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Abstract

We present a new choice model. An agent is endowed with two sets of prefer-

ences: pro-preferences and con-preferences. For each choice set, if an alternative

is the best (worst) for a pro-preference (con-preference), then this is a pro (con)

for choosing that alternative. The alternative with more pros than cons is chosen

from each choice set. Each preference may have a weight reflecting its salience.

In this case, each alternative is chosen with a probability proportional to the

difference between the weights of its pros and cons. We show that this model

provides a structured language to describe any choice behavior.
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1 Introduction

Charles Darwin, the legendary naturalist, wrote “The day of days!” in his journal

on November 11, 1838, when his cousin Emma Wedgwood, accepted his marriage

proposal. However, whether to marry at all had been a hard decision for Darwin. Just

a few months prior, Darwin had scribbled a carefully considered list of pros –such as

“constant companion”, “charms of music”, “female chit-chat”– and cons –such as “may

be quarrelling”, “fewer conversations with clever people”, “no books”– regarding the

potential impact of marriage on his life.1 With this list of pros and cons, Darwin

seems to follow a choice procedure ascribed to Benjamin Franklin.2 Here we present

Franklin (1887)’s choice procedure in his own words.

To get over this, my Way is, to divide half a Sheet of Paper by a Line into

two Columns, writing over the one Pro, and over the other Con. I endeavour

to estimate their respective Weights; and where I find two, one on each side,

that seem equal, I strike them both out: If I find a Reason pro equal to some

two Reasons con, I strike out the three. If I judge some two Reasons con

equal to some three Reasons pro, I strike out the five; and thus proceeding

I find at length where the Ballance lies. And tho’ the Weight of Reasons

cannot be taken with the Precision of Algebraic Quantities, yet when each is

thus considered separately and comparatively, and the whole lies before me,

I think I can judge better, and am less likely to take a rash Step; and in fact

I have found great Advantage from this kind of Equation, in what may be

called Moral or Prudential Algebra.

In this paper, we formulate and analyze a choice model that we call prudential

choice inspired by the Franklin’s prudential algebra. We formulate this model both in

the deterministic and stochastic choice setups. In doing so, we extend Franklin’s pru-

1See Glass (1988) for the full list.
2In 1772, a man named Joseph Priestley wrote a letter to Benjamin Franklin asking for Franklin’s

advice on a decision he was trying to make. Franklin wrote back indicating that he could not tell him

what to do, but he could tell him how to make his decision, and suggested his prudential algebra.
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dential algebra as to allow an agent’s choices to yield a probability distribution over

choice sets with possibly more than two alternatives. Although the deterministic

choice framework is a special case of the stochastic one, our formulation of deter-

ministic prudential choice is more restrictive than a direct adaptation of its stochastic

counterpart. In our analysis, we show that prudential choice model provides a struc-

tured canonical language to describe any deterministic or stochastic choice behavior.

First we formulate the prudential choice model in the deterministic choice setup.

Let X be a nonempty finite alternative set and any nonempty subset S be a choice set.

A choice function C singles out an alternative from each choice set. A (deterministic)

prudential model (PM) is a pair (�, .) such that �= {�1, · · · ,�m} is a collection

of pro-preferences3 and . = {.1, · · · , .q} is a collection of con-preferences. Given an

PM (�, .), for each choice set S and alternative x, if x is the �i-best alternative in

S for some �i ∈ �, then we interpret this as a ‘pro’ for choosing x from S. On the

other hand, if x is the .i-worst alternative in S for some .i ∈ ., then we interpret

this as a ‘con’ for choosing x from S. More formally, let Pros(x, S) denote the set

of pro-preferences (�i ∈ �) at which x is the best alternative in S and Cons(x, S)

denote the set of con-preferences (.i ∈ .) at which x is the worst alternative in S.

Our central new concept is the following: A choice function is prudential if there is

an PM (�, .) such that for each choice set S, an alternative x is chosen from S if and

only if the number of Pros(x, S) is greater than the number of Cons(x, S).4

To see how the model works, let us revisit Luce and Raiffa’s dinner example

(Luce & Raiffa (1957)) by following a prudential model. In the story, they choose

chicken when the menu consists of steak and chicken only, yet go for the steak

when the menu consists of steak (S), chicken (C), and fish (F ). Consider the pro-

preferences �1 and �2 that order the three dishes according to their attractiveness
3A preference is a complete, transitive, and antisymmetric binary relation on X.
4This formulation corresponds to Franklin’s prudential algebra in which each pro and con item

has equal weight. We propose PM as a plausible individual choice model, but it turns out that a

PM can also be viewed as a collective decision making model based on plurality voting. We present

the model in Section 3.3. As a corollary to our Theorem 2, we show that every choice function is

plurality-rationalizable. This provides a generalization of an earlier result by McGarvey (1953).
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and healthiness, so suppose S �1 F �1 C and C �2 F �2 S. As a con-preference,

consider C .S .F , which orders the dishes according to their riskiness. Since cooking

fish requires expertise, it is the most risky one, and since chicken is the safest option,

it is the least risky one. In short, we have risk-averse agents who like attractive and

healthy food. Now, to make a choice from the grand menu, the pros are: “S is the

most attractive”, “F is the most healthy”, but also “F is the most risky”. Thus, S

is chosen from the grand menu. If only S and C are available, then we have “C is

the most healthy”, “S is the most attractive”, but also “S is the most risky”, so C is

chosen.

Choice models most commonly used in economics are based on maximization

of preferences. An alternative mode of choice is a less formal reason-based analysis

that is experimentally studied by Shafir et al. (1993). This approach first identifies

various arguments that support or oppose an alternative, then the balance of these

arguments determines the choice. As Shafir et al. argue, reason-based analysis is

common for the scholarly work in history and law, and typical of political and busi-

ness discourse.5 Prudential choice offers a formal model that connects these two

approaches by presenting a reason-based choice model, in which the ‘reasons’ are

formed by using a preference based language.

Next, we formulate the prudential model in the stochastic choice setup. In this

setup, an agent’s repeated choices or a group’s choices are summarized by a random

choice function (RCF) p, which assigns to each choice set S, a probability measure

over S. For each choice set S and alternative x, we denote by p(x, S) the probability

that alternative x is chosen from choice set S. A random prudential model (RPM)

is a triplet (�, ., λ), where � and . stand for pro-preferences and con-preferences,

as before. The weight function λ assigns to each pro-preference �i ∈ � and con-

preference .i ∈ ., a value in the (0, 1] interval, which we interpret as a measure of

the salience of each preference. An RCF p is prudential if there is an RPM (�, ., λ)

5Reason-based analyses are commonly used for ‘case studies’ in business and law schools.
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such that for each choice set S and alternative x,

p(x, S) = λ(Pros(x, S))− λ(Cons(x, S)),

where λ(Pros(x, S)) and λ(Cons(x, S)) are the sum of the weights over Pros(x, S)

and Cons(x, S).6

The most familiar stochastic choice model in economics is the random utility

model (RUM),7 which assumes that an agent is endowed with a probability measure

µ over a set of preferences � such that he randomly selects a preference to be maxi-

mized from � according to µ. The connection between RUM and RPM is clear, since

each RUM (�, µ) is an RPM in which there is no set of con-preferences. As an al-

ternative model, Tversky (1972) proposes elimination-by-aspects (EBA), in which an

agent views each alternative as a set of attributes and makes his choice by following

a probabilistic process that eliminates alternatives based on their attributes.8 In the

vein of EBA, if an alternative x is not the worst alternative in choice set S for some

con-preference .i, then this can be interpreted as “x has attribute i in choice set S” .

Then, each alternative without attribute i in choice set S is eliminated with a proba-

bility proportional to the weight of attribute i. Thus, RPM offers a choice model that

both carries the act of probabilistic selection of a preference to be maximized as in

the RUM, and eliminating alternatives, as in Tversky’s elimination-by-aspects.

As for the similarity between the RPM and the RUM, both models are additive,

in the sense that the choice probability of an alternative is calculated by summing up

the weights assigned to the preferences. The primitives of both the RPM and RUM

are structurally invariant, in the sense that the decision maker uses the same (�, µ)

and (�, ., λ) to make a choice from each choice set. This feature of the RUM brings

6Note that each RPM (�, ., λ) does not necessarily yield an RCF. For an equivalent descrip-

tion of the RPM that does yield an RCF, for each choice set S ∈ Ω and x ∈ S, let λ(x, S) =

λ(Pros(x, S)) − λ(Cons(x, S)) and S+ be the alternatives in S with λ(x, S) > 0, then require that

p(x, S) = λ(x,S)∑
{y∈S+} λ(y,S)

if λ(x, S) > 0, and p(x, S) = 0 otherwise.
7See Thurstone (1927), Marschak et al. (1959), Harsanyi (1973), and McFadden (1978).
8Tversky (1972) argues that EBA reflects the choice process followed by agents more precisely than

the classical choice models.
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stringency in its identification, which reflects itself in its characterization. Namely,

the RCFs that render a random utility representation are those that satisfy the Block-

Marschak polynomials.9 On the other hand, despite the similarity between the RPM

and RUM, in our Theorem 1, we show that every random choice function is pruden-

tial. Then, by using the construction in Theorem 1 proof and two key results from the

integer-programming literature, we show that each (deterministic) choice function

is prudential.10

Our main results have two key implications. First, we learn that prudential

model provides a canonical language to describe any choice behavior in terms of

the structurally-invariant primitives of the model, namely pro-, con-preferences and

the weight function. On the other side, we learn that without further restrictions,

we fail to refute the prudential choice model. We believe that being inclusive does

not take away from the relevance of a structured model, but opens up new direc-

tions to pursue. As a thought experiment, consider the most commonly used random

choice model in economics, namely the Luce rule, and imagine that the Luce rule

is permissive enough to accommodate every choice behavior. This would not make

the Luce rule useless, but may make it even more appealing, since no data needs

to be eliminated in empirical applications. It seems that what makes a choice model

economically interesting is twofold. One concern is whether the model provides plau-

sible explanations for observed choice patterns that classical models fail to explain.

The other concern is whether the primitives of the model can be precisely identified

from the observed choices. In the rest of the paper, we aim to address these concerns.

