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Abstract 
 
The pace of business dynamism as measured by indicators such as job reallocation has declined in 
recent decades in the U.S., and theory suggests that this may have implications for productivity. 
At first glance the timing of the patterns of changes in the pace of reallocation do not appear to 
match the changes in aggregate productivity.  Productivity surged in the 1990s, led by the ICT 
sector, and has declined in the post-2000 period in ICT and more broadly, while overall 
reallocation and the entry rate of new firms declined throughout the 1980s, 1990s, and 2000s.  
However, the High Tech sectors of the economy have a hump-shaped pattern of job reallocation 
and entry that broadly mimics the patterns of productivity.  Moreover, the economywide startup 
and reallocation trends of the 1980s and 1990s largely reflected the productivity-enhancing 
consolidation of the Retail Trade sector.  Even taking into account different sectoral patterns, 
however, the changing patterns of reallocation pose difficult identification challenges.  Much of 
the literature on declining dynamism broadly has proposed hypotheses focused primarily on 
accounting for variation in the startup rate and the age composition of firms.  While the startup 
decline is undoubtedly important, we show that most of the variation in the patterns of reallocation 
both economywide and within sector is not accounted for by the changing age structure of firms.  
This prompts us to focus on changes in dynamism within industries and firm age classes, and we 
focus especially on the High Tech sectors of the economy given the outsized role these sectors 
have played in aggregate productivity dynamics.  We find changing patterns of establishment-level 
and firm-level responsiveness to productivity realizations within narrow industries and firm age 
classes.  These changes imply a drag on productivity from a reduced pace of reallocation.  During 
the productivity slowdown of the post-2000 period, we find not only declining responsiveness but 
rising within-industry productivity dispersion in the High Tech sectors.  Taken together these 
findings are consistent with an increase in frictions or distortions in the U.S. economy. 
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I. Introduction and motivation 

A hallmark of market economies is the continual reallocation of resources from less-

valued or less-productive activities to more-valued or more-productive ones.  Business 

dynamics—the process of business birth, growth, decline and exit—is a critical driver of the 

reallocative process.  An optimal pace of business dynamics balances the benefits of productivity 

and economic growth against the costs associated with reallocation—which can be high for 

certain groups of firms and individuals.  While it is difficult to prescribe what the optimal pace 

should be, there is accumulating evidence from multiple datasets and a variety of methodologies 

that the pace of business dynamism in the U.S. has fallen over recent decades and that this 

downward trend accelerated after 2000.1   

Canonical models of firm dynamics and empirical evidence imply that there is a tight link 

between business dynamism and productivity growth.  As highlighted by Hopenhayn and 

Rogerson (1993), increases in the dynamic frictions of adjustment on the extensive or intensive 

margins will reduce the pace of reallocation and lower productivity.  Thus, a prima facie concern 

arising from these trends in business dynamism is that they may have had adverse effects on 

aggregate productivity growth.  The question is particularly important in light of the growing 

body of evidence showing that aggregate productivity growth in the U.S. has been declining 

since the early 2000s (Fernald (2014)).2   

At first glance, medium-run fluctuations in economywide productivity growth do not 

match up with patterns of declining business formation and business dynamism.  Productivity 

growth accelerated in the 1990s through the early 2000s before slowing down after 2003, while 

aggregate startup activity and job reallocation fell throughout the 1980-2014 period.  However, a 

more careful review of theory and evidence resolves the inconsistency: during the 1980s and 

1990s, the decline in entrepreneurship and reallocation was dominated by the Retail Trade 

                                                           
1 See Davis et al. (2007), Haltiwanger, Jarmin and Miranda (2011), Reedy and Litan (2011), Hyatt and Spletzer 
(2013), Davis and Haltiwanger (2014) and Decker et al. (2014). 
2 The Hopenhayn and Rogerson (1993) finding is about the impact of an increase in adjustment frictions on the level 
of productivity.  This can translate into a decline in productivity growth if there is an ongoing increase in adjustment 
frictions over time.  Our findings below are consistent with a trend increase in adjustment frictions in the post 2000 
period. 
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sector, where evidence suggests that falling dynamism was actually consistent with rising 

productivity growth.3   

Fernald (2014) highlights that the surge in productivity from the late 1980s to early 2000s 

and the subsequent decline were both led by the ICT-producing and intensive ICT-using sectors.  

Interestingly, the High Tech sector exhibits a rise in business formation and job reallocation over 

the first period and a sharp decline in the post-2000 period, with the period since 2000 also being 

characterized by a decline in high-growth firm activity throughout the US economy more 

generally (Haltiwanger, Hathaway and Miranda (2014)).4  

In this paper, we find that changes in how businesses respond to their idiosyncratic 

productivity conditions are an important driver of the evolution of aggregate job reallocation and 

productivity in recent decades, especially in the High-Tech sector.  We argue that the observed 

decline in responsiveness is consistent with models of firm dynamics in which increases in 

adjustment frictions can reduce the pace of reallocation and, consequently, productivity growth.  

As noted above, the canonical model is Hopenhayn and Rogerson (1993), but this theme is 

consistent with a wide class of firm-level adjustment cost models (e.g., Cooper and Haltiwanger 

(2006), Cooper, Haltiwanger and Willis (2007, 2016), and Elsby and Michaels (2013)).  The core 

hypothesis is intuitive.  An increase in adjustment frictions makes firms more cautious in 

responding to idiosyncratic productivity shocks.  This yields a decline in the pace of job 

reallocation (as firms’ hiring and downsizing decisions become more sluggish), an increase in 

the dispersion of marginal revenue products and a decline in aggregate productivity. 

There are other possible sources of changes in the responsiveness of firms that relate to 

the observed decline in the pace of startups and the accompanying changes in the age structure of 

firms.  In particular, if young firms are more responsive to productivity and profitability shocks, 

changes in the age composition of the firm distribution would reduce overall responsiveness.  

Young firms are more volatile arguably because they are engaged in resolving uncertainty about 

their type through the learning dynamics hypothesized by Jovanovic (1982).  Young firms facing 

uncertainty about their prospects will enter small, but as they learn about their type they will 

                                                           
3 There is an extensive literature documenting the shift away from single unit establishment firms (“Mom and Pop” 
firms) to large national chains (see, for example, Foster et al. (2006) and Jarmin, Klimek and Miranda (2009)).  For 
evidence that establishments of large national chains are more productive and more stable see Foster et al. (2006) 
and Foster et al. (2015). We discuss this evidence further below. 
4 For this purpose, we follow Hecker (2005) and construct a High-Tech sector based on the 14 four-digit NAICS 
industry groups with the largest shares of STEM workers.  The 14 industry groups are listed in the appendix. 
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respond substantially to actual realizations of productivity.  Greater responsiveness of young 

firms compared to mature firms combined with changes in the age structure of firms yields 

changes in overall responsiveness.  The explanation of such changes in responsiveness depend 

on the origins of the changes in the pace of startups and young firms.   

