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Abstract

Exogenous random structural disturbances are the main driving force behind
fluctuations in most business cycle models and typically a wide variety is used.
This paper documents that a minor misspecification regarding structural distur-
bances can lead to large distortions for parameter estimates and implied model
properties, such as impulse response functions with a wrong shape and even an
incorrect sign. We propose a novel concept, namely an agnostic structural dis-
turbance (ASD), that can be used to both detect and correct for misspecification
of the structural disturbances. In contrast to regular disturbances and wedges,
ASDs do not impose additional restrictions on policy functions. When applied
to the Smets-Wouters (SW) model, we find that its risk-premium disturbance
and its investment-specific productivity disturbance are rejected in favor of our
ASDs. While agnostic in nature, studying the estimated associated coefficients
and the impulse response functions of these ASDs allows us to interpret them
economically as a risk-premium/preference and an investment-specific produc-
tivity type disturbance as in SW, but our results indicate that they enter the
model quite differently than the original SW disturbances. Our procedure also
selects an additional wage mark-up disturbance that is associated with increased
capital efficiency.
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1 Introduction

Exogenous random shocks are the lifeblood of modern macroeconomic business
cycle models. These shocks enter the model as innovations to structural disturbances
that affect key aspects of the model. Whereas the prototype real business cycle (RBC)
model features total factor productivity (TFP) as the only structural disturbance,
recent generations of business cycle models typically include a multitude of structural
disturbances. To avoid singularities when estimating a model, one needs at least as
many unobserved random disturbances as observables. These random shocks can take
the form of measurement error or structural disturbances. The larger the role for
measurement error, the smaller the role of the theoretical model.1 Thus, if researchers
want the theoretical model to explain an important part of the data and they do not
want to set aside information contained in additional observables, then they need to
come up with a sufficiently large set of structural disturbances.

Incorporating structural disturbances correctly is nontrivial and it is not enough
to have the right set. Structural disturbances impose (cross-equation) restrictions on
model equations and, thus, on the model’s solutions. Thus, each structural disturbance
has to enter each model equation correctly. This is a real concern, since we often do not
have independent evidence on how structural disturbances should affect the system.
For example, should a risk-premium disturbance affect all Euler equations or only those
of a specific type of investment? Is it correct to assume that structural disturbances
are uncorrelated as is commonly done? Chari, Kehoe, and McGrattan (2007) propose
“wedges” as alternatives to standard structural disturbances. However, it is important
to realize that wedges also impose restrictions. For example, suppose one adds a “labor
wedge” to the labor first-order condition. The assumption that this wedge does not
enter any other equation implies restrictions on how this disturbance affects policy
rules.

The contributions of this paper are threefold. First, based on a series of econo-
metric estimation exercises using data generated from a known economic model, we
document that a minor misspecification of the empirical model regarding structural
disturbances can easily lead to large distortions for parameter estimates and model
properties, such as business cycle statistics and impulse response functions (IRFs).
Specifically, we consider the case where the empirical model wrongly excludes one of
the structural disturbances and wrongly includes another. Everything else is correctly
specified, including functional forms. Even though we adjust parameter values to en-
sure that this is a relatively minor type of misspecification, the results can be very
drastic. For example, standard deviations as implied by the misspecified model are
frequently multiples of their true values and correlation coefficients and IRFs can flip
sign. These results are due solely to misspecification, since we use large samples and a
consistent estimator.

1There is a fundamental difference between measurement error and structural random distur-
bances. The latter are part of the economic model and their shocks affect the system through time
according to the equations of the model. Measurement error does not.
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Second, we propose agnostic structural disturbances (ASDs) as an alternative struc-
tural disturbance. In contrast to regular structural disturbances, ASDs impose no
additional restrictions on policy rules. Nevertheless, they are very different from mea-
surement error, because they are structural disturbances and propagate through the
system like regular structural disturbances. Our ASD procedure can be used in two
ways. First, it can be used to test whether regular structural disturbances are correctly
specified. Second, an empirical specification can be enriched by adding ASDs as addi-
tional structural disturbances. Using Monte Carlo experiments, we document that the
ASD procedure is capable of detecting and correcting for misspecification in samples
of typical size.

The third contribution of our paper is to test whether the structural disturbances
of the model in Smets and Wouters (2007) (SW) are correctly specified using the
same US postwar data set. We find that the risk-premium and the investment-specific
productivity disturbance are not correctly specified. We use our procedure to improve
on the SW empirical specification. Specifically, our preferred specification (based on
marginal likelihood considerations) has three ASDs and excludes the SW risk-premium
and the SW investment-specific disturbance.

A nice feature of our procedure is that its outcomes provide insights into the nature
of the agnostic disturbances. That is, although the ASD procedure itself does not rely
on any theory, the estimation results – both the associated coefficients and their IRFs
– may reveal a lot about the type of structural disturbance the data has identified.

One of the ASDs in our adjusted empirical specification of the SW model has a
strong impact on the investment Euler equation and plays an important role for the
fluctuations in investment. While the same is true for the standard investment-specific
disturbance used in SW, our ASD enters the capital accumulation with a different sign
than the investment-specific disturbance and also has a direct positive effect on capacity
utilization. This ASD could capture an “investment-modernization” disturbance that
positively affects the return on new investment, but goes together with an increased
depreciation of existing capital. The latter would imply that this disturbance affects
the capital accumulation with the opposite sign as a standard investment disturbance,
consistent with our empirical results. The direct effect on utilization could compensate
for this scrapping of existing vintages of capital.

The second ASD shares similarities with the SW risk-premium disturbance. Specif-
ically, it plays a key role in the bond Euler equation. However, the way it enters the
capital valuation equation indicates it is a preference disturbance, not a risk-premium
disturbance. Interestingly, Smets and Wouters (2007) prefer the risk-premium distur-
bance over the preference disturbance of Smets and Wouters (2003) because it generates
a positive comovement of the main economic aggregates, whereas a preference distur-
bance does not. Our ASD generates a typical business cycle even though it affects the
capital valuation equation like a preference disturbance. The reason is that it also has
an important impact on the investment Euler equation. Another noteworthy feature
of this ASD is that it directly affects the policy rate. This indicates that the central
bank responds differently to economic developments when these are due to changes in
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investors’ required rates of return.
The third ASD has an important impact on the wage mark-up. Whereas the SW

wage mark-up disturbance only affects one equation, our ASD also has an important
effect on the capital value, the utilization, and the capital accumulation equation.
Specifically, the data indicate that increased upward wage pressure goes together with
more efficient use of capital. This disturbance has a very temporary impact. In contrast
to the first two ASDs, this ASD does not replace a SW disturbance. Leaving the
SW wage mark-up disturbance out of our preferred empirical specification reduces the
marginal data density substantially. However, including this ASD does substantially
lower the value of the MA coefficient in the ARMA representation of the SW wage
mark-up disturbance.

In our application, we could give a sensible interpretation to each of the three
ASDs like one often can do for wedges. Similar to wedges, there may not be a unique
interpretation.2 However, with wedges the researcher has to take a stand on where the
wedges enter the model. The whole idea about our procedure is that it starts by being
agnostic and it lets the data decide where and how ASDs should enter each model
equation.

In the next section, we discuss the outcomes of our misspecification experiments, in
which we generate data using the SW model as the data generating process (dgp) and
then estimate parameters with slightly misspecified empirical models. We use large
samples, so the results are only due to misspecification and not to sampling variation.
Section 3 provides a general discussion and motivation of our proposed misspecification
detection and correction procedure. Section 4 describes how to use ASDs in practice.
Section 5 documents the ability of ASDs to detect and correct for misspecification
using Monte Carlo experiments for a typical application. We use again the SW model
to generate data and the same type of misspecification of the empirical model as in
section 2. But now we use a sample length of typical size. Section 6 discusses the
results when our procedure is applied to the SW model on US data.

2 Large sample consequences of misspecification

In this section, we consider the consequences of estimating a misspecified empirical
model. Specifically, we generate data with a known structural business cycle model
and then estimate parameters using a misspecified empirical specification. We focus
on large sample properties and use a Maximum Likelihood (ML) estimator, which is
consistent in this environment. Thus, the results presented are not due to sampling
variation. We document that even a minor misspecification can lead to substantial
distortions in parameter estimates. These distortions matter in the sense that they
imply model properties that are quite different from the true ones. In fact, even

2For example, regarding our third ASD, it is possible that it captures a higher wage mark-up
that induces a more efficient use of capital. But it is also possible that it captures a desire to use
capital more efficiently and that the higher wage mark-up is the price firms have to pay to obtain this
efficiency increase.
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implied model moments for variables that are used as observables in the estimation
can deviate substantially from their data counterparts (which represent the truth given
that we focus on large sample properties).

2.1 The true underlying model for our experiment

We use the New Keynesian model of Smets and Wouters (2007), the workhorse
model of empirical business cycle analysis, as the basis of our analysis. Parameter
values of the true data generating process are set equal to those of the SW posterior
mode.3 The list of parameters estimated and their interpretation is given in table 1.4

2.2 The specification of the empirical model

The original SW model has seven exogenous random variables. Those are a TFP
disturbance, εat , a risk-premium disturbance, εbt , a government spending disturbance,
εgt , an investment-specific disturbance, εit, a monetary policy disturbance, εrt , a price
mark-up disturbance, εpt , and a wage mark-up disturbance, εwt . We leave out one of
these seven disturbances when generating data for our misspecification experiments.
The empirical specification also leaves out one disturbance, but not the right one. This
means we have 7 × 6 = 42 experiments. Everything else is always correctly specified,
including functional forms, specification of the processes for the exogenous random
variables, and the values of the parameters that are not estimated. The observables
used in SW consists of employment, the federal funds rate, the inflation rate, GDP,
consumption, investment, and the real wage rate. We exclude the real wage rate so
we have the same number of observables as structural disturbances which is consistent
with the empirical exercise in SW.

Is this a likely misspecification? We believe that this type of misspecification is
likely to be important in practice even if one includes a large set of structural dis-
turbances. The first reason is that having a large set does not necessarily imply one
includes all the true disturbances. Moreover, one does not only need to include all

3The only exception is the parameter ρga, which captures the impact of the TFP structural
disturbance on the government expenditures structural disturbance. We set this coefficient equal to
zero in both the true dgp and in the empirical model. This implies that all structural disturbances
are uncorrelated. This is a typical assumption and makes our misspecification experiment more
transparent. As discussed below, the misspecification considered is related to the specification of the
set of structural disturbances. If ρga 6= 0, then we would have to make additional choices whenever
the misspecification involves either the TFP or the government spending shock. We explored some
alternative cases in which ρga 6= 0 and found similar results.

4We follow SW and do not estimate the depreciation rate, δ, the steady-state wage mark-up, µ, the
steady-state level of government expenditures, g, the curvature in the Kimball goods-market aggrega-
tor, εp, and the curvature in the Kimball labor-market aggregator, εw. Since we use demeaned data,
we also fix the trend growth rate, γ, the parameter controlling steady state hours, l, the parameter
controlling steady state inflation, π, and the discount factor, β.
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Table 1: Parameter explanations

α Capital share
σc Inverse IES of consumption
Φ Fixed cost in production
φ Elasticity of adjustment cost function
λ Degree of consumption habits
ξw Degree of wage rigidity
σ` Inverse IES of leisure
ξp Degree of price rigidity
ιw Degree of indexation for wages
ιp Degree of indexation for prices
ψ Elasticity of capital utilization adj. cost function
rπ Taylor rule coefficient on inflation
ρ Degree of interest rate smoothing in Taylor rule
ry Taylor rule coefficient on output gap
r∆y Taylor rule coefficient on change in output gap

ρj Persistence of exogenous disturbance j
µj MA coefficient of exogenous disturbance j
σj Standard deviation of exogenous disturbance j

j ∈ {a, b, g, I, r, p, w}

Notes. The table reports the parameters of the SW model that are
estimated and their interpretation. The list of exogenous disturbances
is given in the text.
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true disturbances, each disturbance has to enter each model equation correctly. For
example, a TFP disturbance is typically modeled as a labor-augmenting productivity
shock, but productivity changes could affect the production function differently. More-
over, TFP increases may also affect other aspects of the production process such as
the depreciation rate.5

Is this a “minor” misspecification? When generating the data, we adjust the
standard deviation of the disturbance that is incorrectly excluded from the empirical
specification to ensure that it is responsible for at most 10% of the volatility for any
of the six observables used in the estimation. By doing this we reduce the quantitative
importance of the misspecification.

One could argue that a misspecification is only minor if one would not detect it in
a typical data set using some model selection criterion such as the marginal likelihood.
This is a very strict requirement. Comparing a misspecified model with the correct one
requires that researchers are aware of the correct specification and test their empirical
model against it. Since structural disturbances can enter models in many different ways,
researchers may not consider the correct one even if they consider several alternatives.6

In this section, we use very large samples and misspecified models would be rejected
against the truth. In section 2.6, we select two of the forty-two experiments and
data sets of typical length and document using a computer intensive Monte Carlo
analysis that a test comparing the misspecified model with the correct model would
often not lead to a rejection of the misspecified model. This supports our claim that
the misspecification considered here is indeed minor.

Estimation procedure. DSGE models are typically estimated with Bayesian tech-
niques, which means that the estimation outcome is a weighted combination of the
prior and the empirical likelihood. Misspecification of the empirical model affects the
latter. With a tight prior, observed data – and thus misspecification of the likelihood –
matter less for posterior estimates. Then, the quality of those estimates will depend on
the quality of the prior. This paper focuses on the question how misspecification affects
what the observed data imply for parameter estimates and implied model properties.
Thus, we focus on the likelihood and use Maximum Likelihood estimation.7

5Similarly, Cúrdia and Reis (2012) argue that assumptions about the correlation of structural
disturbances are important and that one can question the standard assumption that structural dis-
turbances in macroeconomic models are not correlated.

6Indeed, although the SW empirical specification is a very carefully constructed model that in-
corporates insights of many previous empirical studies, it is still rejected against some minor modifi-
cations, as is shown in 6.

7Our optimization problem is relatively well defined. It helps, of course, that our experiments
rely on very large samples and on empirical models that are only misspecified in terms of the driving
processes. Moreover, we use the true parameter values as the initial conditions for the optimization
routine and we specify bounds for the parameter values. These choices decrease computing time and
also give a misspecified model the best possible chance to deliver estimates that are close to the truth.
The innovation standard deviations of the disturbances are restricted to be in the interval [0, 10]
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In practice, there could be interesting interactions between the misspecification of
the empirical model and small sample properties of the estimator. We abstract from
small sampling variation by using a large enough sample. In particular, our experiments
are based on a sample of 10,000 observations. Our estimator is consistent and estimates
are very close to the truth when the empirical model is correctly specified. Section 5
studies the small sample properties in detail for two out of the forty-two misspecification
experiments.

Priors on the standard deviation of structural disturbances typically do not allow
for point mass at zero. Ferroni, Grassi, and León-Ledesma (2015) point out that this
biases the results towards a positive role of all structural disturbances.8 This is not
an issue for us, since we use ML estimation. In fact, estimated standard deviations of
disturbances that are part of the empirical model but not part of the true dgp turn
out to be often close to zero.9

Identification. In appendix B, we document that the estimated parameter values are
identified using a strong version of the identification test of Komunjer and Ng (2011).
This is true according to the correct and the misspecified empirical model. Thus,
none of the results should be driven by non-identification rather than misspecification.
Further justification for this claim is given in section 2.5.

2.3 Misspecification: Consequences for parameter values

Table 2 reports some key percentiles (across experiments) to characterize the range
of the estimated parameter values. We only consider parameters that are in both
the true and empirical specification.10 All parameters are affected by misspecification
to some extent. Moreover, the minor misspecifications considered in these forty-two
experiments lead to massive distortions for several parameter estimates.

and the coefficients of their time series process in the interval [0, 99]. Given our focus on misspecified
disturbances, we want these intervals to be large. For the structural parameters we set the lower bound
and the upper bound to the first and ninety-ninth percentile according to the SW prior, centered at
the parameter values of the true dgp.

8There are several differences between their and our setup. They only consider one specific mis-
specified empirical model whereas we consider forty-two. Although they consider a limited Monte
Carlo experiment (with 100 replications), the main discussion focuses on particular sample of 200
observations. In this section, we abstract from small sample issues by focusing on one very long sam-
ple. Most importantly, their main focus is on the consequences of using an inverse gamma prior for
parameters that could well be zero. Our focus is on the misspecification of the empirical model, not
the specification of the prior.

9In those cases, the role of the structural disturbance that is wrongly excluded from the empirical
specification is “taken over” by some of the correctly included disturbances, not the one that is wrongly
included.

10Specifically, for the parameters of the exogenous random processes, the experiments in which the
disturbance is part of the empirical model – but not part of the true dgp – are excluded from the
calculations of the percentiles.
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Table 2: Parameter values: Point estimates across misspecification experiments

Imposed Imposed
Truth Min Min 10% 25% Median 75% 90% Max Max

α 0.19 0.07 0.07 0.11 0.17 0.19 0.20 0.23 0.31 0.31
σc 1.39 0.53 0.53 0.78 1.14 1.35 1.60 1.82 2.25 2.25
Φ 1.61 1.33 1.33 1.33 1.53 1.77 1.89 1.89 1.89 1.89
φ 5.48 1.99 2.71 3.59 5.47 7.38 8.97 8.97 8.97 8.97
λ 0.71 0.45 0.45 0.59 0.71 0.74 0.84 0.89 0.90 0.90
ξw 0.73 0.47 0.50 0.67 0.73 0.75 0.82 0.87 0.91 0.92
σ` 1.92 0.18 0.18 0.18 0.52 1.87 2.71 3.66 3.66 3.66
ξp 0.65 0.40 0.53 0.60 0.65 0.78 0.86 0.86 0.86 0.86
ιw 0.59 0.24 0.24 0.27 0.38 0.58 0.61 0.80 0.89 0.89
ιp 0.22 0.01 0.01 0.01 0.10 0.22 0.32 0.48 0.63 0.65
ψ 0.54 0.20 0.20 0.20 0.42 0.54 0.68 0.86 0.86 0.86
rπ 2.03 1.45 1.45 1.45 1.71 2.07 2.39 2.61 2.61 2.61
ρ 0.81 0.53 0.62 0.73 0.79 0.81 0.85 0.88 0.92 0.97
ry 0.08 -0.04 -0.04 0.01 0.05 0.09 0.16 0.20 0.20 0.20
r∆y 0.22 0.10 0.10 0.10 0.10 0.20 0.24 0.34 0.34 0.34

ρa 0.95 0.00 0.50 0.82 0.92 0.96 0.98 0.99 0.99 0.99
ρb 0.18 0.00 0.04 0.09 0.13 0.17 0.26 0.36 0.80 0.99
ρg 0.97 0.00 0.94 0.96 0.97 0.97 0.99 0.99 0.99 0.99
ρI 0.71 0.00 0.57 0.60 0.68 0.71 0.78 0.84 0.95 0.99
ρr 0.12 0.00 0.01 0.06 0.11 0.13 0.18 0.33 0.50 0.99
ρp 0.90 0.00 0.70 0.77 0.84 0.89 0.93 0.96 0.98 0.99
ρw 0.97 0.00 0.93 0.95 0.97 0.97 0.98 0.99 0.99 0.99
µp 0.74 0.00 0.08 0.22 0.43 0.73 0.82 0.91 0.95 0.99
µw 0.88 0.00 0.00 0.00 0.87 0.89 0.92 0.96 0.98 0.99

σa 0.45 0.00 0.42 0.47 0.67 0.92 1.49 2.57 3.20 10
σb 0.24 0.00 0.07 0.20 0.23 0.24 0.26 0.27 0.29 10
σg 0.52 0.00 0.52 0.52 0.52 0.53 0.55 0.56 0.57 10
σI 0.45 0.00 0.14 0.25 0.39 0.44 0.46 0.48 0.54 10
σr 0.24 0.00 0.22 0.23 0.23 0.24 0.26 0.28 0.31 10
σp 0.14 0.00 0.04 0.09 0.12 0.14 0.15 0.16 0.17 10
σw 0.24 0.00 0.18 0.20 0.21 0.24 0.25 0.29 0.31 10

Notes. This table gives information about the parameter estimates across the forty-two misspecification experiments.
For the parameters of the laws of motion of the disturbances, we exclude an experiment from the calculations of the
percentiles when the disturbance is part of the empirical model, but not part of the true dgp. The table also reports
the bounds imposed on parameter estimates. See table 1 for the definitions of the parameters.
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The median parameter estimates (across experiments) are relatively close to the
true parameter values. Thus, our choice of experiments does not favor bias in a par-
ticular direction. There is one exception. The median value of the estimated standard
deviation of the productivity disturbance innovation, σa, is equal to 0.92 compared to
a true value of 0.45. The reason is that this disturbance often “absorbs” the variation
of the disturbance that is not included in the empirical specification. Thus, the distur-
bance that is wrongly included in the empirical specification does not necessarily fulfill
this role.

