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Abstract

We consider a model of “approval behaviour” (like Favouriting, Sharing or Wish-
listing) for items presented as a list. The approver proceeds to each successive
item with a continuation probability that depends on the history of predecessors,
approving along the way any item that is considered “acceptable” (e.g., possess-
ing a set of key properties). The procedure is the only one that satisfies Predeces-
sor Monotonicity (the approval probability of an item is non-increasing when the
sublist of predecessors lengthens) and Approval Luce Independence (the approval
odds for two items when they have the same sublist of predecessors are invariant
to the exact identity and listing of the predecessors). The primitives of the model
are substantially identified from behaviour. If there are correlations between con-
tinuation and acceptability, then Luce Approval Independence is replaced in the
characterisation by Monotone Differences (an item’s revealed quality and its po-
sition in the list are complementary in the production of approval). Finally, we
explore the notion of “list design”.

J.E.L. codes: D0.

Keywords: Approval behaviour, List design.



1 Introduction

Consider an agent who:

• progressively fills her online shopping cart or wish list;

• “Likes”, “Favourites” or shares items in a social network;

• scans headlines from a newsfeed and stores some articles for later reading;

• views abstracts and downloads items from a working paper archive list;

• tags a website page on a social bookmarking site;

• matches with potential partners on a dating site.

Many online technologies both encourage and make observable a category of be-

haviour that can be summarised as “approval”, as distinct from “choice” meant

as a final selection. Often the issue of a final selection simply does not arise: the

approver needs not award a prize to the best post she has Liked or to the best page

she has tagged. In other examples (online shopping, dating and scientific research)

the items that are clicked typically comprise only a tentative and preliminary se-

lection, with the final selection possibly postponed to a subsequent stage. In this

case approval can be seen as the phase of construction of a “consideration set” dur-

ing the process of choice.1 The entire set of clicked items may be easily discarded:

wish lists can be ignored and no-choice in the form of cart abandonment is typical

of online shopping.2

When considering such examples, two issues arise. First, how can we describe

approval data? Second, how can we explain (or represent)3 approval behaviour? The

analogous questions in standard choice theory are answered, respectively, by: “a

choice function” and “preference maximisation”. The conditions ensuring that a

1E.g. Eliaz and Spiegler [9] and Masatlioglu, Nakajima and Ozbay [19] for the deterministic
case, and Manzini and Mariotti [18], Brady and Rehbeck [3] and Aguiar [1] for the stochastic case.

2Cart-abandonment rates are thought to be as high as 70%. See e.g.
https://baymard.com/lists/cart-abandonment-rate.

3The issue of whether a formal representation is just a summary of behaviour, or it refers instead
to substantive objects with an explanatory value is a large philosophical question that we do not
address here, viewing the primitives as an explanation without further discussion. The interested
reader is referred to the brilliant treatment by Dietrich and List ([8]).
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choice function can be represented as preference maximisation, and the way unob-

served preferences can be identified from observed choice, are well-understood. In

this paper we aim to carry out a similar general exercise for approval, abstracting

from the details of any specific context.

To describe approval data, we introduce the notion of an approval function,

which maps any list x1x2...xn of items from a fixed menu into a set of arbitrary

probabilities pi, one for each item xi. The domain of an approval function em-

phasises the fact that in the examples items typically present themselves to the

approver in a sequential manner (or the approver scans the items in some order

that is observable, as in Caplin et al. [5]).4 The codomain of an approval func-

tion emphasises the fact that items are not “alternatives” to each other. Unlike a

stochastic choice function from lists (introduced by Rubinstein and Salant [20]) the

pi are not required to form a probability distribution on the menu. Any interme-

diate case is possible between adding up to zero (nothing is approved) or to the

cardinality of the menu (everything is approved).

To explain approval data, we posit that two broad types of factors motivate a

generic approver. First, the drive at any point in the list to continue, depending

on what the approver has seen so far. This may reflect time, budget or cognitive

constraints, as well as beliefs on what is to come. The second type of factor is the

approver’s “intrinsic taste” for the objects, namely what she considers as worthy

of approval. These two factors are modelled as:

(a) a continuation function π, which gives the probability to continue to the next

item as a function of the entire sublist of predecessors.

(b) an acceptability function σ, which gives the probability of any partition of the

items into “worthy” and “not worthy”.

This formulation is quite general and capable of encompassing many specific

theories of behaviour and objective functions. The mild monotonicity assumption

we will make on π (later items are less likely to be reached) is compatible with

many plausible psychological hypotheses on how the browsing history affects the

desire of an approver to reach further. For example, we admit both “optimism”

4In some of the examples we have given, for a proper interpretation in terms of list variation,
the items should be thought of in terms of characteristics, such as the type of news (sport, politics,
local, etc.) or of posts (professional, personal, funny animal videos, etc.).
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(high predecessor quality stimulates further exploration) and “pessimism” (high

predecessor quality discourages further exploration). We can handle the typical

case of very long lists, effectively infinite from the point of view of the approver,

by embedding in π an endogenous or exogenous depth of exploration.

Similarly, the acceptability structure is unrestricted and consistent with a host

of different motivations for approving items.5 What we consider common to all

these motivations at an abstract level is that the type of judgement involved in

approval is a (binary) classification (“shareable”, “considerable”, “Likeable”, and so

on) rather than a ranking. In other words, we consider the approver as akin to an

algorithm that designates emails as “spam” or “not spam”, without putting them

through a finer quality mesh. A natural model for this is that the approver has in

mind a set of properties: possessing these properties qualify an item as acceptable.6

For example, consider someone who is browsing books to ultimately select one for

a gift. With an approver hat on, she decides to put in the online shopping cart a

book written by an author she likes, one that has high user ratings, and one that

is the best-seller in the genre. Later on, with a chooser hat on, an accurate tradeoff

will perhaps have to be made, if she decides to settle on a specific book, but such

fine balancing is not necessary during the construction of a consideration set. Or,

perhaps, she will discard the entire cart and instead choose a coffee-grinder as

the gift. Similarly, a researcher downloads for later study all the new papers in

decision theory, and another paper because it is by John Nash. The difference with

the gift-giver is that the researcher will not have to choose between papers.

Our model combines the two factors by positing that the approver scans the

items along the list, moving from one item to the next with the probability pre-

scribed by the continuation function, and approving all items along the way as

prescribed by the acceptability function.

The first issue we tackle is characterisation: which exact constraints on behaviour
5In the examples, such motivations range widely, from communication (Liking and Favouriting

are online “nods” that may signal interest, agreement, and so on) to storage (obviously so for down-
loading or bookmarking items, but note that Favouriting is a form of bookmarking that facilitates
future access to items posted earlier).

6At the formal level, this can also be seen as the first step in the construction of a preference
or utility, in view of Chipman’s [6] representation of utility as a lexicographic sequence of 0− 1
judgements.
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does the model pose? The model is characterised by two properties (Theorem 1).

The first (Predecessor Monotonicity) simply says that the approval probability of

an item does not increase by lengthening the sublist of its predecessors. The sec-

ond (Approval Luce Independence) is an adaptation of the standard Luce Inde-

pendence axiom for stochastic choice functions to the approval environment. It

says that the approval odds of two items appearing after the same predecessors

in two lists do not depend on the identity of the predecessors or on how they are

listed. Furthermore, the theorem also shows that an approval function satisfying

these two properties is equivalent to one where an item is acceptable whenever it

passes a stochastic threshold according to a fixed, deterministic preference order.

In this sense the result provides a foundation for satisficing behaviour in approval.

Next, we move to identification. Assuming that approvals are generated by the

model, to what extent can an observer of approvals and lists identify the accept-

ability and the continuation functions, or the preferences and the thresholds in the

satisficing version? We show that our models have excellent identification proper-

ties. For the satisficing version of the model, preferences are uniquely identified.

The continuation function and the distribution of the satisficing threshold are also

uniquely identified under a mild support restriction (Theorem 2). For the general

version, under a mild support restriction the continuation function is uniquely

identified by behaviour and the acceptability function is identified up to marginal-

isation, that is, the marginal probability that each item is acceptable is identified

(Theorem 3).

Next, we proceed to consider an extension of the model. What if continuation

is not independent of what has been approved so far? For example, it might make

sense that the agent stops adding to the cart when the cost reaches a certain point.

We characterise the model with this type of correlations in its satisficing version. It

turns out (Theorem 4) that the only observable difference between the independent

and the correlated versions of the model is that the Approval Luce Independence

property is replaced by the Monotone Differences property. Roughly, this property

can be interpreted as saying that the revealed “quality” of an item and its position

in a list are complements in the production of approval probabilities.7 On the other

7Throughout the paper, we will use “quality” to describe the rank of an item in the preference
order.
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hand, the characterisation of the non-satisficing version (which we show by exam-

ple not to be equivalent to the satisficing version in this case) is a hard problem

which so far remains open.

