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Abstract 

I describe whether high stakes risky decisions in the game show Catch 21 are more consistent 
with expected utility theory or prospect theory.  The show permits for an analysis of two distinct 

decisions: the card placement decision and the stop/continue decision.  I find evidence of 
reference dependence in both the card placement decision and the stop/continue decision.  These 
findings suggest that the decisions on Catch 21 may be better explained by prospect theory than 
expected utility theory, which is consistent with the conclusions of other studies that use game 

show data.   
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I.   Introduction 
In this paper, I examine how well economic choice models of expected utility theory and 

prospect theory explain the risky decision making of contestants in the game show Catch 21.  

This game show allows for the analysis of risky decision making where the potential monetary 

payoff is large, which has been difficult in other behavioral studies.  Difficulty arises because 

economists conduct most of their experiments on college campuses.  The participants are usually 

college students and the monetary payoffs are usually small (Kahneman and Tversky, 1981), 

(Hardies, Breesch and Branson, 2013), (Peng and Miao, Xiao, 2013).  Game shows offer 

scenarios in which the financial stakes are high and the probability of outcomes are known.  

Therefore, researchers have used game shows to analyze individual risky decision making 

(Gertner, 1993), (Post, van den Assem, Baltussen and Thaler, 2008).     

 The television game show Catch 21 provides a scenario in which the stakes are large and 

outcome probabilities are well defined.  In the Catch 21 bonus round, one contestant is initially 

dealt three hands of cards. A dealer then reveals one card at a time from a standard deck and the 

contestant seeks to add the card to one of the three hands.  The goal is to end up with a score of 

21 in all three hands, using standard blackjack rules.  Catch 21 provides two platforms to analyze 

risky decision making, as contestants first decide where to place each dealt card (henceforth, card 

placement decision), and then must decide whether to stop or to continue playing the game after 

each card is dealt (henceforth, stop/continue decision).  I study whether decisions in the bonus 

round may be more consistent with a model of expected utility theory or prospect theory.   

The answer to this question is valuable in application.  Knowledge of how individuals 

make risky choices is critical for the analysis of financial investment practices, retirement 

savings strategies and lottery activities, among others.  It is also important for the analysis of 
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policy making under uncertainty.  In addition, my findings will contribute to the growing 

economic literature that uses data from game shows.   

Traditionally, economists have relied on expected utility theory to explain how 

individuals make choices under uncertainty (von Neumann and Morgenstern, 1944).  More 

recently, behavioral economists have developed prospect theory as an alternative model of 

individual decision making (Kahneman and Tversky, 1979).  Prospect theory, unlike standard 

formulations of expected utility theory, allows for reference dependent choices.  Consider the 

following example: Larry begins with $150,000 and loses $50,000.  Nathan begins with $50,000 

and gains $50,000.  Now, Larry and Nathan both have $100,000.  Assuming monetary wealth is 

the only argument of the utility function, expected utility theory implies that Larry and Nathan 

have equal utility.  Prospect theory, in which utility also depends on a point of reference, implies 

that Larry and Nathan may not necessarily have equal utility, as Larry’s loss and Nathan’s gain 

are significant.    

 I analyze the decisions in the bonus round of Catch 21 in several different ways.  I find 

evidence of reference dependence in the card placement decision.  That is, contestants that are 

dealt lucky behave differently than those that are unlucky, all else equal.  Also, I find evidence of 

reference dependence and path dependence in the stop/continue decision.  Lucky contestants 

may be more risk seeking while unlucky contestants may be more risk averse.  Both of these 

results suggest that prospect theory may better explain risky decisions in the bonus round of 

Catch 21 than expected utility theory. 

 The rest of this paper proceeds as follows.  Section 2 describes the rules of the bonus 

round of Catch 21, as well as related literature.  Section 3 describes the data.  Section 4 provides 
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an analysis of the card placement decision and Section 5 provides an analysis of the 

stop/continue decision.  Section 6 presents theoretical framework for maximum likelihood 

estimation of the two choice models and Section 7 concludes.  

II.   Background and Related Literature 
A. Background 

 

Game Show Network aired 300 episodes of Catch 21 in the United States from 2008-2011.  

One contestant competes for a maximum prize of $25,000 in the bonus round.  A contestant 

reaches the bonus round after competing against two other contestants in three earlier rounds.  

The earlier rounds consist of a combination of popular culture trivia and a card game similar to 

blackjack.  The contestant is awarded $1000 for reaching the bonus round and keeps this money 

regardless of the bonus round results.   

Figure 1 shows a game diagram for the bonus round.  The contestant simultaneously controls 

three hands of cards.  They are initially dealt one card for each hand.  A dealer reveals a card 

from a shuffled, standard deck and the contestant must decide between adding the card to one of 

their three hands, and if so, to which hand.  Contestant can also discard an unwanted card by 

using what is called a Power Chip.  Contestants begin the bonus round with up to four Power 

Chips, depending on their success in the earlier rounds.1    

                                                             
1 Starting in Season 2, contestants began the Bonus Round with a minimum of 2 Power Chips  
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The game uses standard blackjack point values for the cards, in which all numbered cards 

have a value of their number, face cards have a value of 10 and an ace has a value of either 1 or 

11.  The goal of the game is to reach a sum of 21 in each of the three hands.  The contestant wins 

$1,000 for reaching a sum of 21 in one hand, $5,000 for reaching a sum of 21 in two hands and 

$25,000 for reaching a sum of 21 in all three hands.  However, the contestant loses all of their 

winnings if they reach a sum of over 21 in any hand.  A contestant faces the decision to stop or 

continue playing the game only after a card is placed in a hand.  This is the stop/continue 

decision. 
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B. Related Literature 

The analysis of risky choice is important to almost every field of economics.  The two most 

prevalent models to explain risky decision making are expected utility theory and prospect 

theory.  Expected utility theory, the traditional model, predicts that individuals make decisions 

by weighing outcomes of possible choices according to their probability of occurrence.  The 

choice with the maximum expected utility is selected (von Neumann and Morgenstern, 1944).  

Expected utility theory assumes that judgment is in reference to a fixed asset position.  More 

recent research has documented many examples of behavior that violates expected utility theory.   

Kahneman and Tversky (1979) proposed prospect theory as an alternative choice model.  

Prospect theory defines outcomes as gains or losses relative to a reference point, rather than as 

states of wealth in expected utility theory.  

There is a large literature that empirically investigates how individuals make risky decisions.  

Many researchers have used the expected utility model to estimate a risk aversion parameter 

(Gertner, 1993), (Jiankopolos and Bernasek, 1998).  Others have used expected utility theory to 

examine the properties of constant relative risk aversion (CRRA) or constant absolute risk 

aversion (CARA) (Palsson, 1996).  It has been difficult to test these hypotheses since most 

researchers are constrained by small budgets.  Using data from game shows is one method to 

circumvent this issue (Gertner, 1993), (Hartley, Lanot and Walker 2006).  Conducting 

experimental work in developing areas to create high stake scenarios is another method, since 

low nominal payoffs hold greater real value in developing regions.  In such studies, Binswanger 

(1980) and Kachelmeir and Shehata (1992) found that risk aversion tends to increase as payoffs 

increase.  Thus, Holt and Laury (2002) developed a flexible expo-power utility function to allow 

for non-constant relative risk aversion and absolute risk aversion.  Even so, Holt and Laury’s 
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model may not be best at explaining risky decisions since, unlike models of prospect theory, it 

does not include a parameter for reference point. 