Even if we exclude cases for which the estimates fall in the bottom or top 10%,
then we find that estimates are substantially different from their true value for many
parameters. For example, for the labor supply elasticity with respect to the real wage,
σl, the 10th percentile is equal to 0.18 and the 90th percentile is equal to 3.66, compared
with a true value of 1.92. For the parameter capturing the indexation of wages ιw,
the same two percentiles are 0.27 and 0.8, compared with a true value of 0.59. For
the parameter capturing the indexation of prices, ιp, the two numbers are 0.01 and
0.48, compared with a true value of 0.22. When the two 10% tails are not excluded
and the full range of estimates is considered, then the range substantially increases.
Specifically, the largest values are 0.89 and 0.63 for the indexation of wages and prices,
respectively.11 Recall that these distortions are solely due to misspecification, not to
small-sample variation.

For several parameters, the results remain bad when we narrow the range of out-
comes considered. For example, when we exclude the bottom and the top 25%, then
the values for σl, vary between 0.52 and 2.71 compared with a true value of 1.92. The
results are also quite bad for φ, the elasticity in the capital adjustment cost function,
for which the 25th percentile is equal to 5.47 and the 75th percentile is equal to 8.97.

2.4 Missspecification: Consequences for model properties

The previous section documents that misspecification can lead to large distortions
in parameter values. Parameter estimates are often of interest in themselves. At least
as important are the properties of the estimated structural model. It could be that
different parameter configurations lead to similar model properties. In this section, we
address this by looking at implied moments and IRFs.

2.4.1 Implied model moments

We begin by documenting the consequences of model misspecification for implied
model moments using the misspecification setup described above. Table 3 reports the
range of values for typical business cycle properties as implied by the estimated param-
eter values of the forty-two experiments considered. Specifically, it reports standard
deviations and correlation coefficients relative to their true values. Thus, a value equal

11Parameter estimates are constrained to be in a range, and the largest estimate of the wage
indexation parameter is constrained by the imposed upper bound.
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to 1 means that there is no distortion. The column labeled “true value” reports the
range of values the corresponding moment has according to the true dgp.12

Table 3: Moments: Ratio of implied value to truth across experiments with misspecification

True value Min 10% 25% Median 75% 90% Max
(across experiments) (estimates, scaled by true value)

Std(yt) [ 3.48 , 5.12 ] 0.51 0.78 0.92 1.03 1.64 4.46 6.03
Std(ct) [ 3.30 , 5.58 ] 0.45 0.76 0.92 1.03 1.81 4.12 6.62
Std(it) [ 9.73 , 12.94 ] 0.70 0.87 0.99 1.11 1.71 3.81 6.47
Std(rt) [ 0.52 , 0.61 ] 0.76 0.90 0.94 1.00 1.36 2.28 2.78
Std(πt) [ 0.37 , 0.54 ] 0.64 0.72 0.94 1.01 1.25 2.21 2.98
Std(wt) [ 2.13 , 2.70 ] 0.73 0.83 0.92 1.08 2.28 5.57 10.87

Corr(yt, ct) [ 0.65 , 0.94 ] 0.28 0.68 0.93 0.99 1.07 1.15 1.52
Corr(yt, it) [ 0.74 , 0.87 ] 0.69 0.83 0.95 1.00 1.10 1.16 1.29
Corr(ct, it) [ 0.63 , 0.89 ] -0.68 0.60 0.92 1.00 1.19 1.34 1.57
Corr(ct, rt) [ -0.65 , -0.35 ] -0.71 0.54 0.86 0.99 1.11 1.52 2.13
Corr(it, wt) [ 0.29 , 0.69 ] -1.52 0.10 0.64 1.07 1.49 1.99 3.28
Corr(it, πw) [ 0.51 , 0.80 ] 0.36 0.84 0.97 1.02 1.17 1.34 1.75

Notes. This table reports the outcomes across experiments for the indicated moment as implied by parameter
estimates relative to its true value. Thus a value equal to 1 indicates that there is no distortion due to misspecification.
Each row reports percentiles across our forty-two experiments. It also reports the range of values of the true moments
across the experiments. All moments considered are related to variables that are used in the estimation as observables.

Misspecification implies an upward bias for volatility in our experiments.13 This
upward bias could be specific to our particular type of misspecification. However, the
observed upward bias is consistent with the simple analytical example discussed in
appendix A.14 The results are solely due to misspecification, since we use very large
samples and our ML estimator is consistent when the empirical model is correctly
specified.

The overestimation of volatility is enormous in some cases. Even if we exclude the
top 25%, then standard deviations can be multiples of the true standard deviation.
For example, the 75th percentile for the standard deviation of wages is 2.28 times its
true value. This ratio increases to 5.57 when we only exclude the top 10%. The
90th percentiles for the consumption and output standard deviation ratios are 4.12

12Moments are not the same across experiments, since we adjust the standard deviations of the
structural disturbances to ensure that the wrongly omitted disturbance does not play an important
role.

13Section 2.3 documents an upward bias for σa, the standard deviation of the TFP disturbance.
Since one disturbance is missing from the empirical model, it is not surprising that there is a shift
towards some of the other disturbances. By contrast, here we find an upward bias for total variability.

14In appendix A, we discuss a simple example which documents analytically how maximum like-
lihood estimation of a misspecified model can lead to an arbitrarily large upward bias in the implied
variance of an observable.
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and 4.46, which also indicates massive over-prediction. The 90th percentile number for
investment is equal to 3.81 and in the worst experiment the implied standard deviation
is 6.47 times as big as the true value. By contrast, the values in the lower tail are less
drastic. Excluding the bottom 10%, we find that the largest distortions are found for
inflation for which the 10th percentile is 0.72, that is, implied volatility is 28% below
its true value. If we consider all experiments, then the smallest ratio is equal to 0.45,
which is found for the implied standard deviation of consumption.

Misspecification also has large quantitative implications for correlation coefficients.
In fact, the sign of the correlation coefficient as implied by parameter estimates turns
out to be different from its sample analogue in several cases. This would not be a
big deal if the two correlation coefficients are both close to zero. But there are also
cases in which the implied correlation coefficient according to the estimated empirical
model and the true correlation coefficient are both large in absolute value and differ in
sign.15,16

2.4.2 Impulse response functions (IRFs)

To conclude the discussion on the consequences of misspecification, we document
that misspecification can also have a large impact on impulse response functions. There
are many IRFs to consider. Figure 1 plots for three IRFs the outcomes across the
experiments and documents that the distortions can be large. We exclude the cases
when the disturbance of interest is in the empirical specification, but not part of the
true dgp. It would not be surprising if these are different.17 Thus, the disturbance
of interest is part of the true dgp as well as the empirical model for all three cases
considered.

Figure 1a plots the response of output to a TFP disturbance. This is obviously a
key characteristic of the model. The black line plots the true IRF and the grey lines
plot the IRFs as implied by the empirical model for the different experiments. All
IRFs are based the same size shock.18 If the grey lines are close to the black line,
then misspecification of the empirical model has only minor consequences for the IRF
considered. The sign of the IRF is virtually always correct and TFP disturbances
always have a noticeable positive impact on aggregate output.19 Nevertheless, the
figure documents that there are large differences in terms of initial impact, overall

15A striking example is the experiment in which the government disturbance is not present in the
true dgp and the empirical model excludes the risk-premium disturbance instead. The true correlation
between consumption and investment is equal to 0.67 whereas the one implied by the estimated model
is equal to -0.41.

16The smallest correlation coefficient (in absolute value) according to the true model is 0.29, so
any sign change implies a nontrivial change in the correlation coefficient.

17Also, we cannot calculate IRFs for a particular disturbance if that disturbance is not part of the
empirical specification. This means that each figure plots IRFs for thirty-two cases.

18That is, one standard deviation according to the original SW model. Differences across IRFs are
bigger if we use the estimated standard deviations for the different experiments.

19In some experiments, the initial response is negative. However, its value is then very small.
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Figure 1: IRFs according to true (black) and misspecified (grey) empirical models

(a) Output response to TFP shock
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(b) Wage response to monetary policy shock
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(c) Inflation response to investment shock
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Notes. The figure plots the true IRF (black)and the IRFs implied by the misspecified (grey) empirical models considered.
The results are based on a very large sample, so results are not due to small sample variation. These IRFs are for shocks
that are correctly included in the model. Also, we do not use estimated standard deviations, but use the same size
shock for all IRFs.

magnitude, shape, and persistence.
Figure 1b plots the response of the real wage to a monetary policy shock. This is

clearly the kind of model property one would want to get right when analyzing mon-
etary policy. The figure shows again a wide variety of responses across the different
empirical specifications. Whereas the true response is substantial, there are several
empirical specifications that predict a very small change. There are also a few speci-
fications that give a much larger response. We want to reemphasize that the plotted
IRFs are for a disturbance that is correctly included in the empirical model.

Figure 1c reports the results for the inflation IRF of an investment-specific shock.
For most experiments the IRFs display a similar pattern, but there are important
differences in terms of magnitude. For three experiments, however, the IRFs are com-
pletely at odds with the true IRF. Whereas the true IRF is positive and has reverted
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back to zero after twenty periods, the IRFs implied by these three misspecified em-
pirical models are negative and indicate larger volatility and more persistence. Again,
relatively small changes in parameter values can change these IRFs such that they are
much closer to the true IRF.20

2.5 Is weak identification the cause?

In appendix B, we demonstrate that all parameters are identified in all models
considered.21 Moreover, we use a very large sample to estimate the parameters so
the large range of values for parameter estimates cannot be caused by samples being
too short to be informative. Also, the finding that the different parameter values are
associated with quite different model properties indicates that the results discussed in
this section are not due to parameters not being identified. As a final check, we compare
the values of the likelihood according to the misspecified model at the estimated values
and the true values. When using the true values, we do re-estimate the parameters
of the exogenous random variables.22 The smallest difference between the two log
likelihood values is equal to 14.5 and there are only four experiments for which the
difference is less than 100. The mean (median) difference is equal to 10, 371 (5501).23

2.6 Is the misspecification really minor?

The misspecification experiments considered above involve the inclusion of one
wrong and the exclusion of one correct structural disturbance. Everything else is
correctly specified. So the misspecification affects only a small part of all the model
features researchers have to specify when writing down a complete empirical model.

Nevertheless, one could argue, that this misspecification is not that likely for the
analysis in Smets and Wouters (2007), since SW was preceded by years of empirical
analysis by many authors. However, in section 6, we document that we clearly reject

20Specifically, if σc, the parameter controlling curvature in the utility function and λ, the parameter
indicating the habit component in the utility function, are set equal to their true values, then these
three IRFs have a shape that is similar to the true IRF, that is, also predict a hump-shaped positive
response. The responses still differ somewhat from the truth in having a more delayed response and a
more persistent effect. The estimated values for σc in the three experiments are 0.65, 0.53, and 0.53,
whereas the true value if equal to 1.39. The estimated values for λ are equal to 0.86, 0.87, and 0.85,
whereas the true value is equal to 0.71.

21All true specifications have one structural disturbance less than the original SW model. This
turns out not to matter for identification. In fact, estimated parameters remain identified when we do
the identification test for specifications with five disturbances that exclude the disturbance that is not
part of the true dgp as well as the one that is erroneously omitted from the empirical specification.

22This is a conservative choice, since differences in the likelihoods would be larger if these param-
eters are not re-estimated.

23It is not surprising that across experiments, there are some for which the misspecification is
smaller than for others resulting in smaller differences between the two likelihood values. After all,
our experiments are not designed to find large misspecification. Our set is constructed using a simple
variation in the set of the original structural disturbances.
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the null that two of the included structural disturbances are correctly specified against
several alternatives. It is important to recall that correct specification of a structural
disturbance is not only getting the nature of the disturbance right, but also that it
enters each model equation correctly. In section 6, we will argue that this is not the
case for two of the seven SW structural disturbances.

Furthermore, it could be argued that a misspecification is only minor if the misspec-
ified model is not rejected when its fit is compared with the fit of the correct model.
This is, of course, a test that one could never implement in practice, since it requires
knowing the truth. The large differences in likelihood discussed in section 2.5 indicate
that the misspecified model would be easily rejected. However, those likelihood values
correspond to tests using unrealistically large samples. The appropriate question is
whether one would reject the misspecified model with a sample of typical length and
typical estimation procedure.

To address this question, we do a Monte Carlo experiment in which the model is
estimated as in SW. That is, the data set has the same number of observations, the
parameters are estimated with the same Bayesian methodology, and the priors are also
the same. We assess model fit using the marginal data density (MDD). These are
expensive Monte Carlo experiments.24 Therefore, we consider only two of the possible
forty-two misspecification experiments of section 2. They were chosen as follows. We
ranked all experiments by the likelihood value of the misspecified specification relative
to the likelihood of the correct specification. The idea is that misspecification is less
severe if the likelihood values are close to each other. The first experiment chosen is the
one corresponding to the sixty-sixth percentile and the second is the one corresponding
to the thirty-third percentile.25 Thus, our experiments are neither the least nor the
most problematic in terms of misspecification. In section 5, we return to these two
examples and we will document that consequences of misspecification are severe for
both cases.

For the experiment at the thirty-third percentile we find that the misspecified model
has a higher marginal data density in 17.8% of the Monte Carlo replications. Thus,
one would prefer the wrong empirical model over the correct one in about four out of
five cases in cases if one is so lucky to be able to do the test against the true model
specification.

For the experiment at the sixty-sixth percentile, this number decreases to 52%.
That is, the correct and the misspecified model have roughly an equal chance of having
the best fit when realistic samples are used.26

24The reason is that they involve an optimization problem containing many parameter values. In
contrast to the exercise in section 2, the optimization here is a bit more difficult, since it is affected by
small-sample sampling variation. Moreover, it has to be repeated for every Monte Carlo replication.

25The first (second) Monte Carlo experiment corresponds to the case when the true dgp does not
include a monetary policy (TFP) disturbance, but the empirical model leaves out the investment
disturbance instead.

26This Monte Carlo experiment does indicate an interesting aspect of sampling variation. The large
sample analysis indicates that the empirical model considered in this second Monte Carlo experiment
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3 Agnostic Structural Disturbances

In this section, we develop and motivate our “structural agnostic disturbance”
(ASD) procedure to detect and correct for misspecification. ASDs can be added to a
structural model and they can be used to test whether a regular structural disturbance
is correctly specified.

3.1 Underlying theoretical model

Consider the following linearized model

0n×1 = Et [Λ2 (Ψ) st+1 + Λ1 (Ψ) st + Λ0 (Ψ) st−1 + Γ (Ψ) εt+1 + Υ (Ψ) εt] , (1a)

εt = Gεt−1 +Hηt, (1b)

Et [ηt+1] = 0, (1c)

Et
[
ηt+1η

′
t+1

]
= Im×m, (1d)

where Ψ is the vector containing the structural parameters, st is the n × 1 vector
of endogenous variables, and εt is the m × 1 vector of exogenous random variables.
All variables are defined relative to their steady state values. Most linearized DSGE
models can be represented with such a system of equations.27

Type of misspecification considered. As in section 2, the misspecification fo-
cuses on the modeling of the structural disturbances. That is, whether the included
disturbances are the right ones and whether the restrictions they impose on the model
equations correct.

3.2 The ASD procedure

There are two ways to describe and implement the ASD procedure. The first
formulation is discussed in section 3.2.1. This formulation highlights that our procedure
is more general than the procedure that adds wedges to particular model equations.
We provide the second formulation in section 3.2.3 after discussing some background
information in section 3.2.2. This second formulation makes clear that our procedure is
more efficient than the misspecification procedures that combine a DSGE model with a
reduced-form empirical model as in Ireland (2004) and Del Negro, Schorfheide, Smets,
and Wouters (2007). This efficiency advantage is made possible by focusing on one
particular type of misspecification, namely exogenous disturbances not being the right

is more misspecified than the one of the first Monte Carlo, since there was a large difference in the
marginal likelihoods of the correct and misspecified model. In terms of marginal likelihoods, this
ranking is reversed in small samples.

27Linearization leads to accurate solutions for many business cycle models. When this is not the
case, then this is an additional source of misspecification.
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ones or not being modeled correctly. As explained below, this allows us to use some of
the structure of the model.

We will show that these two formulations are not different procedures, but different
ways to implement this procedure.28 Which procedure is more convenient in practice
will depend on the application.

3.2.1 ASD procedure: First formulation based on model equations

Consider the model given in equation (1). To simplify the exposition, we start
with the case for which st includes only state variables and all n state variables are
observables. Suppose that the researcher is only sure about m1 structural disturbances.
These are part of the vector, ε1,t. If m1 < n and there are no other disturbances,
then there is a singularity problem. One option would be to add measurement error.
But structural disturbances and measurement errors are very different. Structural
disturbances affect economic variables and propagate through the system according
to the economic mechanisms of the model. Measurement error disturbances do not.29

Another option is to make a best guess and to add a vector ε2,t with m2 additional
structural disturbances with m2 ≥ n−m1. Equation (1) can then be written as

0n×1 = Et [Λ2 (Ψ) st+1 + Λ1 (Ψ) st + Λ0 (Ψ) st−1 + Γ (Ψ) εt+1 + Υ (Ψ) εt]

= Et

 Λ2 (Ψ) st+1 + Λ1 (Ψ) st + Λ0 (Ψ) st−1

+ [Γ1 (Ψ) Γ2 (Ψ)]

[
ε1,t+1

ε2,t+1

]
+ [Υ1 (Ψ) Υ2 (Ψ)]

[
ε1,t

ε2,t

]  , (2a)

[
ε1,t

ε2,t

]
=

[
G11 G12

G21 G22

] [
ε1,t−1

ε2,t−1

]
+

[
H11 H12

H21 H22

] [
η1,t

η2,t

]
, (2b)

Et
[
η1,t+1

η2,t+1

]
= 0, (2c)

Et
[[

η1,t+1

η2,t+1

] [
η1,t+1 η2,t+1

]]
= Im×m. (2d)

The column vectors Γ2(Ψ) and Υ2(Ψ) capture the restrictions imposed by the m2

additional structural disturbances. In the remainder of this section, we document that
no such restrictions are imposed when agnostic structural disturbances are added.