We show finally that the model is useful to address a much discussed issue,

namely how online behaviour can be manipulated by interested parties. To this

effect, we introduce the notion of list design. Consider an entity who can not only

observe but also manipulate lists to pursue an objective. What is the optimal list

given the objective? This raises some complex tradeoffs for the designer. For ex-

ample, to pursue the objective, should positions in the list be used as complements

of, or substitutes for, the quality of an item? And if items have different weights in

the objective function, are the weights complements or substitutes of their quality?

We are able to provide sharp answers to such questions for some specifications of

the models and of the objective functions (Theorem 5 and 6).

Two short discussion sections (in one of which we explore further the relation

to the literature and the differences between approval and choice) conclude the

paper.

2 The Model

2.1 Notation and definitions

Notation Let X be a finite set of items with cardinality n and let 2X denote the

power set of X including the empty set.8 A list is a linear order9 λ on X, and a

sublist is a linear order λ̃ on any strict subset of X. Let Λ and Λ̃ be the set of all lists

and sublists respectively.

Sometimes we view lists and sublists as strings of items, λ = x1x2x3..., and

sometimes we abuse notation and treat lists and sublists as sets. Hence x ∈ λ̃

(x /∈ λ̃) means that x does (not) appear in sublist λ̃,
∣∣λ̃∣∣ denotes the number of

items in λ̃, and λ̃ \ x with x ∈ λ̃ denotes the sublist obtained from λ̃ by removing

item x and leaving the order on the remaining items intact. For any A ⊆ X, A ∩ λ̃

8We use the term “items” rather than “alternatives” to emphasise that, within the capacity con-
straint, there is no “competition” between the items.

9A linear order is a complete, transitive and antisymmetric binary relation on X.
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denotes the subset of A whose members appear in λ̃, and λ̃∪ A denotes the subset

of X whose members appear in λ̃ or in A.

For any x ∈ X and λ ∈ Λ, λ(x) ∈ {1, ..., n} is the position of x in list λ. Similarly

λ̃ (x), with x ∈ λ̃, is the position of x in sublist λ̃.

Every x ∈ X and λ ∈ Λ induce a sublist λx ∈ Λ̃ on the strict predecessors of x

in λ as follows: λx (y) = λ (y) for every y such that λ (y) < λ (x) . Hence λx is the

sublist obtained from λ by eliminating x and all its successors. If x is the first item

in λ, i.e. if λ(x) = 1, then λx is the empty list, which we denote by ∅.

We define a partial order v on Λ̃ as follows: λ̃ v µ̃ if and only if for every

x ∈ λ̃, x ∈ µ̃ and µ̃ (x) = λ̃ (x). Note that v is antisymmetric, i.e. if λ̃ v µ̃ and

µ̃ v λ̃, then λ̃ = µ̃. We denote the strict part of v by @ , i.e. λ̃ @ µ̃ if and only if

λ̃ v µ̃ and λ̃ 6= µ̃.

We consider an agent who is presented with several lists on different occasions.

The agent scans the list and at each item continues with some probability, decid-

ing whether or not to approve any encountered item. The observed behaviour is

recorded by an approval function:

Definition 1. An approval function is a map p : X×Λ→ [0, 1].

The quantity p (x, λ) is the probability that the agent approves item x in list

λ. Note that, unlike for a standard stochastic choice function, we do not impose

the adding-up constraint ∑x∈X p (x, λ) = 1 and we allow for the possibility of

approving nothing, i.e. p (x, λ) = 0 for all x ∈ X. What is more, our domain

comprises lists, not menus. The menu X is held fixed in the analysis. The variation

comes only from lists.10

We now describe the (unobserved) primitives we use to explain an approval

function.

Definition 2. A continuation function is a map π : Λ̃→ [0, 1] satisfying

(i) π (∅) = 1;

(ii) π
(
λ̃
)
≥ π (µ̃) if λ̃ @ µ̃.

10Yet a different type of dataset would be given by a stochastic approval correspondence P : 2X ×
Λ→ [0, 1] associating with each list the probability of the possible approval sets. Then the adding-up
constraint applies over the P (A, λ), with A ∈ 2X . This type of data would incorporate much richer
information on the correlations between approvals across lists. Our identification results below
would hold a fortiori if an observer had access to this information.
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A continuation function tells, for any sublist λ̃, the probability that the agent

continues after seeing the sublist of predecessors λ̃. Restriction (i) says that the

agent will examine at least the first item in any list. Restriction (ii) says that the

agent follows the list: a later item is never more likely to be reached than an earlier

one. Note that the π(λ̃) are not assumed to add up to one.

Definition 3. An acceptability function is a probability distribution σ ∈ 4
(
2X).

The interpretation is that σ (A) is the probability that the agent finds accept-

able all the items in A ⊆ X and unacceptable all the others. Thus, σ captures the

“tastes” of the agent.

In our model, an approver is a pair (σ, π) of an acceptability and a continuation

function.

Definition 4. An approval function p is an acceptability-continuation (AC) function

if there exists a pair (σ, π) of an acceptability function and a continuation function

such that, for all x ∈ X and λ ∈ Λ:

p (x, λ) = π (λx) ∑
A:x∈A

σ (A) (1)

In this case we say that p is generated by (σ, π).

2.2 Examples

We provide below three examples of AC functions. In the first two examples the

continuation function is obtained endogenously as the solution to an optimisation

problem, while in the last one it is a function of exogenous parameters.

Example 1. (Optimal continuation probabilities I: Approving everything that

is acceptable) Suppose that each item is independently acceptable with probabil-

ity q ∈ (0, 1); and at any point in a list, the agent believes that the next item is

acceptable with the same probability q. The aim of the agent is to maximise the

probability of approving all items that are acceptable without going any further

down the list. More precisely, the agent aims to maximise the probability of stop-

ping exactly at the last acceptable item along any λ ∈ Λ, approving any acceptable

7



item till then. For example, a reader may wish download all articles that are worth-

while reading, while keeping to a minimum the total number of articles scanned

for downloading.

Fix a list λ = x1x2...xn. If q > 1/2, then it is clearly optimal to continue along

the list to the end. Suppose that q ≤ 1
2 . The solution to this problem is given

by an application of the “odds theorem” (Bruss [4]). In our context the theorem

prescribes to stop at the first acceptable item xi, if any, such that the the sum of

the odds q
1−q of being acceptable of the remaining items is less than one. Formally,

define

i∗ (q) = max
{

1, max
{

i : n ≥ i ≥ 1 and
q

1− q
(n− i + 1) ≥ 1

}}
(2)

where we set max {∅} = 0. Then it is optimal to stop at the first acceptable item xi

for which i ≥ i∗ (q). A corresponding AC function generated by (σ, π) is obtained

by setting: π (λxi) = 1 if i ≤ i∗ (q)

π (λxi) = 1− q if i > i∗ (q)
(3)

and

σ (A) = q|A| (1− q)|X\A| (4)

Equations (3) say that the agent reaches for sure the item at the critical position

i∗ (q), i.e. she continues at any item that belongs to the sublist λxi∗(q) of predecessors

of xi∗(q). Then, at each successor item, the agent only continues after any λxi if item

xi+1 (if it exists) is not acceptable, which happens with probability (1− q). Note

that the probability of stopping exactly at item xi with i ≥ i∗ (q) is q (1− q)i−i∗(q):

item xi must be acceptable, which happens with probability q, while all strict pre-

decessors between i∗ (q) and i (if any) must be unacceptable, which happens with

probability (1− q)|λxi |−
∣∣∣λxi∗(q)

∣∣∣.11

Example 2. (Optimal continuation probabilities II: Not missing the best) Sup-

11For simplicity we have implicitly assumed that the agent knows the number of items n in
solving the problem. Adaptations of the same analysis hold if we let n = ∞ (assigning to non-
stopping some payoff smaller than that corresponding to the objective), or if we consider a random
horizon (see Ferguson [11] and the references therein).