We mitigate the identification challenges of the sources of changes in responsiveness by 

focusing on changes in patterns of reallocation dynamics within firm age groups.  Evidence 

suggests that the changing pace of startups and the accompanying change in the age composition 

of firms is an important contributing factor to the changing overall patterns of reallocation, but it 

is far from the dominant factor.  Consistent with earlier findings (e.g., Davis et al. (2006), Decker 

et al. (2014)), we find that the changing firm age structure accounts for about one quarter of the 

overall decline in the job reallocation rate.  This fraction varies substantially across sectors, but 

in the Information sector the changing age structure accounts for about one fifth of the increase 

in reallocation in the 1990s and about one fifth of the decrease in the post-2000 period.  The 

dominant role of within-age group variation in changes in reallocation motivates our focus on 

that variation in this paper.  This approach is not meant to suggest that variation in the pace of 

startups and the age structure of businesses is not relevant, but as we discuss below there are a 

number of confounding factors that may underlie such changes.  Focusing on within-firm age 

variation provides cleaner identification.   

We investigate these issues with a particular focus on the High Tech component of the 

Manufacturing sector where we can construct measures of establishment-level total factor 

productivity (TFP) to empirically describe idiosyncratic shocks.  Given measured productivity 

shocks faced by businesses, we can evaluate both changes in the distributional characteristics of 

idiosyncratic productivity (“changing shocks”) and changes in business-level responses (in terms 

of growth and survival) to their own productivity (“changing responsiveness”).  We compare and 

contrast our results for High Tech Manufacturing with the remainder of the Manufacturing 

sector.  Then, using new data on firm-level labor productivity for the entire U.S. private sector, 

we perform similar analyses of the relationship between firm-level productivity and growth for 

businesses outside of Manufacturing.  While the evolution of the dispersion in labor productivity 

is inherently endogenous, our labor productivity exercises strongly suggest that the patterns we 

observe in Manufacturing generalize more broadly to other areas of the economy. 
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With reference to the model-based framework of changing shocks vs. changing 

responsiveness to shocks, we find that the dispersion of idiosyncratic productivity within High 

Tech Manufacturing is rising over time while the persistence of productivity exhibits little or no 

trend.  Thus, there is little evidence that changes in patterns of idiosyncratic productivity shocks 

can account for the changing pattern of reallocation in the High Tech sector.  Instead, we find 

that business-level responsiveness to productivity shocks has changed significantly over time 

within firm age groups.  In High Tech Manufacturing, during the 1980s and 1990s plant-level 

survival and growth became more responsive to idiosyncratic TFP differences across plants, 

while in the post-2000 period responsiveness declined substantially.  These results are 

particularly notable when we study exit alone, where we find that the intensity of productivity-

based exit selection has weakened markedly.  We conclude that the declining pace of aggregate 

reallocation in the U.S. is not being driven by changes in the distribution of business-level 

productivity shocks but is instead related to a dampening of the marginal responses of individual 

businesses to those shocks.   

In addition to shedding light on the puzzle of declining business dynamism generally, our 

results have important implications for aggregate productivity.  Counterfactual exercises show 

that the increased responsiveness of the 1980s and 1990s yielded as much as half a log point 

annual boost in industry-level TFP in the High Tech sector by the second half of the 1990s.  The 

declining responsiveness of the 2000s yielded as much as a two-log-point drag on annual 

industry-level TFP by 2010.  Moreover, evidence based on labor productivity suggests that the 

finding of declining responsiveness since 2000 generalizes beyond High Tech Manufacturing to 

other High Tech businesses as well as other areas of the economy.  The pre-2000 rise and post-

2000 fall of productivity responsiveness in the High Tech sector coincides with the rise and fall 

of aggregate productivity growth in the U.S., which was concentrated in ICT-related industries 

(Fernald (2014)).   

 We find that the post-2000 decline in the responsiveness of businesses to their 

idiosyncratic productivity realizations is remarkably robust and widespread.  Within 

Manufacturing, the post-2000 decline in responsiveness occurs among both young and mature 

businesses and both inside and outside of the High Tech sector.  When productivity is measured 

as output per worker, allowing us to expand our analysis outside Manufacturing, we see that the 

change in the productivity/growth relationship is widespread across the major sectors of the U.S. 
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economy.  A particularly striking finding for the wider economy is that we observe an increase in 

within-industry dispersion of labor productivity (within firm age groups) for both the High Tech 

and Non Tech sectors of the economy.  Such increases in within-industry productivity dispersion 

are consistent with the decline in responsiveness that we observe being generated by an increase 

in adjustment frictions. 

We do not identify the increase in adjustment frictions driving our results.  However, we 

conduct some brief auxiliary exercises that provide guidance about the nature of the changes we 

have detected.  For example, we show that the responsiveness decline among High Tech 

Manufacturing businesses can also be observed when we measure productivity responsiveness in 

terms of equipment investment instead of employment growth.  The decline in employment-

growth responsiveness is not the result of a key composition shift in High Tech Manufacturing—

the shift of production from general-purpose to special-purpose technology production 

documented by Byrne (2015)—but is occurring within these categories of producers.  We also 

find that the decline in responsiveness in the High Tech Manufacturing sector is especially large 

in the industries that have seen the greatest increase in import penetration from low-wage 

countries in the post-2000 period.   

The paper proceeds as follows.  Section II describes key facts about the declining pace of 

business dynamism that are relevant for our analysis.  A key result here is that while the 

changing firm age distribution is important, most of the variation in the patterns of reallocation is 

not accounted for by the age distribution.  Section III describes the various datasets we employ.  

In section IV, we use establishment-level data for Manufacturing, with a particular focus on High 

Tech Manufacturing, to study whether the evidence implies a change in the distribution of 

shocks or a change in the response to those shocks, and we analyze the implications of our 

findings for aggregate productivity growth.  Section V looks beyond Manufacturing and 

investigates the same questions using firm-level labor productivity and employment data for all 

U.S. sectors.  Section VI explores possible mechanisms underlying the changing responsiveness 

patterns to productivity shocks in the Manufacturing sector.  Concluding remarks are in section 

VII. 

