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overview of this lecture

1. Why start with a complete markets model?

2. Consumption and risk sharing with complete markets

3. Asset pricing with complete markets

4. The Lucas Tree model

5. Asset pricing applications

+ Extra material on no-Ponzi vs. transversality conditions

1 / 56



purpose of this lecture

I Acquire tools that we need throughout the course
(e.g. how to price assets)

I Build a benchmark model that models with financial frictions will deviate from

I Remember the two deviations from a complete markets representative agent
model that are needed to meaningfully introduce financial frictions

1. Incomplete markets

2. Heterogeneous agents

I We will see today that one of them is not enough: (certain) heterogeneity
between agents can be insured away if markets are complete
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insights from the complete markets model

I If you understand the complete markets benchmark, you will realize some
important aspects of many macro models

I Some examples ...
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insights from the complete markets model

I A representative agent model actually relies on lots of trade in financial assets!

I Why?

I The representative agent model is isomorphic to a model in which a continuum of
heterogeneous agents trade insurance (state-contingent claims) to eliminate all
idiosyncratic risk!
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insights from the complete markets model

I Models with financial frictions often feature several layers of market
incompleteness

I Example of Kiyotaki-Moore style collateral constraint

bt ≤ θkt

I Usually two types of market incompleteness!

1. Bond is not state contingent

2. Bond trade is limited by physical asset

(great explanation in Cao and Nie, 2017)
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insights from the complete markets model

I In many models, some asset markets are complete, others are incomplete

I Example 1: friction in asset trade between two countries, complete markets (full
insurance) within each country

I Example 2: friction in asset trade between households and firms, complete
markets (full insurance) within household sector and within firm sector
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insights from the complete markets model

I You may occasionally see in a seminar that someone has actually made some asset
markets incomplete without noticing

I Someone in the audience will say something like: “you must be assuming that
agents cannot insure away this problem”

I Lesson: always remind yourself about the market structure you are operating in,
be conscious about everything you are (implicitly) assuming about asset trade
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references for lectures 4 and 5

I This lecture and the next one are pretty close to some chapters in the Ljungqvist
and Sargent text book Recursive Macroeconomic Theory (2nd edition)

I Lecture 4: Chapters 8, 12, 13

I Lecture 5: Chapters 16, 17

I The notation will be similar to theirs

I I will provide a few additional references throughout
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consumption and risk sharing with complete markets



environment

I Households indexed by i = 1, ..., I

I Preferences:

U it = Et
∞∑
τ=t

βt−τu(ciτ )

I Technology: exogenous endowment yit in period t

I Denote state of the world st

I State is vector of realizations {y1t , ..., yIt }
I π(st) is the probability of a history of states st

I π(st+1|st) is the probability of state st+1 given history st
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comment on notation

I We make the state st explicit in the notation

I This is because we will work with state-contingent contracts

I But this model is not different from what we have seen so far: in the model of the
previous two lectures, a state is a realization of (Zt, Vt)
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two ways to formulate complete markers

1. Arrow-Debreu securities

I Contingent claims traded in period-0, exercised every period

I q0(st): time-0 price of asset that pays 1 unit of consumption if history st realizes

I ai(st): agent i’s holdings of this asset

2. Arrow securities

I One-period ahead contingent claims

I Q(st+1|st): history-st price of asset that pays 1 unit of consumption if state st+1

realizes next period

I Ai(st+1|st): agent i’s holdings of this asset

contingent = every state can be contracted on
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arrow-debreu securities, market outcome

I The time-0 problem of the agent i is

max

∞∑
t=0

∑
st

π(st)βtu(ci(st))

subject to

ci(st) = yi(st) + ai(st)
∞∑
t=0

∑
st

q0(st)ai(st) = 0

I Interpretation of last constraint: buy and sell claims to a clearing house in period
0, remain with zero balance
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optimality

I Substitute out ai(st) and denote µi the Lagrange multiplier on the combined
constraint

I The FOC w.r.t ci(st) is

βtπ(st)u′(ci(st)) = q0(st)µi

I This condition holds for all i and all st
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competitive equilibrium definition

