ECON 747 - LECTURE 6: MODELS WITH CONSTRAINTS ON (RISK-FREE) DEBT

Thomas Drechsel
University of Maryland

Spring 2024

OVERVIEW

- We now turn to one of the two canonical classes of financial frictions that will be at the core of this course
- The basic idea is that because of limited enforcement, the amount of debt/savings flows between agents is limited
- This leads to feedback effects between debt and real activity:
- Financial variables "matter"
- The other class of financial frictions that we will study in a few weeks time are costly state verification (CSV) frictions, which give rise to risky debt contracts

OVERVIEW

- The models we are about to get to know feature the two ingredients that are required for financial frictions to affect allocations
- Typically, the market incompleteness will be that

1. Only non-state contingent bonds are available to the agents
2. The amount of debt is limited by an endogenous variable (e.g. an asset which serves as collateral)

- Typically, the heterogeneity between agents will be relatively simple, for example two agents out of which one is patient and one is impatient

PLAN FOR NEXT FEW WEEKS

- We will look at this class of models in a big topical block, from a variety of angles
- Original paper of Kiyotaki and Moore (1997)
- Microfoundation for borrowing constraints:

Limited contract enforcement and Hart and Moore's (1994) theory of debt

- Issues and limitations of the Kiyotaki-Moore environment
- Plenty of recent research centering around borrowing constraints:
- Applications to households, firms, financial institutions, countries, ...
- Variations of the constraint: multi-period debt, occasionally binding, earnings-based vs. asset-based, ...

1. KIYOTAKI AND MOORE (1997)

THE MOTIVATION

- The paper is a "theoretical study into how credit constraints interact with aggregate economic activity over the business cycle"
- Main idea: make credit limit endogenous to real variables, so that production and credit flows are linked and can amplify one another
- Main insight: very strong endogenous amplification \rightarrow small shock, but large and persistent response of the real activity

HOW THEIR PAPER IS STRUCTURED

- First a baseline model
- Lots of stark assumption, e.g. fixed aggregate capital
- Equilibrium can be characterized very well analytically (and graphically), dynamics can be traced out with a simple log-linearization
- Then a more detailed model version in which various assumptions are relaxed
- Today's lecture will cover the baseline model version in detail and provide a concise summary of the full version

SETTING

- Discrete time
- Continuum of agents, live infinitely
- Farmers (population of 1)
- Gatherers (population of m)
- Two goods
- Durable asset ("land"): fixed supply of \bar{K}
- Nondurable good ("fruit"): cannot be stored
- Both types of agents produce and eat fruit
- Both types of agents are risk neutral

PREFERENCES

- Farmers

$$
\mathbb{E}_{t}\left(\sum_{s=0}^{\infty} \beta^{s} x_{t+s}\right)
$$

- Gatherers

$$
\mathbb{E}_{t}\left(\sum_{s=0}^{\infty} \beta^{\prime s} x_{t+s}^{\prime}\right)
$$

- x_{t+s} and x_{t+s}^{\prime} denote consumption

ASSUMPTION 1

$$
\beta<\beta^{\prime}
$$

ASSUMPTION 1

$$
\beta<\beta^{\prime}
$$

- This means that gatherers are more patient than farmers (they place a higher weight on utility from consumption in the future relative to the present)
- In equilibrium, farmers will borrows and gatherers will save
- This is a simple (ex-ante) heterogeneity
- Quite typical in this class of models
- There are related assumption with the similar equilibrium consequences: e.g. one agent dies every period with an exogenous probability, which also renders the agent less patient

TECHNOLOGY: FARMERS

- Farmers produce fruit using land with CRS technology

$$
y_{t+1}=F\left(k_{t}\right)=(a+c) k_{t}
$$

- $a k_{t}$ can be consumed or traded
- $c k_{t}$ is bruised and can only be consumed by the farmer
- Therefore the maximum savings rate of farmers is $\frac{a}{a+c}$
- Note also the timing assumption on capital here (would be important for Dynare)