 

II. Business Dynamics: Basic facts 

A. Sectoral Patterns of Reallocation and Young Firm Activity 



7 
 

Various studies have documented a decline in the annual pace of establishment-level job 

reallocation and other indicators of business dynamism in recent decades (see, e.g., Davis et al. 

(2007), Decker et al. (2014, 2016), Davis and Haltiwanger (2014), Hyatt and Spletzer (2013) and 

Malloy et al. (2016)).   

Underlying the aggregate decline in reallocation is substantial variation across sectors.  

Figure 1 shows the trends in job reallocation (using HP trends) for selected NAICS sectors along 

with the economywide trend.   Retail Trade exhibits the sharpest decline in job reallocation rates 

during the 1980s and 1990s.  In contrast, Information and FIRE exhibit increases in the pace of 

reallocation until about 2000 and then sharply decline thereafter.  In a related fashion, Figure 2 

shows the share of employment accounted for by young firms for the same sectors and 

economywide.  Neither FIRE nor Information exhibits the declines in young firm activity 

through 2000 exhibited by sectors such as Services and Retail Trade.  The share of employment 

accounted for by young firms in the Information sector rises in the second half of the 1990s then 

declines after 2000.  Figures 1 and 2 together highlight that not all sectors have exhibited a 

monotonic decline in indicators of business dynamism and entrepreneurial activity. 

The changing patterns of the share of young activity in Figure 2 account for an important 

fraction of the changing patterns of reallocation in Figure 1.  Figure 3a shows the annualized 

change in reallocation rates for the same broad NAICS sectors from the business cycle peak in 

the late 1980s to the business cycle peak in the late 1990s, and Figure 3b shows the decline from 

the business cycle peak in the late 1990s to the mid 2000s (we use three-year averages in 1987-

89, 1997-99, and 2004-06 for this purpose).  Also depicted are the annualized changes holding 

the age composition of businesses constant (at its initial state) within each of these sectors.  For 

this purpose, we use seven firm age groups (firm age 0,1,2,3,4,5,and 6+ where firm age 0 are 

startups).  During the 1990s, the sharp decline in reallocation in the Retail Trade sector and the 

increase in reallocation in the Information sector are evident.  The changing age composition 

helps account for both of these patterns.  In the 1990s, the declining share of young business 

activity accounts for 32 percent of the decline in reallocation in Retail Trade, and the rising share 

of young business activity in Information accounts for 23 percent of the rise in reallocation in 

that sector.  The Services sector exhibited a relatively smaller decline in reallocation rates in the 

1990s, but interestingly 100 percent of the 1990s decline is accounted for by the declining share 

of young business activity in that sector.  Turning to the post-2000 period, it is evident that the 
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pace of decline in job reallocation accelerated.  During the post-2000 period all broad sectors 

exhibited a decline (unlike the 1990s).  The Information sector exhibits the sharpest decline in 

the post-2000 period, with 18 percent of the decline accounted for by a decline in young business 

activity.  The main inference we draw from Figure 3 is that most of the variation in the 

reallocation patterns is within firm age groups.  This finding encourages us to proceed by 

focusing on changing patterns of responsiveness of firms within firm age classes. 

B. Possible Sources of Decline in Startups 

While it is not our focus, the changing patterns of startup activity and, in turn, the 

changing age structure of businesses is also of great interest; there are a number of competing 

hypotheses to account for such variation.  For example, variation in startup rates may 

endogenously reflect changes in the pace of innovation in an industry for the reasons 

hypothesized by Gort and Klepper (1982): a period of rapid innovation leads to a surge in entry, 

reallocation and subsequent productivity growth from the innovation. 5  Moreover, Gordon 

(2016) has hypothesized that most of the pathbreaking developments in the ICT sector and ICT-

using sectors were implemented during the 1990s, and the productivity slowdown is due to a 

declining pace of innovation and implementation.  The implication of these combined 

hypotheses is that the changing pace of startups and the accompanying change in reallocation in 

the High Tech sector may be related to productivity dynamics, but with the causality running 

from innovation variation to the associated changes in startups, reallocation and productivity 

growth. 

The changing age structure of firms is also connected to changes in the business model in 

some sectors.  In Retail Trade, there has been a well-documented transition from single unit 

establishment firms to large national chains (see, e.g., Foster et al. (2006), Jarmin et al. (2009) 

and Foster et al. (2016)).  These studies show that the share of sales and employment from single 

unit establishment firms fell from about 50 to 35 percent from 1977 to 2007.  Almost all of this is 

accounted for by a rapid rise in the share of sales and employment accounted for by large, 

national chains.  These studies also find establishments in large, national chains are more 

productive (by about 30 log points) and more stable than single unit establishment firms (exit 

rates for single unit establishments are more than 15 times higher than that for establishments of 

                                                           
5 Foster et al. (2017) provide supportive empirical evidence for these dynamics for the 1990s in the U.S. High Tech 
sector. 
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large, national chains).  As argued in these studies, retail consolidations was likely facilitated by 

advances in information technology and globalization that have permitted large, national chains 

to build large and efficient supply chains and distribution networks.  For our purposes, two key 

points are of interest.  First, Retail Trade provides an example where the decline in reallocation is 

associated with a change in the business model that has been productivity enhancing.  Second, 

this change is reflected in the age structure of businesses in Retail Trade from which we abstract 

in our main analysis. 

Yet another contributing factor to the decline in startups may be the reduction in the 

population growth rate in the U.S.  Karahan, Pugsley, and Sahin (2015) argue that as population 

growth slows so will the growth in the number of firms, an adjustment accommodated by fewer 

new firms.   

 Finally, the hypothesis that is the main focus of this paper—rising frictions inducing 

lower responsiveness—may also be a contributing factor for declining startups.  An increase in 

frictions raises the cost of business activity and reduces the expected discounted value of profits 

for entrants.  In this respect, our focus on within-firm age variation may be understating the 

contribution of the decline in responsiveness to the decline in productivity in the post-2000 

period.  However, more work is needed to sort out the reasons for the decline in startups which 

we leave for future work. 

C. Reallocation Patterns for High Tech Industries 

Before proceeding to the main analysis, it is instructive to show the patterns of 

reallocation for the High Tech industries of the economy.  The Information sector includes some 

(but not all) of the sectors that are typically considered the High-Tech sectors of the economy.  