The paper I follow most closely is Post et al. (2006), which tests data from the game show 

“Deal or No Deal” for consistency with a model of expected utility theory and an alternative 

model based on prospect theory.  Their main finding is the importance of reference dependence. 

They conclude that a model of prospect theory with a sticky reference point explains contestant 

decisions on “Deal or No Deal” much better than a model of expected utility theory in the spirit 

of Holt and Laury (Post, ven den Assem, Baltuseen and Thaler, 2006, pg. 67).   

Following Post et al. (2006), I analyze decisions fro ma different game show- Catch 21.  The 

Catch 21 data offer a few advantages relative to the “Deal or No Deal” data.  Most notably, 

Catch 21 allows for the analysis of two distinct decisions for path dependence and reference 

dependence, whereas “Deal or No Deal” only permits the analysis of one.  Also, while Post et al. 

are not able to predict the payoff outcome of the stop/continue decision in “Deal or No Deal” 

with certainty, the payoffs of the stop/continue decision in Catch 21 are known to the contestant 

and the viewer.  This allows for improved accuracy.  Additionally, the “Deal or No Deal” data 

contain contestant decisions from similar game shows filmed in three different countries.  The 

authors model decisions from the three countries separately.  This paper will analyze twice as 

many decision nodes as the “Deal or No Deal” paper, and all are from the same country.  The 

larger sample size should permit more precise estimates.  While the stakes are lower than in 

“Deal or No Deal,” Catch 21 is a useful platform for analyzing high stakes decisions since the 

potential payoff is much greater than in most economics experiments.    

III. Data  
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I examine decisions from 294 bonus rounds of Catch 21, a United States game show.  

The data contains the card placement and stop/continue decisions from every episode of the 

show ever produced, except for 6 episodes that introduced slightly different game rules.  The 294 

episodes aired between July 2008 and July 2011 on “Game Show Network.”  Every episode 

features a new contestant in the bonus round.  Scott Sternberg, one of the producers, explained 

that contestants are selected after meeting with the producers and simulating game play.  He also 

said, “[contestants] were cast as reality contestants are typically- based on who the producers felt 

would perform well and be entertaining on the show.”  Thus, it is clear that the sample is not a 

random sample from the general population.  However, this threat to external validity is common 

to all research based on data from game shows, and completely analogous to similar concerns 

that apply to data generated by laboratory experiments.  

I collected a variety of information for each contestant.  I assembled data on each 

contestant’s gender, education level and occupation.  Education and occupation are generally 

revealed to the audience when the contestant is introduced at the beginning of the episode2.  Zero 

cards dealt indicates the initial three cards dealt to a contestant.  Each additional card dealt 

defines a new card placement decision.  I note the number of Power Chips that each contestant 

began with and the amount of money that they won in the bonus round.  I organize these 

observations as a panel dataset.  I observe 1819 card placement decisions and 673 stop/continue 

decisions made by a total of 294 different contestants. 

Table 1 provides summary statistics the 294 contestants.  There are only 206 observations 

of BachDegree because 88 contestants do not share their education or occupation.  Hands of 21 

                                                             
2 When education level is not shared, it is often evident from their stated occupation. 
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indicates the total number of hands in which a contestant reached a sum of 213.  Following Post 

et al. (2006, pg. 44-45) I do not condition on gender or education in my analysis4.  

 

IV. Card Placement Decision 
 A. Preliminary Analysis 

When dealt a card in the Bonus Round of Catch 21, contestants must decide whether to 

place it in one of their three hands or to discard it with a Power Chip.  I assume that contestants 

are myopic, in that they make decision with respect to outcomes of the next dealt card5.   Card 

placement that maximizes the chance to reach the next prize level is a critical part of the strategy 

of the game.  Therefore, I define the optimal card placement decision as that which maximizes 

the probability of reaching a sum of 21 in a hand on the next dealt card.  Henceforth, P(21) is the 

probability of reaching a sum of 21 in a hand on the next card dealt.  Consider the following 

game scenario in which John is dealt a 4 as his first card: 

       

         

  

                                                             
3 This does not necessarily correspond to Amount Won.  Consider the following: A contestant reaches a sum of 21 
in 2 hands, but proceeds to bust in their third hand.  In this case, Hands of 21 is equal to 2 but Amount Won is equal 
to 0. 
4 As in “Deal or No Deal,” the contestant often receives advice from the live studio audience and is allowed to 
consult with friends/family while making a decision, thus mitigating the role of gender and education. 
5 The cognitive difficulty of considering outcomes several cards ahead likely prevents contestants from thinking in 
this manner.  In addition, the host of the game show often encourages contestants to only think dealt card ahead.  
Lastly, Post et al. (2006), who adopted the frame of myopia, performed a replication of their analysis without this 
assumption as a robustness check.  They found that their estimates did not change significantly when using a model 
of backward induction.   
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Figure 2 – Illustration of P(21) 

 

Placing the 4 in Hand 1 results in P(21) equal to 0.3336.  Placing it in Hand 2 results in P(21) 

equal to 0, since there is no single dealt card can lead to a sum of 21 in a hand.  Placing the 4 in 

Hand 3 results in P(21) equal to 0.08337.  Using one of the three available power chips results in 

P(21) equal to 0.  Therefore, the optimal card placement decision is Hand 1 and I denote the 

P(21) associated of the optimal placement as P(21)*.  While John’s decision is straightforward, I 

show that the observed card placement decisions are not always optimal. 

A contestant has made the optimal card placement decision if the observed decision is the 

same as the optimal decision8.  Otherwise, if a different placement decision would have resulted 

in a higher P(21), then the contestant has not made the optimal decision.  My sample consists of 

                                                             
6 16 out of the remaining 48 cards (four 10 cards, four Jacks, fours Queens & four Kings) will results in a sum of 21 
on the next dealt card  
7 4 out of the remaining 48 cards (all 4 8s) 
8 If placing in Hand 1 or Hand 2 lead to equal P(21), both of which are greater than the P(21) of placing in Hand 3 or 
using a Power Chip, then the contestant has made the optimal decision if they choose either Hand 1 or Hand 2.  
Likewise for similar scenarios. 
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2,113 card placement decision nodes9.  Table 2 shows the summary statistics for this analysis.  

Opt Placement is binary, coded as 1 if the observed card placement decision is optimal.  The first 

row of Table 2 shows that only 45.5% of the card placement decisions were optimal.  This raises 

the question of the magnitude of the non-optimal decisions. 