ASSUMPTION 2

$$
\begin{aligned}
\frac{a}{a+c} & <\beta \\
\Leftrightarrow \quad c & >\left(\frac{1}{\beta}-1\right) a
\end{aligned}
$$

- Maximum savings rate smaller than discount factor
- Ensures that in equilibrium the farmers will not want to consume more than the bruised fruit, and will want to use all the tradable fruit for investment

FURTHER ASSUMPTIONS

- Two further critical assumptions about farmers

1. Once production has started, only the farmer has the skill for the land to bear a fruit. This means that if between t and $t+1$ she decides to withdraw her labor, there is no fruit $\left(y_{t+1}\right)$ at $t+1$, only land $\left(k_{t}\right)$ remains
2. The farmers have freedom to withdraw their labor, cannot pre-commit to work \rightarrow Inalienability of human capital (Hart and Moore, 1994)

INALIENABLE HUMAN CAPITAL

- The assumptions above will be the reason that there is a borrowing constraint
- We will see this further below, when we combine the asset market structure with these assumptions
- The second part of this lecture will elaborate in more detail on the microfoundation of borrowing constraints

TECHNOLOGY: GATHERERS

- Gatherers have production function

$$
y_{t+1}^{\prime}=G\left(k_{t}^{\prime}\right)
$$

- It is assumed that $G^{\prime}>0, G^{\prime \prime}<0, G^{\prime}(0)>a R>G^{\prime}(\bar{K} / m)$
- Gatherers' production does not require any specific skill and the fruit they produced is fully tradable
- The last inequality ensures that both farmers and gatherers produce in equilibrium

MARKETS

- Land market: at date t, land can be exchanged for fruit at price q_{t} (the numérarie in this economy is the fruit)
- Financial market: one-period bonds, not state contingent, interest rate R_{t}
- We will see that in equilibrium, interest rate will equal the gatherers' time preference: $R_{t}=1 / \beta^{\prime}=R$
- You should already be able to see why

ASSET MARKETS: BORROWING CONSTRAINT

- Farmers' human capital is inalienable \Rightarrow if a farmer has a lot of debt, she can threaten creditors to withdraw labor and repudiate the debt contract
- Creditors protect themselves: collateralize farmer's land
- Important: without farmer's labor, land does not yield the fruit, its liquidation value is therefore below the inside value
- Remember Tobin's "Q"
- Creditors will only lend up to the liquidation value
(More details on this reasoning later in this lecture)

ASSET MARKETS: BORROWING CONSTRAINT

- Since creditors know of the possibility of debt repudiation by the farmer, they do not allow the size of debt (gross of interest) to be above the value of collateral

$$
R b_{t} \leq q_{t+1} k_{t}
$$

PUTTING THINGS TOGETHER

- Farmer's program

$$
\max \mathbb{E}_{t}\left(\sum_{s=0}^{\infty} \beta^{s} x_{t+s}\right)
$$

subject to

$$
\begin{gathered}
q_{t}\left(k_{t}-k_{t-1}\right)+R b_{t-1}+x_{t}-c k_{t-1}=a k_{t-1}+b_{t} \\
R b_{t} \leq q_{t+1} k_{t}
\end{gathered}
$$

PUTTING THINGS TOGETHER

- Gatherer's program

$$
\max \mathbb{E}_{t}\left(\sum_{s=0}^{\infty} \beta^{\prime s} x_{t+s}^{\prime}\right)
$$

subject to

$$
q_{t}\left(k_{t}^{\prime}-k_{t-1}^{\prime}\right)+R b_{t-1}^{\prime}+x_{t}^{\prime}=G\left(k_{t-1}^{\prime}\right)+b_{t}^{\prime}
$$

EQUILIBRIUM

- A sequence of prices $\left\{q_{t}, R_{t}\right\}_{t=0}^{\infty}$ and allocations $\left\{x_{t}, x_{t}^{\prime}, y_{t}, y_{t}^{\prime}, k_{t}, k_{t}^{\prime}, b_{t}, b_{t}^{\prime}\right\}_{t=0}^{\infty}$, such that:

1. Farmers solve their maximization program
2. Gatherers solve their maximization program
3. Land, fruit and debt markets clear
(Details on market clearing further below)

EQUILIBRIUM CHARACTERIZATION

- To solve for the equilibrium, we make a claim and then verify the claim
- Claim:
- Farmers borrow up to limit of constraint
- Farmers consume no more than their nontradable fruit
- Formally:

$$
\begin{gathered}
b_{t}=q_{t+1} k_{t} / R \\
x_{t}=c k_{t-1}
\end{gathered}
$$

EQUILIBRIUM CHARACTERIZATION

- Combine this with budget constraint to get the condition

$$
k_{t}=\frac{1}{q_{t}-\frac{1}{R} q_{t+1}}\left[\left(a+q_{t}\right) k_{t-1}-R b_{t-1}\right]
$$

EQUILIBRIUM CHARACTERIZATION

- Combine this with budget constraint to get the condition

$$
k_{t}=\frac{1}{q_{t}-\frac{1}{R} q_{t+1}}\left[\left(a+q_{t}\right) k_{t-1}-R b_{t-1}\right]
$$

- $\left(a+q_{t}\right) k_{t-1}-R b_{t-1}$ is the farmer's net worth: (tradable output and assets net of debt)
- $u_{t} \equiv q_{t}-\frac{1}{R} q_{t+1}$ is the downpayment per unit of land purchased (the difference between the price of a unit of land and how much can be borrowed against a unit of land)

EQUILIBRIUM CHARACTERIZATION

- Proof of claim: for each unit of tradable fruit in t, the farmers could choose one of the following consumption paths from $t+1$ onwards
- Invest the unit in land:
$0, \frac{c}{u_{t}}, \frac{a}{u_{t}} \frac{c}{u_{t+1}}, \frac{a}{u_{t}} \frac{a}{u_{t+1}} \frac{c}{u_{t+2}}, \ldots$
- Invest the unit in bond, then in land: $0,0, R \frac{c}{u_{t+1}}, R \frac{a}{u_{t+1}} \frac{c}{u_{t+2}}, \ldots$
- Consume the unit immediately:

$$
1,0,0,0, \ldots
$$

- Will show that first path leads to highest utility around the steady state (proof will be concluded further below)

EQUILIBRIUM CHARACTERIZATION

- A farmer's optimality conditions are linear, so we can aggregate across farmers:

$$
\begin{gathered}
K_{t}=\frac{1}{u_{t}}\left[\left(a+q_{t}\right) K_{t-1}-R B_{t-1}\right] \\
B_{t}=\frac{1}{R} q_{t+1} K_{t}
\end{gathered}
$$

- With $u_{t} \equiv q_{t}-\frac{1}{R} q_{t+1}$
(upper case letters denote quantities in aggregate farming sector)

FARMER DEMAND FOR LAND

- Rearrange first equation to

$$
K_{t}=\frac{q_{t} K_{t-1}}{u_{t}}+\frac{a K_{t-1}-R B_{t-1}}{u_{t}}
$$

- Suppose q_{t} and q_{t+1} rise by 1 percent
- If $R B_{t-1}>a K_{t-1}$ (high leverage), then K_{t} increases
- This means that a higher price increases demand!
- This is how the financial accelerator operates

FARMER DEMAND FOR LAND

- Another way to see this

$$
q_{t} K_{t}-\frac{1}{R} q_{t+1} K_{t}=q_{t} K_{t-1}+a K_{t-1}-R B_{t-1}
$$

$q_{t} \uparrow$ gives usual demand effect $\left(K_{t} \downarrow\right)$
$q_{t+1} \uparrow$ allows for more borrowing ($K_{t} \uparrow$)
$q_{t} \uparrow$ increases net worth $\left(K_{t} \uparrow\right)$

GATHERERS DEMAND FOR LAND

- The gatherer is financially unconstrained, so the demand for land comes from a standard Euler equation

$$
q_{t}=\beta^{\prime}\left(q_{t+1}+G^{\prime}\left(k_{t}^{\prime}\right)\right)
$$