I Define c(st) =
∑

i c
i(st) and y(st) =

∑
i y
i(st)

I A competitive equilibrium in this economy is defined as a sequence of
allocations {c(st)}∞t=0 and prices {q0(st)}∞t=0 such that for all st:

1. Markets clear: c(st) = y(st)

2. Given the price system, the optimality conditions are satisfied
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implications of complete markets

1. Perfect risk sharing

2. Consumption smoothing
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perfect risk sharing

I Combine the optimality condition for two agents i and j

u′(ci(st))

u′(cj(st))
=
µi

µj
∀i, j, st
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perfect risk sharing

I Solve for ci(st) and sum over i

ci(st) = u′−1
{
µi

µj
u′(cj(st))

}
∑
i

ci(st) =
∑
i

u′−1
{
µi

µj
u′(cj(st))

}

I From market clearing,
∑

i c
i(st) = y(st)

I Therefore, we get an optimality condition for j’s consumption that only depends
on the aggregate endowment!

I Idiosyncratic risk is insured away
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consumption smoothing

I Combine the optimality condition for two states st and sτ

βt−τ
π(st)u′(ci(st))

π(sτ )u′(ci(sτ ))
=
q0(st)

q0(sτ )
∀i, st, sτ

I Desire to equate marginal utility of consumption across time and states,
attenuated by probabilities and prices (MRS = MRT )
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planner solution

I Planner problem in this economy (no prices!)

max
∑
i

ωi
∞∑
t=0

∑
st

π(st)βtu(ci(st))

subject to ∑
i

ci(st) =
∑
i

yi(st) ∀st

I ωi is the welfare weight on agent i
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optimality

I Planner FOC w.r.t. ci(st) is

βtωiπ(st)u′(ci(st)) = λ(st) ∀st

I λ(st), the Lagrange multiplier on the resource constraint, is a function of st
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market vs. planner outcome

I The above condition is the same as the market FOC if

ωi = (µi)−1

λ(st) = q0(st)

I The competitive equilibrium is a particular Pareto optimal allocation of resources

I Welfare weight inversely related to shadow price on individual constraint

I Market prices reflect shadow prices on resources
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arrow securities, market outcome

I Agent i’s problem is

max

∞∑
t=0

∑
st

π(st)βtu(ci(st))

subject to

ci(st) +
∑
st+1

Q(st+1|st)Ai(st+1|st) = yi(st) +Ai(st)

Ai(st+1) ≥ −Āi(st+1)

I Ai(st+1|st) > 0 → saving, Ai(st+1|st) < 0 → borrowing

I Āi(st+1) is agent i’s natural debt limit
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the natural debt limit

I In the formulation with Arrow securities, we need to impose some restriction on
asset trade to prevent Ponzi schemes

I The natural debt limit is the weakest of such restrictions

I It is the value of the maximum amount that agent i can repay starting form the
period, assuming consumption is zero forever

I We do not need such a restriction with Arrow-Debreu securities. It is only needed
when budget constraints are formulated in a sequential way.
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the natural debt limit

I In the setting above, we impose

Āi(st+1) =

∞∑
τ=t+1

∑
sτ |st+1

qt+1(sτ )yi(sτ )

I qt+1(sτ ): Arrow-Debreu price in units of the state st+1 consumption good

I RHS of above equation: maximum value that agent i can repay, assuming that
her consumption is zero from t+ 1 onwards

I In the setting above, each agent i faces one no-Ponzi constraints for each state
that can occur next period

→ More detailed remarks on no-Ponzi conditions at the end of the lecture
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optimality

I The FOC w.r.t ci(st) is

π(st)u′(ci(st)) = γi(st)

I The FOC w.r.t Ai(st+1|st) is

βγi(st) = Q(st+1|st)γi(st+1)

I These condition hold for all i and all st and st+1

I i has a Lagrange multiplier for each st
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optimality

I We can combine the two conditions above and show that the outcome is the same
as with Arrow-Debreu securities (see slide 18) if

Q(st+1|st) =
q0(st+1)

q0(st)

