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1. Introduction

In the empirical analysis of human behavior, the data often comes in a probabilistic
form indicating the choice frequencies, such as how often a specific restaurant is visited
in a city or how frequently a particular insurance policy is purchased. The Random Utility
Model (RUM) is the standard tool for analyzing probabilistic choice in which the randomness
in choices is attributed to the variation in tastes or types. This approach makes a strong
behavioral assumption that each type is a utility maximizer. However, there is abundant
evidence against utility maximization in various fields such as law, economics, psychology,
and marketing.1 In this paper, we introduce a random choice model, which offers a flexible
framework with which to study probabilistic choice and accommodates heterogeneous types
and bounded rationality. Our framework can be applied to both the choices of a single
individual in different situations (intrapersonal) and the choices of different individuals in
the same environment (interpersonal).

A random choice model is defined by having a collection of choice functions and a prob-
ability distribution over them.2 This collection contains heterogeneous types which may or
may not be consistent with a utility maximization. Without further restrictions, this model is
too permissive to make any prediction in terms of the observed behavior. In our framework,
each choice function corresponds to a particular behavioral type in the collection. In many
circumstances, the types are naturally sorted according to some ingrained characteristic. For
example, consider a situation in which the agents in a population have varying levels of en-
vironmental cautiousness. The greener types choose more environmentally friendly policies
than the less green types. Therefore, the types are naturally sorted according to their en-
vironmental cautiousness. To capture the idea of this example, we focus on domains where
alternatives are ranked according to a reference order (such as environmental friendliness). In
many other economically relevant contexts, such an order naturally arises. For example, the
tax policies can be ordered by the revenue they generate (Roberts [1977]), public goods can

1See Huber et al. [1982], Ratneshwar et al. [1987], Tversky and Simonson [1993], Kelman et al. [1996], Prelec
et al. [1997], Echenique et al. [2011], and Trueblood et al. [2013].
2McFadden and Richter [1990] briefly mentions the possibility of working with choice functions outside of
preference maximization. However, they do not investigate the idea further. Recently, in an independently
developed paper, Dardanoni et al. [2020a] works with a model of randomization over choice functions. Their
focus is mostly on the identification of preferences and cognitive distributions in specific models of choice by
assuming an observable mixture of choice functions. Instead, our focus is on the representation of probabilistic
choice by a random choice model. Hence, the two papers complement each other.
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be ordered by their provision levels (Epple et al. [2001]), insurance offers can be ordered by
their deductibles (Barseghyan et al. [2019]), and scheduled payments can be ordered by their
present value based on an interest rate (Manzini and Mariotti [2006a]). Given a reference
order, a collection of types is called “progressive” if the types can be sorted according to
their alignment with this order. The random choice model in which the collection of types is
progressive is called Progressive Random Choice (PRC).

Our progressive structure is a generalization of a well-known condition called the single
crossing property. Indeed, the two conditions are equivalent if each type is generated by
a utility maximization. The single crossing property appears in various economic models,
including Mirrlees [1971], Roberts [1977], Grandmont [1978], Rothstein [1990], Milgrom and
Shannon [1994], and Gans and Smart [1996].3 This property enables economists to perform
comparative statics comparing the heterogeneous types in terms of their alignment with the
underlying order such as one type choosing more prosocial policies or avoiding loss more than
the other type. The empirical analysis of type distributions often relies on ordered hetero-
geneous types. For example, Chiappori et al. [2019] identifies the distribution of individual
risk attitudes from aggregate data, and Barseghyan et al. [2019] show how the heterogeneity
in consideration sets and risk aversion can be identified. Our model enables researchers to
extend this type of analysis to boundedly rational agents.

In this framework, we first answer questions about characterization and identification.
When do progressive heterogeneous types exist for a given reference order? Can one identify
the heterogeneous types and their distribution from the observed aggregate choice? Our
main result, Theorem 1, answers both questions and enables us to provide comparative
statics between any two probabilistic choices. We show that one can uniquely identify the
PRC representation–both the collection of choice types and the probability weight assigned to
each choice type in the collection. This feature contrasts with the undesirable non-uniqueness
of the RUM. The unique identification allows policy makers to craft policies while knowing
the unique weights of each behavioral type, which in turn allows an improved welfare analysis.
While the model is uniquely identifiable, this structure does not entail any restrictions on the
observed choices–any probabilistic choice has a unique PRC representation.

3Apesteguia et al. [2017] applied this property to random utility models.
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The empirical validity of our framework can be investigated by designing careful exper-
iments. Manzini and Mariotti [2006b] provides a rare opportunity to test our model. Our
analysis of their data confirms that a progressive structure exists in the observed collection
types. One may check the progressive structure on other rich data sets when types are
observed in contexts such as decision making under risk (McCausland et al. [2020]), time
preferences, and portfolio allocation.

The main advantage of our framework over the RUM is its flexibility to study phenomena
that are outside the utility maximization paradigm. A researcher with a specific type of
bounded rationality in mind can answer the following questions: What are the behavioral
implications of this type of bounded rationality for the probabilistic data? What properties
does the probabilistic data need to satisfy for the existence of progressive types exhibiting
such bounded rationality? Theorem 1 becomes invaluable in answering the second question
since it already provides the unique PRC representation for the observed data. Because the
unique heterogeneous types are already identified by Theorem 1, the researcher needs only to
verify the property of interest to be satisfied for those identified types. Therefore, Theorem 1
is a crucial step to study any bounded rationality and to derive such characterization results.

As a showcase, we perform the aforementioned characterization for the “less-is-more
type” of bounded rationality. “Less-is-more” refers to a behavior of making fewer mistakes
on smaller sets. It aims to capture one of the most studied behavioral phenomena, namely
choice overload. Chernev et al. [2015] argues that choice overload can have negative welfare
consequences; hence, having fewer options can lead to an increase in consumer welfare, or
“less-is-more”.4 For example, the complexity caused by the abundance of alternatives may lead
to choosing lower-ranked alternatives (see, e.g., Iyengar and Lepper [2000], Chernev [2003],
Iyengar et al. [2004], and Caplin et al. [2009]). Kamenica [2008] argues that consumers might
be better off with smaller varieties if they are uninformed and choose randomly from the
available options. According to Gul and Pesendorfer [2001], a diner may choose unhealthy
but tempting dishes on a large restaurant menu while choosing the healthy dishes in smaller
menus because she controls herself better with smaller menus.

4The “less-is-more” property is rich enough to accommodate models such as shortlisting (Manzini and Mariotti
[2007]), rationalization (Cherepanov et al. [2013]), preferred personal equilibrium (Kőszegi and Rabin [2006]),
limited attention (Lleras et al. [2017]) and categorization (Manzini and Mariotti [2012]).
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We uncover that the types with less-is-more property have a simple and intuitive impli-
cation for the probabilistic data. We call this behavioral postulate U-Monotonicty. It simply
states that the choice frequency of the upper contour set of an alternative is monotonic with
respect to set inclusion. We show that U-Monotonicty is not only necessary but also sufficient
for the existence of a progressive representation with less-is-more. Thanks to Theorem 1, this
representation is unique.

All the results above assume that the reference order is exogenously given. In some
applications, the order is conceivably observable to the researcher (for example, it may corre-
spond to a social norm of a society) or the researcher may be the one designing the menu of
options in a controlled experiment so that an objective order (such as tax revenue, the level
of public good provision, or the time schedule of payments) is imposed. However, in some
other contexts, especially when the order corresponds to the underlying preferences, deriving
it from the probabilistic choice might be needed. Due to Theorem 1, without further re-
strictions, any data has a PRC representation with respect to any reference order. However,
once we commit to a specific type of bounded rationality, we restrict the behavior as well, as
we do in the less-is-more showcase. Focusing on this specific behaviour allows us to identify
the reference order endogenously. We provide a procedure to derive a binary relation which
must be part of the unobserved reference order (Proposition 1). Finally, we provide sufficient
conditions so that this derived binary relation becomes complete. Together with Theorem
1, we therefore establish that the reference order, the collection of types, and their weights
in the PRC representation are uniquely constructed for less-is-more. Endogenizing the order
improves the applicability of the model. The less-is-more showcase should be viewed as a
guideline for future researchers to characterize other types of bounded rationality of interest.
The contribution of our paper is to offer this novel framework of PRC and enable researchers
study bounded rationality in the probabilistic domain.

Our theoretical contribution complements the models of Apesteguia and Ballester [2020]
and Dardanoni et al. [2020a], who utilize models of randomization over choice functions for
empirical applications to identify the heterogeneity in the data. Dardanoni et al. [2020a]
prove the usefulness of the random choice model in the identification of preferences and cog-
nitive distributions in specific models of choice. As in Apesteguia et al. [2017], Apesteguia
and Ballester [2020] work with preference types, but they apply the progressive structure
only locally and allow for limited data. Our paper is also related to the recent literature
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that combines decision theory and econometric analysis. The most closely related papers
in this literature are Abaluck and Adams [2017]; Barseghyan, Coughlin, Molinari, and Teit-
elbaum [2018]; and Dardanoni, Manzini, Mariotti, and Tyson [2020b]. In a general setup,
Abaluck and Adams [2017] show that, by exploiting asymmetries in cross-partial derivatives,
consideration set probabilities and utilities can be separately identified from observed choices
when rich exogenous variation exists in the observed covariates. Barseghyan et al. [2018]
provide partial identification results when exogenous variation in observed covariates is more
restricted. Lastly, similar to previous papers, Dardanoni et al. [2020b] study choices from
a fixed menu of alternatives. They consider aggregate choices in which individuals might
differ in terms of both their consideration capacities and preferences. Finally, the PRC with
less-is-more offers predictions distinct from those in several well-known probabilistic choice
models such as Manzini and Mariotti [2014], Brady and Rehbeck [2016], and Cattaneo et al.
[2019] (see Section 5).