- The gatherers bond Euler equation (linear utility function!) will give us

$$
\beta^{\prime}=1 / R
$$

- Can combine this to

$$
\frac{1}{R} G^{\prime}\left(k_{t}^{\prime}\right)=u_{t}
$$

GATHERERS DEMAND FOR LAND

$$
\frac{1}{R} G^{\prime}\left(k_{t}^{\prime}\right)=u_{t}
$$

- This says that the discounted marginal product of land is equal to the gatherer's opportunity cost of land
- Note that the gatherer's opportunity cost of land is equal to the required downpayment for each unit of land for the farmer

MARKET CLEARING

- Gatherers are identical, so aggregate demand for land from gathering sector is equal to m times k_{t}^{\prime}
- Market clearing in the land market is thus

$$
K_{t}+m k_{t}^{\prime}=\bar{K}
$$

- Combine this with the gatherers Euler equation to obtain

$$
u_{t}=q_{t}-\frac{1}{R} q_{t+1}=\frac{1}{R} G^{\prime}\left[\frac{1}{m}\left(\bar{K}-K_{t}\right)\right]
$$

- The right hand side is increasing in K_{t}, so $u_{t}=u\left(K_{t}\right)$

market clearing (CONTINUED)

- Since gatherers have linear preferences and are not credit constrained, they are indifferent between any amount of consumption and debt
- Equilibrium in debt market fully described by B_{t}
- Fruit market clears by Walras' law (Market clearing condition is $X_{t}+m x_{t}^{\prime}=Y_{t}+m y_{t}^{\prime}$)

EQUILIBRIUM CHARACTERIZATION

- Consider perfect foresight equilibria
- Given K_{t-1}, B_{t-1}, an equilibrium from date t onwards is is given by $\left\{q_{t+s}, K_{t+s}, B_{t+s}\right\}_{s>0}^{\infty}$ satisfying

$$
\begin{gathered}
K_{t}=\frac{1}{q_{t}-\frac{1}{R} q_{t+1}}\left[\left(a+q_{t}\right) K_{t-1}-R B_{t-1}\right] \\
B_{t}=\frac{1}{R} q_{t+1} K_{t} \\
q_{t}-\frac{1}{R} q_{t+1}=\frac{1}{R} G^{\prime}\left[\frac{1}{m}\left(\bar{K}-K_{t}\right)\right]
\end{gathered}
$$

- Add assumption 3

$$
\lim _{s \rightarrow \infty} E_{t}\left(R^{-s} q_{t+s}\right)=0
$$

STEADY STATE

- There is a unique steady state $\left(q^{*}, K^{*}, B^{*}\right)$ such that

$$
\begin{gathered}
q^{*}=\frac{R}{R-1} a \\
\frac{1}{R} G^{\prime}\left[\frac{1}{m}\left(\bar{K}-K^{*}\right)\right]=a \\
B^{*}=\frac{a}{R-1} K^{*}
\end{gathered}
$$

- Also note that $u^{*}=a$

VERIFY CLAIM

- Remember the earlier claim: farmers invest all tradable units and borrow up to constraint
- To verify claim, need to show that first strategy out of the following three gives highest utility around the steady state
- Invest the unit in land:
$0, \frac{c}{u_{t}}, \frac{a}{u_{t}} \frac{c}{u_{t+1}}, \frac{a}{u_{t}} \frac{a}{u_{t+1}} \frac{c}{u_{t+2}}, \ldots$
- Invest the unit in bond, then in land:
$0,0, R \frac{c}{u_{t+1}}, R \frac{a}{u_{t+1}} \frac{c}{u_{t+2}}, \ldots$
- Consume the unit immediately: $1,0,0,0, \ldots$

VERIFY CLAIM

- In steady state, we get the following utility for the farmer
- $\frac{\beta}{1-\beta} \frac{c}{a}$
$-\frac{R \beta^{2}}{1-\beta} \frac{c}{a}=\frac{\beta}{\beta^{\prime}} \frac{\beta}{1-\beta} \frac{c}{a}$
- 1
- By assumption 1: $\beta<\beta^{\prime}$, so first strategy better than second
- By assumption 2: $\beta c>(1-\beta) a$, so first better than third
\Rightarrow proof is completed