Refer back to Figure 2, in which the optimal card placement decision of Hand 1 results in 

P(21)*= 0.333.  If John chooses Hand 3 then P(21) is equal to 0.0833.  At each card placement 

decision node, I define the deviation from the optimal decision as the difference:  

(1)    Dec_Dev_Opt = P(21)* – P(21)observed 

If John chooses Hand 3 then Dec_Dev_Opt is equal to 0.2497.  If he correctly chooses Hand 1, 

then Dec_Dev_Opt is equal to 0.  Therefore, Dec_Dev_Opt = 0 indicates that a contestant made 

the optimal card placement decision.  A large value of Dec_Dev_Opt represents a poor 

placement.  The 3rd row of Table 2 shows that, on average, each observed placement decision 

reduced the chance of reaching a higher prize level on the next dealt card by 4.13 percentage 

points, relative to the optimal placement.  Conditional on being non optimal, the average value of 

Dec_Dev_Opt is 7.5 percentage points (n=1,152).  The distribution of Dec_Dev_Opt, conditional 

on being nonzero, is depicted in Figure 3. 

Examining the card placement decisions throughout a contestant’s entire play in the 

bonus round is telling as to whether certain individuals simply make worse placements than 

others.  Cont_Dev_Opt is the average reduction in P(21) relative to the optimal placement for 

                                                             
9 I do not include every card placement decision in this sample.  The following scenarios are not included: (1) if the 
placement results in a contestant winning $25,000, (2) if the placement forces a contestant to bust and (3) if the 
contestant chooses to stop playing the game after placing the card.  In case (1) the placement decision is trivial.  In 
case (2), the placement decision is not economically relevant.  In case (3), the contestant does not attempt to make 
the optimal choice, rather they just make any decision that does not result in a bust.   
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each contestant (row 4 in Table 2)10.  Each observation of Cont_Dev_Opt corresponds to one of 

the 294 contestants.  Cont_Dev_Opt = 0 indicates that the contestant made the optimal placement 

for each dealt card.  There are three contestants for whom this is the case.  Figure 4 shows the 

distribution of Cont_Dev_Opt for the other 291 contestants.  This distribution suggests that there 

is not a clear distinction between good and bad card placement decision makers.    

It seems possible that the amount of prize money that a contestant has won may affect the 

card placement decision.  Perhaps after the excitement of winning $5000, a contestant’s 

perception of probability is skewed.  I find that the proportion of optimal placements when a 

contestant’s current prize is $0 is significantly different than when their current prize is $1000. 

Contestants placed optimally more often when they have not won any money yet relative to 

when they won $1000.  However, I do not find a significant difference between the proportion of 

optimal placements made between other prize levels (Table 3).   

Perhaps contestants who appear in the first 100 episodes of Catch 21 are at a 

disadvantage relative to those in the last 100 episodes.  That is, perhaps there is a learning effect 

in which contestants make better placement decisions if they are given the opportunity to learn 

from the mistakes of others.  I observed 724 card placement decisions in the first 100 episodes 

and 694 in the last 100.  45.7% of the card placement decisions made in the earlier episodes were 

optimal and 45.8% of those in the later episodes were optimal.  There is not a significant 

difference between the proportion of optimal placements in the first and last 100 episodes (Table 

4).  I also examine the 393 and 376 non-optimal placement decisions made in the first 100 

episodes and last 100 episodes respectively.  I again find that there is no significant difference in 

                                                             
10 If I observe 5 card placement decision nodes for a contestant, then their Cont_Dev_Opt is (1/5) times the sum of 
each Dec_Dev_Opt for their 5 observed decisions 
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Dec_Dev_Opt between placements made in the first and last 100 episodes.  Therefore, I find no 

evidence of a learning effect, both in terms of how the proportion of optimal placements and the 

magnitude of non-optimal decisions. 

The card placement decision is important because of its financial implications.  Refer 

back to Figure 2, in which John’s current prize is $0.  If he makes the optimal placement in Hand 

1, the expected payoff of the next dealt card is $33311.  However, if he instead places the card in 

Hand 3, the expected payoff of the next card is only $83.312.  I define ∆Exp_Pay_X as the 

difference between the expected payoff of the optimal placement decision and that of the 

observed placement, given current prize level X (rows 5-7 in Table 2) 13.  In John’s case, 

∆Exp_Pay_0 is equal to $249.714.  That is, making the non-optimal placement reduces John’s 

expected payoff of the next card by $249.7.  Note that the value of ∆Exp_Pay_X is exactly zero 

if the optimal placement decision is made.  

Figures 5-7 show the distribution of ∆Exp_Pay_X for non-optimal placements at each 

prize level.  I observe 568 such decisions when the prize level is $0, 455 at $1000 and 129 at 

$5000.  The median decrease in expected payoff for a non-optimal placement was $83.33 at 

prize level $0, $416.67 at prize level $1000 and $2,173.91 at prize level $5000.  Therefore, 

contestants that do not place optimally lower their expected payoff of the next card by large 

amounts.  

                                                             
11 0.333*$1000 + 0.666*$0 = $333 
12 0.0833*$1000 + 0.9167*$0 = $83.3 
13 996 card placement decisions are observed at prize level = $0, 875 at prize level = $1000 and 242 at prize level = 
$5000 
14 $333 – $83.3 = $249.7 
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The card placement decision has a real economic impact on the amount of money that a 

contestant wins in the bonus round.  The next section examines if reference dependence is 

evident in the card placement decision. 

 B. Empirical Strategy- Card Placement Decision 

 A contestant experiences good luck or bad luck based on the cards that they were dealt.  

Luck is exogenous from decisions made by the contestant.  Under the assumption of myopia, I 

define ∆P(21) as: 

(2)                      ∆P(21) = P(21)* - P(21)     

where 

P(21) = the probability of reaching a sum of 21 in a hand on the next card before the next 
card is dealt   

P(21)* = the probability of reaching a sum of 21 in a hand on the next card after the card 
is dealt and if the dealt card is placed optimally   

 

 Consider the example depicted in Figure 8 to be understand the definition of ∆P(21).  As 

shown in the first column, before the card was dealt the contestant only had an 8.51% chance of 

earning $1000.  That is, P(21) = 0.0851.  The contestant was ecstatic when a 6 was dealt.  Their 

chance of reaching a higher prize level on the next card increased to almost 44% after the card 

was dealt, if they optimally placed the 6 in Hand 2.  That is, P(21)* = 0.4348.  Therefore, ∆P(21) 

is large and positive, equal to 0.3497 for the lucky contestant.   

 In contrast, the second column of Figure 8 shows an unlucky contestant.  With no 

abailable power chips, the contestant has a good chance of reaching the $1000 level before the 

card is dealt (P(21) = 0.4318).  Unfortunately, they are dealt a 9 and if they place optimally in 
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Hand 2, their chance of reaching $1000 on the next hand reduces to P(21)* = 0.1628.  Therefore, 

∆P(21) is small and negative, equal to -0.269. 

 Therefore, a large value of ∆P(21) indicates that a contestant was dealt a favorable card 

that exceeded their expectations for reaching a higher prize level.  Similarly, a small, negative 

value of ∆P(21) suggests that a contestant was dealt an unfavorable card that lowered their 

expectations for earning a higher prize.  That is, a large value of ∆P(21) suggests that a 

contestant was lucky and a small value suggests that a contestant was unlucky.   