Adding ASDs to model equations. If one adds agnostic structural disturbances
instead of regular structural disturbances, then the system of equations is modified as

28See section 3.2.5.
29See section 3.2.2 for an explanation. Moreover, most researchers would find it undesirable if

“measurement” error explains a large part of the data.
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follows:

0n×1 = Et

 Λ2 (Ψ) st+1 + Λ1 (Ψ) st + Λ0 (Ψ) st−1

+ [Γ1 (Ψ) ΓΓΓ2]

[
ε1,t+1

ε2,t+1

]
+ [Υ1 (Ψ) ΥΥΥ2]

[
ε1,t

ε2,t

]  . (3)

The key aspect of our procedure is that ΓΓΓ2 and ΥΥΥ2 are reduced-form coefficients that
do not contain any restrictions on Ψ. Moreover, when G21 = 0, which is typically the
case as structural disturbances are usually modeled to be uncorrelated, then

Et [ΓΓΓ2ε2,t+1 + ΥΥΥ2ε2,t] = (ΓΓΓ2G22 + ΥΥΥ2) ε2,t. (4)

Using this insight, we can write the system as

0n×1 = Et
[

Λ2 (Ψ) st+1 + Λ1 (Ψ) st + Λ0 (Ψ) st−1

+Γ1 (Ψ) ε1,t+1 + Υ1 (Ψ) ε1,t + Υ̂̂Υ̂Υ2ε2,t

]
, (5)

where Υ̂̂Υ̂Υ2 = G22ΓΓΓ2 + ΥΥΥ2. All that matters for the model is Υ̂̂Υ̂Υ2, which means that
adding an agnostic disturbance introduces one additional parameter for each model
equation.30,31 Replacing regular structural disturbances with agnostic structural dis-
turbances may make it harder to identify Ψ, the structural parameters of the model.
As discussed in appendix B, this turned out to be not an issue for the experiments
discussed in this paper. Identification of Υ̂̂Υ̂Υ2 will be discussed in section 3.2.3.

3.2.2 Useful proposition for second ASD formulation

In this section, we will proof a proposition that will be helpful with the second
formulation of the ASD procedure. Consider again the model given in equation (2),
which divides the vector with exogenous disturbances, εt, into two parts, the m1 × 1
vector, ε1,t, and the m2 × 1 vector, ε2,t. A recursive solution to equation (2) has the
following form:

st = A (Ψ) st−1 +B(Ψ)εt

= A (Ψ) st−1 +
[
B1 (Ψ) B2 (Ψ)

] [ ε1,t

ε2,t

]
. (6)

The following proposition states that the properties of ε2,t do not affect the coeffi-
cients of the policy rule related to st−1 and ε1,t, that is, they do not affect A(Ψ) and
B1(Ψ). Thus, it does not matter whether ε2,t is a regular or an agnostic structural
disturbances and the time series properties of ε2,t do not matter either. The only as-
sumption needed is that the elements of G21 are equal to zero, which corresponds to

30Without loss of generality one can set the standard deviations of the innovation of the ASDs
equal to 1, which in this case is a normalization of the diagonal elements of H2,2. As with regular
structural disturbances, one would need to estimate the parameters of the time series specification
contained in G.

31As discussed later, one could choose to leave the agnostic disturbance out of some equations.
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the case when ε1,t has no effect on future values of ε2,t. This is not very restrictive given
that the literature usually sets all elements of G21 equal to zero (and also all elements
of G12, H1,2, and H2,2 as well as the off-diagonal elements of G11, G22, H1,1 and H2,2).

Proposition 1 If the model is given by equation (2) and all elements of G21 are equal
to zero, then (i) A(Ψ) and B1(Ψ) do not depend on Γ2(Ψ) and Υ2(Ψ), which character-
ize the nature of the additional disturbances, and (ii) A(Ψ) and B1(Ψ) do not depend
on G22, H21, and H22, which characterize the time series properties of ε2,t.

Proof. Substitution of the policy rule as given in equation (6) into the system of
equations (2) gives,

0n×1 =
(
Λ2A

2 + Λ1A+ Λ0

)
st−1 + (Λ2AB + Λ2BG+ Λ1B + ΓG+ Υ) εt, (7)

εt =
[
ε1,t ε2,t

]′
, (8)

B =
[
B1 B2

]
, (9)

G =

[
G11 G12

G21 G22

]
, (10)

where we have suppressed the dependence of coefficients on Ψ. The first equation has
to hold for all values of st−1 and εt. This implies that a solution must satisfy

Λ2A
2 + Λ1A+ Λ0 = 0n×n (11)

and
Λ2AB + Λ2BG+ Λ1B + ΓG+ Υ = 0n×(m1+m2). (12)

A does not depend on the time series properties of ε1,t and ε2,t, since B, G, and H do
not appear in equation (11). Equation (12) can be written as follows

Λ
[
B1 B2

]
+Λ2

[
B1 B2

] [ G11 G12

G21 G22

]
+Γ

[
G11 G12

G21 G22

]
+Υ = 0n×(m1+m2), (13)

where Λ = Λ2A + Λ1. This is a system of n × (m1 + m2) equations to solve for the
elements of B. It can be split into the following two sets of systems:

ΛB1 + Λ2B1G11 + Λ2B2G21 + Γ1

[
G11

G21

]
+ Υ1 = 0n×m1 , (14)

ΛB2 + Λ2B1G12 + Λ2B2G22 + Γ2

[
G12

G22

]
+ Υ2 = 0n×m2 . (15)

If G21 = 0, then equation (14) contains n×m1 equations to solve for all the elements
of B1. The solution cannot depend on G22 or H2 since these matrices do not appear
in this equation.�
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It is intuitive that the elements of G21 have to be equal to zero, that is, ε1,t should
not affect future values of ε2,t. If current values of ε1,t do affect future values of ε2,t and
therefore future values of st, then one has to know how ε2,t affects model outcomes to
determine how ε1,t affects current outcomes for st.

3.2.3 ASD procedure: Second formulation based on policy functions

The second formulation highlights the differences with alternative procedures that
deal with misspecification by combining a DSGE model and a VAR. This alternative
formulation is also useful in terms of understanding whether adding agnostic distur-
bances leads to identification issues.

An alternative way of writing the solution to the model is the following:

st =
m∑
i=1

s
[i]
t , (16)

s
[i]
t = A (Ψ) s

[i]
t−1 +B·,i (Ψ) εi,t, (17)

where s
[i]
t represents the outcome of the state variable if the only disturbance in the

economy is the ith-disturbance, εi,t, and B·,i is the ith column of B. Thus, one can think
of the st variables as the sum of the outcomes in “one-disturbance” economies. The lin-
earity of the model is important for this additive property. According to proposition 1,
the coefficients on the lagged state variable, A (Ψ), do not depend on the particular
disturbance considered. That is, whereas B·,i(Ψ) is indexed by i because it depends
on what kind of disturbance is the driving force of the economy, A(Ψ) does not. This
property greatly increases the efficiency of our procedure.

Our proposed procedure consists of including m2 agnostic structural disturbances.
This results in the following time series representation of the policy functions:32

st =
m∑
i=1

s
[i]
t , (18a)

s
[i]
t = A (Ψ) s

[i]
t−1 +B·,i (Ψ) εi,t for i ≤ m1, (18b)

s
[i]
t = A (Ψ) s

[i]
t−1 + B·,iεi,t for m1 + 1 ≤ i ≤ m1 +m2 = m. (18c)

In terms of notation, B·,i(Ψ) contains coefficients associated with a regular structural
disturbance which are a function of Ψ and bold font B·,i contains reduced-form coeffi-
cients associated with a structural agnostic disturbance. The only difference between
this specification and the standard DSGE specification with only regular structural dis-
turbances is that the B·,i coefficients are unrestricted reduced-form coefficients. Since
our agnostic disturbances are structural disturbances, their impact propagates through

32According to proposition 1, this specification is valid as long as the elements of G12 are equal to
zero, which is usually the case.
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the system exactly as regular structural disturbances do, that is, as described by A(Ψ).
The property of linear models that A(Ψ) does not depend at all on what is the nature
of the structural disturbances nor on their time series properties makes it possible to
efficiently add structural disturbances to the specification without having to be specific
on what they are.

The dimension of B·,i is equal to n, the number of state variables. This means
that adding an agnostic disturbance means estimating an additional n parameters.
The number of additional parameters to be estimated is limited because structural
disturbances differ in their initial impact, but their propagation through time is the
same for all disturbances and controlled by A(Ψ). Moreover, an increase in the standard
deviation of an agnostic structural disturbance affects the model variables in exactly the
same way as an identical proportional increase of the elements of B·,i. Consequently,
the standard deviation of an agnostic disturbance can be normalized to equal 1.33 If
there are observables that are not state variables, then one also needs an additional
equation for these yt variables, which for our set-up is given by

yt =
m∑
i=1

y
[i]
t , (19a)

y
[i]
t = C (Ψ) s

[i]
t−1 +D·,i (Ψ) εi,t for i ≤ m1, (19b)

y
[i]
t = C (Ψ) s

[i]
t−1 + D·,iεi,t for m1 + 1 ≤ i ≤ m1 +m2 = m, (19c)

where yt is the (n × 1) vector with observables that are not state variables. Each
additional observable used in the estimation will introduce one more coefficient related
to the agnostic structural disturbances.

3.2.4 Identification

Replacing B·,i(Ψ) with B·,i reduces the number of restrictions on structural param-
eters, which could affect the identification of Ψ. We have verified that the structural
parameters, Ψ, continue to satisfy the local identification conditions as specified in
Komunjer and Ng (2011) when we replace regular structural disturbances by ASDs.
The coefficients of B·,i are also identified locally since they directly enter the pol-
icy functions. However, there is no global identification of the B·,i coefficients when
m2 > 1, since the agnostic disturbances are interchangeable, that is, there is no dif-
ference between say the first and the second agnostic disturbance in how they affect
model equations. This is a consequence of being agnostic.

The first formulation of our procedure adds agnostic disturbances to the model
equations. Under what conditions are the associated coefficients, i.e., the elements of

33If the time series processes of the two disturbances have the same number of parameters, then
replacing a regular structural disturbance by an agnostic disturbance typically means estimating an
additional n− 1 parameters. The number would be less if some structural parameters are associated
only with the regular structural disturbance that is replaced.
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Υ̂̂Υ̂Υ2 identified? What matters for identification are the policy functions, that is, the
B·,i and the D·,i coefficients. These coefficients are a function of the Υ̂̂Υ̂Υ2 coefficients.
Since the total number of coefficients in B·,i and D·,i is equal to the number of state
variables plus the number of observables that are not state variables, n + n, one can
add the agnostic disturbance to at most n+n model equations for each of the elements
of Υ̂̂Υ̂Υ2 to be identified. This is a necessary, not a sufficient condition.34

Identification of the elements of Υ̂̂Υ̂Υ2 only becomes important if one wants to give
an economic interpretation of the agnostic disturbance. As discussed in section 6,
however, this can be a useful exercise.

3.2.5 Equivalence of first and second formulation

The easiest case to consider is the one in which the model consists of n+n equations
and the observables are the n state variable plus n other observables, where n could
be zero. If the agnostic disturbance is added to all n + n model equations, then the
two different ways to implement the procedure are identical.

The first formulation, which adds agnostic disturbances to model equations, is
more flexible. The reason is that it allows us to add the agnostic disturbances to only
a subset of the n + n equations. By excluding the agnostic disturbance from some
equations one does impose restrictions on the agnostic disturbance and this implies
that the first and the second implementation will lead to different policy functions
and different estimation results. Imposing such restrictions moves us away from being
fully agnostic, but there may be cases where this flexibility of the first formulation is
very useful. In section 6, we document how model selection procedures can be used
to impose restrictions leading to more concise formulations that make it possible to
interpret the agnostic disturbances.

Now consider the case when the model has more than n+n equations, that is, some
model variables are not state variables or observables, and the agnostic disturbance is
added to more than n + n model equations. From the discussion above, we know
that not all the elements of Υ̂̂Υ̂Υ2 can be identified. That is, different combinations of
the coefficients in Υ̂̂Υ̂Υ2 lead to the same values for the n + n coefficients in B·,i and
D·,i. As long as the agnostic disturbance remains agnostic and there is no need to

interpret the Υ̂̂Υ̂Υ2 coefficients, then this is not a problem. Specifically, it does not affect
the identification of the structural parameters Ψ.35

34To understand why this is not a sufficient condition consider a system that consists of two
equations containing the model’s two state variables, s1,t and s2,t, and no other variables. Also, yt
satisfies the equation yt = 2s1,t + s2,t. If yt is not an observable, then one could not add the agnostic
disturbance to this equation, because its associated coefficient would, of course, not be identified.

35In practice, a good optimization routine should still be able to find the true optimized value of
the objective function and associated values for Ψ even though it may take some time before it realizes
that several variations in the elements of Υ̂̂Υ̂Υ2 do not lead to improvements in the target.
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3.2.6 Comparison with alternative procedures

In this section, we discuss how our procedure compares with alternatives proposed
in the literature. A detailed description of these alternative approaches can be found
in appendix E.2.

Agnostic structural disturbances versus wedges. Equations (2) and (5) point
out the difference between adding an agnostic structural disturbance and adding a reg-
ular structural disturbance. Adding a regular structural disturbance requires specifying
in which equation the disturbance appears and how the associated elements of Γ2(Ψ)
and Υ2(Ψ) depend on the structural parameters Ψ. Adding an agnostic disturbance
does not impose such restrictions. Wedges are similar to regular structural parame-
ters in that they only appear in a subset of equations. Sometimes only one equation.
Wedges may or may not impose restrictions on the structural parameters, Ψ. For
example, one of the wedges considered in Chari, Kehoe, and McGrattan (2007) is a
productivity disturbance. This disturbance appears in the budget constraint and the
first-order condition for capital and imposes cross-equation parameter restrictions. By
contrast, when a “labor wedge” is added to the labor-supply first-order condition, then
this does not impose restrictions on the structural parameters, since it does not appear
in any other equation. Relative to an agnostic disturbance, however, it is restrictive
because it is not allowed to appear in other model equations.36

Agnostic structural disturbances versus measurement error. ASDs differ
from measurement error in that the latter is not a structural disturbance. Conse-
quently, its impact on the different elements of model variables does not propagate
through the system as structural disturbances do. To understand this difference con-
sider the following system of equations:

st = Ast−1 +Bεt, (20)

yt = Cst +Dεt, (21)

εt = Gεt−1 +Hηt. (22)

The first equation represents a very simple structural model that governs the law
of motion of the state variable, st. The second equation specifies the relationship
between the observable, yt and the state variable. εt is a scalar exogenous random
variable. A value of C equal to 1 means that the state variable is the observable. If εt
is measurement error, then D 6= 0 and B = 0. That is, measurement error affects the
difference between data and model variables, but does not affect how model variables

36Inoue, Kuo, and Rossi (2015) provide a formal analysis for using wedges to detect and identify
misspecification. Using a New Keynesian model, they introduce a labor wedge into the cost minimiza-
tion problem of the intermediate good producing firm, and a final good wedge and a bond demand
wedge into the household budget constraint. Similar to the productivity disturbance, such wedges
only appear in a limited set of equations and do impose parameter restrictions.
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behave. By contrast, if εt is a structural disturbance, then D = 0 and B 6= 0. Now
εt does affect model variables and propagates through the system according to the
structural model, that is, according to equation (20).

The idea of the agnostic procedure is to add not one but two different ASDs to
equations (20) and (21). This procedure would allow for several possibilities discussed
above and combinations, namely one or two structural disturbances with no measure-
ment error, one structural disturbances that is correlated with measurement error, one
structural disturbance and uncorrelated measurement error, or just measurement error.

Agnostic disturbances versus a DSGE-VAR. Ireland (2004) and Del Negro,
Schorfheide, Smets, and Wouters (2007) combine a DSGE model with a reduced-form
VAR that contains the observables. Specifically, they start with a fully specified DSGE
model as represented by equations (18a), (18b), (19a), and (19b). Since they have no
agnostic structural disturbances, the value of m2 is equal to zero.

There are two key differences between these two approaches and ours. First, our
approach focuses on a particular type of misspecification, which allows it to use as-
pects of the model that are not affected by this misspecification, namely A(Ψ) and
C(Ψ). Second, introducing a VAR into the estimation means that the number of dis-
turbances necessarily increases by a number equal to the number of variables in the
VAR. Moreover, adding a VAR introduces many more parameters unless the number
of observables is small. Our procedure allows for a more parsimonious approach and
could consist of adding just one new disturbance or replacing one regular structural
disturbance with an agnostic structural disturbance.

Both differences imply that our approach is more efficient in terms of the number of
parameters that it has to be estimate.37 The price of parsimony is that our procedure
is not designed to detect misspecification unrelated to structural disturbances, that is,
misspecification associated with restrictions imposed by B(Ψ) and D(Ψ). Although,
it is not designed to do so, ASDs might very well pick up other types of misspecifica-
tion such as wrong functional forms and time variation in structural parameters. The
DSGE-VAR approach explicitly allows misspecification in A(Ψ) and C(Ψ). However,
Chari, Kehoe, and McGrattan (2008) point out that the VAR with a finite number of
lags that does not contain all the model’s state variables is likely to be misspecified.
This means that the DSGE-VAR approach cannot deal with all possible misspecifica-
tions either.

Another difference emerges as the sample size goes to infinity. With the DSGE-VAR
approach one has two “competing” empirical specifications, a DSGE model and a VAR.
Since every DSGE suffers from at least some minor misspecification, one can expect the
VAR to fully take over as the sample size goes to infinity. If that happens, then one is
left with a reduced-form model that can no longer be used for policy analysis. This will

37For example, for the popular DSGE model of Smets and Wouters (2007) with 7 observables, a
VAR with 4 lags would mean estimating 204 additional coefficients. As discussed in section 6, the
implementation of our procedure for this model means estimating twelve more parameters.
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never happen with our approach, since the propagation of state variables will always
be determined by A(Ψ) and the relationship between state variables and observables
by C(Ψ). If the number of regular structural disturbances in the true data generating
process is less than or equal to the number of agnostic structural disturbances, then
one can expect the role of regular structural disturbances to be driven to zero as the
sample size goes to infinity.38 The restrictions imposed by B(Ψ) and D(Ψ) would then
no longer play a role.

4 What to do in practice?

In this section, we first discuss how agnostic structural disturbances can be used as
a test for misspecification. Next, we discuss how agnostic structural disturbances can
be applied to reduce misspecification.

4.1 ASDs to test for misspecification

Agnostic structural disturbances differ from regular structural disturbances in that
their initial impact on the economy is not restricted and, thus, imposes no restrictions
on model parameters. As indicated in equation (5), regular structural disturbances,
ε1,t, enter model equations as Γ1(Ψ)ε1,t+1 + Υ1(Ψ)ε1,t, whereas agnostic structural dis-

turbances, ε2,t, enter models equations as Υ̂̂Υ̂Υ2ε2,t, where Υ̂̂Υ̂Υ2 is a vector of reduced-form
coefficients that does not impose restrictions on Ψ. Since these are two competing
models, and the former is a restricted version of the latter, standard model selection
statistics can be used to test whether the restrictions imposed by structural distur-
bances are correct.

Specifically, a simple and transparent way to proceed is to carry out a model selec-
tion test, such as a likelihood-ratio test, for each of the regular structural disturbance
considered separately. For example, if the disturbance in question is a wage mark-up
disturbance, then one first estimates the model with a wage mark-up disturbance and
then re-estimates the model with the wage mark-up disturbance replaced by an ASD.
Let L(Ψ) be the log likelihood of the model with the wage mark-up disturbance and

let L(Ψ, Υ̂̂Υ̂Υ2), be the log likelihood of the model with the wage mark-up disturbance re-
placed by an ASD.39 To test the restrictions imposed by the wage mark-up disturbance
one checks whether L(Ψ, Υ̂̂Υ̂Υ2)− L(Ψ) exceeds the critical value of a χ2(q) distribution
with q degrees of freedom, where q is the difference in the number of parameters be-
tween the two models. One could compare marginal data densities if one prefers a
Bayesian methodology.

38Assuming that there are enough ASDs to avoid any singularity issues.
39These expressions are based on the notation of the first formulation of our ASD procedure. In

terms of the notation of the second formulation, the log likelihood of the model with the agnostic
disturbance would be denoted by L(Ψ,B) when all observables are state variables or by L(Ψ,B,D)
when some observables are not state variables.
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One can also assess whether a particular regular structural disturbance is restrictive
by looking at changes in parameter estimates and model properties after the regular
structural disturbance has been replaced by an agnostic structural disturbance.