EQUILIBRIUM CHARACTERIZATION

- Back to characterizing the equilibrium

EQUILIBRIUM CHARACTERIZATION

EQUILIBRIUM CHARACTERIZATION

- Horizontal line plots farmer's MPK: $a+c$
- Diagonal line plots gatherer's decreasing MPK: G^{\prime}
- Point E^{0} is the efficient equilibrium without credit constraints: MPKs are equal
- Point E^{*} is the constrained steady state equilibrium: MPK of gatherers is $G^{\prime}=R a$ (by assumptions 1 and $2 R a<a+c$)
- In both cases, the area under the upper MPK lines is aggregate output
- Giving more K to farmers (looseing the constraint) increases aggregate output

DYNAMICS

- We now turn to studying an unanticipated shock
- Suppose we start at steady state equilibrium in $t-1$, but in period t the fruit harvest of both farmers and gatherers is multiplied by $1+\Delta$ for one period
- This is a completely transitory shock, so any persistence in the responses will come from the model's endogenous dynamics

DYNAMICS

- Remember the equilibrium conditions

$$
\begin{gathered}
K_{t}=\frac{1}{q_{t}-\frac{1}{R} q_{t+1}}\left[\left(a+q_{t}\right) K_{t-1}-R B_{t-1}\right] \\
B_{t}=\frac{1}{R} q_{t+1} K_{t} \\
q_{t}-\frac{1}{R} q_{t+1}=\frac{1}{R} G^{\prime}\left[\frac{1}{m}\left(\bar{K}-K_{t}\right)\right]
\end{gathered}
$$

with

$$
u\left(K_{t}\right)=q_{t}-\frac{1}{R} q_{t+1}
$$

DYNAMICS

- The transmission of the shock from period t onwards is characterized by combining the first and the second equation on the previous slide:
- In period t

$$
u\left(K_{t}\right) K_{t}=\left(a+\Delta a+q_{t}-q *\right) K^{*}
$$

- In period $t+1, t+2, t+3, \ldots$

$$
u\left(K_{t+s}\right) K_{t+s}=a K_{t+s-1} \quad \text { for } s \geq 1
$$

DYNAMICS

- Comparing the equation shows that in period t the unanticipated shock gives a rise in the farmers net worth
- Value of land is now $q_{t} K^{*}$ while debt repayment is still $R B^{*}=q^{*} K^{*}$
- In the following periods, gross debt repayment and the value of land are equal since the constraint binds
- The dynamics in response to the shock can be summarized by a system of difference equations in K_{t} and q_{t}
- As usual, we can add equations to compute other variables (e.g. output and debt)
- The system of difference equations in nonlinear: $u(K)$ is nonlinear, since it depends on $G(K)$
- The system can be linearized around the steady state (for the derivations, see the paper)

LINEARIZED SYSTEM

- Denote variables in percentage deviations from steady state: $\hat{X}=\frac{X_{t}-X^{*}}{X^{*}}$
- The linearized system is given by

$$
\begin{array}{ll}
\left(1+\frac{1}{\eta}\right) \hat{K}_{t}=\Delta+\frac{R}{R-1} \hat{q}_{t} & \text { at date } t \\
\left(1+\frac{1}{\eta}\right) \hat{K}_{t+s}=\hat{K}_{t+s-1} & \text { for } s \geq 1
\end{array}
$$

and

$$
\hat{q}_{t}=\frac{1}{\eta} \frac{R-1}{R} \frac{1}{1-\frac{1}{R} \frac{\eta}{1+\eta}} \hat{K}_{t}
$$

where $1 / \eta$ is the elasticity of $u\left(K_{t}\right)$ w.r.t. K_{t} evaluated at the steady state (more on this below)