Figure 8- Lucky and Unlucky Contestants 
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In order to test for reference dependence, I examine if luck plays a role in the card 

placement decision.  That is, if contestants with equal P(21)* but different ∆P(21) behave 

differently.  If reference dependence is not evident, then being lucky should not have an effect 

on whether a card is placed optimally. 

My sample consists of 1819 observed card placement decision nodes.15  Table 6 shows 

summary statistics for this sample.  For individual i and number of dealt cards t, the following 

model tests whether luck plays a role in the card placement decision: 

 

(3)  Opt Placementi,t = β0 + β1(P(21)*i,t) + β2(∆P(21)i,t) + γ1(Xi,t) + µi,t 

 

where Opt Placement is binary, equal to 1 if the contestant made the optimal placement and X is 

a vector of various game scenarios, including prize level, number of cards dealt and number of 

available Power Chips.16  A coefficient of ∆P(21) that is significantly different from zero 

indicates that being luck has an effect on whether a card is placed optimally.  This also begs the 

question of whether the effect is different for lucky and unlucky contestants. 

I define a contestant as lucky if ∆P(21)≥0, like in column 1 of Figure 8, and unlucky if 

∆P(21)<0, like in column 2 of Figure 8.  I observe 1515 lucky decision nodes and 305 unlucky 

                                                             
15 I exclude placement decisions for which I do not observe a previous placement.  That is, I exclude observations 
where the number of cards dealt is less than 2. 
16 As a robustness check, I distinguished between decision nodes where the contestant reaches a sum of 21 in a hand 
on the previous dealt card and those that did not.  This did not alter the significance or magnitude of the regression 
estimates.  Therefore, I only provide the results of the simpler model. 
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decision nodes, as seen in Table 6.   For individual i and number of dealt cards t, the following 

model estimates the individual effects of being lucky and unlucky on the card placement 

decision: 

(4)  Opt Placementi,t = β0 + β1(P(21)*i,t) + β2(∆P(21)i,t*Luckyi,t) + β3(∆P(21)i,t*(1 -Luckyi,t)) +     

γ1(Xi,t) + µi,t 

 

where Lucky is a dummy equal to 1 if the contestant was lucky and zero otherwise.  In this 

model, a significant difference between β2 and β3 suggests that being lucky and unlucky have 

different effects at to whether a card is placed optimally.  

C. Results- Card Placement Decision 

Table 7 provides regression estimates for model 3, which examines if lucky plays a role in 

the card placement decision.  Column 1 shows the results for the base specification that does not 

control for game scenarios.  I find a significant and negative coefficient of ∆P(21), which 

suggests that the luckier a contestant is, the less likely they are to make the optimal placement, 

all else equal.  This provides initial evidence of reference dependence.   

I control for various game scenarios in columns 2 and 3 to ensure that I isolate the impact of 

being lucky or unlucky.  It seems very important to account for prize level, since that determines 

the number of hands a contestant can place a card between.  When controlling for prize level, I 

again find a negative and significant coefficient of ∆P(21) (column 2 of Table 7).  It is less clear 

on theoretical grounds if the number of cards a contestant has been dealt or the number of power 

chips available for use is important to the card placement decision.  Nonetheless, I control for 
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these games scenarios and again find a negative and significant coefficient of ∆P(21) (column 3 

of Table 7).   Therefore, there is evidence of reference dependence in the card placement 

decision since the effect of being lucky or unlucky on placing a card optimally is significantly 

different from zero. 

 Table 8 provides regression estimates for model 4, which examines the individual effects 

of being lucky and unlucky on the card placement decision.  In the base specification, I find a 

significant and negative coefficient of ∆P(21) for lucky contestants but the coefficient of ∆P(21) 

for unlucky contestants is not significant (column 1 of Table 8).  The same holds true when I 

control for prize level (column 2) and control for all game scenarios (column 3).  In all three 

cases, I find that there is a significant difference between the effect of being lucky and unlucky in 

the card placement decision (Table 9).  Therfore, lucky contestants are less likely to place 

optimally than unlucky contestants, all else equal.  Contestants that arrived at equal P(21)* in 

different ways behave differently.  

 There is evidence of reference dependence in the card placement decision, and, 

specifically, evidence that being dealt a good card has a significant effect on whether that card is 

placed optimally.  Unlike expected utility theory, prospect theory accounts for reference 

dependence in decision making.  Prospect theory assumes that decision makers evaluate 

outcomes as gains and losses relative to a reference point.  Contestants appear to frame the card 

placement decision differently if they are lucky or unlucky.  Therefore, prospect theory may 

better explains the observed card placement decisions than expected utility theory.  This 

conclusion is consistent with Post et al.’s (2006) study of Deal or No Deal.  
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 Future research may want to consider a nonlinear specification to test for reference 

dependence in the card placement decision.  I divided my sample of 1819 decision nodes into 15 

segments based on the value of P(21)*.  Figure 9 shows the mean proportion of optimal 

placements for the first 5 segments (smallest values of P(21)*) and similarly for Figures 10 and 

11.  It appears that a nonlinear model would better explain the relationship between Opt 

Placement and P(21)*. 

 

V. Stop/Continue Decision 
 A. Empirical Strategy 

After placing a card in one of the three hands, contestants must decide whether to stop or 

continue play in the bonus round.  I again assume that contestants are myopic.  Table 10 reports 

summary statistics for the 673 stop/continue decisions observed in the sample17.  Stop is binary 

equal to 1 if the contestant chose to stop play in the bonus round.  Note that a contestant faces no 

risk before winning $1000, so all further analysis will only use a sample of contestants who have 

won at least $1000. 

I use the same definitions of P(21), P(21)*, and ∆P(21) as before so that ∆P(21) 

quantifies the luck that comes with a dealt card.  Moreso than in the card/placement decision, it 

seems very important in the stop/continue decision to distinguish between contestants that 

reached a higher prize level with the previous dealt card and those that did not in the 

stop/continue decision.  Perhaps reaching a higher prize level makes a contestant less inclined to 

stop gameplay because of the “house money” effect.  That is, contestants may feel that they are 

                                                             
17 Contestants who do not face the stop/continue decision are not included here (i.e. contestants who used a Power 
Chip to discard the previous card)  
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gambling with money that does not belong to them and therefore are more risk seeking.  In 

contrast, maybe reaching a higher prize level makes a contestant more likely to stop gameplay 

because they wish to safely secure their earnings and are more risk averse.  Therefore, I 

differentiate between contestants that reached a sum of 21 in a hand with the previous dealt card 

and those that did not for this analysis. 

For individual i and number of dealt cards t, the following model estimates the effect of 

luck on the stop/continue decision: 

 

(5)    Stopi,t = β0 + β1(P(21)i,t) + β2(∆P(21)i,t*(1 - 21 Previousi,t)) + β3(21 Previousi,t) + γ1(Xi,t) + 
µi,t 

 
 

where 21 Previous is binary, equal to 1 if the contestant reached a sum of 21 in a hand with the 

previous dealt card.  X is a vector that controls for various game scenarios, including prize level, 

power chips and cards dealt.   

