ECON 747 – LECTURE 15: BUBBLES

Thomas Drechsel

University of Maryland

Spring 2025

MOTIVATION

Today we think about a concept that frequently appears in the discourse on financial markets their relation to the macroeconomy: bubbles

EXAMPLES OF BUBBLES?

- The Tulip Mania in the Netherlands, 1624-37
- ► The South Sea Bubble of 1720
- ► The Dot-Com Bubble of the 1990's
- ▶ The US Housing Bubble of the 2000's
- Bitcoin? Dogecoin? NFTs?

The "Viceory" tulip was sold at a price equivalent to ten times the annual wage of a skilled Dutch crafts worker

Is this a bubble?

1. LeBron James (2019-20 dunk)

Sold for \$208,000 in February 2021 Set: Cosmic / Serial number: 29

HOW TO THINK ABOUT BUBBLES?

Large deviations of asset prices from *fundamental value*, followed by sharp drops

Possible explanations:

► ...

- Psychology, herd behavior
- Asymmetric information

► A nice brief overview is provided by Brunnermeier (2009)

RATIONAL BUBBLES: BLANCHARD-WATSON

MOTIVATION

- Blanchard and Watson (1982) provide a formal treatment of asset price bubbles
- Main question: are bubbles consistent with rationality?
- Why is this a relevant question?
 - Rationality puts strong restrictions on behavior
 - In some sense the most challenging environment for a bubble to arise
- ▶ See also Martin and Ventura (2018) for a survey on rational bubbles

FINDING

Rational expectations do <u>not</u> imply that the price of an asset is equal to its fundamental value!

SETTING

• Net return of an asset that pays dividend d_t is given by

$$r_t^a = \frac{p_{t+1} - p_t + d_t}{p_t}$$

No-arbitrage condition

 $\mathbb{E}(r_t^a | \Omega_t) = r$

 Ω_t is the information set at date t, which is assumed to be common to all agents

SETTING

- We have assumed above that there is a constant risk free rate, agents are risk neutral and there are no frictions in asset trade
 - Recall also the Lucas tree model from Lecture 4
- ▶ The equations on the previous page imply:

$$\mathbb{E}(p_{t+1}|\Omega_t) - p_t + d_t = rp_t$$
$$p_t = \frac{d_t + \mathbb{E}(p_{t+1}|\Omega_t)}{1 + r_t}$$

FUNDAMENTAL VALUE

We can iterate forward this equation to get

$$p_t^* = \sum_{i=0}^{\infty} \left(\frac{1}{1+r}\right)^{i+1} \mathbb{E}(d_{t+i}|\Omega_t)$$

Note that we have used the law of iterated expectations

 $\mathbb{E}(\mathbb{E}(\cdot|\Omega_{t+i})|\Omega_t) = \mathbb{E}(\cdot|\Omega_t)$

 \triangleright p_t^* is the "fundamental" value, the expected net present value of dividends

lt turns out that p_t^* is not the only solution to the equation

$$\mathbb{E}(p_{t+1}|\Omega_t) - p_t + d_t = rp_t$$

MULTIPLE SOLUTIONS

> Any solution of the following form satisfies the law of motion in p_t derived above:

$$p_t = p_t^* + b_t$$

with

$$p_t^* = \sum_{i=0}^{\infty} \left(\frac{1}{1+r}\right)^{i+1} \mathbb{E}(d_{t+i}|\Omega_t)$$

and

 $\mathbb{E}(b_{t+1}|\Omega_t) = (1+r)b_t$

- The b_t term must grow (since r > 0) but the condition above allows a variety of different processes, including for example deterministic growth
- Any solution of this type implies deviations from fundamentals without violating no-arbitrage restrictions implied by the rational expectations environment
- Blanchard and Watson construct an example in which b_t embodies features that are commonly thought to be described as a "bubble"

Suppose the following:

$$b_t = \begin{cases} \frac{1+r}{\pi} b_{t-1} + \mu_t & \text{with prob. } \pi\\ \mu_t & \text{with prob. } 1 - \pi \end{cases}$$

where $\mathbb{E}(\mu_t | \Omega_t) = 0$

BUBBLES

- ► How to interpret this process?
- With probability π :
 - The bubble lasts
 - The return on the asset exceeds r
- With probability 1π :
 - The bubble bursts
 - The price of the asset goes back to the fundamental value
- The average duration of the bubble is $\frac{1}{1-\pi}$

- > You can easily simulate this process on a computer to see what it looks like
- You can essentially simulate a bubble(-like) process, without assuming any deviation from rational behavior

- In principle, the probability that the bubble bursts may be a function of the time over which it has lasted
- The price accelerates if the probability of a bust increases