The rest of the paper is organized as follows. Section 2 introduces the random choice
model and the progressiveness notion. We provide three distinct classes of models and gen-
eral conditions that guarantee the progressive structure for each class. Section 3 provides
comparative statics between any two models within our framework. Section 4 character-
izes less-is-more and shows that, for the less-is-more structure, the unique reference order
is derived under mild assumptions. Section 5 summarizes how our models relate to other
well-known probabilistic choice models. Section 6 concludes.

2. Model

Let X be a non-empty and finite set of alternatives and let X denote all non-empty
subsets of X where ∣X ∣ ≥ 3. A probabilistic choice function is a mapping π ∶ X ×X → [0,1]
such that for any S ⊆X, (i) π(x∣S) > 0 only if x ∈ S; (ii) ∑

x∈S
π(x∣S) = 1. We interpret π(x∣S)

as the probability of choosing x from alternative set S. We denote the sum of all choice
probabilities in T ⊂ S with π(T ∣S) , i.e. π(T ∣S) = ∑

x∈T
π(x∣S). A deterministic choice function

on X is a mapping c ∶ X → X such that c(S) ∈ S for any S ⊆ X. Let C denote the set of all
choice functions on X.

We now introduce a Random Choice Model (RCM). Let µ be a probability distribution
on C, so µ(c) is the probability of c being the choice function. The probability distribution
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µ constitutes a probabilistic choice function πµ such that

(RCM) πµ(x∣S) = ∑
c(S)=x

µ(c)

The probabilistic choice function induced by µ sets the probability of an alternative x being
chosen from an alternative set S as the sum of probabilities of choice functions that select x
from S. We call the choices in the support of µ (the choice functions with strictly positive
weights) the choice types. Hence, the probability of x being chosen from S is the frequency
of those choice types who choose x from S.

We say that a probabilistic choice function π has a Random Choice representation if
there exists µ such that π = πµ. If the support of µ consists of only distinct choice functions
resulting from utility maximization, then πµ corresponds to the well-known Random Utility
Model (RUM). Hence, the RUM is a special case of the RCM.

The RCM enjoys high explanatory power: Any probabilistic choice function can be
represented within the random choice framework. Moreover, the well-known non-uniqueness
result of the RUM implies that the RCM representation is not unique in general. We address
this issue by studying the RCM on more structured domains. We show that this approach
generates not only an economically-meaningful relationship between the choice types but also
deliver uniqueness.

We consider the set of alternatives that are naturally ordered by a linear order ▷.5

Examples of such domains are in abundance as discussed in the introduction. We need
further notation for the rest of the paper. We define x ⊵ y if x▷ y or x = y. Given a relation
R, we denote the upper and lower contour sets of an alternative x with respect to R by
UR(x) = {y ∈X ∣ yRx} and LR(x) = {y ∈X ∣ xRy}, respectively.6

We now propose a condition to relate the choice types with the order on the domain. We
do this by sorting the types in terms of how much the behavior is in line with the reference
order. In the public good provision problem, the level of public good picked by more prosocial
types is above the level chosen by the less prosocial types. In the restaurant example, if an
individual with less self-control resists temptation, another individual with more self-control
resists that too. We now state our main concept formally.

5Throughout the paper, we simply say an “order” instead of a “linear order”.
6We also define UR(S) = ⋃

x∈S
UR(x) and LR(S) = ⋃

x∈S
LR(x).
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Definition 1. A collection of distinct choice types C ⊆ C is progressive with respect to ▷ if
C can be sorted {c1, c2, . . . , cT } such that ct(S) ⊵ cs(S) for all S and for any t > s.7

The progressiveness imposes an ordered structure on the collection of choices types such
that a higher indexed type cannot choose an alternative that is dominated by the choice of
a lower indexed type from the same set. In other words, the progressiveness requires type
t to be more aligned with ▷ than type s for t > s. The idea of progressive types reduces
the heterogeneity of types in RCM into one dimension. That dimension of heterogeneity
can be caused by the varying levels of willpower, prosocial behavior, attention capacities, or
loss aversion coefficients. Hence, the progressive structure allows to study the heterogeneity
within a given phenomena of interest. We now define progressive random choice formally.

Definition 2. π has a progressive random choice representation with respect to▷, (PRC▷),
if there exists µ on C such that π = πµ and the support of µ is progressive with respect to ▷.

We view our novel progressive structure as a strength of the model because it provides a
meaningful interpretation for the support of the RCM. Recall that the support of the RCM
(or its special case, RUM) consists of several independent types and there is no immediate
comparison between them. In contrast, the PRC orders the choice types with respect to a
natural order ▷ on the domain. This is interpreted as choice types gradually becoming more
aligned with the reference type induced by ▷.

2.1. Progessiveness in Different Classes of Models. One might wonder when the pro-
gressive structure holds within a class of models. In the case of utility maximization, this
question has been extensively studied (see e.g. Mirrlees [1971], Roberts [1977], Grandmont
[1978], Rothstein [1990], Milgrom and Shannon [1994], Gans and Smart [1996]). In this class,
each choice type operates as a utility maximizer, hence it is denoted by {ut}.8 For every type
t there exists a utility function, ut, such that for all S,

(Class 1) ct(S) = argmax
x∈S

ut(x)

7The betweenness property defined by Albayrak and Aleskerov [2000], Horan and Sprumont [2016] in a different
context is a closely related concept.
8We assume that ut is strict so that the choice is unique.
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The well-known single crossing property of utility functions guarantees the progressive
structure which is studied by Apesteguia et al. [2017] within the probabilistic choice context.
Below, we formally define the single crossing condition for a collection of {ut}.

Condition 1: Let ▷ be an order. For any x▷ y and t > s,

us(x) > us(y)⇒ ut(x) > ut(y)

Remark 1. Within Class 1, a collection of choice functions defined by {ut} satisfies Condition
1 with respect to ▷ if and only if it is progressive with respect to ▷.

The proof of Remark 1 is in the Appendix. Finding a necessary and sufficient condition
for progressiveness is not straightforward when we leave the utility maximization paradigm.
Next, we perform this task for two other classes of models covering different bounded ratio-
nality models.

The next one is the class of two-stage procedures which contain several well-studied
decision making models as listed below. In this class, the first stage determines a constrained
set induced by a particular behavioral limitation. In the second stage, the decision maker
optimizes over this constraint. An RCM in which each type performs a two-stage procedure
and the heterogeneity is due to the variation in the behavioral limitation of different types
while the utilities are type independent is denoted by (u,{Γt}).9 Formally, for every type t
and for all S,

(Class 2) ct(S) = argmax
x∈Γt(S)

u(x)

The models of Limited Attention by Masatlioglu et al. [2012], Lleras et al. [2017], Short-
listing by Manzini and Mariotti [2007], Rationalization by Cherepanov et al. [2013], Catego-
rization by Mariotti and Manzini [2012], Willpower by Masatlioglu et al. [2020], and Preferred
Personal Equilibrium by Kőszegi and Rabin [2006] can be written as in Class 2 formulation.
Here, all types maximize the same utility function. In an intrapersonal decision setting, this
can be thought as a person with fixed preferences but facing an idiosyncratic behavioral
constraint such as having idiosyncratic levels of attention, willpower, loss-aversion etc. In a
9We assume that u is strict, i.e., u(x) ≠ u(y) for all x ≠ y to be in line with our earlier assumption of the
reference order being linear order.
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population setting, this can be thought as the existence of a common attribute that ranks
the alternatives such as the lowest price in shopping or the shortest distance in route choice
and each type has a different constraint.

Next, we provide a sufficient condition on the class of two stage procedures for having
a progressive structure in the RCM. Our condition is a monotonicity requirement on how
the constraints of each type evolve. Particularly, the feasible set of the higher types contains
higher utility options than that of lower types.

Condition 2: Let ▷ be an order. For any t > s, L⊵(Γs(S)) ⊆ L⊵(Γt(S)).

Note that Condition 2 is weaker than requiring the higher types to consider more options.
Hence, a limited attention model in which consideration sets grow with types also satisfies
this condition.

Remark 2. Within Class 2, a collection of choice functions defined by (u,{Γt}) satisfies
Condition 2 with respect to ▷ that is ordinally equivalent to u if and only if it is progressive
with respect to ▷.

The proof is provided in the Appendix. Note that when a type with a lower index
chooses an alternative, it has to be in the constraint set of that type. Then by Condition 2,
a higher type must consider some alternatives that weakly dominate the choice of the lower
type. Therefore, the choice of a higher type can only be weakly better as well. This provides
an ordered structure on the choice types as required by the progressiveness.

Interpretation of Condition 2 on well-known models of Class 2 is intuitive:

● Shortlisting of Manzini and Mariotti [2007]. In this model, a decision maker first
eliminates dominated alternatives with respect to a binary relation to form a shortlist
(constraint) and then she maximizes her preferences on the shortlist. If the first stage
binary relation gets more incomplete, the shortlists get gradually richer as Condition
2 requires.

● Shortlisting of Tyson [2013]. As opposed to the above model, here, the alternatives
are naturally ordered according to their salience- the property of standing out from
the rest. A decision maker’s preferences are imperfectly perceived due to cognitive
or information-processing constraints. This determines the alternatives she dislikes
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for sure. Among the ones that survive, she chooses the most salient option. If the
information processing gets gradually more costly for higher types, then the shortlists
get larger and Condition 2 is satisfied.

● Preferred Personal Equilibrium of Kőszegi and Rabin [2006]. Alternatives are ordered
with respect to the consumption utility of a person. The constraint in this two-stage
interpretation is the set of personal equilibria for each type and the utility is the
consumption utility. Types have different loss aversion coefficients and their personal
equilibrium contains the alternatives that are optimal conditional on them being the
reference point (rational expectations). As the individual becomes more loss averse,
the set of personal equilibria enlarges, hence, Condition 2 is satisfied.

● Willpower of Masatlioglu et al. [2020]. Consider a decision maker with limited
willpower facing visceral urges. The alternatives are ordered with respect to the
commitment utility. The constraint of each type contains the alternatives she can
overcome her visceral urges with her willpower. As her willpower increases, she is
able to overcome visceral urges more successfully and able to choose from a richer
constraint set. Hence, this collection of choices also satisfies Condition 2.