Our examples present specific prudential choice models that accommodate ob-

served choice behavior, such as the similarity effect and the attraction effect that com-

monly used choice models fail to explain. This may seem of little importance for

9See Block & Marschak (1960), Falmagne (1978), McFadden (1978), and Barberá & Pattanaik

(1986).
10Note that this result does not directly follow from Theorem 1, since a prudential model is not

a direct adaptation of the random prudential model in that we require each preference to have a

fixed unit weight instead of having fractional weights. To best of our knowledge the use of integer

programming techniques in this context is new.

7



an inclusive choice model, however, our point is to illustrate that tailored prudential

choice models capture the key aspects of the contexts in which these choice pat-

terns are observed. For example, in an attraction effect scenario it seems that there

are only two relevant criteria for choice, such as price and quantity. The pro- and

con-preferences used in our Example 3 correspond to these criteria. As a result, the

choice probability of an alternative may increase when a decoy is added, since this

alternative may no longer be the worst one according to a relevant criterion. A key

feature that derives the similarity effect is that there are two distinct attributes that

are relevant for choice, one of which is of major importance, whereas the other is

of secondary importance.11 The pro- and con-preferences used in our Example 2

reflects this logic. These examples indicate that analyzing prudential choice model

with restricted pro- and con-preferences may lead to insightful results. In this vein,

in Section 2.5, we consider choice problems in which there are two observable order-

ings of the alternatives that are relevant for choice. Then, we provide a set of choice

axioms that guarantee the observed choices are generated via an RPM in which the

pro-preferences and the con-preferences are obtained from the observed orderings.

As for the identification of the primitives from observed choices, the RPM has

characteristics similar to the RUM. An RCF may have different random utility repre-

sentations even with disjoint sets of preferences. However, Falmagne (1978) argues

that random utility representation is essentially unique, in the sense that the sum of

the probabilities assigned to the preferences at which an alternative x is the kth-best

in a choice set S is the same for each random utility representation of the given RCF.

In the vein of Falmagne’s result, we show that for each RCF the difference between

the sum of the weights assigned to the pro-preferences at which x is the kth-best al-

ternative in S and the sum of the weights assigned to the con-preferences at which x

is the kth-worst alternative in S is the same for each prudential representation of the

given RCF.

11In Debreu’s example Debreu (1960), whether it is a travel by bus or by train is the primary

attribute, whereas the color of the bus is the secondary attribute.
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1.1 Related literature

In the deterministic choice literature, previous choice models proposed by Kalai et al.

(2002) and Bossert & Sprumont (2013) yield similar “anything goes” results. A

choice function is rationalizable by multiple rationales (Kalai et al. (2002)) if there is

a collection of preference relations such that for each choice set the choice is made

by maximizing one of these preferences. Put differently, the decision maker selects

a preference to be maximized for each choice set. A choice function is backwards-

induction rationalizable (Bossert & Sprumont (2013)) if there is an extensive-form

game such that for each choice set the backwards-induction outcome of the restric-

tion of the game to the choice set coincides with the choice. In this model, for each

choice set, a new game is obtained by pruning the original tree of all branches lead-

ing to unavailable alternatives. In the stochastic choice setup, Manzini & Mariotti

(2014) provide an anything-goes result for the menu-dependent random consideration

set rules. In this model, an agent keeps a single preference relation and attaches to

each alternative a choice-set-specific attention parameter. Then, from each choice he

chooses an alternative with the probability that no more-preferable alternative grabs

his attention. In contrast to these models, we believe that the prudential model is

more structured, and exhibits limited context dependency. In that, an agent follow-

ing a prudential model only restricts the pro-preferences and con-preferences to the

given choice set to make a choice.

In the discrete-choice literature, there is a related line of research about the

probabilistic models of best-worst choices (Marley & Louviere (2005)). It is assumed

that an agent not only reports his best choice but also his worst one from each choice

set. In contrast to the RPM, the existing models analyzed in this enriched frame-

work lie within the random utility framework. In the social choice theory literature,

Felsenthal (1989) proposes the approval-disapproval voting model as an extension of

the commonly used approval voting model of Brams & Fishburn (1978). Similar to

our prudential model, for a given preference profile each alternative gets a score that

equals the difference between the number of voters that top rank the alternative and
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the number of voters that bottom rank the alternative. Then, the alternative(s) with

the highest score is chosen. In contrast, we identify pro- and con preferences from

agents’ choices. Therefore, we could not see any direct implication of the existing

results in voting theory to our analysis.

2 Prudential random choice functions

2.1 The model

Given a nonempty finite alternative set X, any nonempty subset S is called a choice

set. Let Ω denote the collection of all choice sets. A random choice function (RCF)

p is a mapping that assigns each choice set S ∈ Ω, a probability measure over S.

For each S ∈ Ω and x ∈ S, we denote by p(x, S) the probability that alternative x is

chosen from choice set S. A preference, denoted generically by �i or .i, is a complete,

transitive, and antisymmetric binary relation on X.

A random prudential model (RPM) is a triplet (�, ., λ), where �= {�1

, · · · ,�m} and . = {.1, · · · , .q} are sets of pro- and con-preferences on X, and λ

is a weight function such that for each �i ∈ � and .i ∈ ., we have λ(�i) ∈ (0, 1] and

λ(.i) ∈ (0, 1].

Given an RPM (�, ., λ), for each choice set S and alternative x ∈ S, if x is the

�i-best alternative in S for some �i ∈ �, then we interpret this as a ‘pro’ for choosing

x from S. On the other hand, if x is the .i-worst alternative in S for some .i ∈ ., then

we interpret this as a ‘con’ for choosing x from S. We interpret the weight assigned to

each pro-preference or con-preference as a measure of the salience of that preference.

To define when an RCF is prudential, let Pros(x, S) = {�i ∈ � : x = max(S,�i)}

and Cons(x, S) = {.i ∈ . : x = min(S, .i)}.

Definition 1 An RCF p is prudential if there is an RPM (�, ., λ) such that for each

choice set S ∈ Ω and x ∈ S,

p(x, S) = λ(Pros(x, S))− λ(Cons(x, S)), (1)
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where λ(Pros(x, S)) and λ(Cons(x, S)) are the sum of the weights over Pros(x, S) and

Cons(x, S).

As the reader would easily notice not every RPM (�, ., λ) yields an RCF. For

this to be true, for each choice set S ∈ Ω and x ∈ S, expression in (1) should

be nonnegative and sum up to one. These additional requirements are imposed on

the model by our Definition 1. Next, we provide an equivalent formulation of the

prudential model that always yields an RCF. For a given RPM (�, ., λ), let for each

S ∈ Ω and x ∈ S, λ(x, S) = λ(Pros(x, S)) − λ(Cons(x, S)), and S+ = {x ∈ S :

λ(x, S) > 0}.

Definition 2 An RCF p is prudential if there is an RPM (�, ., λ) such that for each

choice set S ∈ Ω and x ∈ S,

p(x, S) =


λ(x, S)∑

{y∈S+} λ(y, S)
if λ(x, S) > 0

0 if λ(x, S) ≤ 0

(2)

That is, to make a choice from each choice set S, a prudential agent considers

the alternatives with a positive λ(x, S) score, and chooses each alternative from this

consideration set with a probability proportional to its weight.

Note that each RUM (�, µ) is a RPM in which there is no set of con-preferences.

To clarify the connection between Tversky (1972)’s elimination by aspects and the

RPM, consider a con-preference .i; if an alternative x is not the .i-worst alternative

in a choice set S, then say that x is acceptable according to .i in S. Now, we can

interpret the statement “x has attribute i in choice set S” as “x is acceptable according

to .i in S”. Thus, for a given RPM, each alternative without attribute i in choice set S

is eliminated with a probability proportional to the weight of attribute i. In line with

this interpretation, we illustrate in our Example 2 and Example 3 that each preference

in an RPM can be interpreted as an attribute or a relevant criterion for the choice.

The agent’s attitude to these criteria is different in that if it is a pro-preference, then

the agent seeks maximization; if it is a con-preference, then the agent is satisfied by

the elimination of the worst alternative.
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2.2 Examples

First, we present an example in which all preferences have a weight of one. There-

fore, the resulting choice is deterministic and illustrates the deterministic counterpart

of the RPM.

Example 1 (Binary choice cycles) Suppose X = {x, y, z} and consider the follow-

ing RPM (�, ., λ). Note that x is chosen from the grand set and when compared to

(1) (1) (1)

�1 �2 .1

x y z

y z x

z x y

y, y is chosen when compared to z, but z is chosen when compared to x. That is,

the given PM generates the choice behavior of an agent who exhibits a binary choice

cycle between x, y, z, and chooses x from the grand set.

Example 2 (Similarity Effect) Suppose X = {x1, x2, y}, where x1 and x2 are similar

alternatives, such as recordings of the same Beethoven symphony by different con-

ductors, while y is a distinct alternative, such as a Debussy suite. Suppose between

any pair of the three recordings our classical music aficionado chooses with equal

probabilities, and he chooses from the set {x1, x2, y} with probabilities 0.25, 0.25, and

0.5 respectively.12 Consider the RPM (�, ., λ) presented below:

We choose (�1, .1) and (�2, .2) as the same preferences, and assign the same weight.

In the story, the composer has primary importance, whereas the conductor has sec-

ondary importance. In line with this observation, all the preferences in the given

RPM ranks the recordings first according to composer, then according to conductor.

12 Debreu (1960) proposes this example to highlight a shortcoming of the Luce rule (Luce (1959)).

This phenomena is later referred to as the similarity effect or duplicates effect. See Gul et al. (2014)

for a random choice model that accommodates the similarity effect.
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(1/4) (1/4) (1/2) (1/2)

�1 / .1 �2 / .2 �3 �4

y y x1 x2

x1 x2 x2 x1

x2 x1 y y

One can easily verify that the induced RCF generates our classical music aficionado’s

choices.