 I observed 147 stop/continue decisions at the $5000 prize level and 32.7% of 

them chose Stop.  In contrast, I observed 526 stop/continue decisions at the $1000 level and only 

15.4% of them chose Stop.  This difference is likely due to the unique nature of decision making 

in the Catch 21 Bonus Round18.  Therefore, the distinction between stop/continue decisions 

made at the $1000 and $5000 levels seems to be very important.  It is less clear, however, 

whether there are theoretical grounds for other game scenarios affecting the stop/continue 

decision.  The number of power chips available and the number of cards dealt to a contestant 

may or may not be important to the stop/continue decision.  Therefore, I control for these game 

                                                             
18 A player can not possibly reach the $5000 prize level without first choosing Continue at the $1000 level. 
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scenarios in some models, but it is uncertain whether the models that control for these game 

scenarios are as important in interpretation.  

A significant β3 in model 5 is evidence of path dependence, since it indicates that 

contestants who reached a higher prize level with the previous card, all else equal, behave 

differently than those who did not.   In addition, given that a contestant did not reach a higher 

prize level with the previous card, a significant β2 in model 5 indicates that luck plays a role in 

the decision to end gameplay in the bonus round.  This evidence of reference dependence would 

beg the question of the individual effects of being lucky and unlucky.   

I define lucky and unlucky contestants in the same way as the card placement decision, 

where positive or zero values of ∆P(21) indicate a lucky contestant and negative values indicate 

an unlucky contestant.  For individual i and number of dealt cards t, the following model 

estimates the individual effects of being lucky and unlucky on the stop/continue decision: 

 

(6)  Stopi,t = β0 + β1(P(21)i,t) + β2(∆P(21)i,t*Luckyi,t*(1 - 21 Previousi,t)) +                 

β3(∆P(21)i,t*(1 - Luckyi,t)*(1 - 21 Previousi,t)) + β4(21 Previousi,t) + γ1(Xi,t) + µi,t 

 

where Lucky is a dummy equal to 1 if the contestant was lucky and zero otherwise.  In this 

model, a significant difference between β2 and β3 would suggest that being lucky and unlucky 

have different effects on the stop/continue decision.  

B.  Results- Stop/Continue Decision 

Table 11 provides regression estimates for model 5, which tests the effect of luck on the 

card placement decision.  Column 1 shows the results for the base specification, which does not 
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control for game scenarios.  I find a significant and negative coefficient on ∆P(21)*(1 – 21 

Previous) which indicates that the luckier a contestant is, the less likely they are to stop game 

play in the bonus round, given they did not reach a higher prize level with the previous dealt 

card, all else equal.  I again find that this coefficient is negative and significant when I control for 

prize level (column 2).19  Luck plays a role in the stop/continue decision, since contestants not 

only frame their decision based on their current chances of reaching a higher prize level but also 

on whether they arrived at these chances by being lucky or unlucky.  This is evidence of 

reference dependence.   

I also find a significant and negative coefficient on 21 Previous in both the base 

specification and when controlling for prize level (columns 1&2 of Table 11).  This provides 

evidence of path dependence.  Contestants that arrive at the stop/continue decision after winning 

more money with the previous card, all else equal, behave differently than those that did not.  

Specifically, a contestant who reached a higher prize level with the previous dealt card is less 

likely to stop gameplay than one who did not, all else equal.  This may support the house money 

effect, since a contestant who just won more money appears to be less risk averse than those who 

did not. 

Table 12 shows the regression estimates for model 6, where I distinguish between the 

effects of being lucky and unlucky.  When prize level is controlled for, the coefficient of 

∆P(21)*(1 – 21 Previous) is negative and significant for lucky contestants, yet is positive and 

significant for unlucky contestants (column 2).  Additionally the second row of Table 13 shows 

that, when prize level is controlled for, the coefficient of ∆P(21)*(1 – 21 Previous) is 

                                                             
19 The coefficient of ∆P(21)*(1 – 21 Previous) is not significant when I control for other game scenarios (column 3).  
As discussed earlier, though, it is not clear on theoretical grounds whether there is an economic rationale to include 
these controls. 
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significantly different for lucky contestants and unlucky contestants.  This indicates that being 

dealt a lucky card decreases the likelihood of a contestant ending game play while being dealt an 

unlucky card increases it, all else equal.20   

It is clear that reference dependence is evident.  If reference dependence was not 

important to the stop/continue decision, then we would expect contestants with the same prize 

level and the same P(21) to behave similarly.  However, the random draw of a card appears to 

change a contestant’s reference point and alter the way that they frame the stop/continue 

decision.  If the card is lucky, then contestants are more likely to continue playing the game.  

They may be more risk seeking.  However, if the card is unlucky, contestants are more likely to 

end game play.  They may be more risk averse.  Therefore, whether the stop/continue decision is 

framed as a gain or a loss relative to chances before a card was dealt is significant. 

 Evidence of reference dependence and path dependence suggest that the observed 

stop/continue decisions may be more consistent with prospect theory than expected utility 

theory.  A model of prospect theory would likely account for the differences in the stop/continue 

decision between those who experience good and bad luck.  In contrast, a model of expected 

utility theory may not be flexible enough to explain these differences, since it assumes that 

decision makers evaluate outcomes without respect to prior gains or losses.  

 Future research may want to consider using a nonlinear specification to examine the 

stop/continue decision.  Just as in the card placement decision, I divided my sample of 673 

decision nodes into 15 segments based on the value of P(21).  Figure 12 shows the mean 

proportion of stop decisions for the smallest five segments and similarly for the middle and 
                                                             
20 Again, I find that controlling for cards dealt and power chips changes these results.  However, I emphasize that it 
is unclear whether or not there is a theoretical basis for including them.  There is a well defined reason to control for 
prize level, though, so I focus on those results. 
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largest 5 segments in Figures 13 and 14.  It appears that a nonlinear model would better explain 

the relationship between Stop and P(21).   

In addition to using nonlinear model, future work may want to adopt Post et al’s (2006) 

framework, which would permit a more detailed analysis of risk aversion in the stop/continue 

decision.  I tailor their framework for using maximum likelihood to estimate two choice models 

to Catch 21 in the next section. 

VI.  Framework for Maximum Likelihood Estimation 
 A. Expected Utility Theory 

While previous tests provide convincing evidence of reference dependence in the 

stop/continue decision, applying the framework of Post et al. (2006) to Catch 21 could provide 

greater insight as well as a detailed analysis of risk aversion.  Post et. al use the Holt and Laury 

(2002) expo-power model of expected utility theory:        

(6)                                  𝑢(𝑥) =  1−𝑒−𝛼(𝑊+𝑥)1−𝛽

𝛼
                                                     

There are three unknown parameters in this utility function: the coefficients of risk 

aversion α and β, and an initial wealth parameter W21.  

Post et al. (2006) define the likelihood function in terms of a stop value and continuation 

value.  The stop value is the utility of a contestant’s current prize.  The continuation value is the 

expected utility of a contestant’s unknown prize with the next dealt card if they choose Continue.  

Let 𝑥 represent a contestant’s current prize.   