● Limited Attention of Masatlioglu et al. [2012]. In this example, an individual maxi-
mizes her preferences on what she pays attention. Different types are able to attend to
different set of alternatives. If the awareness of types extend gradually then Condition
2 is satisfied since the consideration sets become nested.

● Rationalization of Cherepanov et al. [2013]. The decision maker who is endowed
with a set of rationales maximizes her preferences among alternatives that she can
rationalize. A rationale can be intuitively understood as a story that states that
some options are better than others. The choice types differ in terms of the set of
rationales they use for that choice. As the set of rationales gradually gets larger, the
corresponding collection of choices satisfies Condition 2.

The final class is the class of models with a menu-dependent behavioral cost. In this
class, each type maximizes a utility function minus a menu-dependent cost function. The
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heterogeneity is due to the variation in the behavioral cost but the utilities are type indepen-
dent. Hence, we are interested in the collection of choices described by (u,{κt}). Formally,
for every type t and for all S,

(Class 3) ct(S) = argmax
x∈S

u(x) − κt(x,S)

where κt is the menu-dependent cost function.10

The models of Temptation and Self Control by Gul and Pesendorfer [2001], Fudenberg
and Levine [2006], Dekel et al. [2009], Noor and Takeoka [2010] and Social Norms and Shame
by Dillenberger and Sadowski [2012] fall into this class. For example, an individual with a
fixed commitment utility but idiosyncratic costs of self control generating the probabilistic
choice data falls in this class. Alternatively, a population of individuals choosing a public
policy can have the same selfish utility (for example, their objective can be minimizing costs)
but they may differ in how much they care about following a norm (such as being prosocial
or minimizing inequality). This is also within the Class 3.

Let ▷ be the order defined by a behaviorally motivated norm such as a social norm or
temptation. Here, ▷ is possibly different than the common utility function. In order to get a
progressive structure, we impose the assumption that the marginal net utility of switching to
an alternative ranked higher in the social norm is decreasing in types. In other words, higher
types act more in line with the norm. Formally,

Condition 3: Let ▷ be an order. For any x▷ y and t > s,

u(x) − κs(x,S) > u(y) − κs(y,S)⇒ u(x) − κt(x,S) > u(y) − κt(y,S)

Remark 3. Within Class 3, a collection of choice functions defined by (u,{κt}) satisfies
Condition 3 with respect to ▷ if and only if it is progressive with respect to ▷.

The proof of Remark 3 is in the Appendix and it is based on the intuition that when
a lower indexed type chooses an alternative, say y, it means that y provides the highest net
utility. Then by Condition 3, it is not optimal for a higher type to switch to a lower ranked
alternative according to ▷. Hence, the higher type chooses an alternative that is ranked
weakly higher than y. This provides an ordered structure on the choice types as required by
the PRC▷.
10We assume that this maximization problem has a unique solution, hence, the choice is unique.
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We also provide a stronger sufficient condition for progressive structure based only on
the menu dependent cost function. Formally, if the menu dependent cost function satisfies

κs(x,S) − κs(y,S) ≥ κt(x,S) − κt(y,S)

for any x▷ y and t > s, then Condition 3 holds and the corresponding model of Class 3 has
a progressive structure with respect to ▷. This stronger condition is intuitively satisfied by
the two well-known models below.

● Costly Self-Control. In this model, the decision maker chooses from a menu with
tempting alternatives according to the following maximization:

ct(S) = argmax
x∈S

{u(x) − αtf(max
y∈S

v(y) − v(x))}

When f is a linear function, this is equivalent to the model of Gul and Pesendorfer
[2001] and when it is an increasing and convex function, it becomes the model of
Fudenberg and Levine [2006], Noor and Takeoka [2010]. These models of Class 3
can be thought as a decision maker with a temptation order such that her cost of
temptation is randomly determined. Note that here the heterogeneity of types is
captured by the temptation cost parameter αt. If αt increases by the type, then
Condition 3 is satisfied with respect to the temptation order, v.

● Ashamed to be Selfish of Dillenberger and Sadowski [2012]. Consider a decision maker
facing a trade-off between choosing her best allocation and minimizing shame caused
by not choosing the best allocation according to a social norm. Assume each type
differs only in terms of how much they are influenced by the social norm. Formally,

ct(S) = argmax
x∈S

{u(x) − (max
y∈S

ψ(y) − ψ(x))βt}

where u is a utility function over allocations, ψ represents the norm, and βt is the
shame parameter of type t. The amount, (maxy∈Aψ(y) − ψ(x))βt , is interpreted as
the shame from choosing x in comparison to the alternative that maximizes the norm.
The stronger condition restricts how the cost of deviation from a social norm varies
by the type.

Note that in all the examples of Class 3 models above, the reference order is not de-
termined by the consumption utility, u, of an alternative but instead determined by the
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temptation level or the social norm utility. Thus, Condition 3 requires the heterogeneity
parameters in these examples to have a certain structure.

The aforementioned examples illustrate how the progressive structure can be interpreted
on archetypical models of two-stage procedures and behavioral cost models. In each example,
we demonstrated that the PRC structure allows for a substantial degree of heterogeneity of
choice behavior when committed to a specific model. In each case, the alternatives are
naturally ordered either by an attribute, common utility, a temptation ranking, or a shared
norm. The types are sorted according to how closely their behavioral concern or bounded
rationality allow them to follow this order. Moreover, we provided sufficient conditions for
these classes of models to have the progressive structure.

One may further show that the behavior induced by models in Classes 1-3 are nested
and the corresponding conditions gradually get stronger.

Remark 4. Class 1⊂ Class 2 ⊂ Class 3.11

2.2. Existence of a Representation. PRC▷ imposes some compatibility among all the
choice functions in a collection because the choices in the support gradually become more
and more aligned with the choice induced by ▷. It also allows a substantial degree of
heterogeneity of choice behavior as we will see in Theorem 1. Our first result below states
that PRC is capable of explaining all probabilistic choices for a given reference order. In
other words, PRC enjoys high explanatory power.

Theorem 1. Let ▷ be a reference order. Every probabilistic choice π has a unique PRC▷

representation.

The power of Theorem 1 comes from the fact that it is applicable to any data. For
any specific behavior outside of utility maximization, Theorem 1 provides both existence
and uniqueness of PRC representation. For example, let’s say that a researcher wants to
characterize a behavior, say γ, generated by a set of heterogeneous types outside of utility
maximization. Certainly not every data set will be in that class. A research agenda study-
ing heterogeneous γ types should address the following questions: (i) When do progressive
heterogeneous types exist for a given reference order? (ii) Is the type distribution unique?
11Given this result, it is routine to show that Condition 3 ⇒ Condition 2 ⇒ Condition 1 for the appropriately
defined dual models.
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(iii) Are these types in line with γ? (iv) Finally, is the reference order identified uniquely?
Our Theorem 1 answers (i) and (ii) for any type of bounded rationality one wants to study.
Hence, it can be directly applied in any future research. The researcher with a specific model
in mind needs to answer only (iii) and (iv) for that model. To illustrate this point, we will
perform these exercises in Section 4 for the choice overload phenomenon.

The proof of Theorem 1 is constructive and hence provides an algorithm generating
the heterogeneous types and their weights uniquely from a given probabilistic choice data
set. The construction is based on the choice probabilities of lower contour sets with respect
to ▷.12 We first calculate all cumulative probabilities on lower contour sets derived from
the probabilistic choice. Next we sort these cumulative probabilities from the lowest to the
highest, 0 < k1 < k2 < ⋯ < kT . Finally, we construct the collection of choices, C, step by step.
The first choice function assigns each alternative set its worst element with respect to ▷.13

The probability mass of this first choice, c1, is the lowest positive cumulative probability given
by the aforementioned order, k1. In the second step, for each alternative set, we check if the
cumulative probability of the lower contour set of the chosen alternative of c1 equals to k1 or
it is strictly larger than k1. For the former case, we assign the second worst alternative as the
choice by c2; for the latter case, we keep c2 equal to c1. Note that such a construction assigns
the same or better alternative to each alternative set in c2 than c1. The probability assigned
to c2 is k2 − k1. This procedure continues and defines each ci based on ci−1 while respecting
progressiveness, as the choices in each step gradually choose weakly better alternatives on
any given set.

Note that Theorem 1 also states a uniqueness result; hence, the construction of the
representation not only identifies the exact nature of heterogeneity but also provides a unique
weight for each choice type in this heterogeneity. This feature allows a regulator/firm to
calculate the effect of a policy on each type of agent in a heterogeneous population and
aggregate those effects with uniquely determined weights. In addition to that, the uniqueness
result of Theorem 1 can also be used for parameter estimations for the examples mentioned
in Classes 2 and 3 above. Once the choice types are uniquely defined within a behavioral class
committed by the researcher, she can estimate the parameters of the model. The uniqueness

12A similar construction could be done using both lower and upper counter sets and that would lead to the
same collection of choice functions. We thank an anonymous reviewer for pointing this.
13This worst element needs to be chosen from among the ones which are chosen with positive probability.
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of PRC is in sharp contrast to both the general RCM and RUM, which are well-known to
admit multiple representations (see Fishburn [1998] for the RUM).

To appreciate the uniqueness result, consider an example with three alternatives. While
there are six possible preference orderings, there are twenty four possible choice functions.
Even after fixing an exogenous reference order, one can generate a large number of possible
collections with the progressive structure with respect to this reference order. The uniqueness
comes from the fact that each collection can only have a maximum of six elements due to
the progressive structure.14 Hence, the probabilistic choice data has enough information to
uniquely identify the right collection of types. When the alternative set is larger than three
elements, even though the number of possible choice functions grows extensively, the maxi-
mum number of choice functions in a progressive collection cannot surpass the information
given by the probabilistic choice data. On the contrary, in the RUM model, the maximum
number of preference orderings exceeds the number of choices in the choice data, which causes
undesirable non-uniqueness properties of the RUM.

