EARNINGS-BASED BORROWING CONSTRAINTS AND PECUNIARY EXTERNALITIES

Thomas Drechsel Seho Kim

(University of Maryland)

Advances in Macro Finance Tepper-LAEF Conference April 8, 2022

MOTIVATION

▶ US firms face two types of credit constraints: asset-based and earnings-based

- Liquidation value of physical assets vs. borrower's current EBITDA limit debt access
- Direct micro evidence: 80% of corporate debt is earnings-based (Lian and Ma, 2020)
- Consequences for business cycle dynamics (Drechsel, 2020)
- Limited understanding of normative implications of earnings-based constraints
 - This paper provides a theoretical treatment
 - Structural model with formal welfare characterization
 - Implications for optimal macroprudential policy

PREVIEW OF FINDINGS

Asset-based constraint: firms over-borrow in decentralized equilibrium

- Echoes existing insights of the literature, e.g. Dávila and Korinek (2018)
- $\blacktriangleright \text{ Higher asset price relaxes constraint} \rightarrow \text{not internalized}$

Earnings-based constraint: firms under-borrow in decentralized equilibrium

- Higher input price (wage) tightens constraint \rightarrow not internalized
- Depending on labor market structure, can also lead to constrained efficiency

RELATED LITERATURE

Pecuniary externalities with financial frictions:

Lorenzoni (2008), Bianchi (2011), Benigno, Chen, Otrok, Rebucci, and Young (2013), Bianchi (2016), Dávila and Korinek (2018), Ottonello, Perez, and Varraso (2019),...

Subtleties in the policy implications of different types of credit constraints

- Insights on the specific nature of credit constraints: Lian and Ma (2020), Drechsel (2020), Greenwald (2019),...
 - Normative implications of asset-based and earnings-based constraints

PLAN FOR THE TALK

- 1. Main intuition
- 2. Empirical evidence
- 3. The model
 - A. Setting
 - B. Efficiency analysis
 - C. Model restrictions and main results

4. Extensions

Working capital, open economy, input vs. output prices

5. Conclusion

MAIN INTUITION

MAIN INTUITION

Consider a generic financial constraint:

 $\Phi(x', \boldsymbol{z}, \widetilde{\boldsymbol{z}}) \ge 0$

- x': financial asset position (x' < 0: borrowing)
- z: endogenous variables chosen by the agent
- \triangleright \tilde{z} : endogenous or exogenous variables taken as given by the agent (e.g., prices)
- Agents' choices move prices in $\widetilde{z} \rightarrow$ pecuniary externality
- The direction of price changes matters for normative implications

MAIN INTUITION: ASSET-BASED CONSTRAINT

Asset-based collateral constraint:

$$\blacktriangleright \ \pmb{z}=k' \text{ , } \widetilde{\pmb{z}}=q \text{, and } \Phi(x', \pmb{z}, \widetilde{\pmb{z}})=x'+\phi qk' \geq 0 \Rightarrow -x' \leq \phi qk'$$

• q = q(X, K): market price of capital as a function of the aggregate state variables

- Aggregate states are net worth and capital
- Suppose q depends positively on net worth
 - If more borrowing today:
 - \Rightarrow Future aggregate borrower net worth \downarrow
 - \Rightarrow Future price of capital \downarrow through lower demand for capital
 - \Rightarrow Tightening of future borrowing limit

Agents do not internalize this effect, over-borrow relative to the social optimum

MAIN INTUITION: EARNINGS-BASED CONSTRAINT

Earnings-based constraint:

$$\blacktriangleright \ \mathbf{z} = [y, \ell] \text{ , } \widetilde{\mathbf{z}} = w \text{, and } \Phi(x', \mathbf{z}, \widetilde{\mathbf{z}}) = x' + \widetilde{\phi}(y - w\ell) \geq 0 \Rightarrow -x' \leq \widetilde{\phi}(y - w\ell)$$

• w = w(X, K): market wage as a function of the aggregate state variables

- \blacktriangleright Suppose w increases with net worth
 - If more borrowing today:
 - \Rightarrow Future aggregate borrower net worth \downarrow
 - \Rightarrow Future wage \downarrow through lower supply of labor
 - \Rightarrow Loosening of future borrowing limit

Agents do not internalize this effect, under-borrow relative to the social optimum