I We can iterate on this relation to get

q0(st+1) = q0(s0)

t∏
j=1

Q(sj |sj−1)
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some notes

I With Arrow securities, decisions can still be thought of as made in period-0

I Re-optimizing would not change allocation because optimal plan is time consistent
in this setting

I Defining a competitive equilibrium with Arrow securities requires specifying an
initial asset distribution

I For example: Ai(0) = 0 ∀i
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recursiveness

I So far we did not require a recursive structure

I We can additionally assume that st follows a Markov process

I In that case we can formulate a Bellmann equation with a time-invariant value
function

I Above we were able to characterize the full sequence of allocations in a setting
that is not necessarily recursive
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asset pricing with complete markets



pricing assets with complete markets

I Take framework from above and normalize q0(s0) = 1

I Use Euler equation (consumption smoothing relation) to solve for the price

q0(st) = βt
π(st)u′(ci(st))

u′(ci(s0))

I This is the time-0 price of an asset that pays one unit of consumption in period t
if history st occurs
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pricing synthetic assets

I After we have priced q0(st), we can price any asset

I For example, a risk-free bond (non-state contingent) in period t after history st

PB,t = R−1t =
∑
st+1|st

Q(st+1|st) =
∑
st+1

q0(st+1)

q0(st)
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more assets

I Risk-free consol in period 0

P consol0 =
∞∑
t=0

∑
st

q0(st)

I Stock with dividend stream d(st)

P stock0 =
∞∑
t=0

∑
st

q0(st)d(st)

31 / 56



more assets

I Risk-free consol in period 0

P consol0 =

∞∑
t=0

∑
st

q0(st)

I Stock with dividend stream d(st)

P stock0 =
∞∑
t=0

∑
st

q0(st)d(st)

31 / 56



more assets

I Risk-free consol in period 0

P consol0 =

∞∑
t=0

∑
st

q0(st)

I Stock with dividend stream d(st)

P stock0 =
∞∑
t=0

∑
st

q0(st)d(st)

31 / 56



more assets

I Risk-free consol in period 0

P consol0 =

∞∑
t=0

∑
st

q0(st)

I Stock with dividend stream d(st)

P stock0 =

∞∑
t=0

∑
st

q0(st)d(st)

31 / 56



important note

I The consumption plan remains the same whether or not we introduce these
additional assets

I Trading in Arrow-Debreu / Arrow securities already allows agents to generate the
respective payment streams
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the lucas tree model



the lucas tree model

I Based on Lucas (1978) : Asset pricing in an exchange economy

I Purpose of this model is to price risky assets and to understand the relation to the
marginal utility of consumption

I The setting features a representative agent

I Idiosyncratic risk has been insured away via complete markets
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environment

I One consumer (or a large number of identical ones)

I Preferences: Ut = Et
∑∞

τ=t β
t−τu(cτ )

I Technology: endowment of one tree that pays fruit yt
(with Markov property)

I Price the following assets:

I Shares in the tree, denoted at, at price pt
I Risk-free bonds bt, pays gross return Rt at the beginning of the period
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state variablaes

I What are the state variables in this economy?

bt, at, yt
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bellman equation

V (at, bt, yt) = max
ct,at+1,bt+1

{u(ct) + βEtV (at+1, bt+1, yt+1)}

subject to

ct + bt+1 + ptat+1 = atyt +Rtbt + ptat

or

ct + bt+1 + pt(at+1 − at) = atyt +Rtbt
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optimality

I Combine FOCs w.r.t ct and bt+1 to get Euler equation

u′(ct) = βRtEt
[
u′(ct+1)

]
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optimality

I Combine FOCs w.r.t ct and at+1 to get asset pricing equation for the tree

pt = βEt
[
u′(ct+1)

u′(ct)
(pt+1 + yt+1)

]

I This is a recursive equation in pt

I This is basic the (consumption) CAPM equation
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risk premium

I Define the expected asset return as the price appreciation plus the payoff
(dividend) relative to the current price