If the restrictions imposed by the wage mark-up disturbance are rejected, then one
has two options. First, one could modify how the wage mark-up affects the model. In
section 6, we show how the estimated model with agnostic disturbances provides useful
insights for such modifications. Second, one could simply use the estimated model with
the agnostic disturbance.

4.2 ASDs to reduce misspecification

To estimate models one would like to use all available observables. When estimat-
ing DSGE models one needs at least as many disturbances as observables to avoid a
singularity problem. As the number of observables increases, it becomes more difficult
to come up with sensible structural disturbances. Recall that it is not just a question
of conjecturing a particular type of structural disturbance. The structural disturbance
has to enter each and every model equation correctly. An alternative is to add ASDs.

Adding agnostic disturbances does not complicate the estimation in practice. For
example, to add an agnostic disturbance, ε2,t, to a model estimated with Dynare one

would add Υ̂̂Υ̂Υi,2ε2,t to the ith model equation, where Υ̂̂Υ̂Υi,2 is the ith element of Υ̂̂Υ̂Υ2. Under
our second formulation, adding an ASD simply means adding an extra column to the
policy rules with the ASD and its reduced-form coefficients.

5 ASDs and Misspecification: Small-Sample Monte Carlo ex-
periments

In section 2, we considered the large-sample consequences of using a (slightly) mis-
specified empirical model which wrongly excluded one structural disturbance and in-
cluded one that was not part of the true model. In that experiment, an empirical model
that includes an ASD instead of the wrongly included regular structural disturbance,
would uncover the true parameter values. The reason is that this ASD-augmented
empirical model is correctly specified, the ML estimator is consistent, a large sample
is used, and the structural parameters remain identified.40

In this section, we consider the same misspecification experiment, but now consider
small-sample Monte Carlo experiments. This will allow us two answer two questions.
First, is the ASD procedure effective in detecting misspecification when we compare the
ASD-augmented empirical model with the misspecified empirical model? Second, what
is the efficiency loss if one replaces a regular structural disturbance that is part of the
true underlying model with an ASD? The empirical model remains correctly specified
if one does so, but one looses efficiency because one estimates additional reduced-form
parameters and imposes less true restrictions.

40In fact, parameters remain identified, if two regular structural disturbances are replaced by ASDs.
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5.1 Experiments and empirical specifications.

As in section 2, the dgp is the SW model with six of the seven structural distur-
bances, but now we use a sample of typical length, namely 156, which is the same as the
number of observations used to estimate the model in Smets and Wouters (2007). The
number of Monte Carlo replications is equal to 1,000. In each Monte Carlo replication,
we estimate model parameters using the SW empirical model that is identical to the
true dgp and two additional specifications. The first is an empirical model, that is – as
in section 2 – misspecified, because it excludes one of the structural disturbances of the
true dgp and erroneously includes another. The second excludes the same structural
disturbance, but now includes an ASD. This last specification is also correct. That is,
there are values of the reduced-form coefficients such that the specification is identical
to the original SW one.

These are computationally expensive Monte Carlo experiments. Therefore, we only
consider two of the possible forty-two combinations to misspecify and those are the
same two as those considered in section 2.6.

5.2 ASD misspecification test when alternative is misspecified

To evaluate whether the ASD procedure can detect misspecification, we first use a
Likelihood Ratio (LR) test that compares the likelihood of the empirical specification
with the agnostic disturbance to the likelihood of the misspecified empirical model. The
number of degrees of freedom is equal to ten, since the agnostic specification has ten
more parameters.41 With this procedure, the ASD procedure rejects the misspecified
model in all Monte Carlo replications in both experiments. The procedure is, thus,
quite powerful in detecting misspecification. As discussed in section 2.6, however, if
we use a Bayesian model comparison procedure based on SW priors, then the ASD
procedure rejects the misspecified specification in 82.2% and 52% of the generated
samples for the first and the second Monte Carlo experiment, respectively. It is not
surprising that the power reduces with a Bayesian approach. The reason is that the
posteriors of the misspecified and the agnostic specification are more similar than their
likelihood functions since the posteriors share the same prior.

5.3 ASD misspecification test when alternative is correct

Next, we do the same ASD test for misspecification when the alternative model is
correctly specified. For the first Monte Carlo experiment, we find that the rejection
rate is 21.5% at the 10%-level and 12% at the 5%-level. For the second experiment,
these two numbers are 20.9% and 12.6%. Thus, the small-sample results do not coin-
cide precisely with the theoretical predictions based on large-sample theory. However,

41We use the second formulation of our procedure. This formulation introduces the smallest possible
number of additional parameters.

26



the distortions are not that unreasonable. In appendix C, we document that the his-
togram of estimated χ2 statistics is reasonably close to the theoretical (large-sample)
χ2 distribution, but has a slightly fatter upper tail.

5.4 Correcting for misspecification

The discussion above made clear that the ASD procedure does very well in terms of
detecting misspecified models and reasonably well in not rejecting correctly specified
models in small samples. In this subsection, we document that the estimates of the
structural parameters obtained with the agnostic procedure are much closer to the true
values than those obtained with the misspecified empirical model. In fact, they are
very similar to those obtained with the correctly specified fully-structural empirical
model.

Table 4 reports the average absolute error of the parameter estimates relative to
the true value for the three different empirical models across Monte Carlo replications.
Consistent with the large-sample results discussed in section 2, parameter estimates
obtained with the misspecified structural model are substantially worse than those ob-
tained with the correctly specified model. The average of the errors for the misspecified
model is more than twice as large as the one for the correctly specified model for sev-
eral parameters.42 Average errors for the misspecified model are typically better for
the second experiment. However, that is not true for all parameters. For example, the
average error for σc is substantially higher in the second experiment, whereas there is
only a modest increase for the correctly specified model.

For the first Monte Carlo experiment, the average error outcomes for the agnostic
setup and the correct specification are very similar. Although only slightly, the av-
erage error is actually lower for the agnostic specification for ten of the twenty-seven
parameters. For the second Monte Carlo experiment, the fully specified SW specifica-
tion comes with some noticeable efficiency advantages for several parameter estimates.
Nevertheless, the estimates obtained using the agnostic procedure are still much better
than the one obtained with the misspecified model.

Figures 2 and 3 plot histograms characterizing the distribution of the parameter
estimates across Monte Carlo replications for a selected set of parameters.43 Each panel
reports the results for the correctly specified model (dark line and dots), the agnostic
procedure (white bars), and the misspecified model (blue/dark bars).

42Particular problematic is the standard deviation of the TFP disturbance in the first Monte Carlo
experiment for which the average error is almost nine time as large as the one for the correct empirical
model. Consistent with the results of section 2, this disturbance often takes over the role of the
wrongly excluded structural disturbance.

43A full set of results for all parameters is given in appendix C.
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Table 4: Average absolute errors across Monte Carlo experiments

true average error first MC average error second MC
value misspecified agnostic SW misspecified agnostic SW

α 0.19 0.098 0.035 0.028 0.056 0.048 0.037
σc 1.39 0.384 0.246 0.191 0.540 0.288 0.226
Φ 1.61 0.217 0.212 0.191 0.192 0.212 0.164
φ 5.48 1.793 1.326 0.899 1.429 1.269 0.896
h 0.71 0.096 0.069 0.052 0.083 0.077 0.057
ξw 0.73 0.082 0.090 0.076 0.092 0.095 0.081
σ` 1.92 1.652 0.640 0.532 1.506 0.939 0.831
ξp 0.65 0.130 0.074 0.068 0.090 0.080 0.070
ιw 0.59 0.205 0.165 0.159 0.190 0.168 0.160
ιp 0.22 0.142 0.109 0.101 0.128 0.112 0.100
ψ 0.54 0.182 0.128 0.109 0.150 0.134 0.118
rπ 2.03 0.295 0.277 0.241 0.347 0.380 0.333
ρ 0.81 0.031 0.025 0.022 0.034 0.038 0.030
ry 0.08 0.051 0.025 0.021 0.055 0.034 0.029
r∆y 0.22 0.058 0.014 0.012 0.057 0.039 0.033
ρa 0.95 0.071 0.028 0.020 - - -
ρb 0.18 0.161 0.078 0.073 0.133 0.079 0.071
ρg 0.97 0.020 0.016 0.013 0.018 0.016 0.014
ρI 0.71 - - - - -
ρr 0.12 - - - 0.089 0.072 0.067
ρp 0.90 0.181 0.090 0.067 0.188 0.070 0.053
ρw 0.97 0.031 0.030 0.019 0.022 0.029 0.021
µp 0.74 0.246 0.188 0.161 0.250 0.173 0.139
µw 0.88 0.071 0.072 0.056 0.069 0.071 0.057
σa 0.45 0.441 0.061 0.052 - - -
σb 0.24 0.050 0.021 0.021 0.040 0.023 0.021
σg 0.52 0.035 0.027 0.026 0.026 0.027 0.025
σI 0.45 - - - - -
σr 0.24 - - - 0.013 0.015 0.014
σp 0.14 0.022 0.017 0.015 0.019 0.017 0.015
σw 0.24 0.026 0.021 0.020 0.022 0.023 0.021

Notes. This table reports the average absolute error across Monte Carlo replications for the indicated
parameter and empirical specification. See table 1 for the definitions of the parameters. The first (second)
Monte Carlo experiment corresponds to the case when the true dgp does not include the monetary policy
(TFP) disturbance, but the empirical model leaves out the investment disturbance instead.
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Figure 2: Histograms for parameter estimates: First Monte Carlo experiment
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Notes. The panels plot the distribution of the indicated parameter across the Monte Carlo replications. The color of the
histograms for the misspecified case changes in a lighter shade when they overlap with the histogram for the agnostic
specification. In this experiment, the true dgp does not include the monetary policy disturbance, but the empirical
model leaves out the investment disturbance instead.
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Figure 3: Histograms for parameter estimates: Second Monte Carlo experiment
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Notes. The panels plot the distribution of the indicated parameter across the Monte Carlo replications. The color of the
histograms for the misspecified case changes in a lighter shade when they overlap with the histogram for the agnostic
specification. In this experiment, the true dgp does not include the TFP disturbance, but the empirical model leaves
out the investment disturbance instead.
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The figures document that the distributions of estimates obtained with the cor-
rect specification and the agnostic procedure are both qualitatively and quantitatively
very similar. By contrast, the distribution of estimates obtained with the misspecified
empirical model can be vastly different. For example, panel a of figure 2 documents
that the distribution of estimates of the capital share parameter, α, displays a strong
downward bias when the misspecified empirical model is used. The associated mean
is equal to 0.09, whereas the true value is equal to 0.19. The figure also documents
that a large number of estimates are clustered at the imposed lower bound. That is, by
imposing bounds we limited the distortions due to misspecification. For α, the leftward
shift is so large, that there is little overlap between the distribution of the estimates
based on the misspecified model and the other two empirical models. Bunching at the
lower or upper bound is more pervasive for the first experiment, but also observed for
the second.

For the parameters considered in these figures, the distribution of estimates for the
agnostic and the fully-specified SW specification are almost always centered around the
true parameter value. In principle, there could be a small sample bias, since this is a
complex nonlinear estimation problem. The full set of results, discussed in appendix C,
do indeed indicate that there is a bias for some parameters. In those cases, the bias is
similar for the estimator based on the fully-specified specification and the agnostic one.
An example of a parameter that is estimated with bias is the labor supply elasticity
with respect to the real wage, σl. Its true value is equal to 1.92. In the first experiment,
the average estimate across the Monte Carlo replications is equal to 1.84 for the SW
and 1.71 for the agnostic specification. By contrast, the associated average estimate is
equal to 0.27 for the misspecified model, which indicates a large bias.

6 Are the SW disturbances the right ones for US data?

The Monte Carlo experiment of section 5 documents that the ASD procedure is a
powerful tool to detect and correct for misspecification when the SW model is used as
the true dgp. In this section, we use the ASD procedure on actual data. Specifically, we
first use the ASD procedure to test the restrictions imposed by structural disturbances
in the SW model using the same US postwar data as in the original SW paper. We will
document that the restrictions imposed by the risk premium and the investment-specific
technology disturbance are rejected by the ASD procedure. That is, replacement of
these regular structural disturbances by an agnostic structural disturbance leads to an
increase in the marginal data density. The restrictions of the other five disturbances
are not rejected. Next, we use model selection procedures to determine the number
of ASDs to include and to construct a more concise specification that excludes the
agnostic disturbances from some model equations. The best specification obtained
from these selection procedures is one with three ASDs. To conclude, we interpret
the nature of these three agnostic structural disturbances by examining the sign and
magnitude of the associated coefficients in model equations and the IRFs of the agnostic
disturbances.
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6.1 Introducing ASDs into the Smets-Wouters model

The ASD procedure can be used in frequentist and Bayesian settings. Since SW
use a Bayesian estimation procedure, we will do the same. To estimate the model
with agnostic disturbances, we use the formulation of the procedure as described in
section 3.2.1, which entails adding the agnostic disturbance to model equations with-
out restricting its impact.44 This only requires a minor modification of the Dynare
program that estimates the model for the original SW specification. We do not include
agnostic disturbances in equations that define observables.45 This means that there are
thirteen coefficients to measure the impact of an agnostic disturbance on the system.
We can normalize the standard deviation of the agnostic disturbances to one, since its
coefficients are of a reduced-form nature. Thus, the difference in the number of param-
eters between the most general agnostic specification considered and the original SW
specification is equal to twelve times the number of ASDs that are introduced. Details
are given in appendix D.1.

The priors for the structural parameters are identical to the ones used by SW. The
prior for each agnostic coefficient is a Normal with a mean equal to what the coefficient
would be according to the SW restrictions and the SW prior means.46 By centering
the priors of the agnostic coefficients around the SW restrictions, we favor the SW
specification. However, the means of these priors hardly matter and our results are
robust to setting the prior mean equal to zero for all coefficients.47

The standard deviation of the prior distribution is set equal to 0.5. This implies a
very uninformed prior, since the model is linear in log variables. As a robustness check
we also consider a standard deviation equal to 0.1 and we find very similar results.

44The SW model has an output gap measure that depends on the outcomes of a hypothetical parallel
economy with flexible prices. If an equation in the sticky-price part of the model has an associated
equation in the flexible-price part of the model, then we assume that the agnostic disturbance enters
the two equations with the same reduced-form coefficient.

45For example, the SW specification uses consumption growth as an observable and has an equation
that defines consumption growth. Allowing an agnostic disturbance to affect this equation would
capture measurement error (which would be correlated with structural disturbances if this ASD also
appears in other model equations with a non-zero coefficient). We do not explore this possibility
to keep the analysis parsimonious and to stay close the SW approach, which does not allow for
measurement error.

46For example, suppose we use the ASD procedure to test the restrictions of the risk-premium
disturbance by replacing it with an ASD. The risk-premium disturbance appears in two equations,
namely the consumption/bond Euler equation and the capital-valuation equation. The prior means
of the reduced-form agnostic coefficients for these two equations are set equal to the values according
to the SW restrictions with structural parameters evaluated at their prior means. The reduced-form
coefficients associated with the other equations have a prior mean equal to zero.

47Having a non-zero prior has a practical advantage. The signs of the coefficients of an agnostic
disturbance are not identified. That is, one can switch the signs of the coefficients of an ASD as long
as one does it for all coefficients. A necessary consequence of its agnostic nature is that the sign of an
ASD disturbance has no a priori meaning. If the prior means of all ASD coefficients are zero, then
the ASD coefficients can flip sign for different runs of the MCMC procedure.
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6.2 Smets-Wouters structural disturbances: Specification tests

A specification that replaces a regular structural disturbance with an agnostic one
encompasses the original specification which gives it an advantage in terms of achieving
a better fit. The additional parameters, however, act as a penalty term in the marginal
data density. Table 5 reports the marginal data densities for the different specifications.
The first row reports the marginal data density for the original SW specification with
its seven regular structural disturbances. The seven subsequent rows give the results
when the indicated regular structural disturbances is replaced by an ASD.

Table 5: Misspecification tests for the original Smets-Wouters empirical model

structural SW
disturbance excluded

SAD added marginal data density

None (original SW) no -922.40
TFP, εat yes -931.21
Risk premium, εbt yes -908.79
Government expenditure, εgt yes -934.14
Investment-specific, εit yes -919.81
Monetary policy,εrt yes -926.88
Price mark-up, εpt yes -938.85
Wage mark-up, εwt yes -947.31

Notes. The table reports the marginal data density for different empirical specifications. The
first row reports the value for the original SW specification. The specifications considered
in subsequent rows replace the indicated structural disturbance with an agnostic structural
disturbance. The bold numbers indicate the cases for which the MDD is higher when the
indicated structural disturbance is replaced by an agnostic disturbance.

Overall, these results are quite supportive of the original SW specification as the SW
restrictions are preferred for five of the seven structural disturbances.48 But the results
for the risk-premium and the investment specific disturbance indicate that improvement
is possible.49

6.3 Which regular and agnostic disturbances to include?

The results do not necessarily imply that we should exclude the structural risk-
premium and investment disturbance. After all, it is possible that a model that includes
agnostic disturbances as well as these two SW structural disturbances has an even
higher marginal data density. To investigate this issue, we compare a set of models
that do or do not include the risk-premium disturbance, that do or do not include the

48However, it is possible that the SW specification would be rejected against more concise agnostic
disturbances, that is specifications that exclude the agnostic disturbance from some equations.

49When we narrow the prior of the agnostic coefficients by reducing the standard deviation to 0.1,
then the restrictions of the monetary policy disturbance are also rejected. But the increase in the
marginal data density is relatively small, namely from -922.40 to -920.82.
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investment disturbance, and that include one, two, or three ASDs.50

Table 6: Model selection procedure for SW model: Step 1

regular structural agnostic marginal
εbt εit ε̃At ε̃Bt ε̃Ct data density

no no yes yes no -906.85
no no yes yes yes -925.55
no yes yes no no -908.79
no yes yes yes no -907.46
no yes yes yes yes -922.94
yes no no yes no -919.81
yes no yes yes no -907.32
yes no yes yes yes -921.71
yes yes no no no -922.40
yes yes yes no no -909.35
yes yes no yes no -920.26
yes yes yes yes no -908.09
yes yes yes yes yes -922.82

Notes. The table reports the marginal data density for different empiri-
cal specifications regarding three agnostic disturbances and the two dis-
turbances that are misspecified, that is, the risk-premium disturbance,
εbt , and the investment disturbance, εit. The number in bold indicates
the highest outcome.

Table 6 reports the results. It shows that the model with the highest marginal data
density is one with two agnostic disturbances and without the SW risk-premium as well
as the SW investment-specific disturbance. Another indication that there is no need for
these two SW structural disturbances is that their role in terms of explaining variation
in the data is very small when agnostic disturbances are included. According to the
(unconditional) variance decomposition of the estimated SW model, the risk-premium
disturbance is especially important for the price of capital, consumption growth, and
output growth explaining 45.4%, 61.2%, and 22.1% of total variability, respectively. It
only plays a minor role for other variables. When agnostic disturbances are added, then
these three numbers drop to 3.88%, 3.88%, and 2.05%, respectively.51 The reduction
in the role of the investment disturbance is even stronger. In the SW model, the
investment disturbance plays a quantitatively important role for many variables. For
investment growth it even explains 82.1% of the volatility. With agnostic disturbances
added, its role becomes minuscule. Even for investment growth it only explains 0.31%.

50To estimate the model with all seven observables, an empirical specification with only one ASD
would need either the risk-premium or the investment disturbance to avoid a singularity.

51These numbers are based on the specification with two ASDs and all seven SW structural dis-
turbances using posterior mode estimates.
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6.4 Finding the best agnostic empirical specification

To interpret ASDs, we could use the best specification found so far. However, in-
terpretation of an ASD is easier when the specification is more concise. To determine
whether an agnostic disturbance should be excluded from some equations, we imple-
ment model selection procedures using the marginal data density as the criterion of fit.
This statistic increases when fit improves, but also penalizes additional parameters.