Included in Information are industries such as Software Publishing (NAICS 5112) and Internet 

Service Providers and Web Search Portals (NAICS 5161), but other High Tech industries are 

classified as Manufacturing, such as Computer Hardware and Peripherals (NAICS 3341), or 

Services.  Moreover, Information includes sectors that are not considered part of the High-Tech 

sector such as Newspaper, Periodical and Book Publishing (NAICS 5111) and Radio and 

Television Broadcasting (excluding cable) (NAICS 5151).  For this purpose, we follow Hecker 

(2005) and construct a High Tech sector based on the 14 four-digit NAICS sectors with the 

largest shares of STEM workers.  The 14 sectors are listed in Table A1 in the appendix.   
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 For a core part of our empirical investigation we focus on the Manufacturing sector, with 

a particular emphasis on High Tech Manufacturing.  Figure 4 shows the Hodrick-Prescott trends 

for the Information sector, the High Tech sector as defined above, the manufacturing component 

of the High Tech sector, and the overall Manufacturing sector.  Information, High Tech, and 

High Tech Manufacturing all exhibit very similar patterns highlighting that there was a rising 

pace of business dynamism in the High Tech part of the economy through 2000, but this has 

declined sharply in the post-2000 period.  Focusing on the High Tech sector is of interest since it 

is a critical sector for innovation and productivity growth as highlighted by Fernald (2014).  

Interestingly, Figure 4 shows a sharp decline in the pace of job reallocation in the post-2000 

period in the High-Tech sector coinciding with the trend slowdown in productivity driven by a 

slowdown in IT-producing and using industries.   

 In what follows, we focus on the High Tech sector of the economy.  This focus is 

motivated by the outsized role that the High Tech sector has had in productivity dynamics.  We 

also report results for other sectors for purposes of comparison.  As emphasized above, we focus 

on dynamics within firm age groups in these sectors.  This helps us abstract from the many 

interesting but confounding factors that may underlie the changing pattern of startups and the 

associated age dynamics.     

 

III. Data and Measurement 

The backbone datasets for our analysis are the Longitudinal Business Database (LBD), 

the Annual Survey of Manufactures (ASM) and revenue data from the Census Business Register 

that have recently been integrated into a firm-level version of the LBD.  The LBD includes 

annual observations beginning in 1976, and we use the LBD through 2013 (this version of the 

data has consistent NAICS codes for the entire period as constructed by Fort and Klimek 

(2016)).  It provides information on detailed industry, location and employment for every 

establishment in the private, non-farm sector.  Employment observations in the LBD are for the 

payroll period covering the 12th day of March in each calendar year. For a full description of the 

LBD, see Jarmin and Miranda (2002). 

A unique advantage of the LBD is its comprehensive coverage of both firms and 

establishments.  In the LBD, firm activity is captured up to the level of operational control 

instead of being based on an arbitrary taxpayer ID.  The ability to link establishment and firm 



11 
 

information allows firm characteristics such as firm size and firm age to be tracked for each 

establishment and firm.  Firm size measures are constructed by aggregating the establishment 

information to the firm level using the appropriate firm identifiers.  The construction of firm age 

follows the approach adopted for the BDS and based on our prior work (see, e.g., Becker et al. 

(2006), Davis et al. (2007) and Haltiwanger, Jarmin and Miranda (2013)).  Specifically, when a 

new firm ID arises for whatever reason, we assign the firm an age based on the age of the oldest 

establishment that the firm owns in the first year in which the new firm ID is observed.  The firm 

is then allowed to age naturally (by one year for each additional year it is observed in the data) 

regardless of any acquisitions and divestitures, as long as the firm as a legal entity continues 

operations.  We utilize the LBD to construct annual establishment-level and firm-level 

employment growth rates.  

 

A. The ASM:  Plant-Level TFP Measures 

For the main analyses in the paper, we focus on the Manufacturing sector where we can 

construct measures of establishment-level TFP.  To do so, we supplement the LBD with a 

consistent and representative plant-level TFP database for all plants in the Annual Survey of 

Manufactures (ASM) and the Census of Manufactures (CM) from 1981 to 2010.6  The strength 

of these data is that we are able to measure plant-level TFP for over 2 million plant-year 

observations.  A limitation of the ASM in non-Census years is that, while it is representative in 

any given year, it is a rotating sample so its longitudinal properties are inferior to those of the 

LBD.  Following FGH we integrate the ASM/CM TFP data into the LBD.  For the LBD we have 

the outcomes in terms of establishment-level growth for all manufacturing establishments.  For 

the integrated ASM/CM/LBD we have the subset of establishments from the LBD for which we 

can measure TFP.  We use propensity score weights to adjust the ASM/CM/LBD sample so that 

it matches the complete LBD for manufacturing in terms of the detailed industry, size and age 

distributions (see FGH for details).7  A second key advantage of integrating the ASM/CM data 

                                                           
6 We are building on the data infrastructure developed by Foster, Grim and Haltiwanger (2016)—hereafter FGH.  
Our empirical specification also is closely related to FGH.  The latter examined the changing responsiveness of 
reallocation to productivity over the cycle.  We use the same terms FGH used for this purpose as controls in our 
analysis.   
7 The propensity score approach is based on a logit model that estimates the probability that a plant in the LBD (the 
universe) is in the ASM/CM as a function of detailed industry, firm size and firm age.  It allows us to make the cross 
sectional distribution of plants in any given year be representative of the LBD on these dimensions.  Note that these 
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with the LBD is that it allows us to avoid using the ASM to construct measures of growth and 

survival.  The rotating panel nature of the ASM makes this difficult on many different 

dimensions.     

The plant-level TFP measure we use is an index similar to that used in Baily, Hulten and 

Campbell (1992) and a series of papers that built on that work.8  The index is given by:   

 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒 =  𝑙𝑙𝑙𝑙𝑄𝑄𝑒𝑒𝑒𝑒𝑅𝑅 −  𝛼𝛼𝐾𝐾𝑙𝑙𝑙𝑙𝐾𝐾𝑒𝑒𝑒𝑒 −  𝛼𝛼𝐿𝐿𝑙𝑙𝑙𝑙𝐿𝐿𝑒𝑒𝑒𝑒 −  𝛼𝛼𝑀𝑀𝑙𝑙𝑙𝑙𝑀𝑀𝑒𝑒𝑒𝑒 − 𝛼𝛼𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒 (1) 

 

where QR is real output, K is real capital, L is labor input, M is materials, E is energy, α denotes 

factor elasticities, the subscript e denotes individual establishments and the subscript t denotes 

time.  Details on measurement of output and inputs are in FGH, but we provide a brief overview 

here.  Nominal output is measured as total value of shipments plus the total change in the value 

of inventories.  Output is deflated using an industry-level deflator from the NBER-CES 

Manufacturing Industry Database.  Capital is measured separately for structures and equipment 

using a perpetual inventory method.  Labor is measured as total hours of production and non-

production workers.  Materials are measured separately for physical materials and energy where 

each is deflated by an industry-level deflator.  Outputs and inputs are measured in constant 1997 

dollars.  Factor elasticities are estimated using industry-level cost shares (of total factor costs).9 

A Divisia index approach is used for the latter so that industry-level cost shares are permitted to 

vary over time.  