In Example 2, there are two alternatives that are slightly different. If the substi-

tution is not extreme, then an agent may exhibit a choice pattern incompatible with

the RUM. In this vein, the next example illustrates that when we introduce an asym-

metrically dominated alternative, the choice probability of the dominating alternative

may go up. This choice behavior, known as the attraction effect, is incompatible with

any RUM.13

Example 3 (Attraction Effect) Suppose X = {x, y, z}, where x and y are two com-

peting alternatives such that none clearly dominates the other, and z is another alter-

native that is dominated by x but not y. To illustrate the attraction effect, we follow

the formulation in our Definition 2. Consider the following RPM (�, ., λ), in which

there is single pair of preferences used both as the pro- and con-preferences. We can

interpret this preference pair as two distinct criteria that order the alternatives.

Now, since for both criteria x is better than z, we get p(x, {x, z}) = 1. Since x

and y fail to dominate each other, and y fail to dominate z, we get p(y, {x, y}) =

p(y, {y, z}) = 1/2. That is, z is a ‘decoy’ for x when y is available. Note that when

only x and y are available, since x is the .2-worst alternative, x is eliminated with a

13Experimental evidence for the attraction effect is first presented by Payne & Puto (1982) and

Huber & Puto (1983). Following their work, evidence for the attraction effect has been observed in a

wide variety of settings. For a list of these results, consult Rieskamp et al. (2006). On the theory side,

Echenique et al. (2013) propose a Luce-type model and Natenzon (2012) proposes a learning model

that accommodate the attraction effect in the random choice setup.
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(1/2) (1/2) (1/4) (1/4)

�1 �2 .1 .2

x y x y

z x z x

y z y z

weight of 1/2,. However, when the decoy z is added to the choice set, then x is no

longer the .2-worst alternative, and we get p(x, {x, y, z}) = 2/3. That is, availability

of decoy z increases the choice probability of x. Thus, the proposed RPM presents an

attraction effect scenario. One can imagine several similar choice scenarios, in which

the criteria that are relevant for choice, such as price and quality, are observable. In

Section 2.5, we analyze the prudential random choice model specified for a given

pair of preferences, which generalizes this example.

2.3 Main result

In our main result, we show that every random choice function is prudential. We

present a detailed discussion of the result in the introduction. We present the proof

in Section 5. As a notable technical contribution, we extend and use Ford-Fulkerson

Theorem (Ford Jr & Fulkerson (2015)) from combinatorial matrix theory.14 Next, we

state the theorem and present an overview of the proof.

Theorem 1 Every random choice function is prudential.

For a given RCF p, we first show that there is a signed weight function λ, which

assigns each preference �i, a value λ(�i) ∈ [−1, 1] such that λ represents p. That is,

for each choice set S and x ∈ S, p(x, S) is the sum of the weights over preferences

at which x is the top-ranked alternative. Once we obtain this signed weight function

λ, let � be the collection of preferences that receive positive weights, and . be the

collection of the inverses of the preferences that receive negative weights. Let λ∗ be

14It is also known as max-flow min-cut theorem in optimization theory.
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the weight function obtained from λ by assigning the absolute value of the weights

assigned by λ. It directly follows that p is prudential with respect to the RPM (�

, ., λ∗). Therefore, to prove the theorem, it is sufficient to show that there exists a

signed weight function that represents p. We prove this by induction.

To clarify the induction argument, for k = 1, let Ω1 = {X} and let P1 consists

of n-many equivalence classes such that each class contains all the preferences that

top rank the same alternative, irrespective of whether they are chosen with positive

probability. That is, for X = {x1, . . . , xn}, we have P1 = {[�x1 ], · · · , [�xn ]}, where for

each i ∈ {1, . . . , n} and preference �i∈ [�xi ], max(X,�i) = xi. Now for each xi ∈ X,

define λ1([�xi ]) = p(xi, X). It directly follows that λ1 is a signed weight function

over P1 that represents p1. By proceeding inductively, it remains to show that we

can construct λk+1 over Pk+1 that represents pk+1. In Step 1 of the proof we show

that finding such a λk+1 pins down to finding a solution to the system of equalities

described by row sums (RS) and column sums (CS).15 To get an intuition for (RS),

while moving from the kth-step to the (k + 1)th-step, each [�k] is decomposed into

a collection {[�k+1
j ]}j∈J such that for each [�k+1

j ] there exists an alternative xj that

is not linearly ordered by [�k], but placed at [�k+1
j ] right on top of the alternatives

that are not linearly ordered by [�k]. Therefore, the sum of the weights assigned

to {[�k+1
j ]}j∈J should be equal to the weight assigned to [�k]. This gives us the set

of equalities formulated in (RS). To get an intuition for (CS), let S be the set of

alternatives that are not linearly ordered by [�k]. Now, we should design λk+1 such

that for each xj ∈ S, p(xj, S) should be equal to the sum of the weights assigned

to preferences at which xj is the top-ranked alternative in S. The set of equalities

formulated in (CS) guarantees this.16

Next, we observe that finding a solution to the system described by (RS) and

(CS) can be translated to the following basic problem: Let R = [r1, . . . , rm] and

C = [c1, . . . , cn] be two real-valued vectors such that the sum of R equals to the sum

15Up to this point the proof structure is similar to the one followed by Falmagne (1978) and Barberá

& Pattanaik (1986) for the charaterization of RUM.
16 A related key observation is our Lemma 6, which we obtain by using the Mobius inversion.
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of C. Now, for which R and C can we find an m× n matrix A = [aij] such that A has

row sum vector R and column sum vector C, and each entry aij ∈ [−1, 1]? Ford Jr &

Fulkerson (2015) provide a full answer to this question when R and C are positive

real valued.17 However, a peculiarity of our problem is that the corresponding row

and column values can be negative. Indeed, we get nonnegative-valued rows and

columns only if the Block-Marschak polynomials hold, that is, the given p renders an

RU representation. In our Lemma 5, we provide an extension of Ford Jr & Fulkerson

(2015)’s result that paves the way for our proof.18 Then, in Step 2 we show that

(RS) equals (CS). In Step 3, by using a structural result presented in Lemma 7, we

show that the row and column vectors associated with (RS) and (CS) satisfy the

premises of our Lemma 5. This completes the construction of the desired signed

weight function.

2.4 Uniqueness

The primitives of the RUM model are structurally invariant in the sense that the agent

uses the same� and µ to make a choice from each choice set. This feature of the RUM

brings precision in identifying the choice behavior. To elaborate on this, although

an RCF may have different random utility representations even with disjoint sets of

preferences, Falmagne (1978) argues that random utility representation is essentially

unique. That is, the sum of the probabilities assigned to the preferences at which

an alternative x is the kth-best in a choice set S is the same for all random utility

representations of the given RCF. Similarly, the primitives of an RPM are structurally

invariant in the sense that the agent uses the same triplet (�, ., λ) to make a choice

from each choice set. In our Proposition 1, we provide a result for the RPM that is

similar to Falmagne’s result.

For a given RPM (�, ., λ), let for each S ∈ Ω and x ∈ S, λ(x = Bk|S,�) be

the sum of the weights assigned to the pro-preferences at which x is the kth-best

17 Brualdi & Ryser (1991) provides a detailed account of similar results.
18Roughly, for extending the result for real-valued vectors, the sum of the absolute values of the

rows and columns should respect a specific bound.
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alternative in S. Similarly, let λ(x = Wk|S, .) be the sum of the weights assigned to

the con-preferences at which x is the kth-worst alternative in S. In our next result, we

show that for each RCF the difference between the the sum of the weights assigned

to the pro-preferences at which x is the kth-best alternative in S and the sum of the

weights assigned to the con-preferences at which x is the kth-worst alternative in S is

the same for each prudential representation of the given RCF. That is, λ(x = Bk|S,�

)− λ(x = Wk|S, .) is fixed for each RPM (�, ., λ) that represents the given RCF.

Proposition 1 If (�, ., λ) and (�′, .′, λ′) are random prudential representations of the

same RCF p, then for each S ∈ Ω and x ∈ S,

λ(x = Bk|S,�)− λ(x = Wk|S, .) = λ′(x = Bk|S,�′)− λ′(x = Wk|S, .′). (3)

Proof. Let (�, ., λ) and (�′, .′, λ′) be two RPMs that represent the same RCF p. Now,

for each choice set S ∈ Ω, both λ and λ′ should satisfy the identity CS used in Step

1 of the proof of Theorem 1. That is, for each S ∈ Ω and x ∈ S both λ and λ′

generates the same q(x, S) value. While proving Theorem 1, we have also shown

that for each RPM that represents an RCF p, q(x, S) gives the difference between the

sum of the weights of the pro-preferences at which x is the best alternative in S and

the sum of the weights of the con-preferences at which x is the worst alternative in

S. Therefore, if we can show that λ(x = Bk|S,�) can be expressed in terms of q(x, ·),

then (3) follows.

To see this, let (�, ., λ) be any RPM that represents p. Next, for each S ∈ Ω,

x ∈ S, and k ∈ {1, . . . , |S|}, consider a partition (S1, S2) of S such that x ∈ S2 and

|S1| = k − 1. Let P(S, x, k) be the collection of all these partitions. Now, for each

fixed (S1, S2) ∈ P(S, x, k), let λ(x|S1, S2,�) be the sum of the weights of the pro-

preferences at which x is the best alternative in S2 and the worst alternative in S1.

Note that for each such pro-preference, x is the kth-best alternative in S. Similarly,

let λ(x|S1, S2, .) be the sum of the weights of the con-preferences at which x is the

best alternative in S1 and the worst alternative in S2. Note that for each such con-
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preference x is the kth-worst alternative in S. Now, it follows that we have:

λ(x = Bk|S,�) =
∑

{(S1,S2)∈P(S,x,k)}

λ(x|S1, S2,�), (4)

λ(x = Bk|S, .) =
∑

{(S1,S2)∈P(S,x,k)}

λ(x|S1, S2, .). (5)

Since for each T ∈ Ω such that S2 ⊂ T and T ⊂ X \ S1, by definition, q(x, T ) gives

the difference between the sum of the weights of the pro-preferences at which x is

the best alternative in S and sum of the weights of the con-preferences at which x is

the worst alternative in S, it follows that∑
P(S,x,k)

λ(x|S1, S2,�)−
∑

P(S,x,k)

λ(x|S1, S2, .) =
∑

P(S,x,k)

∑
S2⊂T⊂X\S1

q(x, T ). (6)

Finally, if we substitute (4) and (5) in (6), then we express λ(x = Bk|S,�) − λ(x =

Bk|S, .) only in terms of q(x, ·), as desired.