EMPIRICAL EVIDENCE

EMPIRICAL EVIDENCE

- Mounting microeconomic evidence in favor of $-x' \leq \widetilde{\phi}(y w\ell)$
- Earnings-based borrowing constraints can arise through:
 - Debt covenants: legal provisions in loan contracts
 - Credit ratings, bankruptcy procedures, ...
- Lian and Ma (2020): 80% of corporate debt earnings-based
- ▶ Drechsel (2020): earnings-based constraints matter for business cycle dynamics
- Caglio, Darst, and Kalemli-Özcan (2021) shows that earnings-based are prevalent for private small and medium-sized companies (SMEs)

EMPIRICAL EVIDENCE (DRECHSEL, 2020)

	Covenant type	Median	Mean	Freq. (%)
1	Max Debt to EBITDA	3.75	4.60	60.5
2	Min EBITDA to Interest	2.50	2.56	46.7
3	Min EBITDA to Fixed Charge	1.25	1.42	22.1
4	Max. Leverage ratio	0.60	0.64	21.3
5	Max. Capex	20M	194M	15.1
6	Net Worth	126M	3.2B	11.5

EBITDA is earnings before interest, taxes, depreciation and amortization

- Covenants based on earnings very prevalent
- Covenants bind frequently with large economic effects (see e.g. Chodorow-Reich and Falato, 2021)

BUSINESS CYCLE CONSEQUENCES (DRECHSEL, 2020)

 Aggregate debt response consistent with earnings-based constraint, not with collateral constraint

BUSINESS CYCLE CONSEQUENCES (DRECHSEL, 2020)

 Split of debt response across borrower types consistent with model prediction across alternative constraints

THE MODEL

- Build on structure Dávila and Korinek (2018) + labor market
- Three period model (t = 0, 1, 2)
- The state of nature, $\theta \in \Omega$, is revealed at date 1
- Two types of agents: borrowers (b) and lenders (l)
- Both agents produce, consume and supply labor
- Borrowers face credit constraints

AGENTS' PROBLEM

▶ Agent $i \in \{b, l\}$ maximizes

$$U^i = \mathbb{E}_0\left[\sum_{t=0}^2 \beta^t u^i(c^i_t,\ell^i_{st})\right]$$

subject to budget constraints

$$\begin{split} c_{0}^{i} + h^{i}(k_{1}^{i}) + \int_{\theta \in \Theta} m_{1}^{\theta} x_{1}^{i,\theta} d\theta &= e_{0}^{i} \\ c_{1}^{i,\theta} + q^{\theta} \Delta k_{2}^{i,\theta} + m_{2}^{\theta} x_{2}^{i,\theta} &= e_{1}^{i,\theta} + x_{1}^{i,\theta} + F^{i}(k_{1}^{i},\ell_{d1}^{i,\theta}) - w_{1}^{\theta} \ell_{d1}^{i,\theta} + w_{1}^{\theta} \ell_{s1}^{i,\theta}, \quad \forall \theta \\ c_{2}^{i,\theta} &= e_{2}^{i,\theta} + x_{2}^{i,\theta} + F^{i}(k_{2}^{i,\theta},\ell_{d2}^{i,\theta}) - w_{2}^{\theta} \ell_{d2}^{i,\theta} + w_{2}^{\theta} \ell_{s2}^{i,\theta}, \quad \forall \theta \end{split}$$

and financial constraints

$$\begin{split} \Phi_{2}^{b,\theta}(x_{2}^{b,\theta},k_{1}^{b},k_{2}^{b,\theta},\{\ell_{dt}^{b,\theta},\ell_{st}^{b,\theta}\}_{t=1}^{2};q^{\theta},w_{1}^{\theta},w_{2}^{\theta},m_{2}^{\theta}) \geq 0, \;\forall\theta \end{split}$$

FINANCIAL CONSTRAINT

Main constraint of interest: period-1 financial constraint

 $\Phi_{2}^{b,\theta}(x_{2}^{b,\theta},k_{1}^{b},k_{2}^{b,\theta},\{\ell_{dt}^{b,\theta},\ell_{st}^{b,\theta}\}_{t=1}^{2};q^{\theta},w_{1}^{\theta},w_{2}^{\theta},m_{2}^{\theta})\geq0,\;\forall\theta$