Given the large differences in output and input measures as well as the production 

technology across industries, we focus on a relative measure of TFP within industries.  We do 

this by creating measures of (log) TFP that are deviations from the detailed industry-by-year 

average. We use detailed (e.g., 6-digit NAICS) industry effects for this purpose.  We refer to this 

as “TFP” in the remainder of the paper, but it should be interpreted as the log deviation of 

establishment-level TFP from the industry-by-year average.  Given our focus on within-industry-

                                                           
weights are appropriate for making the cross sectional distribution in any given year representative but are not the 
ideal weights for using samples of ASM/CM that are present in both t and t+1.  We discuss this further below. 
8 Syverson (2011) provides an excellent summary. 
9 Cost shares yield factor elasticities under the assumptions of cost minimization and full adjustment of factors.  We 
are not assuming the latter for each plant at each unit of time but rather that this holds approximately when pooling 
across all plants in the same industry over time.  We consider an alternative approach as described below using 
proxy methods to estimate revenue function elasticities.   
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by-year idiosyncratic shocks, this implies we are abstracting from the direct influence of 

aggregate and industry-specific shocks on firm growth dynamics.  Importantly, this measure of 

establishment-level productivity allows us to avoid problems associated with the 

mismeasurement of industry-level prices, such as those documented by Byrne and Corrado 

(2015, 2016).  We refer to this idiosyncratic TFP measure as the productivity shock.   

The framework we have in mind is that the idiosyncratic component of TFP is a 

persistent process, and we model this below as an AR(1) process.  The current-period realization 

of the idiosyncratic component of TFP is the shock, and we also consider innovations to these 

shocks by estimating the AR(1) process below.    

Our measure of TFP is based on revenue.  In this respect, we are using a TFPR measure 

of productivity.10  This means differences in establishment-level prices are embedded in our 

measure of productivity.  Unfortunately, the Census Bureau does not collect establishment-level 

prices on a wide scale in the ASM and CM.  However, as Foster, Haltiwanger and Syverson 

(2008) (henceforth FHS) have shown, it is possible to measure establishment-level prices and 

physical quantities for a limited set of homogeneous commodity-like products in Economic 

Census years (years ending in “2” and “7”).  FHS create a physical quantity measure of TFP 

(which they denote as TFPQ) for a set of 11 homogeneous goods (for example, white pan bread). 

The within-industry correlation between TFPR and TFPQ is high (about 0.75).  However, FHS 

also find an inverse relationship between physical productivity and prices consistent with 

establishments facing a differentiated product environment. In addition, FHS find establishment-

level prices are positively related to establishment-level demand shocks and that such demand 

shocks are positively correlated with TFPR.  As such, our measure of establishment-level 

productivity should be interpreted as reflecting both technical efficiency and demand factors 

(including product quality factors that may be embedded in prices).  For our purposes, a key 

finding from FHS is that the relationship of growth and survival with TFPQ and demand shocks 

is quite similar to the relationship of growth and survival with TFPR.  It is time variation in the 

relationship between growth and survival and our revenue-based measure of TFP that we are 

exploring.  

                                                           
10 As defined by Foster, Haltiwanger and Syverson (2008), TFPR = P*TFPQ where the latter is physical 
productivity or technical efficiency.  There are alternative revenue productivity concepts that we consider below. 
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While our specific TFP measure is commonly used in related literature, we also consider 

an alternative productivity measure based on the revenue function estimation proxy method 

described by Wooldridge (2009).  As emphasized by Foster et al. (2017), this approach has the 

advantage that even in the face of endogenous plant-level prices, this alternative revenue 

productivity measure is only a function of exogenous TFPQ and demand shocks.  The reason is 

that in estimating the revenue function, the estimates are of revenue elasticities and not factor 

elasticities so that they capture both production and demand parameters.  In Appendix C, we 

describe exercises based on this revenue productivity residual (RPR) in place of TFPR.  As 

shown there, our main results are robust to this alternative productivity specification.  The results 

reported in the main text, however, rely on the TFPR measure described above.  In our 

theoretical analysis below (both in section IV.A and in appendix D), we also show that in the 

presence of adjustment costs, TFPR and revenue labor productivity are inherently highly 

correlated with fundamentals.  For example, in our simulated analysis in appendix D, the 

correlation of TFPR and revenue labor productivity with TFPQ is about 0.90 for the baseline 

calibration that matches the pace of reallocation in the 1980s in the US manufacturing sector. 

 

B. Revenue Data from the Business Register:  Measuring Revenue Labor Productivity.  

While our main empirical investigation focuses on establishment-level data for the 

Manufacturing sector where TFP is measurable, in Section IV we extend our analysis to the 

entire economy by constructing measures of firm-level labor productivity.  For this purpose we 

make use of a new revenue-enhanced version of the Longitudinal Business Database (RE-LBD).  

The RE-LBD integrates employment measures from the LBD with revenue-based output 

measures from administrative files.  We describe basic features of its construction and 

underlying data here (see Haltiwanger, Jarmin, Kulick and Miranda (2016) for additional 

details).  

The RE-LBD is a firm level file with revenue and employment measures.  The RE-LBD 

incorporates firm-level revenue measures by collapsing the EIN revenue measures contained in 

the Business Register that belong to the same firm.  Firm-level employment measures result from 

collapsing employment in the LBD across all establishments that belong to the same firm.    

Revenue coverage begins in 1996 and runs through 2013.  A critical aspect of the RE-LBD is 

that the procedure for calculating the current-year and previous-year employment variables is 
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adjusted so that all employment growth represents organic changes in establishment-level 

employment rather than artificial growth created by mergers and acquisitions (M&A).   

Several additional aspects of the RE-LBD are worth mentioning at this point.  The 

Census Bureau is not always able to tie revenue and employment measures belonging to the 

same firm in the BR.11  This results in employment observations with missing revenue data. The 

RE-LBD sample excludes observations with missing revenue.12  To account for the missing data 

and the potential selection effects that might arise we use inverse propensity scores to weight the 

data.  Propensity scores are developed using the full LBD compared with the RE-LBD using 

models that include firm size, firm age, the employment growth rate, broad industry and a multi-

unit status indicator.  We use inverse propensity scores that are generated independently based 

on models for continuers, births and deaths (details about the filters used and the construction of 

the propensity scores can be found in the data appendix to Haltiwanger et al. (2016)).  