2.3. An Illustration. We next illustrate how to apply Theorem 1 to actual data. Manzini
and Mariotti [2006b] provides a rare data set which includes individuals’ choices on each
feasible choice set. So we can put our construction to a test. We first aggregate their data to
report only the probabilistic choice in Table 1. Then we apply our construction above to this
data to reveal the choice types and corresponding frequencies. This allows us to test whether
our derived choice profiles match the observed ones.

Manzini and Mariotti [2006b] elicits the time preferences of subjects on three payment
schedules, namely an increasing (I), a decreasing (D), a constant (K) schedule.15 Each plan
has three installments (three months, six months, nine months) of a fixed amount of €48.
Plan I pays (€8,€16,€24), Plan D pays (€24,€16,€8), and Plan K pays (€16,€16,€16). We
provide their aggregate data among 68 subjects.16

14The progressive structure is the main driver behind the uniqueness result. A weaker condition, called non-
reversing property, is introduced by Dardanoni et al. [2020a]. However, the non-reversing property is not
sufficient for a unique random choice representation.
15They also use a fourth alternative. Without loss of generality, we do not include it in our analysis.
16In order to reduce the noise in the data, we eliminate rare choice profiles and report those that are followed
by at least three subjects.
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π {D,K, I} {D,K} {D,I} {K,I}
D 0.71 0.75 0.96 −
K 0.29 0.25 − 1
I 0 − 0.04 0

Table 1. The probabilistic choice induced by the data provided in Manzini and
Mariotti [2006b] where I=(€8,€16,€24), D=(€24,€16,€8), and K=(€16,€16,€16)),
and each vector correspondences to payments in three, six, and nine months, respec-
tively.

First, our construction needs a reference order. These three plans are naturally sorted
according to the payment in the first period: D ▷ K ▷ I. We first order the cumulative
choice probabilities on lower contour sets according to ▷ using Table 1: 0 = π(I ∣{D,K, I}) =
π(I ∣{K,I}) < π(I ∣{D,I}) = 0.04 < π(K ∣{D,K}) = 0.25 < π({K,I}∣{D,K, I}) = 0.29. We
now construct the choice types with a progressive structure in Table 2. While I is the worst
alternative in {D,K, I} and {K,I}, it is chosen with zero probability in those sets. Since the
first choice profile must select the worst alternative chosen with the positive probability, that
alternative cannot be I on these sets. Hence, c1({D,K, I}) = K = c1({K,I}). Otherwise,
the worst alternative is chosen, i.e., c1({D,K}) = K and c1({D,I}) = I. The probability
mass of c1, is the lowest positive cumulative probability observed, 0.04 (see the first row
in Table 2). Note that the first choice exhausts all choice probabilities for I on {D,I}.
Hence, all other choice profiles must chose D from {D,I} implying that the second choice
profile must switch to D on {D,I}. Since the rest of choice probabilities on other alternative
sets are not exhausted yet, we keep the rest the same. The frequency of c2 determined
by π(K ∣{D,K}) since the choice from {D,K} must switch. Hence, the weight of c2 is
0.21 = π(K ∣{D,K}) − π(I ∣{D,I}) (see the second row in Table 2). The rest is constructed
similarly.

type frequencies
{D,K, I} {D,K} {D,I} {K,I} derived observed

c1 K K I K 0.04 = π(I ∣{D,I}) 0.04
c2 K K D K 0.21 = π(K ∣{D,K}) − π(I ∣{D,I}) 0.21
c3 K D D K 0.04 = π({K,I}∣{D,K, I}) − π(K ∣{D,K}) 0.04
c4 D D D K 0.71 = 1 − π({K,I}∣{D,K, I}) 0.71

Table 2. The collection of choice types driven from Table 1 by using the construc-
tion algorithm given in the proof of Theorem 1.
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Note that the data in Table 1 is not consistent with a RUM since it violates the regularity
assumption17 π(K ∣{D,K}) < π(K ∣{D,K, I}). The magnitude of this violation is 0.04. It is
worth noting that this is the weight assigned to the only “irrational type” (c3) in our con-
struction. Indeed, the derived choice types and their frequencies exactly match the observed
data in Manzini and Mariotti [2006b] (see the last two columns in Table 2).

3. Comparative Statics

Next we discuss how the comparative statics exercise can be performed to order any
two PRC representations for a fixed reference order. Note that this discussion requires only
progressiveness on the random choice model; hence, it automatically applies to any PRC
model with additional behavioral conditions, such as the one considered in Section 4. To
do this, we first introduce an order between distributions of choices in Definition 3. Before
defining the order, we define, for all α ∈ (0,1], µ−1

α ∶= ci ∈ C such that µ(c1)+ ..+µ(ci−1) < α ≤
µ(c1) + .. + µ(ci) for a given C = {c1, ..., cT } and µ. Hence, µ−1

α identifies the choice function
in the collection at which the cumulative distribution weakly exceeds α.

Definition 3. Let ▷ be a reference order. Probability distribution µ defined on C is higher
than probability distribution η defined on C′ if ∀α ∈ (0,1] and ∀S ⊂X, µ−1

α (S) ⊵ η−1
α (S).

Definition 3 compares two probability distributions and identifies the one which is more
in line with the underlying order, ▷, as the higher distribution. Note that the compared
distributions do not need to have the same support. This allows us to order two PRCs, πµ
and πη, with different choice collections as their supports or having the same support with
different weights on choices in the support. If it is the latter case, then a distribution being
higher simply means it first order stochastic dominates the other distribution. Note that the
comparison is based on ▷; hence, the compared models should have the same underlying ▷.

We order two probabilistic choices in the standard first order stochastic domination
sense, i.e. one dominates the other if it assigns a higher probability of choice to all the upper
contour sets defined by ▷ when choosing from a set. This is formally stated below.

Definition 4. Let ▷ be a reference order. Probabilistic choice π first order stochastic
dominates probabilistic choice π′ if for any set S and any x ∈ S, π(U⊵(x)∣S) ≥ π′(U⊵(x)∣S).
17The regularity axiom requires that for all x ∈ T ⊂ S ⊆ X, π(x∣S) ≤ π(x∣T ). This is called strict regularity
when the inequality is strict.
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Now we can state our result on comparative statics between any two PRC representations
for ▷.

Theorem 2. Let both πµ and πη have a PRC▷ representation. πµ first order stochastic
dominates πη if and only if µ is higher than η.

Recall that if the choices in the support of PRC are rational and represented by a
collection of preferences, our model is equivalent to SCRUM (as stated by Remark 1.) For
such models, Definition 3 is equivalent to Definition of “a SCRUM being higher” in Apesteguia
et al. [2017] (see page 667). Hence, their Proposition 2 is a special case of our Theorem 2.

Also note that if two decision makers (or two populations) have PRCs with the same
underlying ▷ and the same collection of choices in the support, the probabilistic choice of
decision maker 1 first order stochastic dominates that of decision maker 2 if and only if the
cumulative weighting function of the first decision maker first order stochastic dominates
that of the second decision maker. This means that the second decision maker more often
engages with choices that are less aligned with the choice rationalized by ▷. In other words,
she makes worse mistakes (in the sense of not being aligned with ▷) more often.

As previously mentioned, two decision makers’ PRC▷ may have different supports. For
example, say two decision makers use limited attention models of Masatlioglu et al. [2012].
Assume that the first decision maker considers the worst element of a set in her first choice
function in the support, then considers the worst two elements in her second choice function
and so on. So this person’s consideration sets gradually extend and her choice becomes more
aligned with ▷. The second person’s support has a single choice which relies on the full
consideration set (she is not boundedly rational) and chooses according to the underlying ▷
(so her choice is degenerate, she is fully attentive and her choice satisfies WARP). Then the
probabilistic choice of the more attentive person (the second person) first order stochastic
dominates the probabilistic choice of the less attentive one (the first person).

4. An Applications of PRC for Bounded Rationality

Our model allows us to address behavior that is possibly inconsistent with utility maxi-
mization. Behavioral Economics literature provides abundant evidence outside of the utility
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maximization framework. The examples listed under Class 2 and Class 3 in Section 2 illus-
trate several types of bounded rationality with the PRC structure. A natural question to ask
is how one can characterize a certain behavioral phenomena demonstrated by each type in
our PRC framework. If each choice type acts according to a behavioral bias at a differentiated
degree, what kind of probabilistic choice would they generate in the aggregate data?

To illustrate usefulness of PRC, we consider one of the most studied deviations from
the utility maximization: the choice overload phenomenon. This phenomenon is also called
“less-is-more.” The idea of less-is-more is based on the evidence that the decision makers
may not benefit from having too many choices in a situation due to asymmetric information,
limited attention, cognitive capacities, or reference-dependent evaluations. We first commit
to less-is-more type of bounded rationality and find the corresponding necessary and sufficient
conditions on probabilistic choice in order to have less-is-more type of bounded rationality.
Thanks to Theorem 1, we already have a uniqueness result for this application, so we will
only focus on the characterization.

As in Section 2, we first assume that the reference order, ▷, is observable. This as-
sumption is reasonable in situations in which there is a single common attribute to rank all
alternatives, such as the lowest price, shortest distance, the amount of carbon footprint, etc.
Later, we will relax this assumption and endogenize the reference order. We next define the
less-is-more property for a collection of choice functions.

Definition 5. We say that a collection of choice functions, C, satisfies less-is-more with
respect to ▷ if for all t and for all T ⊂ S, ct(S) ∈ T ⇒ ct(T ) ⊵ ct(S).

In other words, ct(T ) is more aligned with ▷ than ct(S) when T ⊂ S, because the choice
from a larger set is dominated by the choice from a smaller set. Note that if the choice
functions in the support of randomization are rationalizable by preferences, then the less-is-
more property trivially holds.18 This new concept restricts each possible choice function to
be either rational or boundedly rational in the sense of less-is-more.