We consider both a specific-to-general procedure and a general-to-specific proce-
dure and we apply the procedure for the specifications with two and three ASDs.52,53

The specific-to-general procedure with three ASDs leads to the highest MDD and the
selected outcome is our preferred empirical model. The specific-to-general procedure
with two ASDs and the general-to-specific procedure with two ASDs lead to slightly
lower MDDs.54 Moreover, the models selected by these three procedures are very sim-
ilar. Specifically, the additional ASD in the specification with three ASDs only plays a
minor role. The zero restrictions imposed for the other two ASDs are not exactly the
same, but the differences are due to coefficients that turn out to be small. As docu-
mented in appendix D.3, the estimates of the parameters are similar and the estimates
obtained with these three empirical specifications imply similar model properties. The
general-to-specific procedure with three ASDs leads to a specification that has a much
lower MDD.55

In our preferred specification, the first agnostic disturbance enters eight of the thir-
teen equations, the second in three, and the third in five. By contrast, the original SW
risk-premium and the investment-specific disturbance appear in only two. In the re-
mainder of this section, we discuss the estimation results for our preferred specification
and give an interpretation to the three ASDs.

52See appendix D.2 for details.
53An informal alternative selection procedure would be the following. One starts at the same point

as the general-to-specific procedure, that is, with ASDs included in every equation. The marginal
posteriors of the agnostic coefficients provides information on the lack of importance of different
agnostic coefficients and may provide the researcher promising combinations of zero restrictions to
impose. In fact, the posteriors for the coefficients with the fully unrestricted ASD specifications are
very predictive of the equations selected by the specific-to-general procedures for this application. Of
course, there are good reasons why this informal procedure is not a generally accepted model selection
procedure and we cannot expect this to always work well.

54The specific-to-general procedure generates an MDD equal to −892.92 with two ASDs and
−890.76 with three. The general-to-specific with two ASDs results in an MDD of −894.94.

55Namely, -909.48. The general-to-specific procedure already stops after two steps. That is, the
procedure does not detect that imposing multiple restrictions simultaneously does lead to substantial
improvements. One has to impose some structure on any model selection procedure, because it would
be impossible to consider all possible combinations. That is, one has to give instructions on what
paths to follow and which ones to ignore. But this means that the model selection procedure may not
find the best model. This motivates our use of different model selection criteria.
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6.5 Impact on parameter estimates and model properties

As documented in appendix D.3, table 11, there are several differences between the
estimated values of the structural parameters obtained with the fully structural SW
specification and our preferred agnostic specification with three ASDs. For example,
the inflation coefficient in the Taylor rule is equal to 2.05 in the SW specification and
1.77 in ours.56 The SW estimate is right at the upper bound of our 90% highest poste-
rior density (HPD) interval. The SW mean estimate for the parameter characterizing
the share of fixed cost in production is equal to 1.61 which is quite a bit higher than
our mean estimate of 1.47 and outside our 90% HPD interval. Also, the mean pos-
terior value of the MA coefficient of the wage mark-up disturbance is equal to 0.85
according to the SW specification and 0.59 according to ours. Our mean estimate for
the standard deviation of this disturbance is roughly a third of the SW estimate.

Although there are some nontrivial differences, they are relatively small and the
IRFs of the five regular structural disturbances that are included in both specifications
are very similar for the two empirical models. The same is true when we consider
the role of these five disturbances for the variance decomposition. Details are given in
appendix D.3, tables 12 and 13. One nontrivial change is the role of the productivity
disturbance for output growth, which is 16.1% according to SW and 22.2% accord-
ing to ours. Although the differences seem minor if we consider the five structural
disturbances in isolation, the combined role changes quite a bit for some variables.
For example, the combined role of these five structural disturbances for investment
(amount of capital used) is equal to 55.5% (74.1%) for the SW specification and 68.7%
(92.6%) for our preferred specification.

6.6 Giving the ASDs an economic interpretation

ASDs are agnostic by nature. The model selection procedure also does not use any
economic reasoning. Here we will show how the estimation results, such as parameter
estimates of ASD coefficients and IRFs, can be used to give a meaningful interpretation
to the ASDs. We will argue that one ASD can be interpreted as an investment-specific
disturbance, but with some quite striking differences from the regular one used in
the literature and in SW. We will refer to this ASD as the agnostic “investment-
modernization disturbance.” The second ASD has features in common with the SW
risk-premium disturbance, although it is closer to a preference disturbance. Moreover,
like the first ASD it displays some striking differences with its original SW counterpart.
We will refer to this ASD as the agnostic “Euler disturbance”. The role of the third
ASD is quantitatively less important than the other two. It mainly affects wage growth
and is associated with a more efficient use of capital. We will refer to this ASD as
the “capital-efficiency wage mark-up disturbance.” By assigning names to agnostic
disturbances, we may open ourselves to criticism. Our main reason for assigning these

56We report posterior mean estimates unless indicated otherwise.
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labels is that we want to make clear that agnostic disturbances are in principle theory-
free, and yet allow the researcher to go one step further, towards giving an economic
interpretation to them.

Table 7: Role of structural disturbances for variance

risk/preference investment
SW εbt agnostic εAt SW εit agnostic εBt agnostic εCt

output 1.53 1.14 7.34 2.17 0.28
flex. price output 0 2.08 5.39 1.02 0.36
consumption 2.18 1.51 2.83 0.49 0.25
investment 0.22 1.06 44.2 29.3 1.00
hours 2.52 1.29 8.15 4.97 2.03
capital 0.04 0.12 32.5 2.37 9.75
utilization 0.86 4.14 35.4 9.46 14.7
price of capital 45.4 18.6 36.0 31.6 7.21
marginal cost 0.87 15.2 3.11 2.61 5.13
policy rate 7.40 17.2 18.3 12.5 0.65
inflation 0.58 0.68 3.18 3.96 0.91
output growth 22.1 21.3 15.8 8.04 1.82
consumption growth 61.2 61.7 0.95 2.03 0.10
investment growth 2.46 12.6 82.1 70.0 0.81

Notes. The table reports the percentage of total variability explained by the SW and the agnostic
risk-premium disturbance and the SW and the agnostic investment disturbance. The numbers for
the SW disturbance are from estimation of the original SW model. The numbers for the agnostic
disturbance are from our preferred empirical model with three agnostic disturbances.

6.6.1 The agnostic investment-modernization disturbance, ε̃Bt̃ε
B
t̃ε
B
t

In the SW model, the investment-specific technology disturbance shows up in the
investment Euler equation and in the capital accumulation equation. One of our agnos-
tic disturbances, ε̃Bt , also shows up in these two equations.57 The only other equation
in which ε̃Bt appears is the utilization equation that relates capacity utilization to
the rental rate of capital. These findings indicate that ε̃Bt could be interpreted as an
investment-specific productivity disturbance. Furthermore, as documented in table 7,
ε̃Bt , plays an important role for the volatility of investment. Specifically, it explains 70%
of the volatility of investment growth compared to 82.1% for the investment-specific
disturbance in the SW model. Interestingly, ε̃Bt is not important for the volatility of
capital. Specifically it only explains 2.37% of the volatility of the capital stock, whereas
the SW investment disturbance explains 32.5%. Thus, if ε̃Bt is an investment-specific
disturbance, then it is not a typical one.

57In our computer programs, the ASDs are referred to as agnA, agnB, and agnC. The economic
story we are going to tell works best if we start with agnB. Labels for agnostic disturbances are
arbitrary and we could relabel this disturbance as ε̃At , which may seem more logical given that it is
discussed first. We chose not to do so, because it would create an inconsistency with our computer
programs.
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Figure 4: IRFs of the SW investment and the agnostic investment-modernization disturbance
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Notes. These figures plot the IRFs of the SW investment-specific productivity disturbance and the agnostic
disturbance ε̃Bt that we interpret as an investment-modernization disturbance.
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Figure 4 plots the IRFs of our agnostic disturbance and the SW investment-specific
disturbance. This graph documents that there are some remarkable differences. The
SW investment disturbance generates a typical business cycle with key aggregates
moving in the same direction. A positive agnostic investment disturbance also leads
to a strong comovement between output and investment. However, a positive shock
leads to a reduction in consumption and capital.58 Also, whereas capacity utilization
decreases in the SW model, our specification indicates an increase.

To understand these differences and to explain why we still think that ε̃Bt is an
investment-specific disturbance, we have to take a closer look at the relevant equa-
tions and how ε̃Bt affects these equations differently than the SW investment specific
disturbance, εit. The three relevant equations are the following:59,60

Smets-Wouters investment-specific disturbance, εitε
i
tε
i
t

Investment Euler: it = i1 (Ψ) it−1 + (1− i1 (Ψ))Et [it+1] + εitε
i
tε
i
t, (23)

Utilization: zt = z1 (Ψ) rkt , (24)

Capital: kt = k1 (Ψ) kt−1 + (1− k1 (Ψ)) it + k2 (Ψ) εit, k2 (Ψ) > 0k2 (Ψ) εit, k2 (Ψ) > 0k2 (Ψ) εit, k2 (Ψ) > 0.(25)

Agnostic investment-modernization disturbance, ε̃Bt̃ε
B
t̃ε
B
t

Investment Euler: it = i1 (Ψ) it−1 + (1− i1 (Ψ))Et [it+1] + dB3 ε̃
B
t , d

B
3 > 0dB3 ε̃

B
t , d

B
3 > 0dB3 ε̃

B
t , d

B
3 > 0, (26)

Utilization: zt = z1 (Ψ) rkt + dB7 ε̃
B
t , dB7 < 0dB7 ε̃
B
t , dB7 < 0dB7 ε̃
B
t , dB7 < 0, (27)

Capital: kt = k1 (Ψ) kt−1 + (1− k1 (Ψ)) it + dB8 ε̃
B
t , dB8 < 0dB8 ε̃
B
t , dB8 < 0dB8 ε̃
B
t , dB8 < 0. (28)

The reason for the striking differences between the IRFs of our ASD and the SW
investment disturbance is that our unrestricted approach lets the agnostic investment
specific disturbance appear in the capital accumulation equation without restrictions.
That is, the sign of the coefficient of ε̃Bt , dB8 , is unrestricted, but the coefficient of εit in
the SW specification, k2(Ψ) is restricted by the values of the structural parameters, Ψ.

58Justiano, Primiceri, and Tambalotti (2010) also report a negative consumption response to an
investment disturbance, but only for the first five periods. As discussed in Ascari, Phaneuf, and
Sims (2016), most models would predict a countercyclical consumption response to an investment
disturbance. The SW model overturns this property due to a sufficiently high degree of price and
wage stickiness. Our agnostic approach implies similar estimates for price and wage stickiness, but
nevertheless indicates that the data actually prefer a countercyclical consumption response.

59These are equations (3), (7), and (8) in the original SW paper, respectively. Ψ is the vector
with structural coefficients and these restrict the coefficients in the model equations. See Smets and
Wouters (2007) for the definitions of the coefficient functions. The subscripts of the coefficients of
the agnostic disturbance refer to the SW equation number. For example, dB3 ε̃

B
t is the term added to

equation (3) of SW. it is the investment level, rkt the rental rate of capital, zt the utilization rate, εit
the SW investment-specific investment disturbance, ε̃Bt the agnostic disturbance, and Ψ is the vector
with structural parameters. Variables are defined relative to their steady-state values.

60The other two ASDs also enter some of these equations. We leave these terms out for transparency
reasons and because there are no interactions in a linear framework.
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The outcome is that the posterior mean of dB8 has the opposite sign relative to k2(Ψ).61

This means that a reduction in the cost of transforming current investment into
capital goes together with increased depreciation of the existing capital stock in our
specification. In the SW model, an investment specific disturbance does not affect the
economic viability of the existing capital stock. Our agnostic approach questions this
assumption and suggests that the investment-specific productivity disturbance goes
together with scrapping of older vintages. This is the reason why we refer to it as an
agnostic investment-modernization disturbance.

In the SW model, capacity utilization is proportional to the rental rate and there are
no shocks that can affect this relationship. An accelerated depreciation of the capital
stock increases the rental rate, which in turn would induce an increase in the utilization
rate. In our agnostic specification, this relationship is dampened somewhat, since a
positive agnostic disturbance has a direct negative impact on capacity utilization since
it enters the capacity utilization with a negative coefficient. The overall effect is still
an increase in capacity utilization. It seems plausible that scraping of old vintages goes
together with higher utilization of the remaining capital stock.

6.6.2 The agnostic Euler disturbance, ε̃At̃ε
A
t̃ε
A
t

The agnostic disturbance ε̃At appears in eight equations. This leaves open many
possible interpretations. The key equation, however, is the Euler equation for bonds,
because excluding the disturbance from this equation leads to by far the largest drop
in the marginal data density. This suggests that it could have key characteristics in
common with a preference or a risk-premium disturbance. This view is also supported
by table 7 which documents that ε̃At is important for the same variables as the SW risk-
premium disturbance. However, this agnostic disturbance also has some quite different
characteristics from both. Therefore, we will adopt an alternative name and refer to
it as the agnostic Euler disturbance. For the interpretation of ε̃At , it is important
to understand the differences in impact of a regular preference and a regular (bond)
risk-premium disturbance.

Difference between a preference and (bond) risk-premium disturbance. A
preference disturbance affects current utility. This means it affects the marginal rate
of substitution and, thus, all Euler equations. Such a preference disturbance is used in
Smets and Wouters (2003). By contrast, Smets and Wouters (2007) include instead a
(bond) risk premium that introduces a wedge between the policy rate and the required
rate of return on bonds without affecting other Euler equations. Both disturbances
have a strong impact on current consumption. However, a positive preference distur-
bance makes current consumption more desirable and reduces the attractiveness of all
types of saving. A positive risk-premium disturbance only makes savings in bonds less

61Moreover, the 90% HPD does not include 0. Although it does not make much of a difference, we
give the SW outcome the best possible chance by setting the prior means of the coefficients of ε̃Bt to
what they would be under the SW specification using SW prior means.
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attractive. That is, it induces a desire to substitute out of bonds and into investment,
in addition to an increase in consumption. Thus, a preference disturbance leads to a
negative comovement of consumption and investment, whereas a (bond) risk-premium
disturbance leads to a positive comovement. Smets and Wouters (2007) mention this
as the reason for using a risk-premium instead of a preference disturbance.

There is another key difference between these two disturbance. A preference distur-
bance affects output in both the flexible-price and the sticky-price part of the model.
By contrast, a risk-premium disturbance has no affect on key aggregates such as con-
sumption and output in the flexible price part of the SW model.62

Is ε̃At a preference, a risk-premium, or another type of disturbance? Fig-
ure 5 plots the IRFs of the SW risk-premium and our agnostic disturbance. The figure
documents that both generate a regular business cycle with positive comovement for
output, consumption, investment, and hours. The positive comovement suggest that
the agnostic disturbance is a bond risk-premium disturbance as in Smets and Wouters
(2007) and not a preference disturbance as in Smets and Wouters (2003). However,
the agnostic disturbance has a strong impact on flexible-price output which is incon-
sistent with it being a (bond) risk-premium disturbance and consistent with it being a
preference disturbance. These differences are big enough for us to come up with a new
label and we choose Euler disturbance.

To better understand the nature of the agnostic Euler disturbance, we take a closer
look at the equations in which ε̃At enters. It appears in the aggregate budget constraint,
the bond Euler equation, the investment Euler equation, the capital value equation,
the utilization rate equation, the price mark-up equation, the rental rate of capital
equation, and the Taylor rule.

Although our agnostic disturbance does have some effect on quite a few different
aspects of the model, the interpretation is eased by the fact that the role of the agnostic
disturbance is minor in most of the eight equations in the sense that allowing it to enter
these equations only has a minor quantitative impact on the behavior of model variables
or only affects the qualitative behavior of one or two variables without affecting the
behavior of the key macroeconomic variables.

62The reason is the following. In the flexible price part of the model, the nominal policy rate,
rt, the expected inflation rate, Et[πt+1], and the risk-premium disturbance, εbt , only appear in the
combination rt−Et[πt+1] + εbt . Consequently, a change in εbt is simply absorbed by the real rate. This
is not the case in the sticky-price economy, because it would be inconsistent with the Taylor rule.
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Figure 5: IRFs of the SW risk-premium and the agnostic Euler disturbance
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Notes. These figures plot the IRFs of the SW risk-premium disturbance and the agnostic disturbance ε̃At that we
interpret as an Euler-equation disturbance.
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Specifically, to understand the role of ε̃At on key macroeconomic aggregates we can
restrict ourselves to the Taylor rule and the three model equations that are relevant
for the savings/investment decisions, which are the bond Euler equation, the invest-
ment Euler equation, and the capital value equation. The following set of equations
documents how the SW risk-premium disturbance and our agnostic Euler enter these
equations:63

Smets-Wouters risk premium, εbtε
b
tε
b
t

Bond Euler: ct = c1 (Ψ) ct−1 + (1− c1 (Ψ))Et [ct+1]

+c2 (Ψ) (lt − Et [lt+1])

−c3 (Ψ)(rt − Et [πt+1] + εbt)(rt − Et [πt+1] + εbt)(rt − Et [πt+1] + εbt), c3(Ψ) > 0, (29)

Inv. Euler: it = i1 (Ψ) it−1

+ (1− i1 (Ψ))Et [it+1] + εit, (30)

Capital value: qt = q1Et [qt+1] + (1− q1)Et
[
rkt+1

]
−(rt − Et [πt+1] + εbt)(rt − Et [πt+1] + εbt)(rt − Et [πt+1] + εbt), (31)

Policy rate: rt = ρrt−1 + (1− ρ){rπ + rY (yt − ypt )}
+r∆y[(yt − ypt )− (yt−1 − ypt−1)] + εrt . (32)

Agnostic Euler disturbance, ε̃At̃ε
A
t̃ε
A
t

Bond Euler: ct = c1 (Ψ) ct−1 + (1− c1 (Ψ))Et [ct+1]

+c2 (Ψ) (lt − Et [lt+1])

−c3 (Ψ)(rt − Et [πt+1])− dA2 ε̃At , dA2 > 0(rt − Et [πt+1])− dA2 ε̃At , dA2 > 0(rt − Et [πt+1])− dA2 ε̃At , dA2 > 0, (33)

Inv. Euler: it = i1 (Ψ) it−1

+ (1− i1 (Ψ))Et [it+1] + εit − dA3 ε̃A
t , d

A
3 > 0dA3 ε̃

A
t , d

A
3 > 0dA3 ε̃

A
t , d

A
3 > 0, (34)

Capital value: qt = q1Et [qt+1] + (1− q1)Et
[
rkt+1

]
−(rt − Et [πt+1])− dA4 ε̃At , dA4 > 0(rt − Et [πt+1])− dA4 ε̃At , dA4 > 0(rt − Et [πt+1])− dA4 ε̃At , dA4 > 0, (35)

Policy rate: rt = ρrt−1 + (1− ρ){rπ + rY (yt − ypt )}
+r∆y[(yt − ypt )− (yt−1 − ypt−1)] + εrt + dA14ε̃

A
t , d

A
14 > 0dA14ε̃

A
t , d

A
14 > 0dA14ε̃

A
t , d

A
14 > 0. (36)

As in SW, we use the bond Euler equation to substitute the marginal rate of
substitution out of the capital valuation equation. While the SW bond risk-premium
disturbance, εbt , does not appear in the original capital valuation equation, it does show
up after this substitution has taken place. Moreover, it appears in these two equations
with the exact same coefficient as the nominal interest rate for bonds, rt. By contrast,
after substituting out the marginal rate of substitution in the capital value equation,

63In these equations, ct is consumption, lt is hours worked, rt is the nominal policy rate, πt is the
inflation rate, qt is the price of capital, yt is output, and ypt is output in the flexible-price economy.
Also see information given in footnote 59.
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a preference disturbance would no longer appear in the capital valuation equation.64

Our ASD appears in the bond Euler equation and the capital valuation equation and
it shows up with the same sign as the SW risk-premium disturbance. This supports
the view that our ASD is similar to a risk-premium disturbance. Nevertheless, one
could argue that the ASD is a preference and not a bond risk-premium disturbance for
the following reasons. Although dA4 has the right sign for a risk-premium coefficient, its
magnitude, evaluated using the posterior mean, is too small.65 The 90% HPD interval
of the coefficient of ε̃At in the capital valuation equation, dA4 , includes zero and setting
the coefficient equal to zero has very little impact on model properties and virtually
none on the marginal data density.