8



pose that the agent does not want to miss a “key” piece of news, or the best prod-

uct when constructing a wish list; but is uninterested in finding other acceptable

items further down the list. More precisely, the agent has preferences represented

by a linear order � on X.12 He views a list as ordering the items uniformly ran-

domly. Given a list λ = x1x2...xn, the agent wishes to maximise the probability

that the last item xj she approves is the maximiser of �. She finds acceptable any

xi such that i ≤ j and xi � x∗ for some fixed x∗ ∈ X. The stopping structure is

the classical “Secretary problem”.13 It is well known that for any j = 1, ..., n the

probability Pr
{

xj � xi ∀i < j
}

that xj is the best item of all those seen up to that

point is 1
j , and that these events are independent across the xj. Letting

i∗ = max

{
1, max

{
i : n ≥ i ≥ 1 and

n

∑
j=i

1
j− 1

≥ 1

}}

it is optimal to stop at the first item xi (if any) for which i ≥ i∗ and xi � xj for

all j < i.14 At each xi for which i ≥ i∗ he continues with the probability that xi is

not the best item seen so far, which is 1− 1
i = i−1

i . A corresponding AC function

generated by (σ, π) is obtained by setting:π (λxi) = 1 if i ≤ i∗

π (λxi) = i−2
i−1 if i > i∗

(5)

and

σ (A) = 1 ⇐⇒ A = {x ∈ X|x � x∗} .

To calculate π (λxi) in the second line, recall that the last term of λxi is xi−1, with

i > 1, so that to continue it must be the case that xi−1 is not the best item seen so

far, which happens with probability i−2
i−1 .

Example 3. (Independent acceptability and exogenous random depth) Let π̂ :

{1, 2, ..., n} → [0, 1] be a probability distribution, where π̂ (m) is interpreted as the
12This is meant in the sense that while the agent does not know the composition of X, he can

rank any pair of items presented to him.
13See e.g. Ferguson [12] for a comprehensive treatment of this and related models.
14While this solution was developed much earlier, it can be seen as an application of the Bruss

odds-theorem discussed above.
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probability that the agent’s depth of list exploration is m: independently of the list

faced, all items in positions up to and including i are examined, and no other item

is. For example, the agent may stop browsing the list when distracted by emails or

other claims to her attention. A corresponding continuation function is defined by

setting:

π
(
λ̃
)
= ∑

m> ˜|λ|
π̂ (m)

Let γ ∈ ∆ (X) be a probability distribution on X, and define an acceptability func-

tion σ by

σ (A) = ∏
x∈A

γ (x) ∏
x/∈A

(1− γ (x))

With a random depth structure, dependence on the set of examined items boils

down to dependence on its size. In other words, continuation depends only on the

position of the item to be reached and not on the the composition of its predecessor

set. As for acceptability, each item x has its own probability γ (x) of being accept-

able, and the set A is acceptable with the probability the all its members turn out

to be acceptable, regarded as independent events.

3 Characterisation and Identification

3.1 Characterisation

In this section we show that, in spite of its generality, the model poses stark restric-

tions on observable behaviour, and that it always admits a “canonical” preference

based interpretation. That is, while there may be various specialisations of the

general framework, it is always possible to express approval as preference satisficing

behaviour. Note that such canonical preference emerges from the model, and is

not assumed a priori in the acceptability function, as we will see below.

We first introduce the two axioms that will be used in the characterisation.

A1. (Predecessor Monotonicity) If λx v µx, then p (x, λ) ≥ p (x, µ).

A2. (Approval Luce Independence) For all x, y ∈ X and all λ, µ, α, β ∈ λ for which

10



λx = αy, µx = βy: if p (x, µ) > 0 and p (y, β) > 0, then

p (x, λ)

p (x, µ)
=

p (y, α)

p (y, β)
.

A1 says that the probability of approval of an item cannot increase if the set of

its predecessors expands, keeping the positions of its original predecessors intact.

Note that this is not the same thing as assuming that approval probabilities are

monotonic in the position of the item in the list. It is important that the later posi-

tion is obtained by adding items to the intact sublist of predecessors. In principle an

item can be less likely to be approved when placed in second position after a “dis-

couraging” item than when placed in fourth position after three “encouraging”

items.

A2 says (in instances where all approval probabilities are strictly positive) that

the approval odds of two items x and y that appear after the same predecessors in

two lists λ and α, respectively, do not depend on the identity of these items or on

how they are listed. Evidently, this is is a close analog in the list environment of

the classical Luce axiom for standard stochastic choice functions. A2 extends this

property to some zero-probability cases, by expressing it in the form of the impact

that the change of sublists has on different items.

Next, we introduce a seemingly much more restrictive version of our model.

For notational convenience, let x0 /∈ X denote a pseudo-item to capture the case

when nothing in the list is good enough.

Definition 5. An approval function p is a satisficing AC (SAC) function if there exists

a triple (%, τ, π), where % is a weak order on X, τ is a probability distribution on

X ∪ {x0}, and π is a continuation function, such that for all x ∈ X and λ ∈ Λ,

p (x, λ) = π (λx) ∑
t:x%t

τ (t) . (6)

In this case we say that p is generated by (%, τ, π).

The weak order% is interpreted as a standard deterministic preference relation

over items and t as a random (ordinal) satisfaction threshold, such that a set of
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items A is acceptable if and only if it consists of all the items that are at least as

good as the threshold.

Theorem 1. The following three statements on an approval function p are equivalent:

(1) p satisfies A1 and A2.

(2) p is a SAC function.

(3) p is an AC function.

Proof. (1) =⇒ (2). Suppose that p satisfies A1 and A2. Note that, by A1,

p (x, λ) = p (x, µ) if λx = µx (this must be the case since λx v µx implies p (x, λ) ≥
p (x, µ), and µx v λx implies p (x, µ) ≥ p (x, λ)). In particular, the approval proba-

bility of an x ∈ X for which λ (x) = 1 does not depend on how λ lists the remaining

items. Thus we can well-define ρ (x) = p (x, λ) for any x ∈ X and λ ∈ Λ satisfying

λx = ∅. We will define the two maps τ : X ∪ {x0} → [0, 1] and π : Λ̃ → [0, 1]

distinguishing two cases. Case 1: ρ (z) = 0 for all z ∈ X. By A1, p (z, λ) = 0 for all

z ∈ X and λ ∈ Λ. Let τ (t) = 0 for all t ∈ X, let π (λx) = 1 for all x ∈ X and all

λx ∈ Λ̃ and fix an arbitrary weak order % on X. Let p(τ,π,%) be the SAC function

generated by these primitives. We have, for all x ∈ X and λx ∈ Λ̃,

p(τ,π,%) (x, λ) = π (λx) ∑
t:x%t

τ (t) = 0 = p (x, λ) ,

as desired. Case 2: ρ (z) > 0 for some z ∈ X. Fix such z ∈ X. For any λ̃ ∈ Λ̃,

let π(λ̃) = p(z,λ)
ρ(z) for any λ ∈ Λ such that λz = λ̃. It follows that π (∅) = 1.

Furthermore, if λ̃ v µ̃, then for any λ, µ ∈ Λ such that λz = λ̃ and µz = µ̃,

π
(
λ̃
)
=

p (z, λ)

ρ (z)
≥ p (z, µ)

ρ (z)
= π (µ̃)

where the inequality is due to A1. Next, for any x, y ∈ X, let x % y if and only if

ρ (x) ≥ ρ (y). Since it has a numerical representation, % is a weak order. Let ∼1

, ...,∼k be the indifference classes of % ordered from best to worst, and fix x1, ..., xk
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such that xi ∈∼i for every i. Define

τ (t) =


ρ(xi)−ρ(xi+1)

|∼i|
for every t ∈∼i, i < k, and

ρ(xk)
|∼k|

for every t ∈∼k .

Note that τ (t) ≥ 0 for every t ∈ X and ∑t∈X τ (t) = ρ (x1) ≤ 1. Letting τ(x0) =

1− ρ(x1), we have τ ∈ 4(X ∪ {x0}). Note also that if x ∈∼i, then ∑t:x%t τ (t) =

ρ (xi). Let p(τ,π,%) be the SAC function generated by these primitives. Fix any

x ∈ X and λ ∈ Λ. Let x ∈∼i so that ρ (x) = ρ (xi) and let µ ∈ Λ satisfy µz = λx. If

ρ(x) > 0 then

p(τ,π,%) (x, λ) = π (λx) ∑
t:x%t

τ (t)

=
p (z, µ)

ρ (z) ∑
t:x%t

τ (t)

=
p (x, λ)

ρ (x)
ρ (xi)

= p (x, λ)

where the third equality is by A2. If ρ (x) = 0, on the other hand, then p (x, λ) =

0 by A1. In this case, x ∈∼k, the lowest indifference class, and furthermore by

definition of τ, τ (t) = 0 for every t ∈∼k. It follows that

p(τ,π,%) (x, λ) = π (λx) ∑
t:x%t

τ (t) = π (λx) ∑
t∈∼k

τ (t) = 0.

