansen’'s Maximum Likelihood Procedure

@ Before discussing step 2, we first define some notations which will be
useful. Let

Zoe =AYy Zi =Yoo, and  Zoe = (AY{ 4 AY )

mx1 mx1 m(p—1)x1
@ Also, define
1Z& ..
My==Y ZuZ};i,j=01,2
ni=
@ Note that, based on these notations, we have

~ 1
Uy = Zot — Moa My, 2oy,
~ ~1

Vi = Zit — MiaMy, 2o
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Johansen’'s Maximum Likelihood Procedure

@ Further define

SUU

1 n
— - /ljt/ljé

m=

1 _ _ /
= E (Zor — MoaMyy' Zo¢) (Zor — Moo My, Zot)

t=1

1 ¢ / 1l ;1§ pg—1
= =) ZotZy — MoaMyy' = Y Z0:Z5, — = Y ZotZ5: Moy Mg

ne=1 n= n.=

711 § / -1
+M02M22 E Z ZQtZ2tM22 M2()

t=1
= Moo — MoaMy," Mag

John C. Chao (Econ 721 Lecture Notes) September 26, 2022 114 / 141



Johansen’'s Maximum Likelihood Procedure

e Similarly, we have

]' /
~ o~ 1
Soyv = =) UV, = Moy — Mo M,y Moy,
n &=
=1
1 ¢ ~ -1
Sw o = - Y VeV = Mip — Mip My, M.
=1
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Johansen’'s Maximum Likelihood Procedure

@ Step 2: To further concentrate the function

InL(Q, A, B)

nm n 1 - . 1/~ ~
= —7|n27'[—§|n|ﬂ|—§;(ut—BA’Vt)’Q 1(Ut_BA/Vt)'

we will, for a fixed A, maximize In L (Q), A, B) with respect to B and
Q) by regressing U; on A'V; to obtain

o (s

= S,A (A'SWA) '
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Johansen’'s Maximum Likelihood Procedure

@ and

Q(A)
_ ! 2 (at —B(A) A’Vt> (at —B(A) A’Vt)/

n=

1nAA/ B llnAA/ 1nAA/" !
= =) Gau,—B(A)A= )Y v, — =) U V,AB(A)

ni= m= ni=

. 1 ~
+B(A) A~} VV{AB (A)
t=1

= S, —25,A(A'S,A) T AS,
S A (AS,A) T (ASLA) (AS,A)TA'S,,
= Sw—SwA(ASwA) T AS,,
= Sy —SwA(AS,A) T (ASLA) (NS, A)TTA'S,,
= Su—B(A) (AS,A) B(A).
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Johansen’'s Maximum Likelihood Procedure

o Substituting B (A) and Q (A) into

InL(Q), A, B)
1 n
= —inon— 20— Y (@ — BA%) Q7! (B — BA),
2 2 2 &
we obtain
In L (A)
- —%lnzn—gln‘ﬁm)‘
18 N A ~
- = ug — B (A) A/Vt @) (A) ug — B (A) A/Vt
5 L ) ( )
nnm n ~
= —7ln27r—§In’Q(A)’

—% t_zl tr {ﬁ (W) (3 - B(A) AT) (3 - B (A A’Vt)/}
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Johansen’'s Maximum Likelihood Procedure

In L (A)
- —%In2n—fln‘Q(A)‘
0 P Z (at —B(A) A’Vt> (at —B(A) A’?t>

n

= Mo 2B ()| - 2 {a ) am)

- —?lnzn—gln(Q(A)’—ftr{/m}
n nm

- —7| 27T—§In‘Q(A) -

= C— 2 In|Su — SwA(AS,A) T A'S,

where C = — (In2w 4 1).
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Johansen’'s Maximum Likelihood Procedure

@ Step 3: From the concentrated log-likelihood function

Sus — SwA (NS, A)TTA'S,,

InL(A)zC—gIn

it is clear that maximizing In L (A) with respect to A is the same as
minimizing

In [Suy — SuA (A'S,A) L A'S,,

with respect to A. Moreover, note that from a standard result for
determinants of partitioned matrices, i.e.,

A A _
‘ 1oz - |A11||A22—A21A111A12}

Ayl A

= |Ap] ’A11 - A12A§21A21} ,
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Johansen’'s Maximum Likelihood Procedure

o Step 3 (con’t): we have that

Sw  SwA )
A/Svu AISVVA' = |5uu|’A/SVVA—A/SVUSUL}SUVA’

= |ASWA||Sus — SwA(A'SLA)TA'S,,

from which it follows that
Sus — S A (NS, A)TTA'S,,
1Susl |A” (S — SwuS3tSuv) Al
|A’S, Al
o It follows that maximizing In L (A) with respect to A is equivalent to
minmizing the objective function
A (S = SwSatSw) Al
|A’S, Al