As pointed out in Smets and Wouters (2003), a preference disturbance generates
consumption and investment responses that move in opposite directions. Our ASD
predicts responses in the same direction even if we impose that the ASD does not
enter the capital valuation equation (after substituting out the MRS). The reason for
the positive comovement is that our ASD also enters the investment Euler equation.
The investment Euler equation is a dynamic equation, but its dynamic aspects are
due solely to investment adjustment costs.66 Our agnostic approach indicates that the
structural disturbance that plays a key role in the bond Euler equation should also
appear in the investment Euler equation. In fact, it is the first equation chosen in our
specific-to-general model selection procedure.

So what could this agnostic disturbance represent? The simplest – and our pre-
ferred explanation – is that it is a preference disturbance that is correlated with an
investment-specific disturbance.67 A more structural interpretation would be the fol-
lowing. A preference disturbance would also affect the (linearized) investment Euler
equation if investment does not only lead to expenses in the current, but also in subse-

64In the SW specification, the impact of the risk-premium disturbance is normalized to be equal to
1 in one of the equations. The actual impact of this disturbance on this equation is then determined
by the estimated standard deviation. Instead, we normalize the standard deviation of the ASDs. We
do not want to impose the SW normalization, since it would imply that the agnostic disturbance must
affect the equation in which the coefficient is normalized unless the estimated standard deviation is
equal to zero, which would mean that it would not have an effect on any other equation either.

65If our ASD is a risk-premium disturbance, then dA4 /d
A
2 should be equal to 1/c3(Ψ), but using

posterior means, we find that dA4 /d
A
2 = 3.3, whereas 1/c3(Ψ) = 7.27, substantially higher. Here, c3

is a function of the habit, the elasticity of inter-temporal substitution, and the trend growth rate
parameter. c3 is calculated using posterior means of our preferred specification.

66Adjustment costs are zero in the steady state, which implies that neither a preference distur-
bance nor a risk-premium disturbance appear in a linearized investment Euler equation. A preference
disturbance would appear in the original nonlinear equation. The main intertemporal aspect of the in-
vestment decision, which is also present without adjustment costs, is captured by the capital valuation
equation.

67As discussed above, our agnostic structural investment disturbance, ε̃Bt , enters the capital ac-
cumulation equation with a sign that is the opposite of the regular investment disturbance, which
we interpreted as scrapping of older vintages. ε̃At does not enter the capital accumulation equation.
This would indicate that this investment disturbance which goes together with an upswing in agents’
mood is between a regular investment disturbance and our agnostic investment disturbance in terms
of what it implies for the viability or depreciation of the existing capital stock.
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quent periods. For example, investment may lead to additional expenses when capital
becomes productive. A positive preference disturbance would lower the value of such
future liabilities.

This disturbance appears directly in the Taylor rule with a negative coefficient.
This means that the central bank responds more aggressively to business cycle fluctu-
ations induced by this Euler disturbance. Without this effect on the Taylor rule this
disturbance would have a stronger impact on economic aggregates and inflation would
no longer be procyclical.68

6.6.3 The agnostic capital-efficiency wage mark-up disturbance, ε̃Ct̃ε
C
t̃ε
C
t

The third agnostic disturbance chosen by our model selection criterion increases the
total number of structural disturbances to eight, that is, one more than the number
in the SW specification. Thus, this agnostic disturbance cannot be interpreted as a
replacement of a SW disturbance. Figure 6 plots its IRFs.

This third agnostic disturbance, ε̃Ct , appears in five equations. The first equation
into which it is selected is the wage-adjustment equation. It also shows up into three
equations related to capital, namely the capital accumulation equation, the capital
utilization equation, and the capital-valuation equation. Finally, it appears in the
economy-wide budget constraint, although the impact on the latter is minor.

The SW wage mark-up disturbance, εwt also shows up in the wage-adjustment equa-
tion. The differences with ε̃Ct are the following. First, εwt only shows up in the wage-
adjustment equation, whereas ε̃Ct has a direct impact on key equations related to cap-
ital. This is an important difference that results in quite different IRFs. A positive
shock to εwt induces a regular economic downturn with all key macroeconomic aggre-
gates moving in the same direction, except for the price of capital which increases
initially. A positive shock to ε̃Ct also induces a recession with a reduction in output,
investment, and employment. However, it leads to an increase in potential output,
installed capital, and initially also an increase in capacity utilization. In contrast to
the SW εwt shock it leads to a decrease in the price of capital.

The second difference between our agnostic ε̃Ct and the SW εwt disturbance is that a
shock to ε̃Ct is very temporary. ε̃Ct is an AR(1) process, and the posterior mean of the
auto-regressive coefficient is equal to 0.19. The SW εwt disturbance is a very persistent
ARMA(1,1) process. The presence of ε̃Ct in the empirical model strongly reduces the
coefficient of the MA component of εwt , but has little impact on the AR component.69

68See appendix D.4.
69Specifically, with ε̃Ct included in the empirical specification the posterior means of the AR and

the MA coefficients of εwt are equal to 0.97 and 0.59, respectively. Estimates with the SW specification
for these two numbers are 0.97 and 0.85.
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Figure 6: IRFs of the agnostic capital-efficiency wage mark-up disturbance
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Notes. These figures plot the IRFs of the agnostic disturbance ε̃Ct that we interpret as a capital-efficiency wage
mark-up disturbance.
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Including ε̃Ct in the empirical specification does not reduce the role of εwt for fluctu-
ations of key variables. εwt remains the most important disturbance for key economic
aggregates. The only exception is the wage growth rate. In the SW specification εwt
explains 61.6% of the volatility of wage growth, whereas it only explains 13.3% in our
preferred specification. This role is clearly taken over by ε̃Ct which explains 53.5% of
wage growth volatility. ε̃Ct also plays a nontrivial role for fluctuations in the capital
stock, capacity utilization, and the rental rate of capital, explaining 9.8%, 14.7%, and
13.1%, of total variability respectively.

The following equations document how ε̃Ct enters the model:70

Agnostic capital-efficiency wage mark-up disturbance, ε̃Ct̃ε
C
t̃ε
C
t

Capital value: qt = q1Et [qt+1] + (1− q1)Et
[
rkt+1

]
− (rt − Et [πt+1])− dC4 ε̃Ct , dC4 < 0(rt − Et [πt+1])− dC4 ε̃Ct , dC4 < 0(rt − Et [πt+1])− dC4 ε̃Ct , dC4 < 0, (37)

Utilization: zt = z1 (Ψ) rkt + dC7 ε̃
C
t , dC7 > 0dC7 ε̃
C
t , dC7 > 0dC7 ε̃
C
t , dC7 > 0, (38)

Capital: kt = k1 (Ψ) kt−1 + (1− k1 (Ψ)) it + dC8 ε̃
C
t , dC8 > 0dC8 ε̃
C
t , dC8 > 0dC8 ε̃
C
t , dC8 > 0, (39)

Wage mark-up: wt = w1wt−1 + (1− w1)(Et[wt+1 + πt+1] (40)

− w2πt + w3πt−1 − w4µ
w
t + dC13ε̃

C
t , dC13 > 0dC13ε̃
C
t , dC13 > 0dC13ε̃
C
t , dC13 > 0. (41)

The equations indicate that this agnostic disturbance increases the wage mark-up
and is associated with increased efficiency of the capital stock, both in terms of a lower
depreciation rate and increased utilization. It also goes together with a reduction in
the value of existing capital. Thus, this ASD could capture an increase in the wage
rate, for example, because of increased bargaining power of workers, in response to
which firms use capital more efficiently. An alternative is that its origin lies in changes
in the ability or need to use capital more efficiently, but that a more efficient use of
capital comes at the cost of higher wage rates. That is, to adopt this more efficient
use of capital, firms have to pay a higher wage rate, perhaps in terms of an overtime
premium.

70We leave out the overall budget constraint since the role of the disturbance in this equation is
minor, but its impact in this equation is like a contractionary fiscal expenditure shock. Details are
given in appendix D.5. wt is the real wage rate and µwt is the real wage mark-up, i.e., the difference
between the wage rate and the marginal rate of substitution between consumption and leisure. Also
see footnote 59 for additional information.
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A Consequences of misspecification: An analytical example

In this section, we give a very simple example to indicate that misspecification can
have large distortive effects in the sense that implied properties of the model using the
parameter estimates can be at odds with the actual corresponding properties of the
data that are used to estimate the parameters. The model is linear, and all variables
have a Normal distribution. Throughout this section, parameter estimates are based
on population moments. Thus, the results are not due to small sample variation. The
estimation procedure is Maximum Likelihood (ML).

More specifically, this example demonstrates that there can be massive differences
between the variances of observables as implied by the model using estimated parameter
values and the actual variances in the data set. This result is surprising since the ML
estimator of the variance of a given time series is the sample variance when the variable
has a Normal distribution. We will show that this is not necessarily true for implied
variances when the empirical model is misspecified.71

True model. The true model is given by the following set of equations:

yt =

[
y1,t

y2,t

]
=

[
λ11 λ12

λ21 λ22

] [
ε1,t

ε2,t

]
= Λεt, (42)

E [εtε
′
t] =

[
σ2

1 0
0 σ2

2

]
, (43)

and we make the following assumption about the distribution of the error terms:

ε1,t ∼ N(0, σ2
1) and ε2,t ∼ N(0, σ2

2). (44)

Misspecification. The objective is to estimate the standard deviations of the struc-
tural disturbances, σ2

1 and σ2
2. The researcher takes the value of Λ as given. The

empirical model is misspecified, because Λ 6= Λ is used instead of the true value.

71As a byproduct of this paper, we learned that there also can be large gaps between actual
properties of the data used and the corresponding implied properties according to the Maximum
Likelihood estimates of the model parameters when the DSGE model is correctly specified, but a
data sample with finite length is used. Since the objective of Maximum Likelihood is not to match
moments, there is no reason why there should be a close match, but we were surprised by the large
magnitudes of the differences. For example, using a sample of 1,000 observations generated by the
SW model with seven disturbances and the correct empirical specification, it is not unusual to find
implied standard deviations for the observables that are three to five times their data counterpart.
Such differences will disappear as the sample size increases, since the estimator is consistent, but such
asymptotic results do not provide much assurance if there is a small sample bias even at a relatively
large sample size of 1,000 observations.
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Empirical specifications. We consider the following two empirical specifications:

Case 1: Empirical model given by

yt =

[
y1,t

y2,t

]
= Λεt, E [εtε

′
t] =

[
σ2

1 σ12

σ12 σ2
2

]
. (45)

Case 2: Empirical model given by

yt =

[
y1,t

y2,t

]
= Λεt, E [εtε

′
t] =

[
σ2

1 0
0 σ2

2

]
. (46)

Both empirical models are misspecified, because they use the wrong value of Λ. In
the first case, the empirical model allows the correlation between the two innovations
to be non-zero even though it is equal to zero according to the true data generating
process. In the second case, the empirical model imposes that the correlation is equal
to zero, just as it is in the true model.

Case 1: Wrong Λ and allow for wrong σ12. Since the model is linear and the
shocks have a normal distribution, the ML estimator of the variance-covariance matrix
E [εtε

′
t], Σ̂ε, is given by

Σ̂ε = Λ
−1

Σ̂′yΛ
−1′
. (47)

As mentioned above, we abstract from sampling variation and Σ̂′y is estimated using

population moments. This means that the ML estimator of Σ̂′ε is given by

Σ̂ε = Λ
−1E [yty

′
t] Λ
−1′

(48)

= Λ
−1

ΛΛ′Λ
−1′
. (49)

True versus implied variance. The purpose of this section is to document the
consequences of misspecification for the implied variance of the observable yt according
to the estimated model. The true variance-covariance matrix is given by:

Σtrue
y = E [yty

′
t] = ΛΛ′. (50)

The implied variance of yt according the researcher’s (misspecified) model, Σ̂y, is given
by

Σ̂y = ΛΣ̂εΛ
′

(51)

= ΛΛ
−1

ΛΛ′Λ
−1′

Λ
′

(52)

= ΛΛ′ = Σtrue
y . (53)
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Thus, the procedure actually generates the correct answer even though an incorrect
empirical specification is used. In this case, the estimated empirical model is misspec-
ified for two reasons, namely it has the wrong Λ and the estimated value of σ12 is not
equal to its true value. These have exactly offsetting effects in terms of their impact on
the implied variance. Another way to look at this result is the following. By allowing
for a more flexible specification, i.e., a non-zero value for σ12, the researcher would get
a better answer for the implied variance of yt even though the flexibility implies that
the estimated model is wrong in more dimensions.

Case 2: Wrong Λ and correct σ12. Obtaining the estimate for Σ̂ε is just as easy
as in the previous case. Given Λ̂ and data for yt, one can calculate the values for εt and
use these to calculate the variance of εt and the implied variance of yt. The following
is a complicated, but useful way to express the outcome:

Σ̂ε =

[
1 0
0 0

]
Λ
−1

ΛΛ′Λ
−1′
[

1 0
0 0

]
+[

0 0
0 1

]
Λ
−1

ΛΛ′Λ
−1′
[

0 0
0 1

]
.

(54)

True versus implied variance. The implied variance of yt is equal to

Σ̂y =


Λ

[
1 0
0 0

]
Λ
−1

ΛΛ′Λ
−1′
[

1 0
0 0

]
Λ
′

+

Λ

[
0 0
0 1

]
Λ
−1

ΛΛ′Λ
−1′
[

0 0
0 1

]
Λ
′

 6= ΛΛ′ = Σtrue
y (55)

The reason Σ̂y 6= Σtrue
y is that the Λ terms do not cancel out. In our Monte Carlo

experiments with misspecified models, we find that there often are large gaps between
the variances of the observables used in the estimation and the corresponding variances
as implied by the model using the estimated parameters. Moreover, there is a bias.
That is, the implied variance is typically larger than the actual variance. Our Monte
Carlo experiments are a lot more complicated than this example, but this example may
shed light on the coincidence of high implied variances. Specifically, because the Λs do
not cancel out, the expression for Σ̂y contains terms like the following:

Λ

[
1 0
0 0

]
Λ
−1

=
1

λ11λ22 − λ12λ21

[
λ11λ22 −λ11λ12

λ21λ22 −λ12λ21

]
. (56)

This equation documents that the ratio of the implied variance relative to the true
variance could be arbitrarily large if the term in the denominator goes to zero.72 For a

72The opposite is less likely, since it would require values for the λij coefficients such that the com-

50



correctly specified model this would not matter, since the small term in the denominator
would then be offset by an equally small term in the numerator. But this is not
necessarily the case for an incorrectly specified model.

B Identification of structural parameters

We use the test proposed in Komunjer and Ng (2011) to check whether the parame-
ters of the empirical specifications used in our experiments are identified. We will refer
to this test as the KN test. This test provides both necessary and sufficient conditions
for local identification under a set of weak conditions.73 It focuses on the state-space
representation of the model and – in contrast to earlier identification tests – does not
require the user to specify a set of particular autocovariances.74

Identification of original Smets-Wouters estimation exercise. SW fix the val-
ues of five parameters: depreciation, δ, steady-state wage mark-up, µ, steady-state
exogenous spending, g, curvature in the Kimball goods-market aggregator, εp, and
curvature in the Kimball labor-market aggregator, εw. Komunjer and Ng (2011) con-
sider the identification of the SW model, but their empirical specification is slightly
different from the one of SW in that all variables are demeaned. By contrast, the
data in the SW estimation exercise does contain information about the level, since the
inflation rate and the nominal interest rate are in levels. Komunjer and Ng (2011)
show that several subsets of the five parameter restrictions mentioned above are suf-
ficient to obtain identification if the parameter controlling steady state hours, l, and
the parameter controlling steady state inflation, π, are fixed as well. It makes sense
that identification requires more restrictions when information about the levels is not
used in the estimation.

Identification of our specifications. The empirical and true specifications used
in our Monte Carlo experiments have six structural disturbances, whereas the original
SW empirical model has seven. This may imply that less parameters are identified. It
is important that the parameters that we try to estimate are identified. If parameters
are not identified, then different parameter combinations lead to the same criterion
of fit used in the estimation, so it would not be surprising if parameter estimates are
different for slightly different specifications.

Consequently, we adopt the following conservative strategy to ensure identification.
The KN test checks rank conditions of matrices and to see whether there is a singularity
one needs to choose a tolerance criterion. We set the criterion at a level that is more
strict than the one chosen by KN.75 We follow SW and fix the values of the five

binations appearing in square brackets are small, but the particular combination in the denominator
is not. For example, one cannot accomplish this by simply choosing small values for the λij terms.

73These are a stability condition and regularity conditions on the innovations.
74An example of such an earlier test is Iskrev (2010).
75We set“Tol” equal to 1e-2 instead of 1e-3 (a higher number is more strict).
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Table 8: Komunjer and NG identification test.

required number 41 225 36 302 -

n ∆
S

Λ ∆
S

T ∆
S

U ∆
S

pass?
εat excluded 12 41 225 36 302 yes
εbt excluded 12 41 225 36 302 yes
εgt excluded 12 41 225 36 302 yes
εit excluded 12 41 225 36 302 yes
εrt excluded 12 41 225 36 302 yes
εwt excluded 13 41 225 36 302 yes
εpt excluded 13 41 225 36 302 yes

Notes. Here, n is the number of restrictions, which includes the number of coefficients fixed in all experiments and the

number of coefficients in the law of motion of the excluded exogenous random variable that are all set to zero. ∆
S
Λ is

a matrix that contains the derivatives of all the vectorized elements in the state-space representation of the model (the
A, B, C, D matrices and the variance-covariance matrices) evaluated at the true parameter values. It is intuitive that

this matrix needs to have full rank for identification. But it is not sufficient. ∆
S
T and ∆

S
U are matrices with particular

elements related to the state-space representation. The matrix ∆
S

= [∆
S
Λ ∆

S
T ∆

S
U ] needs to have full rank to pass the

KN test.

parameters mentioned above. In addition, we fix all parameters that have a direct
effect on the means of variables, since we use demeaned variables in the estimation.
The associated parameters are the trend growth rate, γ, the parameter controlling
steady state hours, l, the parameter controlling steady state inflation, π, and the
discount factor, β.76 Finally, as discussed in section 2.1, we fix the spillover from the
productivity disturbance to exogenous spending and set it equal to zero.

The results of the KN test are reported in table 8 and it indicates that the iden-
tification test is passed in all cases. That is, lack of identification is not driving the
results in section 2.

C Additional results for Monte Carlo experiments

In this appendix, we report additional results for the analysis of section 5 in which
we compared estimation outcomes using the ASD specification, the SW model with
only regular structural disturbances, and an incorrect empirical model.

Figures 7 and 8 plot the histograms of the estimated χ2 statistics across Monte
Carlo replications for the two experiments of section 5 together with the theoretical
(large-sample) χ2 distribution. The number of degrees of freedom is equal to 10.

Tables 9 and 10 document detailed information on the distribution of parameter
estimates for the two Monte Carlo experiments.