(2) =⇒ (3). Let σ (A) = τ (t) if A = {x ∈ X : x % t} for some t ∈ X, σ (∅) =

1−∑t∈X τ (t), and σ (A) = 0 otherwise. It follows that, for all x ∈ X and λ ∈ Λ,

p (x, λ) = π (λx) ∑
t:x%t

τ (t) = π (λx) ∑
A:x∈A

σ (A) ,

as desired. (3) =⇒ (1). For A1, note that if λx v µx, then π (λx) ≥ π (µx) and

13



consequently

p (x, λ) = π (λx) ∑
A:x∈A

σ (A) ≥ π (µx) ∑
A:x∈A

σ (A) = p (x, µ) .

For A2, note that if λx = αy, µx = βy, p (x, µ) > 0 and p (y, β) > 0, then

p (x, λ)

p (x, µ)
=

π (λx)

π (µx)
=

π (αy)

π (βy)
=

p (y, α)

p (y, β)
.

Preference satisficing imposes a strong structure on the acceptability function:

it must obey the intervality property that x ∈ A, y % x =⇒ y ∈ A for all A ⊆ X

for which σ (A) > 0. So, for example, with X = {x, y, z} if σ ({x}) > 0 then it

cannot be the case that σ ({y}) > 0 or that σ ({z}) > 0 or that σ ({y, z}) > 0, since

there is no weak order % on X such that the intervality property holds.

3.2 Identification

We proceed to take the perspective of an observer of an approval function who

would like to retrieve the primitives that generated it, under the assumption that

a given model holds. Both an AC and a SAC function are generated by a large

number of parameters. Nevertheless, we will show that both models can be sub-

stantially identified.

Theorem 2. Let p be a SAC function generated both by (%, τ, π) and by (%′, τ′, π′).

Suppose that τ (t) > 0, τ′ (t) > 0 for all t ∈ X. Then:

(i) %=%′;

(ii) π = π′;

(iii) For all t ∈ X: ∑z∼t τ (x) = ∑z∼′t τ′ (z).

Proof. (i) As in the proof of Theorem (1), define ρ (x) = p (x, λ) for any x ∈ X and

λ ∈ Λ satisfying λx = ∅. We have x % y =⇒ ρ (x) = ∑t:x%t τ (t) ≥ ∑t:y%t τ (t) =

ρ (y). Conversely, by the assumption on τ, ∑t:x%t τ (t) ≥ ∑t:y%t τ (t) =⇒ x % y.

Since the same implications hold with %′ in place of %, x % y ⇐⇒ ρ (x) ≥
ρ (y) ⇐⇒ x %′ y for all x, y ∈ X. (ii) For any λ̃ ∈ Λ̃, x ∈ X and λ ∈ Λ
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such that λx = λ̃, we have p (x, λ) = π(λ̃)∑t:x%t τ (t) = π(λ̃)ρ (x). Since by

the assumption on τ ρ (x) > 0 , π(λ̃) is uniquely determined by π(λ̃) = p(x,λ)
ρ(x) .

(iii) Let ∼1, ...,∼k be the indifference classes of %=%′ ordered from best to worst,

which in view of (i) correspond to the equality classes of ρ. For any xk ∈∼k we

have p (xk, λ) = π (λxk)∑t:xk%t τ (t) = π (λxk)∑t∈∼k
τ (t). Since π (λxk) = p(z,µ)

ρ(z)

for any z ∈ X and µ ∈ Λ for which λxk = µz, ∑t∈∼k
τ (t) = ρ (z) p(xk,λ)

p(z,µ) . What is

more, for xi ∈∼i with i < k, ∑t∈∼i
τ (t) is determined recursively by p (xi, λ) =

π (λxi)∑t:xi%t τ (t) = p(z,µ)
ρ(z)

(
∑t∈∼i

τ (t) + ∑t:xi�t τ (t)
)
, for any z ∈ X and µ ∈ Λ

for which λxi = µz, and with ∑t:xi�t τ (t) taken as known.

Thus, under a mild restriction, preferences and the continuation function are

uniquely identified by the data. The threshold probabilities of the satisficing rep-

resentation are essentially fully identified: the total probability of the items in any

indifference class is pinned down uniquely - only the allocation of the probability

mass among indifferent items remains free.

Finally, for all x ∈ X and given an acceptability function σ, let σx = ∑x∈A σ (A).

With similar arguments to those used for Theorem (2) it is easy to show:

Theorem 3. Let p be an AC function generated both by (σ, π) and by (σ′, π′). Suppose

that σx > 0, σ′x > 0 for all x ∈ X. Then:

(i) π = π′

(ii) For all x ∈ X, σx = σ′x.

The assumption on σ in the statement says that every item belongs to at least

one acceptable set that occurs with positive probability. Like for the case of the sat-

isficing version, with an AC function the continuation function is fully identified,

while all the marginal approval probabilities of each item can be identified.

4 Correlations

So far we have allowed the probability of reaching an item to depend on the entire

predecessor sublist, but we have considered this event as independent of what is

acceptable. However, some plausible contexts exhibit interdependence between

continuation and acceptability, as shown in the following example.
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Example 4. (Limited capacity for costly approvals) Consider an online shopper

who stops when the cost of her wish list exceeds a certain value, or a reader who

stops when the expected reading time of the stored articles exceeds a certain limit.

Formally, let κ : X → R indicate the cost κ (x) associated with each approved item

x, and given a realised acceptable set A, define the cost of a sublist λ̃ as K
(
λ̃, A

)
=

∑x∈λ̃∩A κ (x). Let Π̂ : R → [0, 1] be a cumulative distribution function, with Π̂ (r)

indicating the probability that the agent’s “approval budget” is at most r. Then

define

π
(
λ̃, A

)
= 1− Π̂

(
K
(
λ̃, A

))
.

The function π : Λ̃ × 2X → [0, 1] defined above can be seen as an approval-

dependent continuation function, which determines an approval function

p (x, λ) = ∑
x∈A

σ (A)π (λx, A) .

An interesting specialisation of this example, to which we will return later, has a

number-of-approvals type of constraint, letting κ (x) = 1 for all x (so that K
(
λ̃, A

)
=∣∣λ̃ ∩ A

∣∣). For example, the agent may become less motivated to proceed as more

acceptable items are encountered, considering it less likely that better items will be

found.

4.1 Satisficing Correlations

We extend the satisficing model in order to describe this type of contexts.

Definition 6. An approval function p is a satisficing correlated AC (SCAC) function if

there exists a triple
(
%, τ, {πt}t∈X

)
where% is a weak order on X, τ is a probability

distribution on X ∪ {x0}, and for every t ∈ X, πt is a continuation function such

that for every x ∈ X and λ ∈ Λ,

p (x, λ) = ∑
t:x%t

τ (t)πt (λ
x) .

In other words, we are now considering a joint probability distribution over

satisfaction thresholds and the continuation event conditional on a given sublist of
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predecessors. To characterise this model, we introduce a new property:

A3. (Monotone Differences) For all λ, µ, α, β ∈ Λ and x, y ∈ X for which λx =

µy @ αx = βy: if p (x, λ) ≥ p (y, µ), then p (x, λ) − p (y, µ) ≥ p (x, α) −
p (y, β) ≥ 0.

A3 says that the differences in approval probabilities between two items that fol-

low the same predecessors in two lists is monotonic in the predecessor sublist (and

this difference does not change sign). The difference is enhanced by moving the

items to earlier positions in the respective lists. In other words, there is comple-

mentarity between quality (as revealed by differential approval probabilities) and

position in the production of approval probabilities. It turns out that the only ob-

servable difference between the independent and the correlated versions of the

model is that the Approval List Independence property is replaced by the Mono-

tone Difference property.

Theorem 4. An approval function is a SCAC function if and only if it satisfies A1 and

A3.

Proof. “Only if” Let p be a SCAC function generated by (%, σ, {πt} t∈X). If λx v µx,

then

p (x, λ)− p (x, µ) = ∑
t:x%t

τ (t) (πt (λ
x)− πt (µ

x)) ≥ 0

where the inequality follows from the monotonicity of the continuation functions

and the fact that τ (t) ≥ 0. This establishes A1. To see that A3 is satisfied, suppose

that λx = µy @ αx = βy and that p (x, λ)− p (y, µ) ≥ 0. There are two cases. If

x � y, then

p (x, λ)− p (y, µ) = ∑
t:x%t�y

τ (t)πt (λ
x)

and

p (x, α)− p (y, β) = ∑
t:x%t�y

τ (t)πt (α
x) .