EXTENSION: BUBBLE RELATED TO FUNDAMENTALS

- As an extension, Blanchard and Watson consider an example of a bubble that is related to the fundamental value
- \blacktriangleright Consider a military stock which pays 1 if there is a war and 0 if there is no war
- \blacktriangleright Suppose a war starts and the probability that it lasts is π

EXTENSION: BUBBLE RELATED TO FUNDAMENTALS

The fundamental variables of the stock is

$$p_t^* = \sum_{i=0}^{\infty} \left(\frac{1}{1+r}\right)^{i+1} \mathbb{E}(d_{t+i}|\Omega_t) = \sum_{i=0}^{\infty} \left(\frac{1}{1+r}\right)^{i+1} \pi^i$$

EXTENSION: BUBBLE RELATED TO FUNDAMENTALS

Suppose the following bubble arises

$$b_t = b_0$$

$$b_{t+i} = \begin{cases} \frac{1+r}{\pi} b_{t+i-1} & \text{if war at } t+1 \\ 0 & \text{if no war at } t+1 \end{cases}$$

This leads to an increase of the price above fundamentals, and a collapse in both the bubble and the fundamental price when the war ends

GENERALIZATIONS: RISK AVERSION

- What about risk aversion?
- ▶ We have seen that the bubble term is required to grow according to

 $\mathbb{E}(b_{t+1}|\Omega_t) = (1+r)b_t$

- With risk aversion, the agents would require additional compensation for the risk that the bubble bursts
- Therefore the b_t would need to grow faster than 1 + r

GENERALIZATIONS: IMPERFECT INFORMATION

- If agents do not have the same information, they will have a different perception of the fundamental value of the asset, given by condition on Ω_{j,t} rather than Ω_t
- This means that agents do not perceive the same bubble
- There may be agent-specific bubbles satisfying

 $\mathbb{E}(b_{t+1}|\Omega_{\mathbf{j},t}) = (1+r)b_t$

- Could some agents in the market know there is a bubble while others do not?
 - Maybe uninformed (yet rational) traders matter for starting bubbles ...

BUBBLES AND TRANSVERSALITY

- Arbitrage does not prevent bubbles, but are there other conditions that could (through rationality or market clearing)?
- Successive iteration of the condition required for the bubble term implies that for $b_t > 0$, we get

$$\lim_{i \to \infty} \mathbb{E}(b_{t+i} | \Omega_t) = +\infty$$

While the probability that a bubble bursts tends to 1 over time, the price increases at a rate that implies an ever growing expected value of the price

BUBBLES AND TRANSVERSALITY

Implications:

- Assets that are redeemable a given price at a given time cannot satisfy this condition. Therefore bonds (that are not perpetuities) cannot exhibit bubbles.
- There cannot be negative bubbles if the asset can be disposed of at no cost

BUBBLES AS PONZI SCHEMES

Suppose there is a finite number of infinitely lived market participants

- Suppose the price of an asset is above its fundamental price
- The only reason to hold the asset is to resell it at some time and realize the capital gain
- This means that all agents intend to sell the asset in finite time, so nobody will be holding the asset after some finite time period
- This cannot be an equilibrium!

- If the market is made up of generations of new participants the above arguments do not hold and a bubble may emerge
- ▶ This idea is akin to the formal model of Samuelson (1958)
 - Money as a bubble asset in an OLG structure

REAL EFFECTS OF BUBBLES

Bubbles can have persistent negative effects on real allocations

Think about housing:

- Suppose the fundamental price of houses is given by the net present value of housing services, "rents"
- Suppose there is a bubble in which agents are willing to pay more for houses than the fundamental value justifies
- The higher price results in higher returns for housing construction and thus a lager housing stock in the future
- With an unchanged demand for housing, this implies lower rents in the future
- This means that the bubble decreases the fundamental value of houses

- Can bubbles have positive effects?
- Maybe: perhaps there are circumstances in which bubbles can reallocate resources from unproductive to productive use?
- Martin and Ventura (2012) show theoretically how bubbly episodes can have permanent positive effects on real output growth

THE BOTTOM LINE

 Deviations of asset prices from the fundamental value of the asset are consistent with rational expectations

BIBLIOGRAPHY

BLANCHARD, O. J. AND M. W. WATSON (1982): "Bubbles, Rational Expectations and Financial Markets," Working Paper 945, National Bureau of Economic Research.

- BRUNNERMEIER, M. K. (2009): "Bubbles," New Palgrave Dictionary of Economics, Second Edition.
- MARTIN, A. AND J. VENTURA (2012): "Economic Growth with Bubbles," American Economic Review, 102, 3033–58.
- (2018): "The Macroeconomics of Rational Bubbles: A User's Guide," Annual Review of Economics, 10, 505–539.
- SAMUELSON, P. A. (1958): "An Exact Consumption-Loan Model of Interest with or without the Social Contrivance of Money," *Journal of Political Economy*, 66, 467–482.