General formulation in which all model variables can enter

Includes:

- Asset-based constraint: $-x_2^{b,\theta} \le \phi q^{\theta} k_2^{b,\theta}$
- ► Earnings-based constraint: $-x_2^{b,\theta} \leq \widetilde{\phi}(F^b(k_1^b, \ell_{d1}^{b,\theta}) w_1^{\theta} \ell_{d1}^{b,\theta})$
- $\blacktriangleright \text{ Interest coverage constraint: } -x_2^{b,\theta} \leq \hat{\phi} \frac{F^b(k_2^{b,\theta},\ell_{d2}^{b,\theta}) w_2^\theta \ell_{d2}^{b,\theta}}{\frac{i\theta}{2}}$

SOLVING THE MODEL

Decentralized equilibrium (backward induction)

- Date 2: purely intra-temporal consumption, labor supply and demand
- Date 1: express welfare as a function of state variables

$$V^{i,\theta}(n_1^{i,\theta}, k_1^i; N_1^{\theta}, K_1) = \max_{\{c_1^{i,\theta}, c_2^{i,\theta}, k_2^{i,\theta}, k_2^{i,\theta}, \ell_{dt}^{i,\theta}, \ell_{st}^{i,\theta}\}} \left\{ u^i(c_1^{i,\theta}, \ell_{s1}^{i,\theta}) + \beta u^i(c_2^{i,\theta}, \ell_{s2}^{i,\theta}) \right\}$$

- s.t. period 1 and 2 budget constraint and period 1 financial constraint
 - \blacktriangleright net worth: $n_1^{i,\theta} \equiv e_1^{i,\theta} + x_1^{i,\theta}$
 - Prices are functions of only aggregate states
 - ▶ In equilibrium, $n_1^{i,\theta} = N_1^{i,\theta}$, $k_1^i = K_1^i$

- Following Dávila and Korinek (2018), "sufficient statistics" approach
- ▶ The effect of changes in $N_1^{j,\theta}$ on $V^{i,\theta}$:

$$V_{N_1^j}^{i,\theta} \equiv \frac{dV^{i,\theta}(\cdot)}{dN_1^{j,\theta}} = \lambda_1^{i,\theta} \mathcal{D}_{1N^j}^{i,\theta} + \lambda_2^{i,\theta} \mathcal{D}_{2N^j}^{i,\theta} + \kappa_2^{i,\theta} \mathcal{C}_{N^j}^{i,\theta}$$

- Welfare changes that are not internalized by the agents, work through prices
- Distinguish between distributive effects (\mathcal{D}) and constraint effects (\mathcal{C})

$$V_{N_1^j}^{i,\theta} \equiv \frac{dV^{i,\theta}(\cdot)}{dN_1^{j,\theta}} = \lambda_1^{i,\theta} \mathcal{D}_{1N^j}^{i,\theta} + \lambda_2^{i,\theta} \mathcal{D}_{2N^j}^{i,\theta} + \kappa_2^{i,\theta} \mathcal{C}_{N^j}^{i,\theta}$$

Distributive effects:

- Changes in prices that benefit one agent, make other agent worse off
- Not our focus

SUFFICIENT STATISTICS

$$V_{N_1^j}^{i,\theta} \equiv \frac{dV^{i,\theta}(\cdot)}{dN_1^{j,\theta}} = \lambda_1^{i,\theta} \mathcal{D}_{1N^j}^{i,\theta} + \lambda_2^{i,\theta} \mathcal{D}_{2N^j}^{i,\theta} + \kappa_2^{i,\theta} \mathcal{C}_{N^j}^{i,\theta}$$

Constraint effects: changes in prices that affect tightness of credit constraints

$$\begin{split} \mathcal{C}_{N^{j}}^{b,\theta} &\equiv \frac{\partial \Phi_{2}^{b,\theta}}{\partial q^{\theta}} \frac{\partial q^{\theta}}{\partial N_{1}^{j,\theta}} + \frac{\partial \Phi_{2}^{b,\theta}}{\partial m_{2}^{\theta}} \frac{\partial m_{2}^{\theta}}{\partial N_{1}^{j,\theta}} + \frac{\partial \Phi_{2}^{b,\theta}}{\partial w_{1}^{\theta}} \frac{\partial w_{1}^{\theta}}{\partial N_{1}^{j,\theta}} + \frac{\partial \Phi_{2}^{b,\theta}}{\partial w_{2}^{\theta}} \frac{\partial w_{2}^{\theta}}{\partial N_{1}^{j,\theta}} \\ \mathcal{C}_{N^{j}}^{l,\theta} &= 0 \end{split}$$