It follows that p (x, α)− p (y, β) ≥ 0. What is more,

p (x, λ)− p (y, µ)− (p (x, α)− p (y, β)) = ∑
t:x%t�y

τ (t) (πt (λ
x)− πt (α

x)) ≥ 0
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by the monotonicity of the continuation functions. If y % x, on the other hand,

then

0 ≤ ∑
t:x%t�y

τ (t)πt (λ
x) = p (y, µ)− p (x, λ) ≤ 0

yielding p (x, λ) = p (y, µ) and, in particular, τ (t)πt (λx) = 0 for every t ∈ X such

that x % t � y. Since the continuation functions are monotone, τ (t)πt (αx) = 0 for

every t ∈ X such that x % t � y as well. Hence p (x, α) = p (y, β) and p satisfies

A3. “If”. Suppose that p satisfies A1 and A3. Using A1, which implies that

p (x, λ) = p (x, µ) if λx = µx, abuse notation and write p (x, λ) = p
(
x, λ̃
)

where

λ̃ = λx. Define a binary relation % on X as follows: x % y iff p (x, ∅) ≥ p (y, ∅).

Note that % is a weak order since it has a numerical representation. Enumerate

items so that X = {x1, ..., xn} with x1 % ... % xn. Define a function τ : X ∪ {x0} →
[0, 1] as follows:

τ (t) =


p (xn, ∅) if t = xn

p (xi, ∅)− p (xi+1, ∅) for every i = 1, ..., n− 1

1− p (x1, ∅) if t = x0

Note that τ is a probability on X ∪ {x0}. The next step is the identification of

{πxi}i=1,...,n . We introduce another pseudo-item xn+1 /∈ X ∪ {x0}, and extend %

to X ∪ {xn+1} so that xi � xn+1 for every i = 1, ..., n. We posit that xn+1 does

not belong to any list or any sublist. Now extend the domain of p by writing

p
(
xn+1, λ̃

)
= 0 for every λ̃. Take any nonempty sublist λ̃ and xi ∈ X. Define

i∗
(
λ̃
)
= max

{
j ≤ i : xj /∈ λ̃

}
, and

i∗
(
λ̃
)
= min

{
j > i : xj /∈ λ̃

}
.

That is, i∗
(
λ̃
)

indexes the last item not in the sublist λ̃ (i.e. successors or pseudo-

items) and in the same class as, or immediately better than, xi. Similarly, i∗
(
λ̃
)

indexes the first item not in the sublist λ̃ (i.e. successors or pseudo-items) in the

immediately worse indifference class than xi. Note that 0 ≤ i∗
(
λ̃
)
≤ i < i∗

(
λ̃
)
≤

n + 1. We distinguish two cases. Case 1: i∗
(
λ̃
)
= 0. Note that in this case it must
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be xi � xj for all xj /∈ λ̃, and xi ∈ λ̃. Let πxi

(
λ̃
)
= 0. Case 2: i∗

(
λ̃
)
> 0. Let

λ̃−1 denote the sublist obtained from λ̃ by removing its last item while keeping the

positions of the remaining items intact (that is, letting x ∈ X satisfy λ̃ (x) =
∣∣λ̃∣∣,

λ̃−1 = λ̃ \ x). Define recursively

πxi

(
λ̃
)
=


1 if λ̃ = ∅

πxi

(
λ̃−1

) p
(

xi∗(λ̃),λ̃
)
−p
(

xi∗(λ̃),λ̃
)

p
(

xi∗(λ̃),λ̃−1

)
−p
(

xi∗(λ̃),λ̃−1

) otherwise

with the convention that 0
0 = 0. We now argue that πxi is a continuation func-

tion. We first establish that πxi

(
λ̃
)
∈ [0, 1]. Clearly, we need only show this when

i∗
(
λ̃
)
> 0 and λ̃ 6= ∅. Since i∗

(
λ̃
)
≤ i < i∗

(
λ̃
)
, it follows that p

(
xi∗(λ̃), ∅

)
≥

p
(

xi∗(λ̃), ∅
)

. Then, by A3, p
(

xi∗(λ̃), λ̃−1

)
− p

(
xi∗(λ̃), λ̃−1

)
≥ 0. Using A3 again,

p
(

xi∗(λ̃), λ̃
)
− p

(
xi∗(λ̃), λ̃

)
p
(

xi∗(λ̃), λ̃−1

)
− p

(
xi∗(λ̃), λ̃−1

) ∈ [0, 1] .

This implies that πxi

(
λ̃
)
≤ πxi

(
λ̃−1

)
. Noting that i∗ (µ̃) > 0 for every µ̃ @ λ̃ and

substituting sequentially for the continuation functions for the smaller sublists, we

conclude that πxi

(
λ̃
)

is obtained by multiplying πxi (∅) by a sequence of numbers,

each of which is between 0 and 1. Hence πxi

(
λ̃
)
∈ [0, 1], as desired. To establish

monotonicity, we need to show that πxi

(
λ̃
)
≤ πxi

(
λ̃−1

)
for every i and λ̃ ∈ Λ̃ \∅.

We have already shown this when i∗
(
λ̃
)
> 0. If i∗

(
λ̃
)
= 0, this follows since

πxi

(
λ̃
)
= 0 and πxi

(
λ̃−1

)
∈ [0, 1]. We next establish the following fact.

Claim. For all λ̃ \∅ and all xi ∈ X \ λ̃,

i∗(λ̃)−1

∑
j=i

τ
(
xj
)

πxj

(
λ̃
)
= p

(
xi, λ̃

)
− p

(
xi∗(λ̃), λ̃

)
.

Proof of the Claim: We will use induction on the size of λ̃. To begin, suppose that

λ̃ = xl. Note that l 6= i. There are two cases.

Case 1: If l 6= i + 1, then i∗ (xl) = i + 1 and
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i∗(xl)−1

∑
j=i

τ
(
xj
)

πxj (xl) = τ (xi)πxi (xl)

= τ (xi)
p (xi, xl)− p (xi+1, xl)

p (xi, ∅)− p (xi+1, ∅)

= p (xi, xl)− p (xi+1, xl) .

Note that if p (xi, ∅)− p (xi+1, ∅) > 0, then the last equality follows from the defi-

nition of τ (xi). If p (xi, ∅)− p (xi+1, ∅) = τ (xi) = 0, on the other hand, p (xi, xl)−
p (xi+1, xl) = 0 by A3. Hence τ (xi)

p(xi,xl)−p(xi+1,xl)
p(xi,∅)−p(xi+1,∅)

= 0 = p (xi, xl)− p (xi+1, xl),

as desired.

Case 2: If l = i + 1, then i∗ (xl) = (i + 1)∗ (xl) = i + 2 and

i∗(xl)−1

∑
j=i

τ
(
xj
)

πxj (xl) = τ (xi)πxi (xl) + τ (xi+1)πxi+1 (xl)

= (τ (xi) + τ (xi+1))
p (xi, xl)− p (xi+2, xl)

p (xi, ∅)− p (xi+2, ∅)

= p (xi, xl)− p (xi+2, xl) .

The last equality follows from an argument analogous to that used for Case 1. To

wit, if p (xi, ∅)− p (xi+2, ∅) > 0, then we note that τ (xi) + τ (xi+1) = p (xi, ∅)−
p (xi+2, ∅) and cancel terms. If p (xi, ∅)− p (xi+2, ∅) = 0, then p (xi, ∅)− p (xi+2, ∅)

by A3, from which the last equality follows. Now suppose that the statement

holds for all λ̃ ∈ Λ̃ for which 1 ≤
∣∣λ̃∣∣ ≤ m and take λ̃ ∈ Λ̃ such that

∣∣λ̃∣∣ = m + 1

and xi /∈ λ̃. Note that for all j ∈
{

i, ..., i∗
(
λ̃
)
− 1
}

, j∗
(
λ̃
)
= i and j∗

(
λ̃
)
= i∗

(
λ̃
)
.

Consequently, for all such j,

πxj

(
λ̃
)
=

p
(
xi, λ̃

)
− p

(
xi∗(λ̃), λ̃

)
p
(
xi, λ̃−1

)
− p

(
xi∗(λ̃), λ̃−1

)
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and therefore

i∗(λ̃)−1

∑
j=i

τ(xj)πxj

(
λ̃
)
=

p
(
xi, λ̃

)
− p

(
xi∗(λ̃), λ̃

)
p
(
xi, λ̃−1

)
− p

(
xi∗(λ̃), λ̃−1

) i∗(λ̃)−1

∑
j=i

τ
(
xj
)

πxj

(
λ̃−1

)
.