All the examples discussed under Classes 1-3 in Section 2 can be modified to accom-
modate the less-is-more structure. For the shortlisting example, in which the shortlists get
gradually longer, imagine that the initial shortlist orders the alternatives based on a linear

18One should note that this observation makes SCRUM▷ a special case of PRC▷ with the less-is-more property.
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order that is completely opposite of ▷, say ▷̃. Such a shortlist would report only the worst
alternatives as undominated. Clearly, the choice implied by this shortlist would satisfy “less-
is-more” since only a weakly better alternative can be shortlisted and chosen on a smaller
set than on a larger set. When the shortlists in that example get gradually longer, due to
reverse order implied by ▷̃, each choice satisfies less-is-more.

We should note that there are some well known examples that do not satisfy the less-is-
more structure. For example, if the attention correspondences of the model described within
Class 2 are attention filters (see Masatlioglu et al. [2012]), then the choice functions that are
used in the PRC would not satisfy the less-is-more property. Due to the existence of such
examples, this more demanding structure improves the prediction power of our model.

4.1. Characterization. Next we state our only axiom for the characterization of boundedly
rational types in the sense of less-is-more. Our first axiom requires a monotonicity condition
to hold for upper counter sets with respect to a reference order.

Axiom 1. (U-Monotonicity) For all x ∈ T ⊂ S ⊆X such that π(x∣S) ≠ 0

π(U⊵(x)∣S) ≤ π(U⊵(x)∣T )

U-Monotonicity intuitively captures less-is-more because the better alternatives are cho-
sen more frequently on smaller subsets. U-Monotonicity resembles the standard regular-
ity condition. In the deterministic case, the regularity condition is equivalent to WARP,
but U-Monotonicity is weaker than WARP. Note that if we have a deterministic choice
function which satisfies WARP, then it can be represented by a preference relation. In
such a case, U-Monotonicity holds with respect to that preference relation. On the other
hand, if a deterministic choice function does not satisfy WARP, it may still satisfy U-
Monotonicity with respect to an order. For example, consider the choices summarized by
π(z∣{x, y, z}) = 1, π(x∣{x, y}) = 1, π(y∣{y, z}) = 1, and π(x∣{x, z}) = 1. This choice behavior
does not satisfy WARP but it satisfies U-Monotonicity with respect to x▷ y▷ z.

While U-Monotonicity is a generalization of regularity for the deterministic choice, these
two conditions are independent in the probabilistic choice environment. For example, a
probabilistic choice satisfying strict regularity must violate U-Monotonicity for any order. To
see this, take a set S and denote the worst and second worst alternatives in S for a given order
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by z and y, respectively. By strict regularity, π(z∣S) < π(z∣{y, z}). This implies π(U⊵(y)∣S) >
π(U⊵(y)∣{y, z}), a violation of U-Monotonicity. Finally, we must highlight that the inequality
in U-Monotonicity might not hold for alternatives chosen with zero probability.19 We now
state our characterization result for the less-is-more type of bounded rationality.

Theorem 3. Let ▷ be a reference order. A probabilistic choice π satisfies U-Monotonicity
with respect to ▷ if and only if there exists a unique PRC▷ representation of π in which each
choice satisfies the less-is-more condition.

Note that Theorem 3 not only provides a necessary and sufficient condition for the less-
is-more representation but also concludes that the representation is unique. The algorithm
generating the unique representation is the one provided in the proof of Theorem 1. The proof
provided in the Appendix shows that the random choice model generated by this algorithm
not only satisfies progressiveness (as shown by Theorem 1) but also satisfies less-is-more given
U-Monotonicity.

One might wonder whether the data in Table 1 has a PRC representation with less-is-
more structure. Theorem 3 provides a sufficient condition, so we can test it. It is routine
to verify that the data satisfies U-Monotonicity for the reference order D ▷K ▷ I. Hence,
Theorem 3 implies that the collection of choice types in PRC▷ has less-is-more structure.
Indeed, one can verify the uniquely constructed choice types in Table 2 have that structure.

4.2. Endogenous Reference Order. Up to now, we have taken the reference order as
given. This is reasonable in some applications in which the true reference order (such as a
social norm or a common attribute such as price or carbon footprint) is observable to the
researcher. Our axioms are stated in terms of the reference order, a component of the model.
Hence, they should be seen as a test that inputs both a probabilistic choice function and an
order. For example, U-Monotonicity tests whether the data has a PRC representation with
less-is-more condition for a given reference order. The order can convey much (but not all)
of the psychology that the PRC captures. For example, say an outside observer believes that
19The next example shows that a stronger version of U-Monotonicity where we drop the non-zero requirement
is not a necessary condition for PRC with less-is-more. Suppose X = {x, y, z} where x ⊳ y ⊳ z. Consider a
random utility that puts 50-50 weights on u1 and u2 where u1(x) < u1(y) < u1(z) and u2(y) < u2(z) < u1(x).
Note that (u1, u2) satisfies single-crossing. Since each choice type is a utility maximizer, then the less-is-
more condition is trivially hold. Therefore, this is a PRC satisfying the less-is-more structure. However
π(U⊵(y)∣{x, y, z}) = 1/2 > 0 = π(U⊵(y)∣{y, z}) even though {y, z} ⊂ {x, y, z}. Hence, the non-zero requirement
in the statement of U-Monotonicity is crucial. We thank to an anonymous referee for providing this example.
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the heterogeneity is due to being environmental friendly at differentiated levels. However,
she cannot decide which attribute (carbon emission or sustainability) sorts environmental
friendliness. U-Monotonicity makes it straightforward to determine whether π constitutes a
PRC representation with less-is-more under either of these two orders. This helps the outside
observer endogenously pick the order which passes the test.

It is also possible that the outside observer does not have any prior knowledge about
the reference order. We now describe to what extend one can identify the reference order
of a given probabilistic choice function for a PRC representation. Note that this exercise
only makes sense for a subclass of probabilistic choice functions, because from Theorem 1
every data has a PRC representation with respect to an arbitrary order. For that reason, we
perform this task for the less-is-more structure.

For the revelation of the reference order, we assume that the model is correct and we
ask when we can infer the underlying reference order. First, observe that if removing an
alternative z from a tripleton causes a regularity violation, π(y∣{x, y, z}) > π(y∣{x, y}), we
infer that x is ranked above y. To see this, assume for a contradiction that there exists an
order ▷ with y ▷ x and PRC▷ represents π with a support of types satisfying less-is-more.
Since U-Monotonicity must hold for ▷, we have

π(U⊵(y)∣{x, y, z}) ≤ π(U⊵(y)∣{x, y})

This yields π(y∣{x, y, z}) ≤ π(y∣{x, y}), which contradicts with the assumption. Hence, π has
no PRC representation for any reference order that ranks y above x. Similarly, we can show
that the observation π(y∣S) > π(y∣{x, y}) where x ∈ S also reveals that x is ranked above y,
which is denoted by x▷π y.

There are two other choice patterns revealing x ▷π y. Specifically, if there exists a z
revealing z ▷π y (i.e., π(y∣{x, y, z}) > π(y∣{y, z})) and π(x∣{x, y, z}) < π(x∣{x, y}), we must
have x is revealed to be better than y. To see this, assume x is not ranked above y, then there
exists an order ▷ with y▷ x and PRC▷ represents π with a support satisfying less-is-more.
Since we must have z▷π y, we must have z▷ y▷x. Since π(y∣{x, y, z}) ≠ 0, U-Monotonicity
for y with respect to ▷ implies that π(x∣{x, y, z}) ≥ π(x∣{x, y}), a contradiction. Hence x
must be ranked above y in every PRC representation, i.e., x▷π y.
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The second choice pattern is more involved. We argue that if there exists z such that
π(z∣{x, y, z}) > π(z∣{y, z}), π(x∣{x, y, z}) < π(x∣{x, y}), π(z∣{x, y, z}) < π(z∣{x, z}), and
π(x∣{x, y, z}) ≠ 0, then x must be ranked above y. To see this, assume that x is not ranked
above y. The former inequality implies that y▷π z. Hence, there are two possible reference
orderings: y ▷1 z ▷1 x or y ▷2 x▷2 z. Since π(z∣{x, y, z}) ≠ 0, U-Monotonicity for z with
respect to ▷1 implies that π(x∣{x, y, z}) ≥ π(x∣{x, y}). Similarly, assuming π(x∣{x, y, z}) ≠ 0,
U-Monotonicity for x with respect to ▷2 implies that π(z∣{x, y, z}) ≥ π(z∣{x, z}). Both
cases imply a contradiction. Hence x must be ranked above y in every PRC representation
satisfying less-is-more, i.e., x▷π y.

We now formally state the above observations: For any distinct x and y, define the
following binary relation,

x▷π y if (i) π(y∣S) > π(y∣{x, y}) for some S ∋ x,

(ii) ∃z s.t. π(y∣{x, y, z}) > π(y∣{y, z}) and π(x∣{x, y, z}) < π(x∣{x, y})

(iii) ∃z s.t. π(z∣{x, y, z}) > π(z∣{y, z}), π(x∣{x, y, z}) < π(x∣{x, y}),

π(z∣{x, y, z}) < π(z∣{x, z}), and π(x∣{x, y, z}) ≠ 0

If we have x▷π z and z ▷π y revealed, we must have x to be ranked above y by tran-
sitivity even though x▷π y is not revealed. The transitive closure of ▷π, denoted by ▷T

π ,
includes these additional revelations as well as ▷π itself. The next proposition summarizes
this observation.20

Proposition 1. [Revealed Preference] If π has a PRC▷ representation satisfying the less-is-
more property, then ▷T

π constructed above must be included in ▷ (i.e., ▷T
π ⊆▷).