76It is a conservative choice to fix all four, since identification only requires that two parameters
are fixed according to the test of Komunjer and Ng (2011).
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Figure 7: Likelihood ratio test agnostic versus fully specified model: First experiment

Notes. The figure plots the distribution of χ2 statistics of the first Monte Carlo experiment and the theoretical
distribution according to large sample theory. This Monte Carlo experiment corresponds to the case when the true dgp
does not include a monetary policy disturbance, but the empirical model leaves out the investment disturbance instead.
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Figure 8: Likelihood ratio test agnostic versus fully specified model: Second experiment

Notes. The figure plots the distribution of χ2 statistics of the first Monte Carlo experiment and the theoretical
distribution according to large sample theory. This Monte Carlo experiment corresponds to the case when the true dgp
does not include a TFP disturbance, but the empirical model leaves out the investment disturbance instead.
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Table 9: Parameter estimates across Monte Carlo replications: First experiment

misspecified estimation ASD procedure SW specification
Truth LB UB 10% 25% 50% 75% 90% 10% 25% 50% 75% 90% 10% 25% 50% 75% 90%

α 0.19 0.07 0.31 0.07 0.07 0.08 0.10 0.14 0.15 0.18 0.21 0.23 0.26 0.15 0.17 0.20 0.22 0.24
σc 1.39 0.53 2.25 1.35 1.44 1.66 2.16 2.24 1.16 1.29 1.47 1.69 1.95 1.19 1.29 1.42 1.58 1.81
Φ 1.61 1.33 1.89 1.46 1.69 1.86 1.89 1.89 1.33 1.34 1.57 1.85 1.89 1.33 1.38 1.60 1.83 1.89
φ 5.48 1.99 8.97 3.42 5.03 6.48 8.05 8.87 3.18 3.78 4.59 5.63 6.74 3.80 4.27 4.91 5.55 6.24
λ 0.71 0.45 0.90 0.62 0.71 0.79 0.84 0.86 0.57 0.62 0.66 0.71 0.76 0.61 0.64 0.68 0.72 0.76
ξw 0.73 0.47 0.92 0.58 0.65 0.71 0.78 0.86 0.57 0.62 0.68 0.75 0.82 0.58 0.63 0.69 0.75 0.81
σ` 1.92 0.18 3.66 0.18 0.18 0.18 0.19 0.54 0.89 1.16 1.55 2.17 2.77 1.07 1.36 1.76 2.24 2.71
ξp 0.65 0.40 0.86 0.69 0.74 0.79 0.83 0.85 0.50 0.56 0.63 0.69 0.73 0.52 0.57 0.63 0.68 0.73
ιw 0.59 0.24 0.89 0.24 0.28 0.38 0.53 0.68 0.32 0.44 0.60 0.76 0.88 0.34 0.47 0.61 0.76 0.88
ιp 0.22 0.01 0.65 0.04 0.13 0.25 0.38 0.51 0.02 0.08 0.16 0.25 0.34 0.03 0.08 0.16 0.24 0.31
ψ 0.54 0.20 0.86 0.26 0.38 0.59 0.75 0.84 0.38 0.47 0.57 0.69 0.81 0.41 0.48 0.57 0.66 0.77
rπ 2.03 1.45 2.61 1.58 1.78 2.05 2.33 2.55 1.71 1.88 2.10 2.41 2.60 1.76 1.91 2.09 2.35 2.57
ρ 0.81 0.53 0.97 0.74 0.77 0.80 0.82 0.83 0.78 0.80 0.82 0.84 0.85 0.78 0.80 0.82 0.84 0.85
ry 0.08 -0.04 0.20 0.05 0.07 0.11 0.17 0.20 0.05 0.07 0.08 0.11 0.13 0.06 0.07 0.08 0.10 0.12

r∆y 0.22 0.10 0.34 0.11 0.15 0.17 0.18 0.19 0.19 0.21 0.22 0.23 0.24 0.20 0.21 0.22 0.23 0.24
ρa 0.95 0.00 0.99 0.60 0.93 0.95 0.96 0.96 0.88 0.92 0.94 0.95 0.96 0.90 0.93 0.94 0.96 0.96
ρb 0.18 0.00 0.99 0.03 0.08 0.16 0.27 0.75 0.03 0.08 0.14 0.20 0.26 0.04 0.09 0.15 0.21 0.26
ρg 0.97 0.00 0.99 0.99 0.99 0.99 0.99 0.99 0.94 0.96 0.97 0.98 0.98 0.94 0.96 0.97 0.98 0.98
ρp 0.90 0.00 0.99 0.50 0.66 0.78 0.91 0.97 0.68 0.80 0.87 0.92 0.95 0.74 0.82 0.88 0.92 0.94
ρw 0.97 0.00 0.99 0.93 0.97 0.99 0.99 0.99 0.93 0.95 0.97 0.98 0.99 0.94 0.96 0.97 0.98 0.99
µp 0.74 0.00 0.99 0.21 0.38 0.64 0.86 0.94 0.31 0.48 0.62 0.73 0.80 0.38 0.51 0.64 0.73 0.80
µw 0.88 0.00 0.99 0.72 0.81 0.87 0.91 0.94 0.73 0.80 0.85 0.89 0.92 0.76 0.82 0.86 0.89 0.92
σa 0.45 0.00 10.00 0.62 0.70 0.85 1.05 1.22 0.35 0.38 0.42 0.48 0.53 0.37 0.39 0.44 0.48 0.53
σb 0.24 0.00 10.00 0.06 0.20 0.24 0.26 0.28 0.21 0.22 0.24 0.26 0.28 0.21 0.23 0.24 0.26 0.28
σg 0.52 0.00 10.00 0.51 0.53 0.55 0.57 0.59 0.48 0.49 0.52 0.54 0.56 0.48 0.50 0.52 0.54 0.56
σp 0.14 0.00 10.00 0.12 0.14 0.15 0.17 0.18 0.11 0.12 0.14 0.15 0.17 0.11 0.12 0.14 0.15 0.16
σw 0.24 0.00 10.00 0.19 0.20 0.22 0.24 0.25 0.21 0.23 0.24 0.26 0.28 0.21 0.23 0.25 0.26 0.28

Notes. The table provides information on the distribution of the indicated parameter across the Monte Carlo replications. See table 1 for the definitions of the parameters.
This Monte Carlo experiment corresponds to the case when the true dgp does not include a monetary policy disturbance, but the empirical model leaves out the investment
disturbance instead.
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Table 10: Parameter estimates across Monte Carlo replications: Second experiment

misspecified estimation ASD procedure SW specification
Truth LB UB 10% 25% 50% 75% 90% 10% 25% 50% 75% 90% 10% 25% 50% 75% 90%

α 0.19 0.07 0.31 0.09 0.12 0.16 0.21 0.26 0.14 0.18 0.21 0.25 0.29 0.14 0.17 0.20 0.23 0.26
σc 1.39 0.53 2.25 1.39 1.57 2.07 2.24 2.25 1.14 1.27 1.45 1.75 2.14 1.16 1.26 1.41 1.63 1.93
Φ 1.61 1.33 1.89 1.39 1.58 1.79 1.87 1.89 1.33 1.35 1.58 1.85 1.89 1.34 1.43 1.61 1.78 1.87
φ 5.48 1.99 8.97 4.09 4.99 6.23 7.43 8.48 3.29 3.85 4.57 5.43 6.54 3.85 4.34 4.98 5.64 6.44
λ 0.71 0.45 0.90 0.54 0.61 0.69 0.76 0.80 0.55 0.61 0.66 0.72 0.77 0.60 0.64 0.68 0.73 0.77
ξw 0.73 0.47 0.92 0.55 0.61 0.67 0.72 0.78 0.55 0.60 0.67 0.74 0.81 0.58 0.62 0.69 0.75 0.80
σ` 1.92 0.18 3.66 0.18 0.18 0.20 0.55 1.03 0.46 0.89 1.56 2.58 3.54 0.67 1.07 1.78 2.64 3.38
ξp 0.65 0.40 0.86 0.62 0.68 0.73 0.78 0.83 0.49 0.54 0.62 0.68 0.73 0.51 0.56 0.62 0.68 0.72
ιw 0.59 0.24 0.89 0.24 0.30 0.42 0.57 0.69 0.32 0.46 0.61 0.78 0.89 0.34 0.47 0.62 0.77 0.88
ιp 0.22 0.01 0.65 0.04 0.11 0.24 0.34 0.46 0.01 0.07 0.15 0.24 0.32 0.03 0.08 0.16 0.24 0.32
ψ 0.54 0.20 0.86 0.30 0.40 0.53 0.67 0.80 0.37 0.45 0.57 0.70 0.81 0.40 0.48 0.58 0.68 0.79
rπ 2.03 1.45 2.61 1.74 2.04 2.32 2.54 2.60 1.59 1.86 2.28 2.59 2.61 1.68 1.89 2.22 2.52 2.60
ρ 0.81 0.53 0.97 0.79 0.81 0.84 0.86 0.87 0.73 0.77 0.81 0.84 0.86 0.76 0.78 0.81 0.84 0.85
ry 0.08 -0.04 0.20 0.08 0.10 0.13 0.16 0.19 0.04 0.06 0.10 0.12 0.14 0.05 0.07 0.09 0.12 0.13

r∆y 0.22 0.10 0.34 0.11 0.13 0.17 0.20 0.22 0.17 0.19 0.23 0.26 0.29 0.17 0.20 0.22 0.25 0.28
ρb 0.18 0.00 0.99 0.07 0.14 0.22 0.33 0.53 0.02 0.08 0.14 0.21 0.26 0.04 0.09 0.15 0.21 0.26
ρg 0.97 0.00 0.99 0.98 0.99 0.99 0.99 0.99 0.94 0.96 0.97 0.98 0.98 0.94 0.96 0.97 0.98 0.98
ρr 0.12 0.00 0.99 0.00 0.00 0.02 0.06 0.10 0.00 0.04 0.11 0.18 0.23 0.01 0.05 0.11 0.17 0.22
ρp 0.90 0.00 0.99 0.48 0.65 0.78 0.91 0.97 0.74 0.82 0.89 0.92 0.95 0.78 0.84 0.89 0.92 0.95
ρw 0.97 0.00 0.99 0.94 0.96 0.97 0.98 0.99 0.93 0.95 0.97 0.98 0.99 0.94 0.96 0.97 0.98 0.98
µp 0.74 0.00 0.99 0.17 0.37 0.61 0.84 0.92 0.36 0.50 0.62 0.72 0.81 0.44 0.55 0.65 0.73 0.80
µw 0.88 0.00 0.99 0.73 0.79 0.84 0.89 0.91 0.73 0.79 0.84 0.89 0.91 0.76 0.81 0.85 0.89 0.92
σb 0.24 0.00 10.00 0.14 0.19 0.22 0.24 0.26 0.20 0.22 0.24 0.26 0.28 0.21 0.23 0.24 0.26 0.28
σg 0.52 0.00 10.00 0.49 0.51 0.53 0.55 0.57 0.47 0.49 0.51 0.54 0.56 0.48 0.50 0.52 0.54 0.56
σr 0.24 0.00 10.00 0.22 0.23 0.24 0.25 0.26 0.22 0.23 0.24 0.25 0.26 0.22 0.23 0.24 0.25 0.26
σp 0.14 0.00 10.00 0.12 0.14 0.15 0.16 0.18 0.11 0.12 0.14 0.15 0.17 0.11 0.12 0.14 0.15 0.16
σw 0.24 0.00 10.00 0.20 0.21 0.23 0.24 0.26 0.21 0.23 0.25 0.27 0.28 0.22 0.23 0.25 0.27 0.28

Notes. The table provides information on the distribution of the indicated parameter across the Monte Carlo replications. See table 1 for the definitions of the parameters.
This Monte Carlo experiment corresponds to the case when the true dgp does not include a TFP disturbance, but the empirical model leaves out the investment disturbance
instead.
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D ASD procedure for the Smets-Wouters model

In this appendix, we provide further details on how the ASD procedure is imple-
mented in section 6. We also provide additional results.

D.1 Including ASDs in SW equations

To apply the ASD procedure to the SW model, we adapt the Dynare program
provided by the authors.77 Adapting a Dynare program to add an agnostic disturbance
is easy. Specifically, for the first ASD, ε̃t

A, we do the following.

1. In the model block, we add dddAi ε̃
A
t to the ith equation, where ε̃At is the agnostic

disturbance and dddAi the coefficient associated with the agnostic disturbance in
the ith equation. Details are given below.78

2. We add an equation to the model block that describes the law of motion for ε̃At .
If the agnostic disturbance replaces a regular structural disturbance, then this
disturbance should be taken out of the program.

3. Declare ε̃At as a variable and declare the elements of dddAi and the coefficients of
the law of motion for ε̃At as parameters.

4. Specify a prior for the elements of dddAi .

We do not add the agnostic disturbance to equations (6) and (12) of the SW model,
because these equations just contain definitions for capacity utilization and the wage
mark-up, respectively.79 The set of equations for the SW model consists of two parts.
The first part models the flexible price economy and the second part models the actual
economy with sticky prices. One needs to model the flexible-price economy, because
the flexible-price output level is used to define the output gap, which is one of the
arguments in the monetary policy rule. In principle, one could let the agnostic dis-
turbance enter the equations of the sticky-price economy and the associated equations
in the flexible-price economy with a different coefficient.80 In most economic models,
however, structural disturbances would enter the associated pair of equations in the
same way. Therefore, we also restrict the agnostic disturbance to enter the associated
equations in the same way. The exception is SW equation (13) because it captures

77The program is available at https://www.aeaweb.org/articles?id=10.1257/aer.97.3.586 under the
“Download Data Set” link.

78The other two ASDs are added using the same procedure. The dddA coefficients correspond to the
Γ̂2Γ̂2Γ̂2 coefficients in section 3.2.1. We adapt the notation, since SW also use lower case Roman letters
for coefficients.

79Equation numbers refer to those in Smets and Wouters (2007). We do allow the agnostic dis-
turbances to affect the utilization rate and the wage mark-up directly by including it in the model
equations that specify their relationship with other model variables.

80The sticky-price block contains some equations, such as the monetary policy rule, that do not
have a counterpart in the flexible-price economy.
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both potential stickiness in wages and the relationship between the wage rate and its
mark-up.

Specifically, we add the agnostic disturbance to equations (1), (2), (3), (4), (5), (7),
(8), (9), and (11) of the SW model and the associated equations of the flexible-price
economy. We also add it to equation (13) in both the flexible and the sticky-price
part of the model, but here we allow coefficients to differ. In addition, we add the
agnostic disturbance to equations (10) and (14) which do not have a counterpart in the
flexible-price economy. This means that dddA has thirteen elements. The last coefficient
associated with the agnostic disturbance is the autoregressive coefficient of its law of
motion. The standard deviation of the agnostic disturbance is normalized to be equal
to 1.

D.2 Model selection procedures

The general-to-specific model selection procedure starts with the specification in
which the agnostic disturbances are allowed to enter each model equation. It then
calculates the marginal data densities for all possible specifications in which the ASD
is not allowed to enter one of the model equations. Thus, we estimate a set of models,
each having one less coefficient. If none of the specifications lead to a better fit, then
the procedure stops. If improvements are found, then the procedure is repeated using
the specification that led to the biggest improvement as the benchmark.

The specific-to-general procedure starts with the specifications in which each of the
two ASDs are allowed to enter only one model equation. To avoid a singularity, one
cannot start with a more parsimonious model.81 In the next step, we estimate a set of
models in which one of the ASDs is added to one equation and, thus, one additional
parameter is estimated. The procedure stops if none of the specifications leads to
an improvement. If there is an improvement, then the specification with the largest
improvement becomes the next benchmark and the procedure is repeated.

Why not consider even more general specifications? Although our model se-
lection procedures consider a rich set of models, they are not the most general. Un-
fortunately, there are practical limitations to what is feasible. Five SW disturbance
are always included in our specifications. The most ideal setup would be flexible in
this dimension as well and not safeguard any of the seven SW regular disturbances
and allow for the possibility of including seven ASDs (or more). With such a setup all
SW disturbances could be replaced by an ASD. The first problem one would have to
deal with is that identification of structural parameters is likely to limit the number of
regular structural disturbances one can replace with ASDs. Let us consider a simple
setup in which there are seven equations for seven state variables and all state variables

81The posteriors of the ASD coefficients in the fully agnostic model provide clear evidence that one
of the ASDs is very important for the bond Euler equation and one for the investment Euler equation.
So these are natural choices.
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are observables. Moreover, each equation has one regular structural disturbance. A
general-to-specific procedure would be complicated since the first-stage model would
have a large number of coefficients to estimate. Specifically, if all seven ASDs appear in
all equations, then one needs to estimate forty-nine reduced-form coefficients. One may
need a rich data set to identify all of them. In our application, the number of coefficients
would be equal to ninety-one, since we have thirteen equations. The specific-to-general
procedure faces the problem that each specification needs at least seven disturbances
to avoid singularities. This means that there are a large number of different models
one can start with. For the simple setup with seven equations described above, this
would mean that there are already 27 = 128 different models to consider in the first
round alone.

D.3 Additional results

Specifications with and without restrictions on ASDs. Table 11 compares
structural parameter estimates of models chosen by our model selection procedures
with those that contain the same number of ASDs, but allow ASDs to enter all equa-
tions. The latter are fully agnostic. The parameter estimates are fairly similar. IRFs
for the included regular structural disturbances are also quite similar. That is not al-
ways the case for the IRFs of the agnostic disturbances themselves. The IRFs for some
variables do differ between the concise and the fully unrestricted ASD specification.
Given the misspecification results of section 2, it is not surprising that different em-
pirical specifications lead to different results. Another issue with the fully unrestricted
ASD specification is that it estimates a large number of coefficients which complicates
generating an accurate posterior with Monte Carlo Markov Chain algorithms. Espe-
cially, for the 3-ASD fully unrestricted specification, the Brooks-Gelman statistics did
not look particularly good for some of the coefficients associated with the agnostic
disturbances.