EtRAt = Et
[
pt+1 + yt+1

pt

]
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risk premium

I Using the optimality conditions and the fact that
E(XY ) = E(X)E(Y ) + COV (X,Y ) to obtain

EtRAt = Rt −
cov(RAt ,

u′(ct+1)
u′(ct)

)

Et
[
u′(ct+1)
u′(ct)

]
I The consumer likes assets that give a relatively high return when the relative

marginal utility of consumption is high

I Consumer is happy with a lower expected return as long as the return has the
“right” correlation with her expected consumption patterns
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equilibrium

I A competitive equilibrium in this economy is defined as a sequence of
allocations {ct, at, bt}∞t=0 and prices {pt, Rt}∞t=0 such that for all st:

1. Markets clear:

ct = yt

bt = 0

at = 1

2. Given the price system, the optimality conditions are satisfied
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ge asset pricing

I When we impose equilibrium we can obtain asset prices (or relationships between
asset prices) as a function of the model primitives

I The general equilibrium asset pricing relationship in the setting above is then

EtRAt = Rt −
cov(RAt ,

u′(yt+1)
u(yt)

)

Et
[
u′(yt+1)
u′(yt)

]
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the illusion of choice

I Price mechanism provides agent with the illusion of choice: prices adjust so that
agent consumes own fruit and does not save/borrow

I In this economy, quantities are trivial but prices are not

I Share and bond trade “do not matter” for consumption plan
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asset pricing applications



how to price assets?

1. Define environment: preferences, technology, market structure

2. Solve agents’ maximization problems (illusion of choice)

3. Only then apply market clearing to get general equilibrium asset pricing
relationships
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application 1: the term structure

I From Euler equation

R−11,t = βEt
[
u′(ct+1)

u′(ct)

]
I Two period bond

R−12,t = β2Et
[
u′(ct+2)

u′(ct)

]
R−12,t = β2Et

[
u′(ct+2)

u′(ct)

u′(ct+1)

u′(ct+1)

]
R−12,t = βEt

[
u′(ct+1)

u′(ct)
β
u′(ct+2)

u′(ct+1)

]
R−12,t = βEt

[
u′(ct+1)

u′(ct)
R−11,t+1

]
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application 1: the term structure

I If we assume risk neutrality u(c) = c, it follows that

R2,t = R1,tEtR1,t+1

I The return on a two-period bond is the expected cumulative return on two one
period bonds

I “Expectations hypothesis” result in finance

I Does not hold in practice, but useful to think about empirically observed yield
curve in deviations from this benchmark (term premium, risk premium)
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application 1: the term structure

47 / 56



application 2: the equity premium puzzle

I Use Lucas’ model asset pricing relationship with CRRA preferences

EtRAt = Rt −
cov

(
RAt ,

(
ct+1

ct

)−σ)
Et
[(

ct+1

ct

)−σ]

I If we think of RAt as the return on US equity, we can compute from the data
whether this relation makes sense in practice
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application 2: the equity premium puzzle

I In the data

RAt ≈ 1.07

Rt ≈ 1.01
ct+1

ct
≈ 1.02

I Pick ex-ante admissible values for σ and use the data to compute LHS and RHS
of the above relation. Does the equation hold?

I Not at all: this is the insight of Mehra and Prescott (1985)
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application 2: the equity premium puzzle
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application 2: the equity premium puzzle

I Proposed solutions to the equity premium puzzle

I Separate IES from risk aversion (e.g. Epstein-Zin preferences)

I Habits in consumption → Campbell and Cochrane (1999)

I Rare disasters → Barro (2006)

I Behavioural finance (Thaler and others)

I Long-run risk → Bansal and Yaron (2004)

I See also Mehra (2007) for a summary paper
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application 3: pricing productive capital

I The risky assets we have priced above were endowment technologies

I We can also do asset pricing in the presence of production technology

I In particular, we can price productive capital that is installed in a firm

I This is the “Q” theory of investment
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application 3: pricing productive capital

I Q is a relative price, the market value of capital (the value “inside the firm”)
relative to the replacement value

I In a neoclassical model, Q is the shadow price on the investment accumulation
equation (see e.g. Hayashi, 1982)

I Important: marginal Q and average Q are different

I Deriving and interpreting Q formally will be part of your second assignment
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application 3: pricing productive capital

I In theory, a firms’ marginal Q should be the sole predictor of investment

I In the data, marginal Q is hard to measure

I In the data, other determinants matter a lot for firm investment

I For example financial constraints!