We construct a relative measure of firm-level labor productivity within detailed industries 

that mimics our TFP concept described above.  Specifically, the measure we use is (the log of) 

revenue per worker deviated from detailed (6-digit NAICS) industry-by-year means.  Again, by 

deviating from detailed industry-year means we control for several factors.  First, we control for 

relative price differences across detailed industries so our measure of labor productivity is 

consistent with a relative gross output per worker measure within detailed industries.  Second, 

prior research (see, e.g., Foster, Haltiwanger and Krizan (2001, 2006)) has shown that relative 

gross output per worker within industries has a high correlation with relative value added per 

worker within industries and a strong correlation with relative TFP measures within industries.  

This reflects the fact that there are similar patterns of, for example, materials shares across firms 

in the same industry as well as other factor shares such as capital shares.   

For this firm-level analysis, we assign a firm to a detailed industry based on its modal 

employment.  This is a potential source of measurement error since large multi-unit 

establishment firms may be operating in multiple 6-digit NAICS industries. We note, however, 

that over 95 percent of all firms and more than 99 percent of all young (less than five year old) 

firms are single unit establishment firms.  This implies that the industry-by-year mean we deviate 

                                                           
11 This is because firms can report income and payroll activities under different EINs.  When this happens the 
income EIN may fall outside of the set of EINs that the Census considers part of that firm when accounting for 
employment. 
12 Approximately 20 percent of the firm-year observations do not have output measures.  
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from is very similar in practice to the industry-by-year mean for single unit establishment firms.  

As discussed in appendix E, we have conducted sensitivity analysis that uses a more 

sophisticated approach to controlling for industry effects for multi-unit establishment firms that 

operate in multiple industries.  We find our results are robust to this alternative approach.     

Finally, given the difficulties associated with measuring the output and productivity of 

firms in the Finance, Insurance, and Real Estate sectors, we omit firms in those industries 

(NAICS 52-53) from all analysis below.  

 

IV. Change in shocks vs. change in responsiveness 

A. Theoretical motivation 

Having described basic facts about business dynamism and our data, we now proceed 

with a framework guided by canonical models of firm dynamics.  Models of firm13 dynamics 

suggest that a within-sector decline in the pace of reallocation is either due to a change in the 

volatility of shocks faced by firms or a change in the response to those shocks.  A classic 

reference for our purposes is Hopenhayn and Rogerson (1993).  In that paper, firms face 

idiosyncratic productivity shocks and adjustment frictions for labor; an increase in adjustment 

frictions reduces the dispersion of firm-level growth rates and reduces aggregate productivity 

because productivity-enhancing reallocation is reduced.   

To be more specific, canonical models of firm dynamics with adjustment frictions yield 

decision rules for net hiring rate (similar remarks apply to the growth of other inputs, such as 

investment in capital) that are a function of the two key state variables each period: the 

realization of productivity and the initial employment in the period.14  A reduced form 

representation of this decision rule is given by:  𝑔𝑔𝑓𝑓𝑒𝑒+1 = 𝑓𝑓𝑒𝑒+1�𝐴𝐴𝑓𝑓𝑒𝑒+1,𝑙𝑙𝑓𝑓𝑒𝑒�  where 𝑔𝑔𝑓𝑓𝑒𝑒+1 is the net 

hiring rate (or equivalently the net employment growth rate) of firm 𝑓𝑓 between 𝑡𝑡 and 𝑡𝑡 + 1, 𝑙𝑙𝑓𝑓𝑒𝑒 

is employment in t, and 𝐴𝐴𝑓𝑓𝑒𝑒+1 is the realization of firm (idiosyncratic) productivity (which is 

typically observed prior to the growth decision).  𝐴𝐴𝑓𝑓𝑒𝑒+1 is considered to be a persistent process, 

and consistent with the literature we specify this as an AR1 process in our empirical work below.  

                                                           
13 We use the term “firms” loosely in this subsection.  Much of the literature focuses on establishment-level 
dynamics but we use the term “firm” in this section for expositional ease.  Our empirical work focuses on both 
establishment-level and firm-level dynamics. 
14 For net hiring rate dynamics, see, e.g., Cooper, Haltiwanger and Willis (2007, 2015) and Elsby and Michaels 
(2013).  For investment dynamics, see, e.g. Cooper and Haltiwanger (2006). 
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Decision rules for the net hiring rate that take this form imply that changes in the distribution of 

firm employment growth rates stem from either changes in the distribution of 𝐴𝐴𝑓𝑓𝑒𝑒+1 or the 

responsiveness of the firm to a given realization of 𝐴𝐴𝑓𝑓𝑒𝑒.   

Our empirical approach in the next section is motivated by the insights of this class of  

firm dynamic models with adjustment costs.  Building on this literature, in Appendix D we 

consider a kinked adjustment cost model of labor adjustment costs to illustrate the features and 

predictions of this class of models that are especially relevant for our empirical analysis.  The 

model we specify is consistent with the discussion above.  Firms are subject to idiosyncratic 

productivity shocks where the realization of productivity in the current period is drawn from an 

AR1 process.  Because our empirical analysis uses alternative measures of productivity including 

revenue productivity-based measures, we specify that firms face downward sloping demand 

curves with an isoelastic demand structure.  This specification yields that the revenue function 

exhibits curvature and is subject to idiosyncratic revenue shocks from productivity and 

potentially demand shocks.  We don’t formally model entry and exit but discuss below the 

implications of considering these extensive margins based on the insights of the existing 

literature. 

We conduct numerical analysis of a calibrated version of this model to motivate the 

empirical specifications and moments we consider below.  We calibrate the dispersion and 

persistence of the productivity processes to be consistent with the empirical estimates for 

Manufacturing in the 1980s detailed below.  We calibrate the adjustment cost parameters to 

match the pace of job reallocation in the 1980s.  One of the findings in the baseline calibration 

that is relevant for the empirical approach we take below is that revenue productivity measures—

such as TFPR or revenue labor productivity—are highly correlated with TFPQ (pairwise 

correlations of about 0.90) in the presence of a baseline level of adjustment costs.   