 $(\kappa_2^{i, heta}$ is Lagrange multiplier on the financial constraint)

▶ In the same vein, can study effects coming from $\frac{dV^{i,\theta}(\cdot)}{dK_1^{j,\theta}}$

▶ We focus on over-/under-borrowing rather than over-/under-investing

Bound by "anything goes" result of Dávila and Korinek (2018)

EFFICIENCY ANALYSIS

CONSTRAINED EFFICIENT ALLOCATION

- Planner internalizes distributive and constraint effects of borrowing decision
- Chooses allocations in t = 0 subject to:
 - 1. The same t = 0 constraints as the private agents
 - 2. The optimal behavior of private agents in periods t = 1, 2

 \blacktriangleright Corresponds to problem of constrained Ramsey planner who can levy t=0 taxes $${\tt Details}$$

IMPLEMENTATION OF CONSTRAINED EFFICIENT ALLOCATION

Proposition: A decentralized equilibrium with the following corrective taxes replicates the constrained efficient allocation

$$\tau_x^{i,\theta} = -\Delta MRS_{01}^{ij,\theta} \mathcal{D}_{1N^i}^{i,\theta} - \Delta MRS_{02}^{ij,\theta} \mathcal{D}_{2N^i}^{i,\theta} - \tilde{\kappa}_2^{b,\theta} \mathcal{C}_{N^i}^{b,\theta}, \; \forall i,\theta$$

- ▶ $\tau_x^{i,\theta} > 0$: taxes on saving \Rightarrow under-borrowing in decentralized equilibrium
- $\blacktriangleright \quad \Delta MRS_{0t}^{ij,\theta} \equiv MRS_{0t}^{i,\theta} MRS_{0t}^{j,\theta}$
- $\tilde{\kappa}_2^{b,\theta}$: shadow price on credit constraint

HOW TO PROCEED WITH EFFICIENCY ANALYSIS

- \blacktriangleright For specific financial constraints $\Phi_2^{b,\theta}$, find $\mathcal{C}_{N^i}^{b,\theta}$
- \blacktriangleright Given sign of $\mathcal{C}_{N^{i}}^{b,\theta}$, determine sign of $\tau_{x}^{i,\theta}$
 - $\blacktriangleright~$ If $\tau_x^{i,\theta} < 0:$ planner corrects 'over-borrowing'
 - If $\tau_x^{i,\theta} > 0$: planner corrects 'under-borrowing'
- > To pin down signs, need to specialize model further

ADDITIONAL MODEL RESTRICTIONS AND MAIN RESULTS

ADDITIONAL MODEL RESTRICTIONS

Condition for collateral constraints:

$$\frac{\partial q^{\theta}}{\partial N_{1}^{i,\theta}} \geq 0, \; \forall i$$

Supply of capital is predetermined

► An increase in net worth raises the demand for capital ⇒ upward pressure on capital price

ADDITIONAL MODEL RESTRICTIONS

Condition for earnings-based constraints:

$$\frac{\partial w_1^\theta}{\partial N_1^{i,\theta}} \geq 0, \; \forall i$$

Demand for labor is pinned down conditional on capital

► Higher net worth increases consumption ⇒ (under standard preference) demand for leisure ↑, so decrease in labor supply

 \Rightarrow upward pressure on wage

ADDITIONAL MODEL RESTRICTIONS

Condition for interest coverage constraints:

$$\frac{\partial m_2^{\theta}}{\partial N_1^{i,\theta}} \ge 0, \; \forall i$$

$$\frac{\partial w_2^{\theta}}{\partial N_1^{i,\theta}} \ge 0, \; \forall i$$

Argument:

Higher net worth increases incentive to save more to smooth consumption

 \Rightarrow Price of debt (= inverse of interest rate) increase (tends to move in the same way with the price of capital due to no-arbitrage restriction)