We will show that

i∗(λ̃)−1

∑
j=i

τ
(
xj
)

πxj

(
λ̃−1

)
= p

(
xi, λ̃−1

)
− p

(
xi∗(λ̃), λ̃−1

)

from which the claim follows. Let λ̃ (xl) = m + 1. That is, xl is the item removed

from λ̃ when generating λ̃−1. There are two cases. Recalling that xi is not listed

in λ̃, suppose first that l /∈
{

i + 1, ..., i∗
(
λ̃
)
− 1
}

. In this case, i∗
(
λ̃−1

)
= i∗

(
λ̃
)
.

Consequently, since λ̃−1 lists m− 1 items,

i∗(λ̃)−1

∑
j=i

τ
(
xj
)

πxj

(
λ̃−1

)
=

i∗(λ̃−1)−1

∑
j=i

τ
(
xj
)

πxj

(
λ̃−1

)
= p

(
xi, λ̃−1

)
− p

(
xi∗(λ̃), λ̃−1

)

as desired. If, on the other hand, l ∈
{

i + 1, ..., i∗
(
λ̃
)
− 1
}

, then i∗
(
λ̃−1

)
= l and

l∗
(
λ̃−1

)
= i∗

(
λ̃
)

. Hence we have

i∗(λ̃)−1

∑
j=i

τ
(
xj
)

πxj

(
λ̃−1

)
=

l−1

∑
j=i

τ
(
xj
)

πxj

(
λ̃−1

)
+

i∗(λ̃)−1

∑
j=l

τ
(
xj
)

πxj

(
λ̃−1

)

=

i∗(λ̃−1)−1

∑
j=i

τ
(
xj
)

πxj

(
λ̃−1

)
+

l∗(λ̃−1)−1

∑
j=l

τ
(
xj
)

πxj

(
λ̃−1

)
= p

(
xi, λ̃−1

)
− p

(
xi∗(λ̃−1), λ̃−1

)
+ p

(
xl, λ̃−1

)
− p

(
xl∗(λ̃−1), λ̃−1

)
= p

(
xi, λ̃−1

)
− p

(
xi∗(λ̃), λ̃−1

)
where the penultimate equality is by the induction hypothesis. This finishes the

proof of the Claim. �

Going back to the proof of the theorem, we finally need to show that p
(
xi, λ̃

)
=

∑n
j=i τ

(
xj
)

πxj

(
λ̃
)

for all xi ∈ X and all λ̃ ∈ Λ such that xi /∈ λ̃. Take any such xi
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and λ̃. If λ̃ = ∅, then the equality follows from the definition of τ and the fact

that πxj (∅) = 1 for all j ∈ {i, ..., n}. If λ̃ 6= ∅, let {xi, ..., xn+1} \ λ̃ = {xk1 , ..., xkr+1}
where i = k1 < ... < kr+1 = n + 1. Note that ks

∗
(
λ̃
)
= ks+1 for all s = 1, ..., r. Then

n

∑
j=i

τ
(
xj
)

πxj

(
λ̃
)
=

r

∑
s=1

ks+1−1

∑
j=ks

τ
(
xj
)

πxj

(
λ̃
)

=
r

∑
s=1

ks
∗(λ̃)−1

∑
j=ks

τ
(
xj
)

πxj

(
λ̃
)

=
r

∑
s=1

p
(
xks , λ̃

)
− p

(
xks∗(λ̃), λ̃

)
=

r

∑
s=1

p
(
xks , λ̃

)
− p

(
xks+1 , λ̃

)
= p

(
xi, λ̃

)
− p

(
xn+1, λ̃

)
= p

(
xi, λ̃

)
.

where the third equality follows from the Claim. The proof is complete.

The interdependence between acceptability and continuation introduced with a

SCAC function is arbitrary (i.e. the correlation can be positive or negative). Yet, the

above characterisation shows that its main observable implication is always a posi-

tive association, or complementarity, between position and “quality” (the standing

of an item in the preference order) when generating approval probabilities.

4.2 Unsatisficing correlations

Interestingly, the equivalence between the satisficing and the general version of

the model established in section 3 breaks down once correlations are introduced.

Definition 7. An approval function p is a correlated AC (CAC) function if there exists

a pair (σ, {πA}A⊆X) where σ is an acceptability function, and for every A ⊆ X, πA

is a continuation function such that for every x ∈ X and λ ∈ Λ,

p (x, λ) = ∑
x∈A

σ (A)πA (λx)
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We show that a CAC function may fail the Monotone Differences property A3.

Example 5. Let X = {x, y, w, z}. Let p be a CAC function generated by (σ, (σ, {πA}A⊆X))

such that 1. σ ({x}) = 0.9 and σ ({y}) = 0.1. 2. π{x} (z) = 0.2, π{x} (zw) = 0.19,

π{y} (z) = 0.8, π{y} (zw) = 0.1. Then:

p (x, zxyw)− p (y, zyxw) = σ ({x})π{x} (z)− σ ({y})π{y} (z)

= 0.9× 0.2− 0.1× 0.8

= 0.1 > 0

and

p (x, zwxy)− p (y, zwyx) = σ ({x})π{x} (zw)− σ ({y})π{y} (zw)

= 0.9× 0.19− 0.1× 0.1

= .161

> p (x, zxyw)− p (y, zyxw)

violating A3.

Therefore, in view of Theorem (4), we have:

Remark 1. There exist CAC functions that are not SCAC functions.

It may be tempting to think that a CAC function can be characterised simply

by dropping A3 in the SCAC characterisation Theorem (4), that is, in terms of Pre-

decessor Monotonicity alone (which is clearly necessary). But this is false. To see

this, consider X = {x, y, z}. Writing p(x, λ) = p(x, λx), let p (x, ∅) = p (y, ∅) =

1, p (z, ∅) = 0, p (x, z) = 0.8 and p (y, z) = 0.7 and choose the remaining approval

probabilities to satisfy Predecessor Monotonicity. If p is a CAC function generated

by (σ, {πA}A⊆X), then σ ({x, y}) = 1 necessarily. But the approval probabilities

following the sublist z then imply the contradiction 0.8 = 1× π{x,y} (z) = 0.7.

The characterisation of a CAC function remains a non-trivial open problem.
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5 Application: Examples of List Design

5.1 The List Design Problem

As an application of our theory of approval, we now study some examples of “list

design”. The issue of manipulation of online behaviour has become a significant

concern in current public discourse. We operationalise the idea of manipulation

by assuming that a designer constructs the list so as to maximise some objective

function. For instance, the list designer may wish to increase the general number of

news pieces read or of papers downloaded, or just of some particular types of news

and papers; or to foster social network involvement through likes, favouriting and

sharing; or to enhance the revenue generated by a wish list or a shopping cart.

Note that in some, though not all, of these examples, it may be the case that some

elements in the list have more value than others from the point of view of the list

designer. Feenberg et al. [10] provide specific evidence that, in the case of NBER

economics papers email announcement, “even among expert searchers, list-based

searches can be manipulated by list placement”.15

To accommodate broadly this type of aims by the designer we consider as the

objective function the weighted sum of the approval probabilities generated by a list.

We concurrently assume that the primitives that generated the data are known to

the designer (see section 3.2).

Letting w (x) ∈ R+ be the weight that the designer associates to item x, the

weighted sum of approval probabilities on a list λ is denoted

Wλ = ∑
x∈X

w (x) p (x, λ) . (7)

Definition 8. A list λ is optimal if Wλ ≥Wµ for all µ ∈ Λ.

Note that we eschew here the case of negative weights. This assumption is

in some respects not demanding, as items with negative weights could simply be

removed from the list. However it could be potentially limiting in some cases, for

example if the designer is compelled by regulation to include loss-making items in

15These authors show that papers listed first in the email announcement for newly listed papers
are about 30% more likely to be viewed, downloaded, and subsequently cited.
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the list.

We will consider two specialisations of our satisficing model, one with corre-

lations and the other without. We assume throughout the section the following

strictness conditions: (1) for all t ∈ X, τ (t) > 0, and (2) λ̃ @ µ̃ =⇒ πt
(
λ̃
)
>

πt
(
λ̃
)
.

Model A: p is a SAC function generated by (%, τ, π) such that for all λ̃, µ̃ ∈ Λ̃:

∣∣λ̃∣∣ = |µ̃| =⇒ π
(
λ̃
)
= π (µ̃) . (8)

Model B: p is a SCAC function generated by (%, τ, {πt}t∈X) such that for all λ̃, µ̃ ∈
Λ̃ and all t ∈ X:

∣∣λ̃ ∩ {z : z � t}
∣∣ = |µ̃ ∩ {z : z � t}| =⇒ πt

(
λ̃
)
= πt (µ̃) . (9)

In other words, in both models the predecessor sublist affects continuation only

through the cardinality of a relevant object. In Model A the relevant object is the

set of items that have been examined so far (so what matters is only how deep the

agent is in the list). In Model B the relevant object is the set of items that have been

approved so far.