Given Proposition 1, ▷T
π can help test endogenously whether the probabilistic choice

function satisfies Axiom 1 (i.e., it has a PRC with less-is-more property with respect to the
order.) Given π, we can first derive ▷T

π as described above. If there is a cycle, then this
means that π cannot be represented by a PRC satisfying less-is-more. If it does not have any
cycle, then the implied ▷T

π restricts the set of all reference orders which may be compatible

20Since ▷π is a subset of the reference order, it must be asymmetric as well.



25

with π. Indeed, if ▷T
π is complete (see Theorem 4 for conditions to have a complete ▷T

π ),
it must be the underlying reference order. Hence, we not only establish that the data has a
PRC representation satisfying less-is-more condition, but also infer the underlying reference
order endogenously. If ▷T

π is not complete, then one may check Axiom 1 on this restricted
set of orders including ▷T

π . If this restricted set contains an order satisfying Axiom 1, then
this order provides a PRC representation for the choice data. If none of them satisfies Axiom
1, then π cannot be represented by a PRC representation satisfying less-is-more condition.

To utilize Proposition 1, we revisit the data in Table 1. Note that D ▷π K. This is
a direct consequence of definition of ▷π (part (i)). Proposition 1 implies that any PRC
representation satisfying less-is-more condition must rank D over K. However, the data in
Table 1 does not reveal any other reference order. In this example, ▷π is incomplete. The
next remark highlights that if the revealed order is complete and U-Monotonicity holds with
respect to it, then the data has the endogenous PRC representation satisfying less-is-more.

Remark 5. If ▷T
π is a linear order and π satisfies U-Monotonicity with respect to ▷T

π , then
Theorem 3 and Proposition 1 yield that π has a PRC representation satisfying less-is-more.
More importantly, ▷T

π is the unique reference order, which is derived endogenously from the
data.

We next provide sufficient conditions for the completeness of the revealed reference order.
Both of these condition can be directly checked from the data. The first one is Weak Binary
Regularity, which is substantially weaker than regularity.

Axiom 2. (Weak Binary Regularity) For all x ∈ S ⊂X with ∣S∣ ≥ 2,

π(x∣S) ≤ max{π(x∣{x, y}) ∣ x ≠ y ∈ S}

The standard regularity requires the choice probability of an alternative in a larger set
to be weakly less than all the choice probabilities on every smaller sets (including both binary
and non-binary sets). However, Axiom 2 requires the inequality to hold only for the maximum
of the binary choice probabilities. So, our postulate allows binary regularity violations but it
restricts the severity of them. Unlike U-Monotonicity, it does not require the knowledge of
the reference order, hence it can be checked directly using the probabilistic choice data.

Axiom 3. For all S ⊂X with ∣S∣ = 3, π(x∣S) > π(x∣{x, y}) for some x, y ∈ S.
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Note that if strict probabilistic choice data21 satisfies U-Monotonicity with respect to
some order, it must satisfy Axiom 3. Hence, it needs to be satisfied in order to have a less-
is-more representation. Again unlike U-Monotonicity, it can be directly verified using the
stochastic choice data.

The next theorem shows that these two axioms are sufficient for the revealed reference
order being complete.

Theorem 4. If a strict probabilistic choice function π satisfies Axioms 2 and 3, then ▷T
π is

complete.

Theorem 4 provides sufficient conditions for completeness of the revealed reference order.
Then by Remark 5, we have a unique candidate for the endogenous reference order. Therefore,
Theorem 4 is an identification result revealing endogenous reference order uniquely.

The next example illustrates the importance of strictness and Axiom 2 for Theorem 4.

Example 1. The following table provides a set of of parametric probabilistic choice described
by πλ where λ ∈ [0,0.15).

πλ {x, y, z} {x, y} {x, z} {y, z}
x 0.10 + λ 0.30 0.40 −
y 0.30 − 2λ 0.70 − 0.55
z 0.60 + λ − 0.60 0.45

When λ is positive, we have πλ(z∣{x, y, z}) > πλ(z∣{y, z}) and πλ(z∣{x, y, z}) > πλ(z∣{x, z}),
which imply y▷π z and x▷π z. However, we cannot conclude the order between x and y. It
is routine to check that πλ has multiple PRC representations satisfying less-is-more property
with respect to both x▷1 y▷1 z and y▷2 x▷2 z, when λ ≥ 0. When λ = 0, the data violates
strictness but Axiom 2 is satisfied. On the other hand, when λ > 0, the strictness holds but
not Axiom 2.

5. Related Literature

In this section, we compare our model with other well-known models of probabilistic
choice from the literature. First, note that in terms of the explanatory power, PRC includes
21We call a probabilistic choice function strict if for all x,S,S′, π(x∣S) ≠ π(x∣S′) > 0.
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all other models (see Theorem 1). Since the PRC with less-is-more condition imposes testable
restrictions, we now compare this special sub-class to other probabilistic choice models. As
we mentioned before, the SCRUM of Apesteguia et al. [2017] is a special case of this sub-
class. Moreover, the PRC satisfying less-is-more includes some other RUM choices other than
SCRUM. Hence, the PRC satisfying less-is-more has more explanatory power than SCRUM.
It is also true that the PRC with less-is-more is distinct from RUM.

The Attribute Model of Gul, Natenzon, and Pesendorfer [2014] and the Fixed Distri-
bution Satisficing Model of Aguiar, Boccardi, and Dean [2016] are both subsets of RUM.
Hence, they are distinct from our model in terms of observed choices. Similarly, the Additive
Perturbed Utility model of Fudenberg, Iijima, and Strzalecki [2015] satisfies regularity. Since
our model allows for violations of regularity, they are distinct models.

The General Luce Model of Echenique and Saito [2019]22 and the Perception-Adjusted
Luce Model of Echenique, Saito, and Tserenjigmid [2018] are generalizations of the Luce
Model. When choice probabilities are strict and the outside option is never chosen, these two
models reduce to the Luce rule. However, the PRC with less-is-more allows for violations of
Luce’s independence of irrelevant alternatives condition under these assumptions.

Manzini and Mariotti [2014], Brady and Rehbeck [2016], and Cattaneo et al. [2019]
provide probabilistic choice models in which randomness comes from random consideration
rather than random preferences. While the first two provide parametric random attention
models, the last offers a non-parametric restriction on the random attention rule. The first
two models require the existence of a default option for their models. To provide an accurate
comparison, we consider versions of those without an outside/default option.23 The random
attention model (RAM) of Cattaneo et al. [2019] covers the model of Brady and Rehbeck
[2016] (BR), which in turn contains the model of Manzini and Mariotti [2014] (MM). All
these models include preferences as one of the components of their models. First, we state
the differences of these models for a given reference order. RAM includes RUM, BR, SCRUM
and MM. However, RAM and PRC satisfying less-is-more are independent models because
neither one is a subset of the other. When we consider endogenous reference order, RAM
still includes RUM, BR, SCRUM and MM. In addition, it is still true that PRC satisfying

22See Ahumada and Ulku [2018] and Horan [2018b] for related models.
23See Horan [2018a] for an axiomatic characterization of the Manzini and Mariotti [2014] model when there
is no default option.
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less-is-more is different from RAM. For example, consider the following probabilistic choice
with three alternatives, π: π(z∣{x, y, z}) = π(y∣{x, y, z}) = π(z∣{y, z}) = 0.3, and π(y∣{x, y}) =
π(z∣{x, z}) = 0.2. π is a PRC satisfying less-is-more condition but not RAM. Indeed, this
example is outside of any model discussed above.

Finally, Cattaneo et al. [2021] proposes another random attention model in which alter-
natives compete for the decision maker’s attention. When there are more alternatives, the
decision maker pays less attention to each alternative (Attention Overload). Their axiom is
weaker than U-Monotonicity, hence the PRC satisfying less-is-more is a special case of that
model. We should note that our revealed preference relation is always richer than theirs.

6. Conclusion

We have introduced a novel PRC model that uniquely identifies the heterogeneous types
that are possibly boundedly rational. Our examples illustrate that this model can prove
useful in economic contexts in which one wishes to investigate interpersonal or intrapersonal
variation in choices caused by a sorted behavioral trait such as willpower, loss aversion,
attention, or limited cognitive ability.

The applications of the single-crossing property have been fruitful in mechanism design
settings. Since the progressive structure allows us to extend the same logic to settings with
bounded rationality, a natural avenue is to explore the implications of progressiveness in
behavioral mechanism design.

In this paper, we investigated one specific application of our framework to study the
less-is-more structure. That application highlights that a researcher with a specific type of
bounded rationality in mind may investigate the properties of the data in order to have
heterogeneous progressive types to behave according the that bounded rationality. In our ap-
plication, U-Monotonicty characterizes the less-is-more types. However, there are some other
well-studied bounded rationality models such as the limited attention model of (Masatlioglu
et al. [2012]) that do not satisfy the less-is-more structure. Hence, another avenue for explo-
ration is to study other such bounded rationality structures for the choices in the collection
and their behavioral implications.
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Finally, several empirical queries arise from the present work. Conducting experimental
tests comparing the explanatory power of competing models that we reviewed in this paper
would certainly be useful.
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Appendix

Proof of Remark 1. Assume that {u1, ..., uT } satisfies Condition 1 with respect to ▷.
For a contradiction, suppose the corresponding choice collection does not satisfy the pro-
gressiveness property. Then there exist s, t ∈ {1, ..., T} such that t > s and S ⊂ X where
cs(S)▷ct(S). Since each ui rationalizes the corresponding ci, we have us(cs(S)) > us(ct(S))
and ut(ct(S)) > ut(cs(S)). Note that since cs(S) ▷ ct(S) by Condition 1 we must have
us(cs(S)) > us(ct(S))⇒ ut(cs(S)) > ut(ct(S)), which is a contradiction.