I Plenty of empirical research, going back to Fazzari, Hubbard, and Petersen (1988)

I See also the literature on dynamic corporate finance, as surveyed by Strebulaev
and Whited (2011)

I Neoclassical models of various firm decision margins
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a recent application

I Crouzet and Eberly (2020) construct a decomposition of the gap between
valuation (≈ average Q) and investment (≈ marginal Q) in the US
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taking stock



taking stock

I We have build a benchmark model with complete markets

I We have priced assets

I The next lecture will start putting our necessary ingredients together:
Incomplete markets, heterogeneous agents and precautionary savings
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extra material on no-ponzi vs. transversality
conditions



no-ponzi conditions

I Ruling out Ponzi schemes is

1. A commonsense requirement economically

2. In many settings a formal restriction that ensures the existence of a solution, as it
bounds utility

I Above, we have formalized the no-Ponzi condition as a state-by-state inequality,
using Arrow-Debreu prices

I Typically, no-Ponzi conditions are expressed as limits

I No-Ponzi conditions are used to consolidate budget constraints

I No-Ponzi conditions are conceptually different from transversality conditions



no-ponzi conditions

I Suppose the following:

I Agent starts with b0
I Has sequential budget constraint ct + bt+1 = Rbt
I A candidate solution to her problem is {c∗t }

∞
t=0

I Without additional constraints, the agent could

1. Choose c̃0 = c∗0 + 1 and b̃1 = b∗1 − 1

2. For t ≥ 1 choose c̃t = c∗t and b̃t+1 = b∗t+1 −Rt

I This strategy satisfies the period-by-period constraint

I It is possible for any c∗0, so there is no finite solution!



no-ponzi conditions

I This situation is ruled out by adding the condition

lim
t→∞

bt
Rt
≥ 0

I This means that “terminal” asset holdings cannot be negative

I In the presence of this condition the agent cannot choose a solution that implies
unbounded consumption/utility

I There can of course be stronger restrictions that make the no-Ponzi condition
redundant, for example

bt ≥ 0 ∀t



consolidating the budget constraint

I Start with constraint in period 0 and iterate to period T

T∑
t=0

(
ct

1

Rt

)
+

bT+1

RT
= Rb0

I Doing this until infinity gives

lim
T→∞

{
T∑
t=0

(
ct

1

Rt

)
+

bT+1

RT

}
= Rb0

∞∑
t=0

(
ct

1

Rt

)
+ lim
T→∞

bT+1

RT
= Rb0

I Together with no-Ponzi condition, this gives

∞∑
t=0

(
ct

1

Rt

)
≤ Rb0



transversality conditions

I Transversality conditions ensure the sufficiency of a solution

I We do not impose the transversality condition on the agent, but the agent will
require this condition as part of her solution

I It is a prescription how to behave optimally, given a choice set

I It is needed because the solution to second-order difference require an initial and a
terminal condition

I Recall the remarks in Lecture 2



transversality conditions

I Think of an Euler equation with substituted budget constraint:

u′(Rbt − bt+1) = βRu′(Rbt+1 − bt+2)

I This is a second order difference equation in bt

I The full solution to the agent’s problem requires an initial condition (b0 given)
and the transversality condition

lim
t→∞

bt
Rt
≤ 0

I This says that the agent does not want to have savings in the limit

I It turns out this the same equation as the no-Ponzi condition, but with the weak
inequality going the other way



no-ponzi vs. transversality

I No-Ponzi condition

I Ensures existence (bounds utility)

I Imposed on agent’s program

I Only needed in competitive solution

I Transversality condition

I Ensures sufficiency (optimality)

I Comes out as part of agent’s program’s solution

I Part of competitive and planner solution
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