2.5 Prudential choice with respect to a given (�1,�2)

In this section, we focus on a particular choice problem in which there are two ob-

servable orderings (�1,�2) that are relevant for choice, such as price and quality.

This provides a generalization of Example 3, which presents an attraction effect sce-

nario. In our analysis, we provide a set of choice axioms, which guarantee that the

observed choices can be generated via an RPM in which the pro-preferences and the

con-preferences are obtained from the given preference pair.

Formally, for a given pair of preferences (�1,�2), an RCF p is prudential with

respect to (�1,�2), if there exists a weight function λ such that the RPM (�,�−1, λ)

represents p, where �= (�1,�2) and �−1= (�−11 ,�−12 ). That is, the pro-preferences

are the given (�1,�2), the con-preferences are the inverse of (�1,�2), and for each

choice set S and x ∈ S, if λ(x, S) > 0, then p(x, S) = λ(x,S)∑
{y∈S+} λ(y,S)

; if λ(x, S) ≤ 0,

then p(x, S) = 0. Next, we provide four axioms and show that the RCFs that are

prudential w.r.t. a given (�1,�2) are the ones that satisfy these axioms.
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Our first axiom, domination, requires that if an alternative dominates another,

in the sense that the former is better than the latter in both orderings, then the

dominated one is never chosen when both are available. Formally, for each x, y ∈ X,

x dominates y, denoted by x >> y if x �1 y and x �2 y.

Domination: For each S ∈ Ω and x, y ∈ S, if x >> y, then p(y, S) = 0.

Our second axiom, attraction, requires that adding an alternative dominated by

another one should not decrease the choice probability of the dominating alternative.

Attraction: For each S ∈ Ω and x, z ∈ X, if x >> z, then p(x, S ∪ {z}) ≥ p(x, S).

As in an attraction effect scenario, for each x, y, z ∈ X, if neither y dominates

x or z, nor x or z dominates y, but x dominates z, then z is a decoy for x when y

is available. It directly follows from attraction that if z is a decoy for x when y is

available, then p(x, {x, y, z}) ≥ p(x, {x, y}).

Our third axiom, best-worst neutrality, requires that if two choice sets are similar

to each other in the sense that the (�1,�2)-best alternatives in S can be renamed as to

obtain the configuration of the (�1,�2)-best alternatives in S ′ in the best and worst

positions, then the choice probabilities should be preserved under this renaming.

Formally, a choice set S is isomorphic to another one S ′, denoted by S ∼π S ′, if

there is a one-to-one mapping π between the (�1,�2)-best alternatives in S and the

(�1,�2)-best alternatives S ′ such that for each i ∈ {1, 2} and x ∈ max(S,�i),

1. x = max(S,�i) if and only if π(x) = max(S ′,�i), and

2. x = min(S,�i) if and only if π(x) = min(S ′,�i).

Best-worst neutrality: For each S, S ′ ∈ Ω, if S ∼π S ′, then for each x ∈ max(S,�i)

where i ∈ {1, 2}, p(x, S) = p(π(x), S ′).

To introduce our last axiom, we first define the choice likelihood of x from S

as the ratio of the probability that alternative x is chosen from choice set S to the

probability that any other alternative is chosen from S, that is, L(x, S) = p(x,S)
1−p(x,S) .

Next, we present and interpret our last axiom.

Attraction gain equivalence: For each x, y, z, w ∈ X, if z is a decoy for x when y is
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available and w is a decoy for y when x is available, then

L(x, {x, y, z})
L(y, {x, y, w})

=
L(x, {x, y, z, w})
L(y, {x, y})

.

To get an intuition for attraction gain independence, note that the two choice

likelihood ratios L(x,{x,y,z})
L(y,{x,y,w}) and L(x,{x,y,z,w})

L(y,{x,y}) can be interpreted as measuring the at-

traction gain of x relative to that of y. In that, former is the ratio of choice likelihood

of x and y when we add each alternative’s decoy separately. The latter is the ratio of

the choice likelihood of x when both decoys are added, to the choice likelihood of y

when there is no decoy at all. Attraction gain equivalence requires these two plausi-

ble measures of relative attraction gain be equal. Next we state our characterization

result. We present the proof in Section 6.

Proposition 2 For a given (�1,�2), an RCF p is prudential w.r.t. (�1,�2) if and only if

p satisfies domination, attraction, best-worst neutrality, and attraction gain equivalence.

We assume that (�1,�2) are given. One follow-up question is whether we can

identify prudential choice by deriving (�1,�2) from agent’s choices. In this vein,

Eliaz et al. (2011) provide an axiomatic characterization of the top-and-top choice

rule, which chooses the (�1,�2)-best alternatives for a pair of preferences (�1,�2)

obtained from an agent’s deterministic choices. We conjecture that the above four

axioms, together with Eliaz et al.’s axioms provide a characterization of the RCFs that

render a prudential representation with respect to an unobserved preference pair. A

caveat is that our axioms refer to the observed preferences through the domination

relation that we have defined. To overcome this difficulty, we propose to replace the

existing domination relation with the following commonly used one: an alternative

x dominates* another alternative y if y is never chosen when x is available. Then, all

our axioms are well defined with unobserved preferences.
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3 Prudential deterministic choice functions

3.1 The model

A (deterministic) choice function C is a mapping that assigns each choice set

S ∈ Ω a member of S, that is C : Ω → X such that C(S) ∈ S. Let �

and . stand for two collections of preferences on X as before. A (determinis-

tic) prudential model (PM) is a pair (�, .) consisting of the pro-preferences and

the con-preferences. As before, define Pros(x, S) = {�i ∈ � : x = max(S,�i)} and

Cons(x, S) = {.i ∈ . : x = min(S, .i)}.

Definition 3 A choice function C is prudential if there is an PM (�, .) such that for

each choice set S ∈ Ω and x ∈ S, C(S) = x if and only if |Pros(x, S)| > |Cons(x, S)|.

Note that if an agent is prudential, then at each choice set S there should be a

single alternative x such that the number of Pros(x, S) is greater than the number of

Cons(x, S).

3.2 Main result

By using the construction in the proof of Theorem 1 and two well-known results from

integer-programming literature, we show that each choice function is prudential.

Note that this result does not directly follow from Theorem 1, since our prudential

model not a direct adaptation of its random counterpart. In that we require each

preference to have a fixed unit weight, instead of having fractional weights.

Theorem 2 Every choice function is prudential.

Proof. We prove this result by following the construction used to prove Theorem 1.

So, we proceed by induction. Note that since C is a deterministic choice function,

for each xi ∈ X, λ1([�xi ]) ∈ {0, 1}. Next, by proceeding inductively, we assume that

for any k ∈ {1, . . . , n − 1}, there is a signed weight function λk that takes values

{−1, 0, 1} over Pk and represents Ck. It remains to show that we can construct λk+1
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taking values {−1, 0, 1} over Pk+1, and that represents Ck+1. We know from Step 1

of the proof of Theorem 1 that to show this it is sufficient to construct λk+1 such that

(RS) and (CS) holds. However, this time, in addition to satisfying (RS) and (CS), we

require each λk+1
ij ∈ {−1, 0, 1}.

First, note that equalities (RS) and (CS) can be written as a system of linear

equations: Aλ = b, where A = [aij] is a (k! + (n − k)) × (n − k)k! matrix with

entries aij ∈ {0, 1}, and b = [λk([�k1]), . . . , λk([�kk!]), q(x1, S), . . . , q(xn−k, S)] is the

column vector of size k! + (n − k). Let Q denote the associated polyhedron, i.e.

Q = {λ ∈ R(n−k)k! : Aλ = b and − 1 ≤ λ ≤ 1}. A matrix is totally unimodular if the

determinant of each square submatrix is 0, 1 or −1. Following result directly follows

from Theorem 2 of Hoffman & Kruskal (2010).

Lemma 1 (Hoffman & Kruskal (2010)) If matrix A is totally unimodular, then the

vertices of Q are integer valued.

Heller & Tompkins (1956) provide the following sufficient condition for a matrix

being totally unimodular.

Lemma 2 (Heller & Tompkins (1956)) Let A be an m×n matrix whose rows can be

partitioned into two disjoint sets R1 and R2. Then, A is totally unimodular if:

1. Each entry in A is 0, 1, or −1;

2. Each column of A contains at most two non-zero entries;

3. If two non-zero entries in a column of A have the same sign, then the row of one

is in R1, and the other is in R2;

4. If two non-zero entries in a column of A have opposite signs, then the rows of both

are in R1, or both in R2.

Next, by using Lemma 2, we show that the matrix that is used to define (RS)

and (CS) as a system of linear equations is totally unimodular. To see this, let A

be the matrix defining the polyhedron Q. Since A = [aij] is a matrix with entries
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aij ∈ {0, 1}, (1) and (4) are directly satisfied. To see that (2) and (3) also hold, let

R1 = [1, . . . , k!] consist of the the first k! rows and R2 = [1, . . . , n − k] consist of the

the remaining n− k rows of A. Note that for each i ∈ R1, the ith row Ai is such that

Aiλ = λk([�ki ]). That is, for each j ∈ {(i − 1)k!, . . . , ik!}, aij = 1 and the rest of Ai

equals 0. For each i ∈ R2, the ith row Ai is such that Aiλ = q(xi, A). That is, for each

j ∈ {i, i + k!, . . . , i + (n − k − 1)k!}, aij = 1 and the rest of Ai equals 0. To see that

(2) and (3) hold, note that for each i, i′ ∈ R1 and i, i′ ∈ R2, the non-zero entries of Ai

and Ai′ are disjoint. It follows that for each column there can be at most two rows

with value 1, one in R1 and the other in R2.

Finally, it follows from the construction in Step 3 of the proof of Theorem 1 that

Q is nonempty, since there is λ vector with entries taking values in the [−1, 1] interval.