Direct analogy to the argument for the period 1 wage

MAIN RESULTS

Collateral constraint:

$$\Phi_2^{b,\theta}(\cdot) = x_2^{b,\theta} + \phi q^{\theta} k_2^{b,\theta} \ge 0$$

Proposition: There is an over-borrowing effect through constraint externalities

$$\blacktriangleright \quad -\tilde{\kappa}_{2}^{b,\theta}\mathcal{C}_{N^{i}}^{b,\theta} = -\tilde{\kappa}_{2}^{b,\theta}\frac{\partial \Phi_{2}^{b,\theta}}{\partial q^{\theta}}\frac{\partial q^{b}}{\partial N_{1}^{i,\theta}} \leq 0 \Rightarrow \text{subsidize saving (= penalize borrowing)}$$

MAIN RESULTS

Earnings-based constraint:

$$\Phi_2^{b,\theta}(\cdot) = x_2^{b,\theta} + \widetilde{\phi}(F^b(k_1^b, \ell_{d1}^{b,\theta}) - w_1^\theta \ell_{d1}^{b,\theta}) \ge 0$$

Proposition: There is an under-borrowing effect through constraint externalities
Proof:

$$\bullet \quad -\tilde{\kappa}_{2}^{b,\theta}\mathcal{C}_{N^{i}}^{b,\theta} = -\tilde{\kappa}_{2}^{b,\theta}\frac{\partial \Phi_{2}^{b,\theta}}{\partial w_{1}^{\theta}}\frac{\partial w_{1}^{\theta}}{\partial N_{1}^{i,\theta}} \geq 0 \Rightarrow \text{ penalize saving (= subsidize borrowing)}$$

▶ Note: if labor supply inelastic, $\partial w / \partial N$ term drops out \Rightarrow constrained efficiency

MAIN RESULTS

Interest coverage constraint:

$$\Phi_{2}^{b,\theta}(\cdot) = x_{2}^{b,\theta} + \hat{\phi} \frac{F^{b}(k_{2}^{b,\theta}, \ell_{d2}^{b,\theta}) - w_{2}^{\theta}\ell_{d2}^{b,\theta}}{i_{2}^{\theta}} \ge 0$$

Proposition: There is an ambiguous effect through constraint externalities

Proof:

$$\quad -\tilde{\kappa}_{2}^{b,\theta}\mathcal{C}_{N^{i}}^{b,\theta} = -\tilde{\kappa}_{2}^{b,\theta} \big(\frac{\partial \Phi_{2}^{b,\theta}}{\partial w_{2}^{\theta}} \frac{\partial w_{2}^{\theta}}{\partial N_{1}^{i,\theta}} + \frac{\partial \Phi_{2}^{b,\theta}}{\partial i_{2}^{\theta}} \frac{\partial i_{2}^{\theta}}{\partial N_{1}^{i,\theta}} \big) \stackrel{<}{\underset{>}{\overset{>}{>}}} 0$$

- This constraint is "mixture" of earnings-based and asset-based constraint
- Why? 1/i co-moves with q through no-arbitrage condition

SUMMARY OF FINDINGS

Asset-based constraint: agents over-borrow in decentralized equilibrium

- Echoes existing insights of the literature, e.g. Dávila and Korinek (2018)
- Higher asset price relaxes constraint \rightarrow not internalized
- Earnings-based constraint: agents under-borrow in decentralized equilibrium
 - Higher input price (wage) tightens constraint \rightarrow not internalized
- Interest coverage constraint: 'mixture' of earnings- and asset-based constraint

EXTENSIONS

WORKING CAPITAL

- Several authors propose models with working capital and collateral constraints
 - See e.g. Bianchi and Mendoza (2010), Jermann and Quadrini (2012), Bianchi (2016)
- ▶ Suppose wage bill financed with an intraperiod loan $x_{wc} = -\psi w \ell$

$$-(x' - \psi w\ell) \le \widetilde{\phi}(F(k,\ell) - w\ell) \Rightarrow -x' \le -(\widetilde{\phi}F(k,\ell) - (\widetilde{\phi} + \psi)w\ell)$$

 $\blacktriangleright ~\widetilde{\phi} + \psi > \widetilde{\phi}:$ more pronounced under-borrowing effect