                                                             
21 Since lifetime wealth is unobservable, Post et al. (2006) include the free parameter of initial wealth.  However, it 
may be better to let W depend on education or occupation, since it is surely different for each individual. 
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The stop value is: 

(6)      𝑠𝑣(𝑥) = 𝑢(𝑥)                                                               

Let 𝑋(𝑥) denote the set of possible payoffs (either $0, $1000, $5000 or $25,000) for dealt 

card  𝑡 + 1 and 𝑝𝑦 be the probability of 𝑦 ∀ 𝑦𝜖𝑋(𝑥𝑡).  As previously mentioned, a key 

assumption is that contestants are myopic, and only consider outcomes one dealt card ahead.  

Thus, the continuation value is defined as: 

(7)     𝑐𝑣(𝑥𝑡) = ∑ 𝑢(𝑦)𝑝𝑦𝑦𝜖𝑋(𝑥𝑡)                                                       

 The stop/continue decision for individuals 𝑖 = 1, … , 𝑁  with dealt card 𝑡 = 1, … , 𝑇 is 

based on the difference between the continuation value and the stop value plus an error term 

(Becker et al., 1963), (Hey and Orme, 1994).  The errors are independent, normally distributed 

random variables with a mean of zero and standard deviation 𝜎𝑖,𝑡.  To control for the fact that the 

standard deviation is likely greater for more difficult decisions than for easier ones, an indicator 

of decision difficulty is used: 

(8)    𝛿�𝑥𝑖,𝑡� =  �∑ (𝑢(𝑦) − 𝑐𝑣�𝑥𝑖,𝑡�)2𝑝𝑦𝑦𝜖𝑋(𝑥𝑖,𝑡)                                     

The standard deviation of the error is assumed to be proportional to the indicator of difficulty, 

such that 𝜎𝑖,𝑡 = 𝛿(𝑥𝑖,𝑡)𝜎 with 𝜎 being a constant parameter.   

Therefore, given these assumptions, the likelihood of the stop/continue decision is: 

(9)     𝑙(𝑥𝑖,𝑡) = �
Φ(𝑐𝑣�𝑥𝑖,𝑡�−𝑠𝑣�𝑥𝑖,𝑡�

𝛿(𝑥𝑖,𝑡)𝜎
) if "Continue"

Φ(𝑠𝑣�𝑥𝑖,𝑡�−𝑐𝑣�𝑥𝑖,𝑡�
𝛿(𝑥𝑖,𝑡)𝜎

)         if "Stop"
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where Φ(. ) is the cumulative normal distribution function.  

Post et al. (2006) estimate the four parameters, 𝛼, 𝛽, 𝑊 and 𝜎 by maximum likelihood.  I 

comment on Post et al.’s estimation in Appendix A.  

 B. Prospect Theory 

Using the same data, Post et al. estimate the parameters of a model based on prospect 

theory.  All assumptions and definitions are the same, except a prospect theory value function is 

used instead of the expo-power utility function.  The value function is defined by: 

(10)    𝑣(𝑥|𝑅𝑃) = �
−𝜆(𝑅𝑃 − 𝑥)∝     𝑥 ≤ 𝑅𝑃
(𝑅𝑃 − 𝑥)∝           𝑥 ≥ 𝑅𝑃   

   

There are three unknown parameters in this model.  𝜆>0 is a loss aversion parameter, RP 

specifies the reference point that distinguishes gains from losses and α > 0 measures the value 

function’s curvature.  Post et al. (2006) estimate these parameters and the constant parameter 

𝜎 using the same maximum likelihood procedure as earlier. 

VII. Conclusion  

 It is clear that the choices made on Catch 21, are not representative of most high stakes 

risky decisions.  Individuals do not make choices about an investment strategy or plan savings 

for retirement in front of a live audience or under the pressure of a production crew.  Unlike 

laboratory experiments, though, contestants receive consultation from the host and discuss 

options with family and friends before making their decision.  Contestants likely contemplate a 
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strategy for the stop/continue decision well before the game begins.  In this regard, decisions in 

Catch 21, may be surprisingly similar to other high stakes risky decisions. 

 The findings in this paper are consistent with the study of “Deal or No Deal” in Post et al. 

(2006).  I find evidence of reference dependence in the card placement decision and the 

stop/continue decision, as well as path dependence in the stop/continue decision.  Both of these 

results suggest that risky decision making on Catch 21 may be better explained by prospect 

theory than expected utility theory.  

 The limitations of this paper are clear.  My analysis of the card placement and 

stop/continue decisions are purely descriptive.  A more accurate claim as to which choice model 

the Catch 21 decisions are more consistent with could be made by following the Post et al. 

(2006) framework and using maximum likelihood to estimate a model of expected utility theory 

and an alternative model of prospect theory.   

 Future research may also want to study a relationship between the card placement and 

stop/continue decisions.  Perhaps contestants who do not make the placement decision optimally 

are less inclined to continue play in the Bonus Round.  Lastly, it would be interesting to test for 

path dependence and reference dependence in a Catch 21 laboratory experiment, where 

participants are drawn from a random sample.    
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Appendix A- Maximum Likelihood Estimation for Post et al. (2006) 

 I replicated the estimation of the expected utility model of Post et al. (2006) for the 

United States.  Using publicly available data from the authors, I performed their estimation of the 

expected utility model using 349 stop/continue decisions from 53 episodes of “Deal or No Deal” 

aired in the United States.  I use the same likelihood function defined in the previous section to 

estimate the same four parameters: 𝛼, 𝛽, 𝑊 and 𝜎.  The Post et al. published results are shown in 

the first column of Table 14.  In addition to the parameters estimates, the authors report the mean 

log-likelihood (MLL) and the hit percentage, defined as the number of correctly predicted “Deal” 

decisions.  They find that 𝛼 = 4.18 ∗ 10−5 and can not reject the hypothesis that 𝛼=0, which 

indicates a model of constant relative risk aversion.  Additionally, they find that 𝛽 = 0.171, and 

are able to reject the hypothesis that 𝛽 =0, which would have suggested that contestants exhibit 

constant absolute risk aversion.   

Similar to most maximum likelihood procedures in economics, I seek to find parameters 

that minimize the negative of the likelihood function22.  Figures 15-18 show the behavior of the 

likelihood function when three of the parameters are fixed to the estimated values published by 

Post et al. (2006, Table 6).  All four of these figures show smooth, convex curves that have a 

local minimum.  When the problem is restricted to estimating only one parameter at a time, I am 

able to replicate the results of the authors. 

Although the 1-parameter problem shows that the published parameter values likely 

result in a local minimum, the result of the 2-parameter problem (second column of Table 14) 

creates doubt that the published estimates are the global minimum of the likelihood function.  I 

                                                             
22 This section will thus report the negative values for log-likelihood and all figures will display the negative of the 
mean log-likelihood 



 32 

restrict the problem to 2 parameters by estimating only 𝛼 and 𝛽, while fixing 𝑊 and 𝜎 to their 

published values.  I find that the MLL is minimized when 𝛼 = 4.99 ∗ 10−6 and 𝛽 = 4.01 ∗

10^(−12).  These estimates result in a mean log-likelihood equal to the published MLL of 

0.259979, which is less than the published value.  Figure 19 shows the behavior of the likelihood 

function over different values of 𝛼, with 𝛽 = 0.171.  Similarly, Figure 20 shows the behavior of 

the likelihood function over different values of 𝛼, with 𝛽 = 0.  𝑊 and 𝜎 are fixed to the 

published estimates in all three figures.  While the global minimum is unclear, it is clear that 

there is more than one local minimum of the likelihood function which both have reasonable 

economic interpretations.  