Since, as shown above, A is totally unimodular, it directly follows from Lemma 1 that

the vertices of Q are integer valued. Therefore, λk+1 can be constructed such that

(RS) and (CS) holds, and each λk+1
ij ∈ {−1, 0, 1}.

3.3 Plurality-rationalizable choice functions

We propose a collective decision making model based on plurality voting. It turns out

that this model is closely related to our prudential choice model. To introduce this

model, let �∗= [�∗1, . . . ,�∗m] be a preference profile, which is a list of preferences.

In contrast to a collection of preferences, denoted by �, a preference �i can appear

more than once in a preference profile �∗. For each choice set S ∈ Ω and x ∈ S, x is

the plurality winner of �∗ in S if for each y ∈ S \ {x}, the number of preferences

in �∗ that top ranks x in S is more than the number of preferences in �∗ that top

ranks y in S. That is, for each y ∈ S \ {x}, |{�∗i : x = max(S,�∗i )}| > |{�∗i : y =

max(S,�∗i )}|. Next, we define plurality-rationalizability, then by using our Theorem

2, we show that every choice function is plurality-rationalizable.

Definition 4 A choice function C is plurality-rationalizable if there is preference pro-

file �∗ such that for each choice set S ∈ Ω and x ∈ S, C(S) = x if and only if x is the

plurality winner of �∗ in S.
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Proposition 3 Every choice function is plurality-rationalizable.

Proof. Let C be a choice function. It follows from Theorem 2 that C is prudential.

Let the PM (�, .) be such that for each choice set S ∈ Ω and x ∈ S, C(S) = x if and

only if |Pros(x, S)| > |Cons(x, S)|. Now, to construct the desired preference profile,

first consider the list of all preferences defined on X. Then, eliminate any preference

that belongs to . and add any preference that belongs to �. Let �∗ be the obtained

preference profile. Next, consider a choice set S ∈ Ω and suppose C(S) = x. In what

follows we show that x is the plurality winner of�∗ in S. We know that |Pros(x, S)| >

|Cons(x, S)| and for each y ∈ S \ {x}, |Pros(y, S)| ≤ |Cons(y, S)|. It follows that for

each y ∈ S \ {x}, |Pros(x, S)| − |Cons(x, S)| > |Pros(y, S)| − |Cons(y, S)|. Now,

note that by construction of �∗, for each y ∈ S the number of preferences in �∗ that

top ranks y in S equals the number of all preferences that top ranks y in S added to

|Pros(y, S)| − |Cons(y, S)|. Since for each y ∈ S, the number of all preferences that

top ranks y in S is fixed, it follows that x is the plurality winner of �∗ in S.

Remark 1 One can consider an even more stringent model, in which we require that

an alternative x is chosen from a choice set S at the margin, in the sense that x = C(S)

if and only if for each y ∈ S \ {x}, |{�∗i : x = max(S,�∗i )}| − |{�∗i : y = max(S,�∗i
)}| = 1. We obtain the same anything-goes result with this more demanding model

by following the proof of Proposition 3.

In an early paper McGarvey (1953) shows that for each asymmetric and com-

plete binary relation, there exists a preference profile such that the given binary

relation is obtained from the preference profile by comparing each pair of alterna-

tives via majority voting. For antisymmetric and complete binary relations (without

indifferences), we obtain McGarvey’s result, as a corollory to Proposition 3. To see

this, first note that if we restrict a choice function to binary choice sets, then we ob-

tain an antisymmetric and complete binary relation. Since for binary choices, being

a plurality winner means being a majority winner, McGarvey’s result directly follows.
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4 Conclusion

We combine two different approaches to model agent’s choices. One is preference

based analysis that is common in economics. The other one is reasoned based analysis

that is central to experimental studies by Shafir et al. (1993) and Tversky (1972),

and seems common in other social disciplines, such as history and law. Our analy-

sis shows that prudential choice model provides a structured canonical language to

describe any deterministic or stochastic choice behavior. We observe that structural

invariance of the prudential model reflects itself as a form of uniqueness in repre-

senting random choice functions. Our examples present specific prudential choice

models that accommodate similarity effect and attraction effect by capturing the key

aspects of the contexts in which these choice patterns are observed. These examples

illustrate that analyzing prudential choice model with further restrictions may lead to

insightful results. We offer such an exercise for a prudential model which is derived

from a pair of observed orderings.
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5 Proof of Theorem 1

We start by proving some lemmas that are critical for proving the theorem. First, we

use a result by Ford Jr & Fulkerson (2015)19 as Lemma 3. Then, our Lemma 4 follows

directly. Next, by using Lemma 4, we prove Lemma 5, which shows that, under

suitable conditions, Lemma 3 holds for any real-valued row and column vectors.

Lemma 3 (Ford Jr & Fulkerson (2015)) Let R = [r1, . . . , rm] and C = [c1, . . . , cn] be

positive real-valued vectors with
∑m

i=1 ri =
∑n

j=1 cj. There is an m× n matrix A = [aij]

such that A has row sum vector R and column sum vector C, and each entry aij ∈ [0, 1]

if and only if for each I ⊂ {1, 2, . . . ,m} and J ⊂ {1, 2, . . . , n},

|I||J | ≥
∑
i∈I

ri −
∑
j /∈J

cj. (FF)

Lemma 4 Let R = [r1, . . . , rm] and C = [c1, . . . , cn] be positive real-valued vectors with

0 ≤ ri ≤ 1 and 0 ≤ cj ≤ m such that
∑m

i=1 ri =
∑n

j=1 ci. Then there is an m× n matrix

A = [aij] such that A has row sum vector R and column sum vector C, and each entry

aij ∈ [0, 1].

Proof. Given such R and C, since for each i ∈ {1, 2, . . . ,m}, 0 ≤ ri ≤ 1, we have for

each I ⊂ {1, 2, . . . ,m},
∑

i∈I ri ≤ |I|. Then, it directly follows that (FF) holds.

Next by using Lemma 4, we prove Lemma 5, which plays a key role in proving

Theorem 1.

Lemma 5 Let R = [r1, . . . , rm] and C = [c1, . . . , cn] be real-valued vectors with −1 ≤

ri ≤ 1 and −m ≤ cj ≤ m such that
∑m

i=1 ri =
∑n

j=1 cj. If 2m ≥
∑m

i=1 |ri| +
∑n

j=1 |cj|,

then there is an m× n matrix A = [aij] such that:

i. A has row sum vector R and column sum vector C,
19This result, as stated in Lemma 3, but with integrality assumptions on R, C, and A follows from

Theorem 1.4.2 in Brualdi & Ryser (1991), and they report that Ford Jr & Fulkerson (2015) proves,

by using network flow techniques, that the theorem remains true if the integrality assumptions are

dropped and the conclusion asserts the existence of a real nonnegative matrix.
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ii. each entry aij ∈ [−1, 1], and

iii. for each j ∈ {1, . . . , n},
∑m

i=1 |aij| ≤ |cj|+ max{0,
∑m

i=1 |ri|−
∑n

j=1 |cj |
n

}.

Proof. Since ri and cj values can be positive or negative, although the sum of the

rows equals the sum of the column, their absolute values may not be the same. We

analyze two cases separately, where
∑m

i=1 |ri| ≥
∑n

j=1 |cj| and
∑m

i=1 |ri| <
∑n

j=1 |cj|.

Before proceeding with these cases, first we introduce some notation and make some

elementary observations.

For each real number x, let x+ = max{x, 0} and x− = min{x, 0}. Note that

for each x, x+ + x− = x. Let R+ = [r+1 , . . . , r
+
m] and R− = [r−1 , . . . , r

−
m]. Define

the n-vectors C+ and C− respectively. Next, let ΣR+ =
∑m

i=1 r
+
i , ΣR− =

∑m
i=1 r

−
i ,

ΣC+ =
∑n

j=1 c
+
j and ΣC− =

∑n
j=1 c

−
j . That is, ΣR+(ΣR−) and ΣC+(ΣC−) are the sum

of the positive (negative) rows in R and columns in C. Since the sum of the rows

equals the sum of the columns, we have ΣR+ + ΣR− = ΣC+ + ΣC−.

For each row vector R and column vector C, suppose for each i ∈ {1, . . . ,m1},

ri ≥ 0 and for each i ∈ {m1 + 1, . . . ,m}, ri < 0. Similarly, suppose for each

j ∈ {1, . . . , n1}, cj ≥ 0 and for each j ∈ {n1 +1, . . . , n}, cj < 0. Now, let R1(R2) be the

m1-vector ((m −m1)-vector), consisting of the non-negative (negative) components

of R. Similarly, for each column vector C, let C1(C2) be the n1-vector ((n − n1)-

vector), consisting of the non-negative (negative) components of C. It directly fol-

lows from the definitions that
∑m1

i=1 ri =
∑m

i=1 r
+
i and

∑m
i=m1+1 ri =

∑m
i=1 r

−
i . Simi-

larly,
∑n1

j=1 cj =
∑n

j=1 c
+
j and

∑n
j=n1+1 cj =

∑n
j=1 c

−
j .

Case 1: Suppose that
∑

i=I |ri| ≥
∑

j∈J |cj|. First, for each j ∈ {1, . . . , n}, let

εj =
ΣR+ −ΣC+

n
.

Note that since
∑m

i=1 |ri| ≥
∑n

j=1 |cj|, we have ΣR+ ≥ ΣC+ and ΣR− ≤ ΣC−. Moreover,

since the sum of the rows equals the sum of the columns, we have ΣR+ −ΣC+ =

ΣC− −ΣR−. Therefore, by the choice of εj, we get

m∑
i=1

r+i =
n∑
j=1

c+j + εj and
m∑
i=1

r−i =
n∑
j=1

c−j − εj. (7)
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Next, consider row-column vector pairs (R1, C++ε) and (−R2,−(C−−ε)), where

ε is the non-negative n-vector such that each εj is as defined above. It follows from (7)

that for both pairs the sum of the rows equals the sum of the columns. Now we apply

Lemma 4 to the row-column vector pairs (R1, C++ε) and (−R2,−(C−−ε)). It directly

follows that there exists a positive m1 × n matrix A+ and a negative (m − m1) × n

matrix A− that satisfy (i) and (ii). We will obtain the desired matrix A by augmenting

A+ and A−. We illustrate A+ and A− below.