While restrictive, these specialisations still allow a rich range of attitudes on the

part of the approver. For example, in Model B, having encountered a large number

of acceptable items may generate both optimism and pessimism about the quality

of the remaining items, as well as a non-monotonic attitude. Similarly, Model A is

consistent with any pattern for the rate of change in continuation probabilities.

The first dilemma for a designer is caused by the possible discrepancies be-

tween the listing of the items according to the quality or the weight rankings:

should either of the conflicting listing criteria be given priority? If not, how should

the criteria be aggregated?

Secondly, given a criterion, it is not clear a priori whether a weaker item ac-

cording to this criterion should be placed earlier or later in the list. Earlier posi-

tions favour approval in our models. Should the position be used as a reinforcer of

quality or rather as a compensation for the lack of quality in an optimal list? And

what about the weight?
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Consider for instance the lists λ = yzx and µ = zxy in Model A, and let the

preference relation be x � y � z. Suppose that the weights are the same across all

of the items, w (a) = w̄ for all a. The difference in the designer’s objective between

the two lists with Model A is

Wλ −Wµ =

=w̄

π (∅) ∑
t∈{y,z}

τ (t) + π (y) τ (z) + π (yz) ∑
t∈{x,y,z}

τ (t)


−w̄

π (∅) τ (z) + π (z) ∑
t∈{x,y,z}

τ (t) + π (zx) ∑
t∈{y,z}

τ (t)


=w̄ [τ (y) (1− π (y))− τ (x) (π (y)− π (yz))]

where the last line is obtained using π (∅) = 1 and conditions (8). Therefore the

sign of Wλ −Wµ for two generic lists λ and µ is ambiguous, depending on the

shape of the continuation function and the threshold probabilities.

We can clarify the design questions substantially. Our first result shows that in

Model B, unlike the example above, the optimality condition in fact does not depend

at all on the primitives of the model.

Theorem 5. In Model B a list λ is optimal if and only if it agrees with the weight ordering,

that is if and only if the following condition holds:

w (x) > w (y)⇒ xλy

Proof. Note first that an optimal list exists, since there are finitely many lists and

thus the map λ 7→ ∑x∈X w (x) p (x, λ) has a maximiser. Consider any λ, µ ∈ Λ

that only differ in the position of two consecutive items. That is, there exist x and y

such that λ (y) = λ (x) + 1, µ (x) = λ (y), µ (y) = λ (x) and λ (z) = µ (z) for all

z ∈ X \ {x, y}. It is easy to check from (9) that

p(z, λ) = p (z, µ) ∀z ∈ X \ {x, y} (10)

We assume w.l.o.g. that x � y. The differences in approval probability across the
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two lists for x and y are:

p (x, λ)− p (x, µ) = ∑
t:x%t

τ (t)πt (λ
x)− ∑

t:x%t
τ (t)πt (µ

x) (11)

p (y, µ)− p (y, λ) = ∑
t:y%t

τ (t)πt (µ
y)− ∑

t:y%t
τ (t)πt (λ

y) . (12)

Note that, since λx = µy, for all t ∈ X:

πt (λ
x) = πt (µ

y) (13)

What is more, in view of (9):

t - y ≺ x =⇒ πt (λ
y) = πt (µ

x) (14)

y ≺ t - x =⇒ πt (λ
x) = πt (µ

x) (15)

We can now calculate:

p (x, λ)− p (x, µ)− (p (y, µ)− p (y, λ)) =

∑
t:x%t�y

τ (t)πt (λ
x)− ∑

t:x�t
τ (t)πt (µ

x) + ∑
t:y%t

τ (t)πt (λ
y) =

∑
t:x�t�y

τ (t)πt (λ
x)− ∑

t:x%t
τ (t)πt (µ

x) + ∑
t:y%t

τ (t)πt (µ
x) =

∑
t:x%t�y

τ (t)πt (λ
x)− ∑

t:x%t�y
τ (t)πt (µ

x) = 0.

where the first equality is by (11), (12) and (13), the second equality by (14), and

the final equality by (15). In sum, we have:

p (x, λ)− p (x, µ) = p (y, µ)− p (y, λ) > 0 (16)

(the inequality holding by the the strictness assumption on π and τ), so that:

w (x) p (x, µ) + w (y) p (y, µ) ≥ w (y) p (y, λ) + w (x) p (x, λ)⇔ w (x) ≤ w (y)

(17)

Take any λ ∈ Λ for which w (x) > w (y) and yλx for some consecutive x, y ∈ X.
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Then by (10) and (17) it is possible to increase Wλ by switching the items x and y.

This shows that w (x) > w (y) ⇒ xλy with x and y consecutive is necessary for

optimality. This necessary condition can be extended to non-consecutive items x

and y by iteratively applying it to the connecting consecutive pairs. That is, sup-

pose yλx and in particular z1 = yλz2λ...λzk = z with any zi and zi+1 consecutive

in λ. The condition for consecutive pairs implies ziλzi+1 =⇒ w(zi) ≥ w(zi+1) for

all i = 1, ..., k− 1. Therefore yλx =⇒ w(y) ≥ w(x) for all x, y ∈ X, as desired.

Conversely, suppose that a list λ agrees with the weight ordering and compare

it with an optimal list, say µ. Since µ is optimal, by the previous argument it must

also agree with the weight ordering. So for all x, y ∈ X for which w (x) > w (y)

we have both xλy and xµy. The lists λ and µ can only disagree on the way they

order pairs of items x and y for which w (x) = w (y). Clearly, switching these items

cannot affect the value of a list, since such switches cannot change the number of

approved predecessors of any item. Therefore, Wµ = Wλ and λ is also optimal.

One way to read this result is that for Model B there is no substitutability between

the quality and the weight of an item as far is its optimal positioning for list design is

concerned. In particular, an optimal list must weakly agree with the weight order.

And if two items tie for weight, they may be listed in either order at the optimum:

quality does not function as a tie-breaker either.

A leading special case is when weights are the same for all items. Then, as an

immediate implication of the statement of Theorem 6:

Corollary 1. (The List Invariance Principle) In Model B, suppose that w (x) = w (y)

for all x, y ∈ X. Then all lists are optimal: ∑x∈X w (x) p (x, λ) = ∑x∈X w (x) p (x, µ)

for all λ, µ ∈ Λ.

Thus, the designer in this case has no power at all to affect the value of a list. To

understand this rather surprising result, consider any realisation of the threshold

t and of the continuation events (yes or no) associated with every cardinality. Let

|{z : z � t}| = k, and let i be the smallest cardinality for which the approver does

not continue. If k ≤ i , then k items are approved. Otherwise, i items are approved.

Since neither k nor i depends on the list, and the argument holds for an arbitrary

realisation, the number of approvals does not depend on the list.16

16We thank Yuhta Ishii for suggesting this argument.
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For Model A, matters are very different:

Theorem 6. In Model A a list λ is optimal if and only if it satisfies the following condition:

w (x) ∑
t:x%t

τ (t) > w (y) ∑
t:y%t

τ (t)⇒ xλy

Proof. As noted in the proof of the previous theorem, an optimal list exists. The

proof structure here is similar, except that we consider switches between items

that are not necessarily consecutive. Take λ, µ ∈ Λ such that λ (x) = µ (y), λ (y) =

µ (x) for some distinct x, y ∈ X, and λ (z) = µ (z) for all z 6= x, y.

From (8) it follows immediately that p (z, λ) = p(z, µ) for all z 6= x, y. Also, in

view of (8), π (λx) = π (µy) and π (λy) = π (µx) . Suppose that w (x)∑t:x%t τ (t) >

w (y)∑t:y%t τ (t) and yλx. Then

Wµ −Wλ =

= w (x)

(
∑

t:x%t
τ (t)π (λx)− ∑

t:x%t
τ (t)π (µx)

)
− w (y)

 ∑
t:y%t

τ (t)π (µy)− ∑
t:y%t

τ (t)π (λy)


= w (x)

(
∑

t:x%t
τ (t)π (λx)− ∑

t:x%t
τ (t)π (µx)

)
− w (y)

 ∑
t:y%t

τ (t)π (λx)− ∑
t:y%t

τ (t)π (µx)


= w(x) ∑

t:x%t
τ (t) (π (λx)− π (µx))− w (y) ∑

t:y%t
τ (t) (π (λx)− π (µx))

> 0

where the inequality follows from the strictness assumption on π and τ. Hence

the condition on the statement is necessary for a list to be optimal. Conversely,

any list λ that satisfies the condition in the statement cannot be improved upon by

any other list, by an argument analogous to that in the final part of the proof of

Theorem 5.