SMALL OPEN ECONOMY

- Several papers on welfare consequences of borrowing constraints in small open economies (see e.g. Bianchi, 2011)
- We focus on an endogenous interest rate because the background on earnings-based constraints is largely provided for the U.S.
- Microeconomic evidence on the specific forms of constraints is thinner for emerging economies, but would be very welcome
- Note that a fixed interest rates would make interest coverage constraint inherit the consequences of the earnings-based constraint (no 'mixture' result)

OUTPUT VS. INPUT PRICES

- In our real model, w denotes relative price
- But what if final goods price is not equal to 1?
- Need multi-good environment to think about meaningful output price variation
 - 1. Monopolistically competitive firms environment
 - Prices are choice variables, so firms internalize how price affects the constraint
 - However, firms would not internalize how their individual choices affect aggregate inflation, which could affect nominal debt limits
 - 2. Perfectly competitive firms environment
 - Effects on relative prices between different goods not internalized? (Fazio (2021))

CONCLUSION

CONCLUSION

- Whether debt is backed by collateral or linked to firms' earnings has sharply different implications for macroprudential policy
- The pecuniary externality through wages in earnings-based constraints prescribes that a regulatory authority should, if anything, encourage firms to borrow
- Our analysis highlights the importance of a proper understanding of the microeconomic details behind which constraints matter in which markets
 - Asset-based borrowing: mortgage markets, repo markets,
 - Earnings-based borrowing: corporate credit markets

REFERENCES

- BENIGNO, G., H. CHEN, C. OTROK, A. REBUCCI, AND E. R. YOUNG (2013): "Financial crises and macro-prudential policies," Journal of International Economics, 89, 453–470.
- BIANCHI, J. (2011): "Overborrowing and Systemic Externalities in the Business Cycle," American Economic Review, 101, 3400-3426.

------ (2016): "Efficient Bailouts?" American Economic Review, 106, 3607-59.

BIANCHI, J. AND E. G. MENDOZA (2010): "Overborrowing, Financial Crises and 'Macro-prudential' Taxes," Working Paper 16091, NBER.

- CAGLIO, C. R., R. M. DARST, AND S. KALEMLI-ÖZCAN (2021): "Risk-Taking and Monetary Policy Transmission: Evidence from Loans to SMEs and Large Firms," Tech. rep., National Bureau of Economic Research.
- CHODOROW-REICH, G. AND A. FALATO (2021): "The Loan Covenant Channel: How Bank Health Transmits to the Real Economy," The Journal of Finance, n/a.
- DÁVILA, E. AND A. KORINEK (2018): "Pecuniary Externalities in Economies with Financial Frictions," The Review of Economic Studies, 85, 352–395.

DRECHSEL, T. (2020): "Earnings-based borrowing constraints and macroeconomic fluctuations," Working paper.

- FAZIO, M. (2021): "Financial Stabilisation Policies in a Credit Crunch: Zombie Firms and the Effective Lower Bound," Working paper, London School of Economics.
- GREENWALD, D. (2019): "Firm debt covenants and the macroeconomy: The interest coverage channel," Working paper.
- JERMANN, U. AND V. QUADRINI (2012): "Macroeconomic Effects of Financial Shocks," American Economic Review, 102, 238-71.
- LIAN, C. AND Y. MA (2020): "Anatomy of Corporate Borrowing Constraints*," The Quarterly Journal of Economics, 136, 229-291.

LORENZONI, G. (2008): "Inefficient Credit Booms," The Review of Economic Studies, 75, 809-833.

OTTONELLO, P., D. J. PEREZ, AND P. VARRASO (2019): "Are Collateral-Constraint Models Ready for Macroprudential Policy Design?" Unpublished Manuscript.

APPENDIX SLIDES

FORMAL SOCIAL PLANNER PROBLEM

$$\max \sum_{i} \alpha^{i} \{ u^{i}(C_{0}^{i}) + \beta \mathbb{E}_{0}[V^{i,\theta}(N_{1}^{i,\theta}, K_{1}^{i}; N^{\theta}, K_{1})] \}$$

subject to t = 0 resource and credit constraints

$$\sum_{i} [C_0^i + h^i(K_1^i) - e_0^i] \le 0$$
$$\sum_{i} X_1^{i,\theta} = 0, \quad \forall \theta$$
$$\Phi_1^i(X_1^i, K_1^i) \ge 0, \quad \forall i$$