(c+1 + ε1) (c+2 + ε2) (c+3 + ε3) · · · (c+n + εn)

r1 ≥ 0

r2 ≥ 0
...

rm1 ≥ 0

A+

A−
rm1+1 < 0

...

rm < 0

(c−1 − ε1) (c−2 − ε2) (c−3 − ε3) · · · (c−n − εn)

Since A+ and A− satisfy (i) and (ii), A satisfies (i) and (ii). To see that A satisfies

(iii), for each j ∈ {1, . . . , n}, consider
∑m

i=1 |aij|. Note that, by the construction of A+

and A−, for each j ∈ {1, . . . , n},
m∑
i=1

|aij| = c+j + εj + (−c−j + εj) = |cj|+ 2εj = |cj|+ 2
ΣR+ −ΣC+

n
. (8)

Since for each j ∈ {1, . . . , n}, cj = c+j + c−j such that either c+ = 0 or c−j = 0,

we get |cj| = c+j − c−j . To see that (iii) holds, observe that
∑m

i=1 |ri| −
∑n

j=1 |cj| =

ΣR+ −ΣC+ + ΣC− −ΣR−. Since the sum of the rows equals the sum of the columns,

i.e. ΣR+ + ΣR− = ΣC+ + ΣC−, we also have ΣR+ −ΣC+ = ΣC− −ΣR−. This observa-

tion, together with (8), implies that (iii) holds.

Case 2 Suppose that
∑m

i=1 |ri| <
∑n

j=1 |cj|. First, we show that there exists a non-

negative m-vector ε such that

(E1) for each i ∈ {1, . . . ,m}, r+i + εi ≤ 1 and r−i − εi ≥ −1, and
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(E2)
∑m

i=1 r
+
i + εi =

∑n
j=1 c

+
j (equivalently

∑m
i=1 r

−
i − εi =

∑n
j=1 c

−
j ) holds.

Step 1: We show that if ΣC+ −ΣR+ ≤ m −
∑m

i=1 |ri|, then there exists a non-

negative m-vector ε that satisfies (E1) and (E2). To see this, first note that m −∑m
i=1 |ri| =

∑m
i=1(1 − |ri|). Next, note that, by simply rearranging the terms, we can

rewrite (E2) as follows:
m∑
i=1

εi = ΣC+ −ΣR+ . (9)

Since ΣC+ −ΣR+ ≤
∑m

i=1(1− |ri|), for each i ∈ {1, . . . ,m}, we can choose an εi such

that 0 ≤ εi ≤ 1 − |ri| and (9) holds. It directly follows that the associated ε vector

satisfies (E1) and (E2).

Step 2: We show that since 2m ≥
∑m

i=1 |ri| +
∑n

j=1 |cj|, we have ΣC+ −ΣR+ ≤

m−
∑m

i=1 |ri|. First, it directly follows from the definitions that

m∑
i=1

|ri|+
n∑
j=1

|cj| = ΣR+ −ΣR− + ΣC+ −ΣC− .

Since the sum of the rows equals the sum of the columns, i.e. ΣR+ + ΣR− =

ΣC+ + ΣC−, we also have ΣR+ −ΣC− = ΣC+ −ΣR−. It follows that

ΣC+ −ΣR− ≤ m.

Finally, if we subtract
∑m

i=1 |ri| from both sides of this equality, we obtain

ΣC+ −ΣR+ ≤ m−
∑m

i=1 |ri|, as desired.

It follows from Step 1 and Step 2 that there exists a non-negative m-vector ε

that satisfies (E1) and (E2). Now, consider the row-column vector pairs (R+ + ε, C1)

and (−(R− − ε),−C2). Since ε satisfies (E1) for each i ∈ {1, . . . ,m}, r+i + εi ∈ [0, 1]

and r−i − εi ∈ [−1, 0]. Since ε satisfies (E2), for both of the row-column vector pairs

the sum of the rows equals the sum of the columns. Therefore, we can apply Lemma

4 to row-column vector pairs (R+ + ε, C1) and (−(R− − ε),−C2). It directly follows

that there exists a positive m× n1 matrix A+ and a negative m× (n− n1) matrix A−

that satisfy (i) and (ii). We obtain the desired matrix A by augmenting A+ and A−.

We illustrate A+ and A− below.
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c1 c2 · · · cn1 ≥ 0

(r+1 + ε1)

(r+2 + ε2)
...
...

(r+m + εm)

A+ A−
(r−1 − ε1)

(r−2 − ε2)
...
...

(r−m − εm)

cn1+1 < 0 · · · cn

Since A+ and A− satisfy (i) and (ii), A satisfies (i) and (ii). In this case, since

we did not add anything to the columns and each entry in A+(A−) is non-negative

(negative), for each j ∈ {1, . . . , n},
∑m

i=1 |aij| = |cj|. Therefore, A also satisfies (iii).

To prove Theorem 1, let p be an RCF and P denote the collection of all prefer-

ences on X. First, we show that there is a signed weight function λ : P → [−1, 1]

that represents p, i.e. for each S ∈ Ω and x ∈ S, p(x, S) is the sum of the weights

over {�i ∈ P : x = max(S,�i)}. Note that λ can assign negative weights to pref-

erences. Once we obtain this signed weight function λ, let � be the collection of

preferences that receive positive weights, and let .′ be the collection of preferences

that receive negative weights. Let . be the collection of the inverse of the preferences

in .′. Finally, let λ∗ be the weight function obtained from λ by assigning the abso-

lute value of the weights assigned by λ. It directly follows that p is prudential with

respect to the RPM (�, ., λ∗). We first introduce some notation and present crucial

observations to construct the desired signed weight function λ.

Let p be a given RCF and Let q : X × Ω → R be a mapping such that for each

S ∈ Ω and a /∈ S, q(a, S) = q(a, S ∪ {a}) holds. Next, we present a result that is

directly obtained by applying the Möbius inversion.20

20See Stanley (1997), Section 3.7. See also Fiorini (2004), who makes the same observation.
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Lemma 6 For each choice set S ∈ Ω, and alternative a ∈ S,

p(a, S) =
∑

S⊂T⊂X

q(a, T ) (10)

if and only if

q(a, S) =
∑

S⊂T⊂X

(−1)|T |−|S|p(a, T ) (11)

Proof. For each alternative a ∈ X, note that p(a, ·) and q(a, ·) are real-valued func-

tions defined on the domain consisting of all S ∈ Ω with a ∈ S. Then, by applying

the Möbius inversion, we get the conclusion.

Lemma 7 For each choice set S ∈ Ω with |S| = n− k,∑
a∈X

|q(a, S)| ≤ 2k. (12)

Proof. First, note that (12) can be written as follows:∑
a∈S

|q(a, S)|+
∑
b/∈S

| − q(b, S)| ≤ 2k. (13)

For a set of real numbers,{x1, x2, . . . xn}, to show
∑n

i=1 |xi| ≤ 2d, it suffices to

show that for each I ⊂ {1, 2, · · · , n}, we have −d ≤
∑

i∈I xi ≤ d. Now, as the set

of real numbers, consider {q(a, S)}a∈X . It follows that to show that (13) holds, it

suffices to show that for each S1 ⊂ S and S2 ⊂ X \ S,

−2k−1 ≤
∑
a∈S1

q(a, S)−
∑
b∈S2

q(b, S) ≤ 2k−1

holds. To see this, first, for each S1 ⊂ S and S2 ⊂ X \ S, it follows from Lemma 6

that for each a ∈ S1 and for each b ∈ S2, we have

q(a, S) =
∑

S⊂T⊂X

(−1)|T |−|S|p(a, T ) and q(b, S) =
∑

S⊂T⊂X

(−1)|T |−|S|−1p(b, T ). (14)

Note that we obtain the second equality from Lemma 6, since for each b /∈ S, by

definition of q(b, S), we have q(b, S) = q(b, S ∪ {b}). Next, note that for each T ∈ Ω
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with S ⊂ T , a ∈ S, and b /∈ S, p(a, T ) has the opposite sign of p(b, T ). Now, suppose

for each b ∈ S2, we multiply q(b, S) with −1. Then, it follows from (14) that∑
a∈S1

q(a, S)−
∑
b∈S2

q(b, S) =
∑

S⊂T⊂X

(−1)|T |−|S|
∑

a∈S1∪S2

p(a, T ). (15)

Note that, for each T ∈ Ω such that S ⊂ T ,
∑

a∈S1∪S2
p(a, T ) ∈ [0, 1]. Therefore,

the term (−1)|T |−|S|
∑

a∈S1∪S2
p(a, T ) adds at most 1 to the right-hand side of (15) if

|T | − |S| is even, and at least −1 if |T | − |S| is odd. Since |S| = n − k, for each m

with n − k ≤ m ≤ n, there are
(

k
m−n+k

)
possible choice sets T ∈ Ω such that S ⊂ T

and |T | = m. Moreover, for each i ∈ {1, . . . , k}, there are
(
k
i

)
possible choice sets

T such that S ⊂ T and |T | = n − k + i. Now, the right-hand side of (15) reaches

its maximum (minimum) when the negative (positive) terms are 0 and the positive

(negative) terms are 1(−1). Thus, we get

−
b k−1

2
c∑

i=0

(
k

2i+ 1

)
≤

∑
S⊂T⊂X

(−1)|T |−|S|
∑

a∈S1∪S2

p(a, T ) ≤
b k
2
c∑

i=0

(
k

2i

)
.

It follows from the binomial theorem that both leftmost and rightmost sums are equal

to 2k−1. This, combined with (15), implies

−2k−1 ≤
∑
a∈S1

q(a, S)−
∑
b∈S2

q(b, S) ≤ 2k−1.

Then, as argued before, it follows that
∑

a∈X |q(a, S)| ≤ 2k.