This result has the immediate consequence:

Corollary 2. In Model A, suppose that weights agree with preferences in the sense that

x � y ⇒ w (x) ≥ w(y). Then the unique optimal list λ agrees with the preferences, i.e.

x � y⇔ xλy.
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Theorem (6) tells us that there is a specific form of substitutability between the

weight and the quality of items for an optimum. This substitutability is expressed by

the terms w (x)∑t:x%t τ (t) . In fact, ∑t:x%t τ (t) is a measure of quality: it is larger

for items that are higher in the preference ordering. When the two components of

the measure agree, there is no need for trade-offs.

Why do Model A and Model B behave so differently? Consider Model A. When

a better item x is placed in a list λ behind a worse item y, a switch in the positions

of x and y to obtain a new list µ produces two effects (recall that the approval

probabilities of all other items are not affected by the switch).

i) any loss for y is a gain for x. Suppose that a threshold-continuation realisation

leads to the approval of y in λ but not in µ. This means that y passes the thresh-

old, and that the smallest cardinality i for which the approver does not continue is

strictly less than µ (y) but at least as much as λ (x). But this means that this partic-

ular realisation of the random variables leads to the approval of x in µ and not in

λ.

ii) some gain for x is not a loss for y. For example, a threshold-continuation re-

alisation such that t = x � y and the position µ (x) is reached while the position

λ (x) is not reached leads to the approval of x in µ but not in λ. But it never leads

to the approval of y.

These effects imply that, if w (x) ≥ w (y), a switch that improves the position of

the better item always increases the value of the objective function. Therefore, since

an optimal list exists, it must be the only list that is not vulnerable to such types of

switch, namely the list that agrees with preferences. When there is disagreement

between % and w a similar argument applies.

A similar reasoning to the one above could be performed for consecutive items

in Model B, as in the proof of Theorem 5. But, unlike in Model A, in Model B

there is no special significance for any given position: x gains from advancing one

position if, and only if, its predecessor is using the last available unit of approval.

Hence y loses from the switch exactly the approval probability that x gains (this is the

content of equation (16). Therefore, since better positions correspond to higher

approval probabilities, the objective is increased every time that an item with a

larger weight (independently of its quality) is placed before, rather than after, an
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item with a smaller weight.

The main message from this study of cardinality-based models is the follow-

ing. If it is the number of approvals that affects the desire to explore the list, then

optimal lists must use as information the designer’s preferences, ignoring the ap-

prover’s preferences. On the other hand, if the desire to explore the list is deter-

mined by the position in the list, both parties’ preferences must be considered.

6 Comments on the related literature

The closest papers to the present one are those that constitute the small literature

on choice from lists, or choice from menus where a list (a search order) appears as

a primitive of the model. It is useful to make some further comments on the con-

ceptual difference between the act of approval and the act of choice. “Choosing”

means selecting one out of a set of feasible alternatives. This is clear in the concept

of a choice function. A choice correspondence admits multiplicity either in the sense

that it describes all that is “choosable” (because they are indifferent to each other, as

in the standard utility maximisation model, or in the model of choice from list by

Horan [13]); or “chosen in different circumstances” (because the primitives change

across circumstance as e.g. in Salant and Rubinstein [21], where frame variation

generates a variety of choices).17 An approval function, by contrast, describes sets

of items that are actually approved on a single circumstance (or realisation of a ran-

dom variable). Even when many objects are chosen at once (e.g., a set of applicants

in the job market) the objects of choice are sets, and only one set can be chosen at

once. On the contrary, several sets can be approved at once. In general, once an

object of choice has been fixed (a portfolio, a consumption bundle, a set of candi-

dates), only one can be meaningfully chosen, while many can be approved.

A stochastic choice function describes the possibility of choosing several alter-

natives, each one for a different realisation of an unobserved variable that appears

random to the researcher. For example, as Rubinstein and Salant [20] put it:

An intuitive reason for randomness in choice from sets is that although
17In their generalisation of Rubinstein and Salant’s [20] deterministic model of choice from lists,

Koshevoy and Savaglio [14] combine these two aspects, by defining a choice correspondence as the
union of choice correspondences from all possible lists of sets.
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the decision maker deterministically chooses from lists, there is an un-

derlying random process that transforms sets into lists.

A search order is also the key random variable in Aguiar, Boccardi and Dean (ABD)

[2], whereas it is a set of binary comparisons in Yildiz [22] and a threshold in Ko-

vach and Ülkü [15], where one alternative is chosen on each realisation.18 With

an approval function, as noted, each realisation of the random variables generates

multiple approved items. To clarify this point further, it is instructive to quote an

example of the stochastic choice procedure in ABD, who describe the decision to

buy [choose] a book at an airport before a flight: given a realised search order (list)

They examine the available books one by one, looking for one which

satisfies their requirements...If they find such a book, they immediately

go to the checkout and buy it.

In contrast, an approver would not immediately go to the checkout. He would

continue browsing and approve everything he finds acceptable.

ABD continue:

If they search the entire selection and don’t find a book which matches

these criteria then they go back and choose the best of the books that

they did see.

In contrast, if an approver has not approved anything by the end of the list (if any),

he would just leave with an empty approved set.

For concreteness, recall Example 2, where we considered an agent who max-

imises the probability of stopping at the best item while approving all items along

the way that are above a given quality threshold. This distinguishes clearly the ap-

prover both from a standard satisficer, who would select the first above-threshold

item; and from a preference maximiser, who would select only the best items

among those seen.

18Or multiple alternative are choosable if preferences are represented by a weak rather than a
strict order.
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7 Concluding remarks

Approval activities are evidently of considerable economic and social interest, be-

cause of the value of the information about users contained in approvals19, the

facilitation of the sale process20, the generation of new modes of advertising, and

the building of online communities. Facebook is worth hundreds of billions of

dollars, it bought Instagram for a billion and even a relatively “small” company

such as Pinterest is worth dozens of billions and has more than trebled in value in

2020. Parallel to the explosion of companies that focus on social media and user-

generated content, the nature of available data has undergone a profound change

in recent years.21 This is meant both in the sense that behaviours that were not

observable before are now observable, and in the sense that people engage in new

types of behaviours. While of course many specific studies of “e-activities” exist,

our attempt has been to draw together in an abstract model disparate approval

activities and datasets that are typical of online life.

While forms of approval are certainly not exclusive to online life, in this paper

we have highlighted the online interpretation of the data for three reasons. First,

online approval behaviour is much more typical than in physical life, because of

the quick and free or near-free nature of clicks. Second, approvals as clicks are far

more easily observable in a systematic way than than physical approvals. Third,

clicks have an economic value to some interested parties beside the final choice;

unlike, say, an item placed in a physical cart and then put back on the shelf, or a

nod to a friend’s remark as opposed to Liking and favouriting.

A main appealing feature of our model is that it can be sharply characterised

and its primitives can be uniquely and non-parametrically identified from ob-

served data. Furthermore, our approach has led us to tackle an issue - the “ma-

nipulation” of online behaviour by interested parties - for which we mostly lack a

formal framework of analysis in spite of it being a key topic in current discourse. In

our model this has taken the concrete form of the “list design problem”. We have

19Such information can be both valuable for third parties to which it can be sold, or allow to the
company to provide a larger scale and more efficient service (as in the case of dating companies).

20See e.g. Lee, Lee, Oh [17] on the role of Facebook Likes for sales growth.
21See e.g. https://www.statista.com/markets/424/topic/540/social-media-user-generated-

content/
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highlighted several non-obvious tradeoffs and principles of list design in some

circumscribed contexts. However, the analysis of this issue needs much more

investigation and seems a most promising avenue for future research. The ob-

jectives of list designers may go beyond the simple weighted sum maximisation

we have studied. For example, in a recent prominent case, Facebook was pub-

licly condemned for conducting an experiment in which it manipulated nearly

700,000 users’ news feeds to see whether it would affect their emotions.22 This

type of more sophisticated objectives could be analysed in suitable extensions of

our framework. Also, manipulation can leverage on aspects of the environment

(such as visual salience) that go beyond lists and their content.

While data in reality will likely offer both menu and list variation, it is the

latter that constitutes the novel observable feature of online datasets. We wished

to isolate the way in which the order aspect of data, rather than their set aspect,

provides information.23 Future work might be done to incorporate both types of

variation.
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