Q(A)

with respect to A.
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Johansen’'s Maximum Likelihood Procedure

@ To do so, we make use of the following lemma
Lemma: Let M be an m X m symmetric and positive semidefinite
matrix and let N be an m X m symmetric and positive definite matrix.
The function

_X'mix|

O XINX]

is maximized (alternatlvely, minimized) among all m x r matrices

(with r < m) by X = (X1, .., %)

~

(alternatively, X = (Xm—r+1, 52,,,)) and the maximal (alternatively,

Q (X)

minimal) value is

m
H/\,- alternatively, H A
i=1 i=m—r+1

where A; and X; (i =1,..., m) are solutions of the generalized
eignevalue problem

M;(\,' = )\,’NB(\,'.
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Johansen’'s Maximum Likelihood Procedure

@ Here, Ay > --- > A, > 0 can be obtained as the roots of the
determinantal equation

AN — M| =0

where X1, ..., X, are the associated eigenvectors.

o Remark: We can also choose X times any nonsingular r X r matrix as
the maximizing (alternatively, minimizing) argument. To see this, let
| X' MX|

X =argmin Q (X) = argminm

and let B is any nonsingular r X r matrix. Let

X = XB.
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Johansen’'s Maximum Likelihood Procedure

e Remark (con’t): Then,

()?/M)?‘ ‘B/)A(’M)A<B|

Q(X) a ‘)?’N)N(‘ - ‘B/)?/N)?B(

|B| ‘)?/M)A(‘ 1B| ))A(’M)?‘

El ‘)?’N)?‘ 1B| ‘)?/N)?‘

- o9

so that X also minimizes @ (X).
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Johansen’'s Maximum Likelihood Procedure

@ Now, in light of the lemma above, to minimize the objective function
A" (S — S0SilSu) A

|A’S, Al '
we need to solve the (generalized) eigenvalue problem

|p5vv - (va - Svus,julsuv)‘ =0

Q(A) =

for the r smallest roots.

@ Moreover, set A = 1 — p and note that solving the above eigenvalue
problem is the same as solving the slightly modified eigenvalue
problem

|/\5vv - Svus,julsuv‘ =0

for the r largest eigenvalues Xl, X, and the associated eigenvectors
X1, ..., Xy which satisfy the equation

ey ~ -1 ~
AiSwXi = Svusuu S Xi.
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Johansen’'s Maximum Likelihood Procedure

@ Next, we impose that normalization

1 fori=j

X SvX { 0 fori#j

so that
X'Su X =1,
@ From the equation
Aisvvs{\i = Svusl;,lsuv?i:

we also see that

~ e o _ X,- fori=j
XJSVUSL’“ SuvXi = { 0 fori#j
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Johansen’'s Maximum Likelihood Procedure

@ Hence,
XSS S X = A, = diag (Al, /\,)

o Let Z\r — X and note that

InL (2\r)

_@(

‘Suu| 2’, (va - Svusu_ulsuv) /ar

N2 +1) — — In —
2 ‘A’,SWA,
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Johansen’'s Maximum Likelihood Procedure

@ so that

In L (2\,)

nm n
= —7(|n27‘[+1)—§|n|5uu|

n | //Z\/r (va - 5VUSL;]15UV) //Ar
——=1In

2

ALS, A,

nm n n
= —7(|n27'[+1) —§|n|5uu| —Eln [
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Johansen’'s Maximum Likelihood Procedure

@ It further follows that

where
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Johansen’s Likelihood Ratio Test

@ Suppose we wish to test
Hp : cointegrating rank = r

versus
H; : cointegrating rank > r

@ The likelihood ratio test statistic for testing the above null hypothesis
is given by

r~
/N
>)
3
~—7
Q
Sve——
2
/N
—
|
>
N~—~7
| S
3
~
N
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Johansen’s Likelihood Ratio Test

e Simplifying, we have

John C. Chao (Econ 721 Lecture Notes) September 26, 2022 131 /



Johansen’s Likelihood Ratio Test

e Johansen (1988) showed that, under Hp,

—2InLR

= —n i In(l—X;)

i=r+1

= n Z X;—FOP (1)
i=r+1

- rr{[/olvvv)dvv(ry] [woweyal
<[ [woawe]}

where W (r) = BM (I,—;).