Now, we are ready to complete the proof of Theorem 1. Recall that we assume

|X| = n. For each k ∈ {1, . . . , n}, let Ωk = {S ∈ Ω : |S| > n− k}. Note that Ωn = Ω

and Ω1 ⊂ Ω2 ⊂ · · · ⊂ Ωn. For each pair of preferences �1,�2∈ P, �1 is k-identical

to �2, denoted by �1∼k�2, if the first k-ranked alternatives are the same. Note that

∼k is an equivalence relation on P. Let Pk be the collection of preferences, such that

each set (equivalence class) contains preferences that are k-identical to each other

(Pk is the quotient space induced from ∼k). For each k ∈ {1, . . . , n}, let [�k] denote

an equivalence class at Pk, where �k linearly orders a fixed set of k alternatives in

X.

Note that for each k ∈ {1, . . . , n}, S ∈ Ωk and �1,�2∈ P, if �1∼k�2, then

since S contains more than n− k alternatives, max(�1, S) = max(�2, S). Therefore,
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for each S ∈ Ωk, it is sufficient to specify the weights on the equivalence classes

contained in Pk instead of all the weights over P. Let pk be the restriction of p to

Ωk. Similarly, if λ is a signed weight function over P, then let λk be the restriction of

λ to Pk, i.e. for each [�k] ∈ Pk, λk[�k] =
∑
�i∈[�k] λ(�i). It directly follows that λ

represents p if and only if for each k ∈ {1, . . . , n}, λk represents pk. In what follows,

we inductively show that for each k ∈ {1, . . . , n}, there is a signed weight function

λk over Pk that represents pk. For k = n we obtain the desired λ.

For k = 1, Ω1 = {X} and P1 consists of n-many equivalence classes such that

each class contains all the preferences that top rank the same alternative, irrespective

of whether they are chosen with a positive probability. That is, if X = {x1, . . . , xn},

then we have P1 = {[�x1 ], · · · , [�xn ]}, where for each i ∈ {1, . . . , n} and preference

�i∈ [�xi ], max(X,�i) = xi. Now, for each xi ∈ X, define λ1([�xi ]) = p(xi, X). It

directly follows that λ1 is a signed weight function over P1 that represents p1.

For k = 2, Ω2 = {X} ∪ {X \ {x}}x∈X and P2 consists of
(
n
2

)
-many equivalence

classes such that each class contains all the preferences that top rank the same two

alternatives. Now, for each [�2
i ] ∈ P2 such that xi1 is the first-ranked alternative and

xi2 is the second-ranked alternative, define λ2([�2
i ]) = p(xi2, X \ {xi1})− p(xi2, X). It

directly follows that λ2 is a signed weight function over P2 that represents p2. Next,

by our inductive hypothesis, we assume that for each k ∈ {1, . . . , n − 1}, there is a

signed weight function λk over Pk that represents pk. Next, we show that we can

construct λk+1 over Pk+1 that represents pk+1.

Note that Pk+1 is a refinement of Pk, in which each equivalence class [�k] ∈ Pk

is divided into sub-equivalence classes {[�k+1
1 ], · · · [�k+1

n−k]} ⊂ Pk+1. Given λk, we

require λk+1 satisfy for each [�k] ∈ Pk the following

λk([�k]) =
n−k∑
j=1

λk+1([�k+1
j ]). (16)

If λk+1 satisfies (16), then since induction hypothesis implies that λk represents pk,

we get for each S ∈ Ωk and x ∈ S, p(x, S) = λk+1
(
{[�j] ∈ Pk+1 : x = max(S,�j)}

)
.

Next, we show that λk+1 can be constructed such that (16) holds, and for each
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S ∈ Ωk+1\Ωk, λk+1 represents pk+1(S). To see this, pick any S ∈ Ωk+1\Ωk. It follows

that |S| = n − k. Let S = {x1, , .., xn−k} and X \ S = {y1, y2, · · · yk}. Recall that

each [�k] ∈ Pk linearly orders a fixed set of k-many alternatives. Let {�k} denote

the set of k alternatives ordered by �k. Now, there exist k!-many [�k] ∈ Pk such

that {�k} = X \ S. Let
{

[�k1], · · · , [�kk!]
}

be the collection of all such classes. Each

preference that belongs to one of these classes is a different ordering of the same set

of k alternatives.

Now, let I = {1, . . . , k!} and J = {1, . . . , n − k}. For each i ∈ I and j ∈ J ,

suppose that �k+1
ij linearly orders X \ S as in �ki and ranks xj in the k + 1th position.

Consider the associated equivalence class [�k+1
ij ]. Next, we specify λk+1([�k+1

ij ]), the

signed weight of [�k+1
ij ], such that the resulting λk+1 represents pk+1. To see this, we

proceed in two steps.

Step 1: First, we show that for each S ∈ Ωk+1\Ωk, if the associated {λk+1
ij }ij∈I×J

satisfies the following two equalities for each i ∈ I and j ∈ J ,∑
j∈J

λk+1
ij = λk([�ki ]) (RS)

∑
i∈I

λk+1
ij = q(xj, S) (CS)

then λk+1 represents pk+1(S). For each S ∈ Ω and xj ∈ S, q(xj, S) is as defined in

(11) by using the given RCF p.

For each S ∈ Ω and a ∈ S, let B(a, S) be the collection of all preferences at

which a is the best alternative in S, and for each k ∈ N such that n − k ≤ |S|,

Bk+1(a, S) be the set of associated equivalence classes in Pk+1, i.e. B(a, S) = {� ∈

P : a = max(S,�)} and Bk+1(a, S) = {[�k+1] ∈ Pk+1 : [�k+1] ⊂ B(a, S)}. To prove

the result we have to show that for each xj ∈ S,

p(xj, S) =
∑

{[�k+1]∈Bk+1(xj ,S)}

λk+1([�k+1]). (17)

To see this, for each � ∈ P and a ∈ X, let W (�, a) denote the set of alternatives that

are worse than a at � and a itself, i.e. W (�, a) = {x ∈ X : a � x} ∪ {a}. For each
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S ∈ Ω with a ∈ X. Let Q(a, S) be the collection of all preferences such that W (�, a)

is exactly S ∪ {a} and for each k ∈ N such that n − k ≤ |S|, Qk+1(a, S) be the set of

associated equivalence classes in Pk+1, i.e. Q(a, S) = {� ∈ P : W (�, a) = S ∪ {a}}

and Qk+1(a, S) = {[�k+1] ∈ Pk+1 : [�k+1] ⊂ Q(a, S)}. Note that, for each xj ∈ S,

we have Q(xj, S) =
⋃
i∈I [�k+1

ij ]. Moreoever, it directly follows from the definitions

of Q(xj, ·) and B(xj, ·) that

B(xj, S) =
⋃
S⊂T

Q(xj, T ). (18)

It follows from this observation that the right-hand side of (17) can be written as∑
S⊂T

∑
{[�k+1]∈Qk+1(xj ,T )}

λk+1([�t+1]). (19)

i. Since (CS) holds, we have

q(xj, S) =
∑

{[�k+1]∈Qk+1(xj ,S)}

λk+1([�k+1]). (20)

ii. Next, we argue that for each T ∈ Ω such that S ( T ,

q(xj, T ) =
∑

{[�k+1]∈Qk+1(xj ,T )}

λk+1([�k+1]). (21)

To see this, recall that by definition of q(xj, T ) (11), we have

q(xj, T ) =
∑
T⊂T ′

(−1)|T
′|−|T |p(xj, T

′). (22)

Since by the induction hypothesis, λk represents pk, we have

p(xj, T
′) =

∑
{[�k]∈Bk(xj ,T ′)}

λk([�k]). (23)

Next, suppose that we substitute (23) into (22). Now, consider the set collection

{B(xj, T
′)}{T⊂T ′}. Note that if we apply the principle of inclusion-exclusion to this set

collection, then we obtain Q(xj, T ). It follows that∑
T⊂T ′

(−1)|T
′|−|T |

∑
{[�k]∈Bk(xj ,T ′)}

λk([�k]) =
∑

{[�k]∈Qk(xj ,T )}

λk([�k]). (24)
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Since (RS) holds, we have∑
{[�k]∈Qk(xj ,T )}

λk([�k]) =
∑

{[�k+1]∈Qk+1(xj ,T )}

λk+1([�k+1]). (25)

Thus, if we combine (22)-(25), then we obtain that (21) holds.

Now, (19) combined with (20) and (21) imply that the right-hand side of (17)

equals to
∑

S⊂T q(xj, T ). Finally, it follows from Lemma 6 that

p(xj, S) =
∑
S⊂T

q(xj, T ). (26)

Thus, we obtain that (17) holds.

In what follows we show that for each S ∈ Ωk+1\Ωk, there exists k! × (n − k)

matrix λ = [λk+1
ij ] such that both (RS) and (CS) holds, and each λk+1

ij ∈ [−1, 1]. To

prove this we use Lemma 5. For this, for each i ∈ I let ri = λk([�ki ]) and for each

j ∈ J let cj = q(xj, S). Then, let R = [r1, . . . , rk!] and C = [c1, . . . , cn−k]. In Step 2, we

show that the sum of C equals the sum of R. In Step 3, we show that for each k > 1,

2k! ≥
∑k!

i=1 |ri|+
∑n−k

j=1 |cj|.

Step 2: We show that the sum of C equals the sum of R, i.e.∑
j∈J

q(xj, S) =
∑
i∈I

λk[�ki ]. (27)

First, if we substitute (11) for each q(xj, S), then we get∑
j∈J

q(xj, S) = 1−
∑
j∈J

∑
S(T

(−1)|T |−|S|p(xj, T ). (28)

Now, let F (xj) be the collection of preferences � such that there exists T ∈ Ω such

that S ( T and xj is the �-best alternative in T , i.e. F (xj) = {� ∈ P : max(T,�

) = xj for some S ( T}. For each k ∈ N such that n− k ≤ |S|, let F(xj) be the set of

associated equivalence classes in Pk. Next, we show that for each xj ∈ S,∑
S(T

(−1)|T |−|S|p(xj, T ) =
∑

{[�k]∈F(xj)}

λk([�k]). (29)

To see this, first, since by the induction hypothesis, λk represents pk, we can re-

place each p(xj, T ) with
∑
{[�k]∈Bk(xj ,T )} λ

k([�k]). Next, consider the set collection
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{B(xj, T )}{S(T}. Note that if we apply the principle of inclusion-exclusion to this set

collection, then we obtain F (xj). It follows that (29) holds.