For the other direction of the proof, assume that the collection of choices satisfies the
progressiveness property with respect to ▷. For a contradiction, suppose the corresponding
set of preferences does not satisfy Condition 1. Then there exists x, y ∈ X such that x▷ y,
s, t ∈ {1, ..., T} with s > t and while ut(x) > ut(y) we have us(y) > us(x). Then ct({x, y}) = x
and cs({x, y}) = y. By progressiveness, we should have cs({x, y}) ⊵ ct({x, y}) or equivalently,
y ⊵ x. This is a contradiction. ◻

Proof of Remark 2. Assume Condition 2 with respect to ▷ on a collection of (u,{Γt})
within Class 2 where u and ▷ are ordinally equivalent. Let t > s and S ⊆X then by definition
of this class, cs(S) ∈ Γs(S). Then observe that cs(S) ∈ L⊵(Γs(S)) ⊆ L⊵(Γt(S)). This implies
existence of y ∈ Γt(S) s.t. y ⊵ cs(S). Since ct(S) ⊵ x for any x ∈ Γt(S), in particular we must
have ct(S) ⊵ y ⊵ cs(S). Hence, {ct} is a progressive collection with respect to ▷.

For the other direction of the proof assume that the collection of choices satisfies the
progressive property with respect to ▷ which is ordinally equivalent to u. Let t > s, S be a set
of alternatives and x ∈ L⊵(Γs(S)). Then ∃y ∈ Γs(S) s.t. y ⊵ x. Then by definition cs(S) ⊵ x
which together with the progressiveness implies ct(S) ⊵ cs(S) ⊵ x. Then x ∈ L⊵(Γt(S)). This
shows that L⊵(Γs(S)) ⊆ L⊵(Γt(S)). ◻

Proof of Remark 3. Assume that a collection (u,{κt}) within Class 3 satisfies Condition
3 with respect to some ▷. For contradiction assume there are two types t > s and S ⊆X such
that cs(S)▷ ct(S). Then by Condition 3, u(cs(S)) − κs(cs(S), S) > u(ct(S)) − κs(ct(S), S)
imply u(cs(S)) − κt(cs(S), S) > u(ct(S)) − κt(ct(S), S). Since cs(S) is chosen by type s, the
left hand side of the above statement is true. Then the left hand side must be true too but
that contradicts with ct(S) being chosen by type t.

For the other direction of the proof, assume that the collection of choices satisfies the
progressive property with respect to▷. Let S be a set of alternatives containing two elements,
x▷ y and t > s. For contradiction, let u(x) − κs(x,S) > u(y) − κs(y,S) but u(x) − κt(x,S) <
u(y) − κt(y,S) then cs({x, y}) = x and ct({x, y}) = y. Then cs({x, y}) ▷ ct({x, y}) which
contradicts with the progressiveness. ◻

Proof of Remark 4. Class 1 ⊂ Class 2: Let a collection {ut}Tt=1 with induced choice types
of {ct} be in Class 1. We will define an equivalent collection of choice functions which are
generated by a model in Class 2. Define u ∶= uT and for any t and S, Γt(S) = {x ∈ S∣u(ct(S)) ≥
u(x)}. Hence, we construct the constraint sets from the lower contour sets with respect to
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u of the chosen element of type t. Then define c̃t(S) ∶= argmaxx∈Γt(S) u(x). By definition,
{c̃t(S)} is in Class 2. Note that ct(S) ∈ Γt(S) by definition and ct(S) = c̃t(S) for any S.

Class 2 ⊂ Class 3: Let a collection {ct} be generated by (u,Γt) in Class 2. We will define an
equivalent collection of choice functions which are generated by a model in Class 3. Define ▷
as the order induced by u, v ∶= −u and define the menu dependent behavioral cost functions
as:

κt(x,S) = { −2u(x) if x ∈ L⊵(Γt(S))
M if x ∉ L⊵(Γt(S))

where M > maxx∈X{−2u(x)}. Consider c̃t(S) ∶= argmaxx∈S v(x) − κt(x,S). By definition,
the collection {c̃t} is in Class 3. We now show ct(S) = c̃t(S) for all S. For any y ∈ L⊵(Γt(S)),
v(ct(S))−κt(x,S) = −u(ct(S))+2u(ct(S)) = u(ct(S)) ≥ u(y) = −u(y)+2u(y) = v(y)−κ(y,S).
And for any y ∉ L⊵(Γt(S), v(ct(S))−κt(x,S) = u(ct(S)) > −u(y)−M = v(y)−κ(y,S). Hence,
ct(S) = c̃t(S) for any S.

Proof of Theorem 1. Let ▷ be an order and a probabilistic choice function π be given.
We will construct a collection of choice functions, C, with the desired structure with respect
to ▷ and a probability distribution µ on C such that πµ = π.

Define
K = {π(L⊵(x)∣S) ∣ S ⊆X and x ∈ S}

This defines a collection of all cumulative probabilities on lower contour sets derived from the
probabilistic choice. K is a finite subset of [0,1]. Next we sort the strictly positive elements
of K from the lowest to the highest, i.e., 0 < k1 < k2 < ⋯ < km = 1.24 Note that since X is
finite, m is finite.

Next we will construct the set of choice functions, C, recursively. Before that, we define
a minimizing operator minπ+(▷, S), which selects the worst alternative in S according to ▷
with strictly positive choice probability. That is,

min
π+

(▷, S) = {x ∈ S ∣ π(x∣S) > 0 and y▷ x whenever π(y∣S) > 0 and y ≠ x}

For any set S, follow the steps below:

Step 1: Define
c1(S) = min

π+
(▷, S) and µ(c1) = k1

Note that µ(c1) is positive and for any S, π(c1(S)∣S) = π(L⊵(c1(S))∣S) ≥ k1 as π(c1(S)∣S) is
an element of K and by definition k1 is the smallest of those probabilities. Moreover, there
exists a subset S such that π(L⊵(c1(S))∣S) = k1 since k1 ∈K.

Step 2: Define the second choice type as

c2(S) = { c1(S) if π(L⊵(c1(S))∣S) > k1
minπ+(▷, S ∖ c1(S)) if π(L⊵(c1(S))∣S) = k1

and µ(c2) = k2 − k1

24km is always equal to 1 since π(L⊵(x)∣{x}) = 1.
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This is well-defined because by the construction in the first step: π(L⊵(c1(S))∣S) ≥ k1.
Note that µ(c2) is strictly positive as k1 < k2, and by step 1, c1 is different from c2. Observe
that for any S, c2(S) ⊵ c1(S) by definition of c2 and hence, {c1, c2} satisfies progressiveness
with respect to ▷. Note that µ(c1)+µ(c2) = k2. Moreover, there exists a subset S such that
π(L⊵(c2(S))∣S) = k2 since k2 ∈K.

Step i: Define the ith choice as

ci(S) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ci−1(S) if π(L⊵(ci−1(S))∣S) > ki−1

minπ+(▷, S ∖
i−1
⋃
k=1

ci−k(S)) if π(L⊵(ci−1(S))∣S) = ki−1

and µ(ci) = ki − ki−1

This is well-defined because by construction in first i − 1 steps
π(L⊵(ci−1(S))∣S) = ∑

y⊴ci−1(S)
y∈S

π(y∣S) ≥ ki−1

Note that by step i − 1, ci−1 ≠ ci, and by construction ci(S) ⊵ ci−1(S) ⊵ ci−2(S) ⊵ ... ⊵ c1(S)
for all S. Hence, {c1, c2,⋯, ci} consists of distinct elements and satisfies progressiveness with
respect to ▷. Note that ∑it=1 µ(ct) = ki. This construction stops when we reach mth step.

Define C = {c1, ..., cm} where each ci is defined in Step i above. Since C satisfies progres-
siveness with respect to ▷, and ∑mt=1 µ(ct) = k1 +∑mt=2(kt − kt−1) = km = 1, (µ,C) constitutes
a PRC, denoted by πµ. That is,

πµ(x∣S) = ∑
x=ck(S)
ck∈C

µ(ck)

We need to show that the representation holds, i.e, πµ = π. Note that by construction
πµ(x∣S) = 0 for any x ∈ S such that π(x∣S) = 0.

Let x ∈ S be an element with π(x∣S) ≠ 0. Let π(L⊵(x)∣S) = ki and π(L▷(x)∣S) = kj .
Since L▷(x) ⊂ L⊵(x) and π(x∣S) ≠ 0, ki is strictly greater than kj . Then by construction,
we have cj+1(S) = ⋯ = ci(S) = x. In addition, for all k ≤ j, x▷ ck(S) and x◁ ck(S) for all
k ≥ i + 1. Then we have

πµ(x∣S) =
i

∑
t=j+1

µ(ct) =
i

∑
t=j+1

(kt − kt−1) = ki − kj
= π(L⊵(x))∣S) − π(L▷(x)∣S)
= π(x∣S)

Hence, πµ and π are the same.

(Uniqueness): Let µ1 with support C1 = {c1
1, ...c

1
n1} and µ2 with support C2 = {c2

1, ...c
2
n2}

be two PRC representations of the same stochastic data described by π such that C1 and C2

satisfy progressiveness. We want to show that C1 = C2 and µ1 = µ2.
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For contradiction, suppose µ1 ≠ µ2. Define the c.d.f. implied by µi as Mi(cit) = ∑
s≤t
µi(cis)

for i = 1,2. Let M−1
i be the inverse choice defined from the c.d.f such that

M−1
i (α) = {cit∣Mi(cit−1) < α ≤Mi(cit)}

for i = 1,2. Since µ1 ≠ µ2, then there must be an α ∈ (0,1) such that M−1
1 (α) ≠ M−1

2 (α).
Let M−1

1 (α) = {c1
t } and M−1

2 (α) = {c2
s}. These two choice functions should disagree on some

sets, i.e. there must be S ⊂ X such that y = c1
t (S) and x = c2

s(S). Without loss of generality
assume x ▷ y. By progressiveness, for any k ≤ t, c1

k(S) ⊴ y and for any l ≥ s, c2
l (S) ⊵ x.

Then πµ2(L⊵(y)∣S) < α ≤ πµ1(L⊵(y)∣S) which is a contradiction because πµ1 = πµ2 as both
represent the original probabilistic choice described by π. ◻

Proof of Theorem 2. Let πµ and πη be two PRC▷ with supports C and C′, respectively.