/
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Johansen's Sequential Procedure for Cointegrating Rank

Determination

@ Johansen (1992) proposes estimating the cointegrating rank using a
sequence of likelihood ratio tests

reject reject
Test Hp: r =0 A Test Hp: r=1 A
fail to reject | fail to reject |
T=0 r=1

reject —~
— Test Hp:r=m—1 — T=m

fail to reject |
rT=m-—1
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Asymptotic Properties of the Johansen Sequential

Procedure

o If all tests are performed using a fixed significance level «; then,
results given in Johansen (1992) show that his sequential procedure
produces an estimator 7 of the cointegrating rank with the following
asymptotic properties

(i) Pr(?
(i) Pr(F<r®) — 0asn— oo.
(ii) Pr(F>r°

Here, r® denotes the true cointegrating rank.

:ro)—>1—1xasn—>oo.

)—>Dcasnﬁoo.
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Joint Estimation of Cointegrating Rank and VAR Lag

Order Using Order Selection Methods

@ Consider a family of the m-variate vector error correction models
(VECMs)

My, AY: = B/AY:-1 +T1AY 1+ - + Ip1AY: pi1 + &
where

P = {01,..5}, R=1{0,1,...m},
{e:} = iid.N(0,Q) with Q> 0.

@ Suppose we impose the a priori normalization
A/ = lr E/f
rxm T rx(mer) |7
For M, .,
# of free parameters = mr +r(m—r)+m? (p— 1)
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Joint Estimation of Cointegrating Rank and VAR Lag

Order Using Order Selection Methods

@ The VECM can be estimated by the maximum likelihood method
from which we obtain the residual vector

8 (pr) =AYy —BAY, 1 —T1AY; 1 — =T, 1AY: pi1,

Here,

~ o~ ~/ ~ ~

BryAr - [ Ir Ar ] .rl, ---,I‘pfl
denote, respectively, the maximum likelihood estimates of the loading
matrix, the cointegrating matrix, and the coefficient matrices of the
short-run dynamics.

@ Using the residual vectors, we can also define the maximum likelihood
estimate of the error covariance matrix (), viz

Q(pr)= % :/S} (p.r)&: (p.r)
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Joint Estimation of Cointegrating Rank and VAR Lag

Order Using Order Selection Methods

@ Chao and Phillips (1999) proposed jointly estimating p and r using
information criteria. In particular, the paper analyzed the large sample
properties of the following information criteria for estimating p and r.

(a) AIC (Akaike Information Criterion)
Criterion:

~ 2
AIC (p,r) = In}ﬂ(p,r)‘ +{mr+r(m—r)+m? (p—l)};
Order Estimates:

Daic, T, = i AIC (p,
(Paic. Taic) arg__min o (p,r)

where

P={01..p}, R={01,...m}
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Joint Estimation of Cointegrating Rank and VAR Lag

Order Using Order Selection Methods

(b) BIC (Bayesian Information Criterion - also known as the Schwarz

Criterion)
Criterion:
BIC (p,r) = In ﬁ(p,r) + {mr—{—r(m—r)—#m2 (p— 1)} InTn

Order Estimates:

PaiC, T = i BIC (p,
(PBic. TBIC) arg__min o (p,r)

where

P=1{01,...p}, R={0,1,...m}
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Joint Estimation of Cointegrating Rank and VAR Lag

Order Using Order Selection Methods

(c) PIC (Posterior Information Criterion)

Criterion:
PIC (p, r)
A m T r /
= In|Qp ) +;In‘U U‘+Eln|Y2’,1Y2,_1\
+(m;r)|n B'Q(p,r) B,

= In|Q(pr)|+ % In n+m(P=1) 4 % Inn?(m=r) 10, (n7?)

N Inn

= In|Q(p,r) —|—{mr—|—2r(m—r)+m2(p—1)}7—1—0,, (n1)

Order Estimates:

(Pric, Tric) = arg  min _PIC (p,r)
peP, reR
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Joint Estimation of Cointegrating Rank and VAR Lag

Order Using Order Selection Methods

(c) PIC (Posterior Information Criterion)

Here,
r A/ ~/
A’,Ztl_l Yit-1— A Y21
U, _ AY: 1 _ AYi-1 ’
[r+m(p—1)]x1 : :
AYi pia1 AYipt1
O Y0
~ U} Y.
U = .2 and YQ’_l = ?'1
><[r+m(p—l)} . nx(mfr) .
U,/, Y2,,nfl
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Joint Estimation of Cointegrating Rank and VAR Lag

Order Using Order Selection Methods

@ Asymptotic Properties:

(a) AlC:

PaIC A p° and Pasc Lo asn— o
(b) BIC:

ﬁBIC 2 PO and ?BIC LN % as n — oo
(c) PIC:

~ p ~ p
pric — p° and Tpic — r® as n — oo
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