Specifications with two and three ASDs. Tables 12 and 13 provide the role of the
regular and agnostic disturbances for the fluctuations of a wide range of variables. In
addition to the results of the SW specification, it also shows the results for the two-ASD
and three-ASD specification chosen by our specific-to-general procedure. It shows that
the results are very similar for the two chosen ASD specifications. The same conclusion
can be drawn from figures 9 and 10 that plot the IRFs for two agnostic disturbances.
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Table 11: Posterior Means

Parameter Original SW Agnostic: 2 ASDs Agnostic: 3 ASDs
concise unrestricted concise unrestricted

α 0.1903 0.2044 0.1878 0.1877 0.2089
σc 1.3889 1.4657 1.4535 1.4618 1.4772
Φ 1.6083 1.5211 1.5242 1.4741 1.4762
φ 5.7405 5.3843 4.4031 5.3425 4.6933
λ 0.7136 0.6544 0.7055 0.6679 0.6930
ξw 0.7066 0.6660 0.6706 0.7268 0.6453
σ` 1.8458 1.9094 1.7733 2.0770 1.5916
ξp 0.6541 0.6566 0.6981 0.6412 0.6902
ιw 0.5783 0.5556 0.5432 0.5077 0.5557
ιp 0.2389 0.2010 0.1997 0.1871 0.1891
ψ 0.5426 0.5345 0.5049 0.5283 0.3176
rπ 2.0469 1.7676 1.7797 1.7746 1.7438
ρ 0.8105 0.7933 0.8082 0.8018 0.8032
ry 0.0887 0.0725 0.0860 0.0787 0.0819
r∆y 0.2237 0.1903 0.1703 0.1941 0.1608
ρa 0.9572 0.9555 0.9483 0.9532 0.9510
ρg 0.9764 0.9719 0.9710 0.9702 0.9018
ρr 0.1464 0.1376 0.1219 0.1286 0.1227
ρp 0.8893 0.8975 0.8899 0.9262 0.9080
ρw 0.9680 0.9751 0.9790 0.9747 0.9822

ρb / ρA 0.2165 0.3344 0.6386 0.3239 0.4527
ρi / ρB 0.7116 0.6087 0.1660 0.6069 0.7232
ρC - - - 0.1865 0.1577
µp 0.6977 0.6764 0.6923 0.7166 0.7172
µw 0.8466 0.8241 0.8368 0.5945 0.8168
ρga 0.5184 0.6438 0.6525 0.6709 0.5448
σa 0.4586 0.4436 0.4421 0.4524 0.4411
σg 0.5299 0.4702 0.4689 0.4428 0.2285
σr 0.2449 0.2180 0.2171 0.2171 0.2114
σp 0.1403 0.1346 0.1299 0.1308 0.1311
σw 0.2427 0.2384 0.2361 0.0763 0.2249
σb 0.2398 - - - -
σi 0.4525 - - - -

100(β−1 − 1) 0.1648 0.1685 0.1826 0.1656 0.2038
γ̄ 0.4316 0.4349 0.4386 0.4367 0.4352
π̄ 0.7845 0.7483 0.7443 0.7391 0.7534
¯̀ 0.5617 0.1263 0.5216 0.1303 1.0360

MDD -922.40 -892.92 -906.85 -890.73 -925.50

Notes. MDD stands for marginal data density. The “concise” ASD specifications are the ones chosen by the specific-to-
general model selection procedure. The “unrestricted” ASD specifications are the fully agnostic with no zero restrictions.
See table 1 for the definitions of the parameters.
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Table 12: Variance decomposition for observables across model specifications

εa εg εr εp εw εb/ε̃A εi/ε̃B ε̃C

∆y Original SW 16.10 28.88 6.17 4.55 6.39 22.12 15.79 -
Agnostic: 2 ASDs 20.29 27.01 7.15 6.04 8.12 20.53 10.85 -
Agnostic: 3 ASDs 22.21 24.60 7.04 4.66 10.30 21.33 8.04 1.82

∆c Original SW 5.29 2.10 11.56 4.40 14.54 61.17 0.95 -
Agnostic: 2 ASDs 3.26 1.62 11.29 4.56 15.33 62.34 1.61 -
Agnostic: 3 ASDs 2.95 1.28 10.69 3.37 17.90 61.67 2.03 0.1

∆i Original SW 6.01 0.84 2.47 3.80 2.37 2.46 82.05 -
Agnostic: 2 ASDs 4.86 0.91 2.19 4.24 2.76 12.25 72.80 -
Agnostic: 3 ASDs 5.49 1.02 2.38 3.80 3.94 12.55 70.01 0.81

` Original SW 1.94 10.34 3.15 6.23 67.66 2.52 8.15 -
Agnostic: 2 ASDs 1.29 6.84 2.47 6.04 71.23 1.56 10.57 -
Agnostic: 3 ASDs 1.08 4.33 2.15 4.44 79.70 1.29 4.97 2.03

∆w Original SW 4.53 0.09 1.48 29.47 61.61 0.79 2.03 -
Agnostic: 2 ASDs 3.82 0.22 2.43 30.84 54.34 3.02 5.34 -
Agnostic: 3 ASDs 4.09 0.11 1.25 25.18 13.32 2.23 0.38 53.45

π Original SW 3.92 1.00 4.25 27.64 59.43 0.58 3.18 -
Agnostic: 2 ASDs 3.16 1.28 4.43 24.91 61.96 0.79 3.46 -
Agnostic: 3 ASDs 2.95 0.90 3.28 16.87 70.46 0.68 3.96 0.91

r Original SW 10.09 3.90 14.67 7.17 38.42 7.40 18.34 -
Agnostic: 2 ASDs 6.50 3.49 9.77 5.79 38.96 21.49 14.02 -
Agnostic: 3 ASDs 5.70 2.77 8.18 4.33 48.61 17.29 12.47 0.65

Notes. The table provides the contributions (in percent) of the different structural disturbances to the variance of the
observable variables, across different model specifications. The ASD specifications are the ones chosen by our model
selection procedure. y stands for log output; c for log consumption; i for log investment; l for hours; w for log wage rate;
π for inflation; and r for nominal interest rate. Structural disturbances are defined as follows. εa: TFP; εg : government
expenditures; εr: monetary policy; εp:price mark-up; εw: wage mark-up; εb: risk premium; εi: investment; ε̃A: agnostic
Euler; ε̃B : agnostic investment-modernization; and ε̃C : capital-efficiency wage mark-up.
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Table 13: Variance decomposition for additional variables across model specifications

εa εg εr εp εw εb/ε̃A εi/ε̃B ε̃C

yt Original SW 29.93 4.09 2.16 6.37 48.58 1.53 7.34 -
Agnostic: 2 ASDs 26.50 3.02 1.91 7.02 55.93 1.31 4.32 -
Agnostic: 3 ASDs 21.19 2.13 1.67 5.47 65.95 1.14 2.17 0.28

ct Original SW 11.06 8.42 2.08 4.19 69.25 2.18 2.83 -
Agnostic: 2 ASDs 6.60 6.60 1.78 4.23 78.76 1.81 0.22 -
Agnostic: 3 ASDs 4.29 4.30 1.52 3.16 84.48 1.51 0.49 0.25

it Original SW 20.37 5.41 1.27 6.93 21.56 0.22 44.23 -
Agnostic: 2 ASDs 17.22 6.35 1.14 8.25 29.78 1.21 36.04 -
Agnostic: 3 ASDs 15.31 5.79 1.13 7.75 38.72 1.06 29.25 1.00

rkt Original SW 14.86 17.47 1.63 10.58 19.21 0.86 35.39 -
Agnostic: 2 ASDs 12.28 20.44 2.65 19.09 29.73 0.92 14.88 -
Agnostic: 3 ASDs 8.41 14.66 1.73 13.16 30.17 0.67 18.12 13.08

qt Original SW 4.65 0.55 9.03 3.11 1.20 45.42 36.04 -
Agnostic: 2 ASDs 9.78 1.35 21.83 9.30 3.67 19.58 34.49 -
Agnostic: 3 ASDs 9.72 1.35 19.88 6.50 5.14 18.64 31.56 7.21

zt Original SW 14.86 17.47 1.63 10.58 19.21 0.86 35.39 -
Agnostic: 2 ASDs 12.23 20.36 2.64 19.02 29.61 4.43 11.71 -
Agnostic: 3 ASDs 8.86 15.43 1.82 13.85 31.76 4.14 9.46 14.68

µpt Original SW 11.56 0.29 3.27 57.02 23.87 0.87 3.11 -
Agnostic: 2 ASDs 8.06 0.37 3.38 53.22 18.90 14.59 1.48 -
Agnostic: 3 ASDs 7.99 0.24 2.13 54.80 11.88 15.22 2.61 5.13

kst Original SW 23.43 3.92 1.23 11.37 34.19 0.36 25.50 -
Agnostic: 2 ASDs 21.82 4.90 1.55 16.51 52.66 1.32 1.24 -
Agnostic: 3 ASDs 15.59 3.60 1.11 14.11 58.20 1.21 0.61 5.57

kt Original SW 22.38 8.11 0.50 4.93 31.56 0.04 32.48 -
Agnostic: 2 ASDs 22.16 11.30 0.55 7.27 55.74 0.21 2.77 -
Agnostic: 3 ASDs 14.84 8.05 0.42 6.18 58.26 0.12 2.37 9.75

wt Original SW 33.03 1.03 1.95 38.38 18.61 0.40 6.60 -
Agnostic: 2 ASDs 26.99 1.00 2.63 47.34 20.71 0.39 0.92 -
Agnostic: 3 ASDs 25.35 0.74 1.62 49.34 14.29 0.30 0.44 7.92

Notes. The table provides the contributions (in percent) of the different structural disturbances to the variance of the
observable variables, across different model specifications. The ASD specifications are the ones chosen by our model
selection procedure. y stands for log output; c for log consumption; i for log investment; l for hours; w for log wage rate;
rk for rental rate on capital; q for the log price of capital; z for the utilization rate; µp for the price mark-up; ks for
log capital used in production; and k for log installed capital. Structural disturbances are defined as follows. εa: TFP;
εg : government expenditures; εr: monetary policy; εp:price mark-up; εw: wage mark-up; εb: risk premium; εi: investment;
ε̃A: agnostic Euler; ε̃B : agnostic investment-modernization; and ε̃C : capital-efficiency wage mark-up.
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Figure 9: IRFs of the agnostic Euler disturbance: 2 versus 3 ASDs
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Notes. These figures plot the IRFs of the agnostic disturbance ε̃At that we interpret as a general Euler disturbance
for the empirical specifications with two and three ASDs. Both are chosen with the specific-to-general model
selection procedure.
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Figure 10: IRFs of the agnostic investment-modernization disturbance: 2 versus 3 ASDs
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Notes. These figures plot the IRFs of the agnostic disturbance ε̃Bt that we interpret as an investment-modernization
disturbance for the empirical specifications with two and three ASDs. Both are chosen with the specific-to-general
model selection procedure.
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D.4 Additional results for ε̃At̃ε
A
t̃ε
A
t

Figure 11 plots the IRFs associated with an innovation in the agnostic Euler dis-
turbance for our 3-ASD benchmark specification and also when the coefficient of this
agnostic disturbance in the capital valuation equation is equal to zero. A zero coeffi-
cient in this equation means the disturbance is like a preference and not like a bond
risk-premium disturbance.82 The IRFs are very similar, which confirms our claim that
the coefficient in the capital valuation equation is quantitatively not very important.

Figure 12 plots the same IRFs when the coefficient of the agnostic Euler disturbance
in the Taylor rule is set equal to zero. The figure shows that the direct response of the
policy rate to a positive shock to this disturbance dampens the expansion and prevents
an upsurge of inflation.

Figure 13 plots the same IRFs when we set equal to zero the coefficients of the
disturbance in the four equations that we ignored in the discussion of the agnostic
Euler disturbance, namely, the overall budget constraint, the utilization, the price
mark-up equation, and the rental rate of capital equation. The figure documents that
the role of the agnostic disturbance through these equations is minor since the IRFs
are overall quite similar to those of our benchmark specification.

D.5 Additional results for ε̃Ct̃ε
C
t̃ε
C
t

Figure 14 plots the IRFs for our agnostic capital-efficiency wage mark-up distur-
bance when the coefficient of this disturbance in the overall budget constraint is set
equal to zero. The figure documents that this has a minor impact on IRFs.

82Recall that the MRS has been substituted out of the capital valuation equation using the MRS
of the bond Euler equation.
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Figure 11: IRFs of the agnostic Euler disturbance with restrictions I
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Notes. These figures plot the IRFs of the agnostic Euler disturbance for our benchmark specification and when
the impact of this IRF through the capital valuation equation is set equal to zero.
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Figure 12: IRFs of the agnostic Euler disturbance with restrictions II
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Notes. These figures plot the IRFs of the agnostic Euler disturbance for our benchmark specification and when
the impact of this IRF through the Taylor rule is set equal to zero.
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Figure 13: IRFs of the agnostic Euler disturbance with restrictions III
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Notes. These figures plot the IRFs of the agnostic Euler disturbance for our benchmark specification and when
the impact of this IRF through the overall budget constraint, the utilization, the price mark-up equation, and the
rental rate of capital equation is set equal to zero.
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Figure 14: IRFs of the agnostic capital-efficiency wage mark-up disturbance with restrictions
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Notes. These figures plot the IRFs of the agnostic capital-efficiency wage mark-up disturbance for our benchmark
specification and when the impact of this IRF through the overall budget constraint is set equal to zero.
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E Misspecification: Literature review

Most empirical papers that estimate a dynamic macroeconomic model do not raise
the issue of model uncertainty or misspecification, except possibly with some robustness
exercises.83 This does – of course – not mean that the profession is not aware that
misspecification is a serious concern. In fact, some of the most prominent researchers
in this research area have drawn attention to the risk of misspecification. The first
subsection discusses evidence that indicates that misspecification of DSGE models is a
serious concern. The second subsection discusses approaches proposed in the literature
to deal with misspecfication. See Paccagnini (2017) for a more detailed survey.

E.1 Indications of DSGE misspecification

Del Negro, Schorfheide, Smets, and Wouters (2007) develop a procedure that allows
the data to determine the usefulness of a DSGE model relative to a much less restricted
VAR. Using a model very similar to the DSGE model of Smets and Wouters (2003),
they find that their procedure does put some weight on the DSGE model, which implies
that the restrictions of the DSGE model are of some value. However, they also argue
that misspecification is a concern that “... is not small enough to be ignored.” Using
the same methodology, Del Negro and Schorfheide (2009) also find “... strong evidence
of DSGE model misspecification.”

There is also more indirect evidence that misspecification of estimated DSGE mod-
els is substantive. Using the Smets and Wouters (2003) model for the Euro Area,
Beltran and Draper (2015) find that the data prefer implausible estimates for several
parameters. For example, most of the mass of the marginal likelihood for the param-
eter of relative risk aversion is above 200, way above the range of values considered
reasonable. This information provided by the likelihood is typically not revealed in
empirical studies, since only properties of the posterior are reported and the choice of
prior ensures that these aspects of the empirical likelihood have little or no weight in the
posterior. A similar conclusion can be drawn from Onatski and Williams (2010). They
estimate the same model using uniform priors over bounded ranges. These ranges are
such that the priors are less informative than the ones typically used in the literature.
Consistent with the results in Beltran and Draper (2015), several of the point estimates
in Onatski and Williams (2010) are at the prior bounds. Using a new algorithm to deal
with the complexity of estimating likelihood functions, Mickelsson (2015) re-estimates
the model of Smets and Wouters (2007) and he also finds that several parameter esti-
mates are significantly different from the ones reported in Smets and Wouters (2007).

Another possible reason for misspecification is the assumption that parameters are
constant. To get efficient estimates we would like to use long time-series data, but the
longer the time series the less likely that all parameters are constant. Canova, Ferroni,

83Interestingly, there are quite a few macroeconomic models in which agents – especially agents
setting fiscal and monetary policy – face model uncertainty. If policy makers face model uncertainty,
then researchers are likely to do so as well.
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and Matthes (2015) address this issue and document that this is important for the
model of Gertler and Karadi (2010).84

E.2 Dealing with misspecification: Other approaches

Richer models. Exogenous random disturbances are typically assumed not to be
correlated with each other. This is a convenient assumption, because allowing for
interaction between the different exogenous disturbances would substantially increase
the number of parameters to be estimated given that DSGE typically have a several
exogenous disturbances. However, it seems quite plausible that such disturbances are
correlated. Del Negro and Schorfheide (2009) and Cúrdia and Reis (2012) deal with this
possible misspecification and allow for more general processes to describe the behavior
of the exogenous random disturbances.

Cúrdia and Reis (2012) find that this generalization has nontrivial consequences
for the properties of the model. For example, the impact of a monetary policy shock
on output is only half as big when the exogenous random variables are allowed to be
correlated and the medium-term impact of a government spending shock switches from
being positive to negative.85

Enriching a model by allowing for additional features and more general specifica-
tions is likely to reduce misspecification. However, richer models typically have more
parameters, which will reduce the efficiency of the estimation by reducing the number
of degrees of freedom.

Multiple models. Another way to deal with potential misspecification is to consider
a set of different DSGE models. These could be compared informally or formally using,
for example, relative marginal likelihoods or model averaging.86 However, given the
difficulty of modeling macroeconomic phenomena, it seems likely that all models in a
set of DSGE models are subject to at least some type of misspecification.

Combining structural and reduced-form models. Ireland (2004) is an early pa-
per that proposes a more general procedure to deal with possible misspecification when
estimating a DSGE model even though the word misspecification is not used in the
paper. Specifically, Ireland (2004) “... augments the DSGE model so that its residuals
– meaning the movements in the data that the theory cannot explain – are described
by a VAR.” To understand this procedure, consider the following representation of the

84The literature cited in Canova, Ferroni, and Matthes (2015) documents that this is an issue in a
variety of DSGE models.

85Cúrdia and Reis (2012) still impose that the innovations of the shocks are uncorrelated. Thus,
the innovations still have a structural interpretation.

86See chapter 5 in An and Schorfheide (2007) for a detailed discussion.
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linearized solution of a DSGE model:

st = Ast−1 +Bηt, (57)

yt = Cst−1 +Dηt, (58)

where st is a vector containing (endogenous and exogenous) state variables, yt is a
vector containing the observables, and ηt is a vector containing the innovations of
the exogenous random variables. Ireland (2004) proposes to augment the observation
equation (58) as follows:

yt = Cst−1 +Dηt + ut (59a)

ut = Fut−1 + ξt (59b)

where ut captures the misspecification or incompleteness of the DSGE model. In his
application, the structural equations are the policy rules from a standard Real Business
Cycle (RBC) model with total factor productivity (TFP) as the only driving process. If
the standard deviation of ηt is equal to 0, then this procedure boils down to estimating
a standard VAR.

Note that the presence of the “missing elements” that are captured by ut is assumed
to have no effect on that part of agents’ behavior that is described by the DSGE model,
that is, the matrices A, B, C, and D. For this to be correct it must be true that the
response of the economy to a TFP shock does not depend on the presence of other
disturbances. One might think that such independence of a DSGE’s policy rule to the
presence of other disturbances is only correct if the additional disturbances represent
measurement error.87 However, section 3.2.2 shows that this “independence” property
is correct in linear(ized) models in the sense that the specification of the structural
part given in equations (57) and (58) does not depend on the presence of not included
structural disturbances. It must be noted that the assumption that ut follows a first-
order (or even a finite-order) VAR could very well be restrictive. Thus the reduced-form
specification for ut could be misspecified as well.

The most comprehensive methodology to deal with misspecified DSGE models is
put forward in Del Negro, Schorfheide, Smets, and Wouters (2007). Their starting
point is a VAR specification of the observables. That is,

yt =
K∑
k=1

Fkyt−1 +Gξt (60a)

E [ξtξ
′
t] = I. (60b)

The key idea of the DSGE-VAR estimation proposed in Del Negro, Schorfheide, Smets,

87Although Ireland (2004) does not refer to the residual between model and data as measure-
ment error, other papers in the literature describing his procedure do. Examples are Del Negro and
Schorfheide (2009) and Cúrdia and Reis (2012).
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and Wouters (2007) is to estimate this time series process with the prior distribution
for F and Ω that is centered at the values implied by a DSGE model, F (Ψ) and G(Ψ),
where Ψ is the vector containing the parameters of the DSGE model. The estimation
procedure consists of jointly estimating Ψ, the structural parameters of the DSGE
model, which pin down the prior for the VAR coefficients, and the VAR coefficients
themselves.

The precision of the prior of the VAR coefficients is controlled with a scalar pa-
rameter, λ. If λ is equal to ∞, then one estimates an unrestricted VAR and if λ is
equal to 0, then the procedure boils down to estimating a DSGE without allowing for
misspecification. The estimation is executed for different values of λ. To determine
the optimal value for λ, the authors propose using the marginal data density, which
compares in-sample fit with model complexity.88 If the restrictions imposed by the
DSGE model are incorrect, then the procedure will put more weight on the VAR.

As pointed out in Chari, Kehoe, and McGrattan (2008), DSGE models often do not
imply a VAR representation with a finite number of lags, unless all state variables are
included. Thus, not only the DSGE, but also the VAR component of the DSGE-VAR
procedure could be misspecified.

Wedges. Yet another approach to deal with misspecification is to add “wedges”
to specific model equations. This procedure was introduced in Chari, Kehoe, and
McGrattan (2007). Inoue, Kuo, and Rossi (2015) use this setup to formally test for
model misspecfication. A wedge may have different interpretations or possibly no
simple interpretation. From an econometric point a view, wedges are not different
from regular structural disturbances in how they affect time series properties of the
model. That is, they impose restrictions on the policy functions just as structural
disturbances do and it matters crucially how one enters wedges. For example, the
assumption that a wedge only enters one and not all model equations is a restriction.
Although some wedges can enter more than one equation, wedges used in the literature
only enter a few specific model equations and these are chosen by the researcher a priori
and – as pointed out in Inoue, Kuo, and Rossi (2015) – wedges can be introduced in
different ways. By contrast, ASDs appear in all equations and if one prefers a more
concise specification, then our agnostic approach indicates one should use a statistical
model selection criterion.
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