DYNAMICS

- How to inperpret the equations above?
- At date t, Δ is the direct effect of the shock on \hat{K}_{t}, while the indirect effect through prices in scaled up by $\frac{R}{R-1}$ because of leverage
- The factor $\left(1+\frac{1}{\eta}\right)$ reflects that user cost must rise in response to growing demand from farmers, for markets to clear
- The effect of the shock persists into the future via the second equation: the farmers' ability to invest in $t+s$ depends on their net worth, which in turn depends on production in date $t+s-1$

DYNAMICS

- For period t can solve the system explicitly for \hat{K}_{t} and \hat{q}_{t}

$$
\begin{gathered}
\hat{q}_{t}=\frac{1}{\eta} \Delta \\
\hat{K}_{t}=\frac{1}{1+\frac{1}{\eta}}\left(1+\frac{R}{R-1} \frac{1}{\eta}\right) \Delta
\end{gathered}
$$

AMPLIFICATION

- The response of the land price is scaled by $1 / \eta$ the elasticity of $u\left(K_{t}\right)$ w.r.t. K_{t} evaluated at the steady state
- This means the size of change in the marginal product of capital in the gathering sector is key to the amplification
- The response of capital is scaled up by a big margin, due to the presence of the term $R /(R-1)$
- Overall there is large and persistent internal propagation on impact

AMPLIFICATION

- Can derive the dynamics of output as

$$
\hat{Y}_{t+s}=\frac{a+c-R a}{a+c} \frac{(a+c) K^{*}}{Y^{*}} \hat{K}_{t+s-1} \quad \text { for } s \geq 1
$$

- Again the steady state relative marginal products ($a+c$ vs. $a R$) amplify the magnitude of the response

COMPARISON TO FIRST-BEST ECONOMY

- In the first-best economy, without a borrowing constraint, output will rise by Δ
- There would be no effect on land prices, no effect on capital, and therefore no effect on future output
- The comparison between the dynamics characterized above and the case in which output rises by Δ provides us with the magnitude of the internal propagation via the collateral constraint

DYNAMIC VS. STATIC MULTIPLIERS

PRESENT
FUTURE

DYNAMIC VS. STATIC MULTIPLIERS

- Can decompose amplification into static and dynamic multipliers
- The dynamic multiplier comes from future price changes
- We can ask: what are counterfactual dynamics when keeping $q_{t+s}, s \geq 1$ at q^{*} ?
- This counterfactual isolates the static multiplier
- Fixing $q_{t+s}=q^{*}$ we obtain

$$
\begin{gathered}
\left.\hat{q}_{t}\right|_{q_{t+s}=q^{*}}=\frac{R-1}{R} \frac{1}{\eta} \Delta \\
\left.\hat{K}_{t}\right|_{q_{t+s}=q^{*}}=\Delta
\end{gathered}
$$

DYNAMIC VS. STATIC MULTIPLIERS

- Can check the difference between these equations to their original counterparts to understand the contribution of dynamic multipliers
- Dynamic multiplier scales up static effect on \hat{q}_{t} by $\frac{R}{R-1}$
- Dynamic multiplier scales up static effect on \hat{K}_{t} by $\frac{1}{1+\frac{1}{\eta}}\left(1+\frac{R}{R-1} \frac{1}{\eta}\right)$
- Overall, large additional effects due to dynamic multiplier \rightarrow forward-looking prices give amplification

SUMMING UP

- Model delivers a great deal of amplification
- The financial constraint matters a lot for the dynamics of activity in this economy
- Neat and intuitive characterization of the model

FULL MODEL: BRIEF OVERVIEW

- Kiyotaki and Moore also write down a more general version of the model
- Two substantive changes

1. Reproducable capital: farmers can plant fruits
2. Only a fraction of farmers get investment opportunities

FULL MODEL: BRIEF OVERVIEW

OUTLOOK

MICROFOUNDATION: OVERVIEW

- Next step: turn to rationalizing the presence of a debt limit of the type that Kiyotaki and Moore explore

Bibliography

Hart, O. and J. Moore (1994): "A Theory of Debt Based on the Inalienability of Human Capital," The Quarterly Journal of Economics, 109, 841.
Kiyotaki, N. and J. Moore (1997): "Credit Cycles," Journal of Political Economy, 105, 211-248.