First we show the sufficiency. Let µ be higher than η; and for contradiction assume that
πµ does not first order stochastically dominates πη, i.e. there exists a set S and for some x

1 − α ∶= πµ(U⊵(x)∣S) < πη(U⊵(x)∣S) ∶= 1 − β

Note that α and β are the probability of choosing the strict lower contour set of x in S
by using πµ and πη, respectively, hence α > β.

Since C and C′ are ordered choice collections satisfying progressiveness, there exists t
and t′ such that µ(c1) + ... + µ(ct) = α and x▷ ct(S); η(c′1) + ... + η(c′t′) = β and x▷ c′t′(S).
Let c′k = η−1

α , then k > t′ since α > β. Note that by the assumption of µ being higher than η,
we must have µ−1

α (S) = ct(S) ⊵ c′k(S) = η−1
α (S). Then we have x▷ ct(S) ⊵ c′k(S) ⊵ x. The

last relation follows from the fact that t′ is the highest index choice in C′ which chooses an
element from the lower contour set of x and any choice with higher index chooses an element
weakly better than x. This gives us the contradiction that needed for the proof.

Next we show the necessity. Let πµ first order stochastic dominate πη but µ not be
higher than η. Then ∃S ⊂ X and α ∈ (0,1] such that η−1

α (S)▷ µ−1
α (S). Define x and y as

x = η−1
α (S) and y = µ−1

α (S), then x▷ y. Then we have
πη(U⊵(x)∣S) ≥ α > πµ(U⊵(x)∣S)

which contradicts with the assumption that πµ first order stochastic dominates πη. ◻

Proof of Theorem 3. (Necessity of U-Monotonicity): Let ▷ be the reference order
and (µ,C) represent π such that C satisfies less-is-more condition. Let x ∈ T ⊂ S ⊆ X and
π(x∣S) ≠ 0. First, we will show that for any ci ∈ C, x▷ ci(T )⇒ x▷ ci(S). Assume not, there
exists i such that ci(S) ⊵ x▷ ci(T ). If ci(S) ∈ T then the less-is-more property immediately
yields a contradiction. Now consider ci(S) ∉ T . Then, since π(x∣S) ≠ 0, there must be an
index j ≤ i such that cj(S) = x. Then cj(S) = x ∈ T ⊂ S. By the less-is-more property we have
cj(T ) ⊵ cj(S). Since j ≤ i, by progressiveness, ci(T ) ⊵ cj(T ) ⊵ cj(S) = x which contradicts
with x▷ ci(T ). Therefore, we prove our claim that x▷ ci(T )⇒ x▷ ci(S). This implies the
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following relation:
∑

x▷ci(T )
µ(ci) ≤ ∑

x▷ci(S)
µ(ci)

Hence,
πµ(U⊵(x)∣S) ≤ πµ(U⊵(x)∣T )

(Sufficiency of U-Monotonicity): We assume that the probabilistic choice function π
satisfies U-Monotonicity with respect to ▷ and will show that the construction of C given in
the proof of Theorem 1 satisfies the less-is-more property with respect to this order.

Before we proceed, we note that U-Monotonicity can be expressed by strict lower counter
sets. That is, for all x ∈ T ⊂ S,

π(U⊵(x)∣T ) ≥ π(U⊵(x)∣S)⇐⇒ π(L▷(x)∣T ) ≤ π(L▷(x)∣S)

We first show c1 satisfies the less-is-more property. Let c1(S) ∈ T ⊂ S. By construction,
π(c1(S)∣S) ≠ 0 and for all x such that c1(S)▷x we have π(x∣S) = 0. Hence, π(L▷(c1(S))∣S) =
0. By U-Monotonicity, π(L▷(c1(S))∣T ) = 0. Hence, for all x such that c1(S)▷ x, we have
π(x∣T ) = 0. Since π(c1(T )∣T ) ≠ 0 by construction, we must have c1(T ) ⊵ c1(S).

Assume that all ct satisfy the less-is-more property for all t < i. We now show that ci
also satisfies it. Let ci(S) ∈ T ⊂ S. For contradiction, assume ci(S)▷ ci(T ). We consider two
possible changes that may happen from Step i − 1 to Step i.

Case 1) ci−1(S) = ci(S). By the progressiveness property, ci−1(S) = ci(S)▷ ci(T ) ⊵ ci−1(T ).
Then transitivity implies ci−1(S)▷ ci−1(T ), which contradicts the fact that ci−1 satisfies the
less-is-more property.

Case 2) ci−1(S) ≠ ci(S). Then the following relations hold according to the proof of Theorem
1;

ki ≤ π(L⊵(ci−1(T ))∣T )
≤ π(L⊵(ci(T ))∣T ) since ci(T ) ⊵ ci−1(T )
≤ π(L▷(ci(S))∣T ) since ci(S)▷ ci(T )
≤ π(L▷(ci(S))∣S) since U-Monotonicity
= ki−1 since the choice on S changed in step i

This observation contradicts with ki being strictly increasing in i. Hence, we have
ci(T ) ⊵ ci(S). This shows the less-is-more condition holds for ci. ◻

Proof of Theorem 4. For completeness of ▷T
π , take two arbitrary alternatives x and y. If

there exists z such that π(y∣{x, y, z}) > π(y∣{x, y}) or π(x∣{x, y, z}) > π(x∣{x, y}), then we
must have either x▷π y or y▷π x by part (i) of definition of ▷T

π .

Next assume that for any alternative z,
(1) π(y∣{x, y, z}) ≤ π(y∣{x, y}) and π(x∣{x, y, z}) ≤ π(x∣{x, y})
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Note also that the inequalities in Equation 1 are actually strict because π is strict. We
assume π(z∣{x, z}) < π(z∣{y, z}). This assumption is without loss of generality since the same
argument applies if the inequality is reversed.

We analyze four cases depending on whether Ax ∶= π(x∣{x, y}) − π(x∣{x, z}) and Ay ∶=
π(y∣{x, y}) − π(y∣{y, z}) are positive or negative.

Case 1: Ax < 0 and Ay < 0.

By Equation (1) and Ax,Ay < 0, both x and y satisfy strict regularity in {x, y, z}. Then
by Axiom 3, z must violate strict regularity. Since we assumed π(z∣{x, z}) < π(z∣{y, z}),
together with Axiom 2, we must have π(z∣{x, z}) < π(z∣{x, y, z}) < π(z∣{y, z}). By part (iii)
of the construction of ▷π, we get y▷πx. (Indeed, the entire order must be y▷πx▷π z among
these three alternatives.)

Case 2: Ax > 0 and Ay > 0.

Case 2(a): π(x∣{x, z}) < π(x∣{x, y, z}).

If π(x∣{x, z}) < π(x∣{x, y, z}) then z▷πx. Moreover, this case also implies that π(z∣{x, z}) >
π(y∣{x, y, z}) + π(z∣{x, y, z}). Hence, π(z∣{y, z}) > π(z∣{x, z}) > π(z∣{x, y, z}) implying that
z satisfies strict regularity. This gives us two possibilities: (i) π(y∣{y, z}) < π(y∣{x, y, z}), or
(ii) π(y∣{x, y, z}) < π(y∣{y, z}).

From (i), Axiom 2 and strictness imply that π(y∣{x, y, z}) < π(y∣{x, y}). Given π(x∣{x, z}) <
π(x∣{x, y, z}), part (ii) of the construction of▷π yields y▷πx. If (ii) holds, then π(y∣{x, y, z}) <
π(y∣{y, z}) < π(y∣{x, y}) (by Ay) > 0) and π(x∣{x, y, z}) > π(x∣{x, z}) together implying that
y▷π x from part (ii) of the construction of ▷π.

Case 2(b): π(x∣{x, z}) > π(x∣{x, y, z}).

Since Ax > 0, x satisfies the strict regularity in {x, y, z}. By Axiom 3, either y or z must
violate regularity. If y violates it, then since Ay > 0 we have π(y∣{y, z}) < π(y∣{x, y, z}). Then
by applying part (ii) of the construction of ▷π, we get x▷π y.

Assume z violates regularity but not y. Since we assumed that π(z∣{x, z}) < π(z∣{y, z}),
together with Axiom 2, we have π(z∣{x, z}) < π(z∣{x, y, z}) < π(z∣{y, z}). Then, together
with the assumption that y satisfies regularity and Axiom 2, we can apply part (iii) of the
construction of ▷π and conclude y▷π x.

Case 3: Ax < 0 < Ay. By Equation (1) and Ax < 0, x satisfies regularity in {x, y, z}. If
π(y∣{y, z}) > π(y∣{x, y, z}), then y also satisfies regularity in {x, y, z} by Ay > 0. Then by
Axiom 3, z must violate the regularity. By applying Axiom 2 together with the assumption of
π(z∣{x, z}) < π(z∣{y, z}), we get π(z∣{x, z}) < π(z∣{x, y, z}) < π(z∣{y, z}). Then by applying
part (iii) of the construction of ▷π, we must have y▷π x.

If π(y∣{y, z}) < π(y∣{x, y, z}), then z ▷π y. By part (iii) of definition of ▷π, we have
x▷π z. Then, we must have x▷T

π y.

Case 4: Ax > 0 > Ay. By Equation (1) and Ay < 0, y satisfies regularity in {x, y, z}. If
π(x∣{x, z}) > π(x∣{x, y, z}), then x also satisfies regularity in {x, y, z} by Ax > 0. Then by
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Axiom 3, z must violate regularity. By applying Axiom 2 together with the assumption of
π(z∣{x, z}) < π(z∣{y, z}), we get π(z∣{x, z}) < π(z∣{x, y, z}) < π(z∣{y, z}). Then by applying
part (iii) of the construction of ▷π, we get y▷π x.

If π(x∣{x, z}) < π(x∣{x, y, z}), then z ▷π x. By part (iii) of definition of ▷π, we have
y▷π z. Then, y▷T

π x.

◻