The 3-parameter problem provides greater insight into whether the published value is the 

global minimum of the likelihood function.  I fix 𝛽 to its published value and minimize the 

likelihood function with respect to the other three parameters.  The third column in Table 14 

shows the resulting estimates.  Only the estimate for 𝜎 matches the published value.  While there 

is no true upper bound on 𝑊, its estimate in this case may have an implausible economic 

interpretation.  The estimate 𝑊 = 3,800,056 is likely not a reliable estimate for a contestant’s 

initial wealth23.  

Estimating all 4 parameters confirms suspicions that while the published value is a local 

minimum, it is likely not the global minimum.  The fourth column in Table 14 shows the results 

of this estimation.  As expected from the results of the 2-parameter problem, I estimate [𝛼 =

4.97 ∗ 10^(−6), 𝛽 = 1.41 ∗ 10^(−10)] as well as a value of 𝑊 with what seems to be a 

                                                             
23 Although estimating initial wealth as constant across all contestants is likely not reliable to begin with.  As 
mentioned earlier, a better estimate could be found by conditioning on education or occupation. 
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plausible economic interpretation24.  The mean log-likelihood is 0.259975, which is again less 

than the published value.  

The conclusion of this replication exercise is that the likelihood function is very flat, and 

there are many estimates that result in an MLL very close to 0.260.  I do not claim that I have 

found a global minimum, only that it that there are many local minimums close together.  

However, it is apparent that published estimates are not the global minimum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                             
24 I have not calculated the standard errors for these parameter estimates and therefore cannot speak to the 
implications of absolute and relative risk aversion from my estimates. 
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Appendix B- Tables and Figures 

Table 1- Summary Statistics of Contestants 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------
Female       |       294    .4387755    .4970835          0          1 
BachDegree   |       206     .592233    .4926166          0          1 
Cards Dealt  |       294    8.268707    1.639708          4         13 
Initial      |       294    2.860544    .7137898          1          4 
Power Chips                                                          
Hands of 21  |       294    1.489796    .7782657          0          3 
Amount Won   |       294    4163.265    6045.381          0      25000 

 

Table 2- Summary Statistics for all Card Placement Decision Nodes 

    Variable  |       Obs        Mean    Std. Dev.      Min        Max 

--------------+------------------------------------------------------- 

P(21)         |      2113    .1915596    .1315455          0        .8 
Opt Placement |      2113    .4548036     .498071          0         1 
Dec_Dev_Opt   |      2113    .0413184    .0442887          0  .3478261  
Cont_Dev_Opt  |       294    .0419724    .0227959          0  .1129777 
∆Exp_Pay_0    |       996    41.35553    39.06084          0  105.4579 
∆Exp_Pay_1000 |       875     202.372    238.0854          0   1739.13 
∆Exp_Pay_5000 |       242    1105.425    1288.505          0  8536.585 
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Figure 3- Distribution of nonzero Dec_Dev_Opt (reduction in P(21) relative to the optimal card 
placement decision) 

 

Figure 4- Distribution of nonzero Cont_Dev_Opt (average Dec_Dev_Opt by Contestant) 

 

 

 

 

 

 

N=1152 

N=291 
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Table 3- t-Test of Proportion of Optimal Card Placement Decisions at different prize levels 

H0 : Proportion of Optimal Card Placement Decisions at Prize Level X = Proportion of 
Optimal Card Placement Decisions at Prize Level Y 

Prize Levels t-Statistic Degrees of Freedom p-Value 

Prize = 0, 1000 -2.1815 1869 0.0293 

Prize = 0, 5000 -1.0467 1236 0.2954 

Prize = 1000, 5000 0.3596 1115 0.7192 

 

Table 4- t-Test of Proportion of Optimal Placements between first 100 and last 100 episodes 

H0 : Proportion of Optimal Card Placement Decisions in first 100 episodes = Proportion of 
Optimal Card Placement Decisions in last 100 episodes 

Sample t-Statistic Degrees of 
Freedom 

p-Value 

First 100 eps 
(724 decisions)  

Last 100 eps 
(694 decisions) 

-0.0389 1416 0.9690 
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Table 5- t-Test of Dec_Dev_Opt between non-optimal decisions in the first 100 and last 100 
episodes 

H0 : Dec_Dev_Opt in first 100 episodes = Dec_Dev_Opt in last 100 episodes 

Sample t-Statistic 
Degrees of 

Freedom 
p-Value 

First 100 eps 

(393 decisions) 

Last 100 eps 

(376 decisions) 

-0.0482 767 0.9616 

 

Figure 5- Distribution of ∆Exp_Pay_0     

N = 568 
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Figure 6- Distribution of ∆Exp_Pay_1000     

N=455 

Figure 7- Distribution of ∆Exp_Pay_5000    

N = 129 
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Table 6- Summary Statistics for Regression Analysis of Card Placement Decision 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
Opt Placement|      1819    .4947774    .5001102          0          1 
        P(21)|      1819    .1941586    .1344161          0         .8 
       P(21)*|      1819    .2326742    .1242394          0         .8 
       ∆P(21)|      1819    .0385156    .1187539  -.4153846   .6521739 
  $1000 Prize|      1819    .4612424    .4986327          0          1 
  $5000 Prize|      1819    .1330401    .3397115          0          1 
  Cards Dealt|      1819    4.819131    2.098705          2         12 
  Power Chips|      1819    1.948873    .5107455          0          4 
 Lucky ∆P(21)|      1514     .073792    .0826739          0   .6521739 
Unluck ∆P(21)|       305   -.1365939    .1155744  -.4153846  -.0110993 
 

 

Table 7- Regression Estimates for the Card Placement Decision, Model 3- Effect of Luck 

 Opt Placement 
(1) 

Opt Placement 
(2) 

Opt Placement 
(3) 

P(21)* 0.53007 0.43883 0.31431 
 (0.09391)*** (0.09967)*** (0.10145)*** 

 
∆P(21) -1.36948 -1.41380 -1.27963 
 (0.10123)*** (0.10275)*** (0.09854)*** 

 
$1000 Prize  -0.04784 -0.12998 
  (0.02456)* (0.02495)*** 

 
$5000 Prize  -0.10561 -0.28098 
  (0.03667)*** (0.03736)*** 

 
Cards Dealt   0.06987 
   (0.00567)*** 

 
Power Chips   0.00250 
   (0.02127) 

 
R2 0.09 0.09 0.17 
N 1,819 1,819 1,819 
* p<.10; ** p<.05; *** p<.01 
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Table 8- Regression Estimates for the Card Placement Decision, Model 4- Lucky vs. Unlucky 

 Opt Placement 
(1) 

Opt Placement 
(2) 

Opt Placement 
(3) 