Using this as a starting point, we consider two types of exercises.  First, we consider how 

key moments change with an increase in adjustment frictions.  This yields the following 

predictions that we take to the data in our analysis.  We find that as adjustment frictions increase 

(holding constant the shock process and all other parameters):  (i) job reallocation declines; (ii) 

the response of firm-level employment growth from 𝑡𝑡 to 𝑡𝑡 + 1 to the realization of productivity 
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in 𝑡𝑡 (conditional on employment in 𝑡𝑡) declines;15 (iii) the standard deviation of labor productivity 

increases; and (iv) the Olley-Pakes (OP) covariance for both TFP and labor productivity 

declines.  The latter implies a decline in aggregate productivity consistent with a higher extent of 

misallocation in the economy due to the increase in adjustment frictions. 16  Most of these 

predictions are intuitive and are consistent with predictions in the literature.17  These are the 

primary hypotheses that we investigate in our empirical analysis.  From the basic facts above, we 

already know that there are changing patterns of job reallocation, and our objective is to explore 

whether these changes are consistent with a change in adjustment frictions. 

In considering the “increasing frictions” hypothesis, we have in mind a potentially 

broader interpretation than the simple adjustment frictions in our illustrative model.  Given the 

recent literature on idiosyncratic distortions affecting the allocation of factors (e.g., Restuccia 

and Rogerson (2008), Hsieh and Klenow (2009) and Bartelsman et al. (2013)), an increase in the 

dispersion of distortions will both have a similar impact on the relationship between firm growth 

(and survival) and fundamentals and have adverse implications for productivity.  Moreover, 

while our simple model has only employment dynamics, we have in mind any type of increased 

friction that may impede adjusting the scale of operations at a firm.   

                                                           
15 As we discuss in Appendix D, there are a variety of candidate moments relating growth to realizations of 
productivity that yield similar qualitative predictions with respect to changes in adjustment frictions.  We focus on 
this specific one for our empirical analysis for measurement and econometric reasons as discussed below.  We also 
show in Appendix D that this predicted decline in responsiveness with an increase in adjustment costs holds whether 
we use TFPQ, TFPR or RLP (revenue labor productivity).  This is because, as we have noted above, in the presence 
of adjustment costs all of these measures are highly correlated. 
16 In standard models, including our illustrative model, the relationship between adjustment frictions and the 
covariance between size and labor productivity (the “Olley-Pakes covariance”) is nonlinear, as we show in 
Appendix D. This is because, under strong but common assumptions, an absence of adjustment frictions would 
imply that firms equate their marginal revenue products of labor, producing zero covariance between size and labor 
productivity. The covariance rises as adjustment costs initially rise (as labor productivity dispersion moves above 
zero), but the covariance eventually falls over the range of plausible adjustment cost parameterizations as 
misallocation rises. The frictionless case is not a realistic or useful benchmark as it produces extremely high rates of 
job reallocation. The intuition on which we rely—with increasing frictions causing a decline in covariance and 
therefore, ceteris paribus, a decline in aggregate productivity—is reasonable under empirically plausible 
parameterizations of adjustment costs.  We note that the exercise we use in the empirical analysis conducts a diff-in-
diff between the OP covariance with the estimated responsiveness in the current period vs. the counterfactual OP 
covariance if the estimated responsiveness was the same as at the beginning of the sample.  We show in Appendix D 
that the diff-in-diff exercise in the simulated data shows that when adjustment frictions rise the diff-in-diff OP 
covariances for both TFP and labor decline.   
17 The decline in reallocation, the rise in dispersion in labor productivity and the decline in productivity from a 
reduction in allocative efficiency are found in Hopenhayn and Rogerson (1993) and Cooper, Haltiwanger and Willis 
(2007).    
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In contrast to the “increasing frictions” hypothesis for the empirical fact of declining job 

reallocation and related moments, we also investigate an alternative hypothesis suggested by the 

existing firm dynamics literature as well as our illustrative model.  Our model has the property 

that a decline in the dispersion of TFP (holding the persistence of TFP and all other model 

parameters constant) yields:  (i) a decline in job reallocation; (ii) a decline in the response of 

firm-level growth from 𝑡𝑡 to 𝑡𝑡 + 1 to the realization of productivity in 𝑡𝑡 (conditional on 

employment in 𝑡𝑡); and (iii) a decline in the standard deviation of labor productivity.18   

These predictions highlight that a change in the dispersion of firm-level growth rates 

(e.g., job reallocation) can be accounted for either by changes in the distribution of 

productivity/profitability of shocks or by changes in the marginal response of firm-level growth 

to productivity/profitability shocks (or by some of both).19  Moreover, a change in the shock 

distribution can change firm-level responsiveness; to disentangle these forces we need to capture 

the empirical evolution of both the shock distribution and changing responsiveness.   

One important distinguishing feature of the shocks vs. responsiveness framing of our 

study of the change in dynamism is that the two hypotheses have opposite predictions for the 

dispersion of labor productivity.  That is, if a decline in the pace of job reallocation is due to 

increasing labor adjustment frictions then we should also observe an accompanying increase in 

the dispersion of labor productivity.  This is because increased frictions reduce the speed with 

which firms move their marginal revenue products toward equalization.  In contrast, if a decline 

in the pace of job reallocation is due to a decline in the dispersion of shocks then we should 

observe an accompanying decline in the dispersion of labor productivity.  We exploit these 

starkly different predictions about within-industry productivity dispersion in the empirical 

analysis that follows. 

                                                           
18 The first and the third predictions are intuitive, but a few remarks are in order about the second prediction.  It 
stems in part from our consideration of a kinked adjustment cost model so that there is a range of inaction in 
adjustment.  As dispersion in TFP decreases there is a decrease in the fraction of firms that make zero adjustment 
(i.e., the “real options” effect).  But declining TFP dispersion also implies smaller adjustments among those firms 
that do adjust (i.e., the “volatility” effect).  This prediction, then, is consistent with the findings of Vavra (2014) who 
argues that the standard finding in the literature is that the volatility effect dominants the real options effect in the 
steady state, a general result extending back to Barro (1972).   
19 See Berger and Vavra (2017) for an application of the “shocks vs. responsiveness” approach in a different context; 
that paper and others cited therein likewise find an important role for the responsiveness factor in explaining 
aggregate outcomes. 
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This latter point on implications for changes in the patterns of labor productivity 

dispersion highlights a more general feature of our empirical analysis—specifically, examining 

multiple moments rather than focusing on the predictions for a single moment.  As we note 

above, the decline in the pace of reallocation could be due to a decline in the dispersion of 

shocks, but this would also imply a decline in the dispersion in labor productivity.  As we also 

discuss further in Appendix D, the Olley-Pakes covariance moment for labor productivity 

exhibits a non-monotonic pattern with respect to increases in adjustment costs over the full range 

of the parameter space.  However, over the range where increases in adjustment frictions yield a 

decline in the OP labor covariance, such changes yield declines in the responsiveness of firm 

growth to shocks, a decline in the OP covariance for TFP and an increase in the dispersion of 

labor productivity.  Exploring these multiple margins simultaneously is therefore important for 

identification. 