Next, substitute (29) in (28). Then, since, by the induction hypothesis, λk

represents pk, we can replace 1 with
∑
{[�k]∈Pk} λ

k([�k]). Finally, note that an

equivalence class [�k] /∈ ∪j∈JF(xj) if and only if {�k} ∩ S = ∅. This means

Pk \ ∪j∈JF(xj) = {�ki }{i∈I}. Then, it directly follows that (27) holds.

Step 3: To show that the base of induction holds, we showed that for k = 1 and

k = 2, the desired signed weight functions exist. To get the desired signed weight

functions for each k + 1 > 2, we will apply Lemma 5. To apply Lemma 5, we have to

show that for each k ≥ 2,
∑k!

i=1 |ri| +
∑n−k

j=1 |cj| ≤ 2k!. In what follows we show that

this is true. That is, we show that for each S ∈ Ωk+1 \ Ωk∑
i∈I

|λk([�ki ])|+
∑
j∈J

|q(xj, S)| ≤ 2k!. (30)

To see this, first we will bound the term
∑

i∈I |λk([�ki ])|. As noted before, each i ∈

I = {1, . . . , k!} corresponds to a specific linear ordering of X \ S. For each y /∈ S,

there are k − 1! such different orderings that rank y at the kth position. So, there are

k − 1! different equivalence classes in Pk that rank y at the kth position. Let I(y) be

the index set of these equivalence classes. Since {I(y)}y/∈S partitions I, we have∑
i∈I

|λk([�ki ])| =
∑
y/∈S

∑
i∈I(y)

|λk([�ki ])|. (31)

Now, fix y /∈ S and let T = S ∪ {y}. Since for each i ∈ I(y), [�ki ] ∈ Qk(y, T ) and vice

versa, we have ∑
i∈I(y)

|λk([�ki ])| =
∑

[�k
i ]∈Qk(y,T )

|λk([�ki ])|. (32)

Recall that by the definition of q(y, T ), we have

q(y, T ) =
∑

[�k
i ]∈Qk(y,T )

λk([�ki ]). (33)

Next, consider the construction of the values {λk([�ki ]}{i∈I(y)} from the previous step.

For k = 2, as indicated in showing the base of induction, there is only one row; that is,
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there is a single {[�ki ]} = Qk(y, T ). Therefore, we directly have |λk([�ki ])| = |q(y, T )|.

For k > 2, we construct λk by applying Lemma 5. It follows from iii of Lemma 5 that∑
[�k

i ]∈Qk(y,T )

|λk([�ki ])| ≤ |q(y, T )|+ (k − 1)!

n− k + 1
. (34)

Now, if we sum (34) over y /∈ S, we get

∑
y/∈S

∑
[�k

i ]∈Qk(y,S∪y)

|λk([�k])| ≤

∑
y/∈S

|q(y, S ∪ y)|

+
k!

n− k + 1
. (35)

Recall that by definition, we have Qk(y, S ∪ y) = Qk(y, S) and q(y, S ∪ y) = q(y, S).

Similarly, since each j ∈ J = {1, . . . , n} denotes an alternative xj ∈ S, we have∑
x∈S |q(x, S)| =

∑
j∈J |q(xj, S)|. Now, if we add

∑
j∈J |q(xj, S)| to both sides of (35),

then we get ∑
i∈I

|λk([�ki ])|+
∑
j∈J

|q(xj, S)| ≤
∑
x∈X

|q(x, S)|+ k!

n− k + 1
. (36)

Since by Lemma 7,
∑

x∈X |q(x, S)| ≤ 2k, we get∑
i∈I

|λk([�ki ])|+
∑
j∈S

|q(xj, S)| ≤ 2k +
k!

n− k + 1
. (37)

Finally, note that since for each k such that 2 < k < n 2k ≤ (2n−2k+1)k!
n−k+1

holds, we

have 2k + k!
n−k+1

≤ 2k!. This, together with (37), implies that (30) holds. Thus, we

complete the inductive construction of the desired signed weight function λ. This

completes the proof.

6 Proof of Proposition 2

We leave it to the reader to show that if an RCF p is prudential w.r.t. a given (�1,�2),

then p satisfies our axioms. Conversely, let p be an RCF that satisfies our axioms.

Before constructing the weight function, let us make a key observation. Consider the

five types of configurations below that are obtained by restricting a given (�1,�2)

to a given choice set. To clarify the terminology, we say that type i configuration is
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Type 0 Type 1 Type 2 Type 3 Type 4

�1 �2 �1 �2 �1 �2 �1 �2 �1 �2

x x x y x y x y x y

y y y x y x w x y z

z z y w z x

observed if there is a choice set such that if we restrict the given (�1,�2) to this set,

then we obtain a configuration as in type i. For example, type 2 configuration is

observed if there exist x, y, z ∈ X such that x >> z and y >> z, but neither x >> y

nor y >> x. For each choice set S ∈ X, if we obtain the configuration type i when

(�1,�2) are restricted to S, then S is called a type i choice set.

First, it is easy to note that domination implies that for each type i choice set

Si, if x = max(Si,�1) and y = max(Si,�2), then p(x, Si) + p(y, Si) = 1. Next, note

that for each S ∈ X, there exists a type i choice set Si, for i ∈ {0, . . . , 4}, such

that S is isomorphic to Si. Then, it follows from best-worst neutrality that if we

construct the weights as to obtain p((max(Si),�)), then by using the same weights

we obtain p((max(S),�)). This together with the first observation imply that to

render a prudential representation for p w.r.t. (�1,�2), it is sufficient to construct the

weights as to generate the choice probabilities for these five types of choice sets.

Now, we need to construct four weights, namely λ1 = λ(�1), λ2 = λ(�2),

λ3 = λ(�−11 ), and λ4 = λ(�−12 ), as to render a prudential representation of p w.r.t.

(�1,�2). Note that depending on X and (�1,�2), we may not observe each con-

figuration type. In what follows, we analyze the problem case by case. First let us

make some primitive observations to rule out the trivial cases. If X = {x, y}, then

the construction is trivial, so we assume that X has at least three alternatives. We

assume that there exist distinct x, y ∈ X with x �1 y, and y �2 x. If not, then

�1=�2, and domination implies that for each S ∈ Ω, p(max(S,�1)) = 1. So, we can

choose the weights in any arbitrary way. For each S ∈ Ω that is isomorphic to a type

0 choice set, the alternative that is �1- and �2-best is chosen with probability one,
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irrespective of the weight function. Therefore, we disregard these choice sets in the

following reasoning.

Case 1: Suppose there exist x, y, z, w ∈ X such that z is a decoy for y when x

is available and w is a decoy for x when y is available. It follows that x, y, z, w are

all distinct. Now, first define λ1 = p(x, {x, y, z, w}) and λ2 = p(y, {x, y, z, w}). Since

x >> w and y >> z, it follows from domination that λ1 + λ2 = 1. Next, consider

the set {x, y, z}, and define λ4 = p(y,{x,y,z})−λ2
p(y,{x,y,z}) . Since x >> w, attraction implies that

p(x, {x, y, z, w} ≥ p(x, {x, y, z}. This, together with our choice of λ2, implies that

p(y, {x, y, z}) − λ2 ≥ 0. Therefore, λ4 ≥ 0, and we obtain that p(y, {x, y, z}) = λ2
1−λ4 ,

as desired. To define λ3, consider the set {x, y, w} and define λ3 = p(x,{x,y,w})−λ1
p(x,{x,y,w}) .

Similarly, attraction implies that λ3 ≥ 0, and we obtain that p(x, {x, y, w)} = λ1
1−λ3 , as

desired. Finally, consider the set {x, y}. It follows from attraction gain equivalence

that if we substitute the defined weights for the choice likelihoods except L(x, {x, y}),

then we obtain that p(x,{x,y})
p(y,{x,y}) = λ1−λ4

λ2−λ3 , as desired.

Case 2: Suppose for each distinct x, y ∈ X there is no z, w ∈ X such that x >> w

and y >> z. It follows that for each distinct x, y ∈ X and z, w ∈ X, either z is a decoy

for y when x is available or w is a decoy for x when y is available. Assume w.l.o.g.

that z is a decoy for y when x is available. Now, first define λ1 = p(x, {x, y, z}) and

λ2 = p(y, {x, y, z}). If there exists an alternative w that is a decoy for x when y is

available, then define λ3 as to satisfy p(x, {x, y, w}) = λ1
1−λ3 . For a given λ1 and λ2,

there exists a unique such λ3. Finally, define λ4 as to satisfy p(x, {x, y}) = λ1−λ4
λ2−λ3 .

Case 3: Suppose that both case 1 and case 2 fail to hold. Since case 2 fails to

hold, there exist distinct x, y ∈ X and z, w ∈ X such that x >> w and y >> z. Since

case 1 fails to hold, three scenarios can happen: (1) Both x and y dominate z and w,

(2) z is a decoy for y when x is available, and y >> w, or (3) w is a decoy for x when

y is available, and x >> z.

Suppose that scenario (1) holds, we follow a construction similar to that of case

2. First, define λ1 = p(x, {x, y, z, w}) and λ2 = p(y, {x, y, z, w}). Then, since there is

no alternative that is a decoy for another in the availability of a third one, we can
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freely define λ3 and λ4 to satisfy p(x, {x, y}) = λ1−λ4
λ2−λ3 .

Suppose that scenario (2) holds, then we follow a construction similar to that of

case 1. First, define λ1 = p(x, {x, y, z, w}) and λ2 = p(y, {x, y, z, w}). Define λ4 as to

satisfy p(y, {x, y, z}) = λ2
1−λ4 . Next, since w is not a decoy for x when y is available, we

can define λ3 as to satisfy p(x, {x, y}) = λ1−λ4
λ2−λ3 . Finally, for scenario (3), a symmetric

construction works. Thus, for all possible cases, we can define a weight function λ as

to render a prudential representation for p w.r.t. (�1,�2).
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