P(21)* 0.67878 0.64145 0.47150 
 (0.09429)*** (0.10220)*** (0.10260)*** 

 
∆P(21)*Lucky -2.50774 -2.50343 -2.04740 
 (0.17201)*** (0.17324)*** (0.17591)*** 

 
∆P(21)*(1 – Lucky) -0.07442 -0.11806 -0.41368 
 (0.16576) (0.17220) (0.15629)*** 

 
$1000 Prize  -0.02426 -0.10078 
  (0.02443) (0.02504)*** 

 
$5000 Prize  -0.03701 -0.20669 
  (0.03808) (0.03964)*** 

 
Cards Dealt   0.05891 
   (0.00571)*** 

 
Power Chips   0.00946 
   (0.02081) 

 
R2 0.14 0.14 0.18 
N 1,819 1,819 1,819 
* p<.10; ** p<.05; *** p<.01 

 

Table 9- F-Test that the Coefficient of  ∆P(21) is equal for lucky and unlucky contestants, Card 
Placement Decision 

 F-Value p-Value 

Base Specification 
(1) 

82.78 0.00*** 

Controls for Prize Level 
(2) 

75.91 0.00*** 

Controls for all Game Scenarios 
(3) 

37.11 0.00*** 

* p<.10; ** p<.05; *** p<.01 
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Figure 9- Proportion of Optimal Placements for Smallest Third of P(21)* 

 
N=121per segment 

Figure 10- Proportion of Optimal Placements for Middle Third of P(21)* 

 
N=121per segment 

 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5

Pr
op

or
ti

on
 o

f O
pt

im
al

 P
la

ce
m

en
ts

 

Proportion of Optimal Placements for 
Smallest Third of P(21)* 

Lower Bound of 95% CI Mean Upper Bound of 95% CI

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5

Pr
op

or
ti

on
 o

f O
pt

im
al

 P
la

ce
m

en
ts

 

Proportion of Optimal Placements for 
Middle Third of P(21)* 

Lower Bound of 95% CI Mean Upper Bound of 95% CI



 42 

 

Figure 11- Proportion of Optimal Placements for Largest Third of P(21)* 

 
N=121per segment 

 

Table 10- Summary Statistics for Stop/Continue Decision Sample 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
        Stop |       673     .191679    .3939147          0          1 
        P(21)|       673     .189713    .1452222          0   .7804878 
       P(21)*|       673    .1969699    .1207663          0         .8 
       ∆P(21)|       673    .0072568    .1310906  -.3643411   .4634147 
  $5000 Prize|       673     .218425    .4134846          0          1 
  Cards Dealt|       673    5.197623    2.008433          2         12 
  Power Chips|       673     1.97474    .4764867          0          4 
 Lucky ∆P(21)|       492    .0652214    .0781047          0   .4634147 
Unluck ∆P(21)|       181   -.1503044    .1156237  -.3643411  -.0124113 
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Table 11- Regression Estimates for the Stop/Continue Decision, Model 5- Effect of Luck 

 Stop 
(1) 

Stop 
(2) 

Stop 
(3) 

P(21) 0.14306 0.28206 0.08947 
 (0.12576) (0.12477)** (0.11452) 

 
∆P(21)*(1 – 21 Previous) -0.69511 -0.59014 -0.09458 
 (0.23899)*** (0.23909)** (0.18471) 

 
21 Previous -0.15176 -0.19289 -0.04114 
 (0.03797)*** (0.03928)*** (0.03644) 

 
$5000 Prize  0.20268 0.07617 
  (0.04160)*** (0.04178)* 

 
Cards Dealt   0.08702 
   (0.00814)*** 

 
Power Chips   -0.05178 
   (0.02752)* 

 
R2 0.03 0.07 0.24 
N 673 673 673 

* p<0.1; ** p<0.05; *** p<0.01 
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Table 12- Regression Estimates for the Stop/Continue Decision, Model 6- Lucky vs Unlucky 

 Stop 
(1) 

Stop 
(2) 

Stop 
(3) 

P(21) 0.16873 0.31274 0.10356 
 (0.12617) (0.12579)** (0.11661) 

 
∆P(21)*Lucky*(1 – 21 Previous) -0.85576 -0.76715 -0.16957 
 (0.25742)*** (0.25647)*** (0.20027) 

 
∆P(21)*(1-Lucky)*(1 – 21 Previous) 0.72590 0.99143 0.52965 
 (0.53031) (0.48234)** (0.45615) 

 
21 Previous -0.16997 -0.21377 -0.05086 
 (0.03915)*** (0.04056)*** (0.03858) 

 
$5000 Prize  0.20579 0.07862 
  (0.04141)*** (0.04195)* 

 
Cards Dealt   0.08619 
   (0.00822)*** 

 
Power Chips   -0.05168 
   (0.02756)* 

 
R2 0.04 0.08 0.25 
N 673 673 673 

* p<0.1; ** p<0.05; *** p<0.01 

 

Table 13- F-Test that the Coefficient of  ∆P(21) is equal for lucky and unlucky contestants, 
Stop/Continue Decision 

 F-Value p-Value 

Base Specification 
(1) 

6.82 0.0092*** 

Controls for Prize Level 
(2) 

9.71 0.0019*** 

Controls for all Game Scenarios 
(3) 

1.86 0.1728 

• p<.10; ** p<.05; *** p<.01 
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Figure 12- Proportion of Stop Decisions for Smallest Third of P(21) 

 

N=45 per segment 

 

 

Figure 13- Proportion of Stop Decisions for Middle Third of P(21) 

 
N=45 per segment 
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Figure 14- Proportion of Stop Decisions for Largest Third of P(21) 

 
N=45 per segment 

Figure 15 
 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Alpha is scaled by 10^(-5) 
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Figure 16 

  

 

 

 

 

 

 

 

 

 

 

Note: Beta is scaled by 10^(-1) 

 

Figure 17 

 

 

 

 

 

 

 

 

 

 

Note: W is scaled by 10^5 
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Figure 18 

 

 

 

 

 

 

 

 

 

 

 

Note: Sigma is scaled by 10^(-1) 

 

Figure 19 

 

 

 

 

 

 

 

 

 

 

Note: Alpha is scaled by 10^(-5) 
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Figure 20 

 

 

 

 

 

 

 

 

 

 

Note: Alpha is scaled by 10^(-5) 
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Table 14- Deal or No Deal Replication Estimates 

Estimate Published in 
Post et al. 

(2006) 

2 Parameter 
(𝑾 & 𝝈  fixed) 

3 Parameter 

(𝜷 fixed) 

4 Parameters 

 (1) (2) (3) (4) 

𝜶 4.18*10^(-5) 

(0.000) 

4.99*10^(-6) 6.86*10^(-5) 4.97 * 10^(-6) 

𝜷 0.171 

(0.000) 

4.01*10^(-12) 0.171 1.41*10^(-10) 

𝑾 101,898 

(0.782) 

101,898 3,800,056 204,804 

𝝈 0.277 

(0.000) 

0.277 0.277 0.279 

MLL -0.261012 -0.259979 -0.260577 -0.259975 

Hit % 88.8% 88.3% 89.1% 87.9% 

Note: Standard Errors for columns (2) – (4) need to be calculated in order to draw conclusions about risk 
aversion 
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