There are additional forces that may be at work beyond changes in frictions and shocks 

that are not apparent from our illustrative model and abbreviated discussion of the firm dynamics 

literature.  First, our illustrative model in Appendix D neglects firm entry and exit, and we 

already know from the basic facts that there have been striking changes in entry dynamics in 

recent decades.  Hopenhayn and Rogerson (1993) incorporate entry and exit dynamics and find 

that a rise in adjustment frictions will reduce entry and exit.  In their model, the lower bound of 

productivity necessary for survival will decline with an increase in frictions.  The empirical 

prediction, then, is that not only will firm growth for continuers become less responsive to 

productivity but so will exit.   We explore this prediction in the empirical analysis below. 

 As discussed in the introduction, another related factor that is likely quite important is 

that firm dynamics of young firms differ from mature firms.  In the empirical analysis that 

follows, we consider changing dynamics of responsiveness within firm age groups to abstract 

from changes in the prevalence of young firms in the U.S.   

As will become apparent, we confront the theory largely by characterizing the evolution 

of key moments as well as the reduced form relationships discussed above.  Unlike some of the 

literature cited here we do not seek to identify a structural model of adjustment frictions.  Given 

our findings below, we think this is a rich area for future research.  For example, relative to the 

discussion above, we do not take a stand on the exact form of adjustment costs such as convex 

vs. non-convex adjustment costs (this topic has been under active investigation in the literature).  



21 
 

One potential use of our empirical findings would be as moments to discipline such analysis.20  

A benefit of our reduced form approach is that it readily permits controlling for many different 

factors in a panel regression environment and allowing estimates to vary systematically by key 

firm characteristics such as detailed industry and firm age.  In addition, we use this reduced form 

approach to explore potential explanations for changes in the responsiveness to shocks that we 

detect. 

 

B. Empirical Analysis of U.S. Manufacturing 

In this section, we investigate these issues for the U.S. manufacturing sector with a focus 

on the High-Tech component of manufacturing.  For our purposes, the High-Tech sector includes 

the 4-digit sectors in Table A.1 that are in manufacturing.21  To help provide perspective on our 

findings for High-Tech Manufacturing we also consider the rest of the Manufacturing sector 

which for ease of exposition we call Non Tech Manufacturing.   

The first exercise we consider is to explore the evolution of the within-industry 

dispersion in (log) TFP, where dispersion is quantified as the standard deviation of the within-

industry plant-level (log) TFP distribution (that is, we measure plant productivity deviated from 

its industry-year mean).  This is our measure for the dispersion of idiosyncratic productivity 

shocks faced by establishments.  Figure 5 shows the evolution of within-industry productivity 

dispersion for plants in High-Tech Manufacturing (top panel) and Non Tech Manufacturing 

(bottom panel).  We report separate results for young and mature firms since the evidence 

presented above suggests that plants of young firms exhibit different paces of reallocation.  We 

use the LBD and its firm age measures for each plant to classify plants in the ASM/CM/LBD 

integrated data for this purpose.  Given our interest in low-frequency variation, we report HP 

trends of this measure of dispersion.   

Consistent with the literature, there is large dispersion in TFP across plants in the same 

industry (see, e.g., Syverson (2004, 2011)).  We find that the levels of within-industry TFP 

                                                           
20 Indeed, Cooper and Haltiwanger (2000) used reduced form regressions similar to those we estimate in an indirect 
inference estimation of structural parameters of adjustment costs (in their case the application was capital 
adjustment).  They also show in the numerical analysis of their structural model that the marginal responsiveness of 
investment to profit shocks declines with increases in adjustment costs, either convex or non convex.   
21 These include manufacturers in NAICS codes 3341 (computer and peripheral equipment), 3342 (communications 
equipment), 3344 (semiconductor and other electronic components), 3345 (navigational, measuring, electromedical, 
and control instruments), 3254 (pharmaceutical and medicine), and 3364 (aerospace product and parts). 
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dispersion are about the same for plants of young and mature firms in both the High-Tech and 

Non Tech areas of Manufacturing.  In High-Tech Manufacturing, plants of young and mature 

firms exhibit a positive trend in dispersion that roughly mimics the overall.  The same holds for 

Non Tech Manufacturing.22     

To help understand the implications of this rising within-industry dispersion of 

productivity, it is also useful to study the patterns of persistence in plant-level TFP.  Much of the 

literature on plant-level productivity has found that plant-level productivity shocks exhibit 

considerable persistence but are far from a unit root process.  In terms of implications of 

productivity shocks for plant-level dynamics, the adjustment cost literature (e.g., Cooper and 

Haltiwanger (2006) and Cooper, Haltiwanger and Willis (2007)) shows that the implied patterns 

of plant-level growth dynamics depend on the persistence of the idiosyncratic shocks.  This is 

intuitive since in the face of adjustment costs plants are more likely to respond to persistent 

shocks.  Our data infrastructure is not ideally suited for estimating persistence and the 

innovations to the process, but in Appendix B we find that persistence is reasonably stable with 

an AR(1) estimated coefficient of about 0.6 to 0.7, and the pattern of dispersion in innovations 

matches those of overall dispersion. 

The findings presented thus far suggest that the changing patterns of reallocation are not 

driven by changing patterns in the dispersion of TFP or the persistence in TFP.  Consider plants 

in High-Tech Manufacturing.  Figure 4 shows a pattern of rising reallocation during the 1990s 

and then falling reallocation in the post-2000 period.  For dispersion and persistence of TFP to 

account for these patterns we would expect dispersion and/or persistence to mimic these patterns.  

The patterns we present suggest that, if anything, we should see a rising pace of reallocation in 

High Tech and Non Tech industries in the post-2000 period, which is exactly the time during 

which we observe a decline in the pace of reallocation.     

We now turn to investigating whether there is a change in the responsiveness of growth 

                                                           
22 Figure A1 in the appendix reports overall dispersion (for all ages) for High Tech Manufacturing, Non Tech 
Manufacturing, and the entire Manufacturing sector.  The standard deviation of log TFP averages about 36 log 
points for the all manufacturing and Non Tech manufacturing samples (the lines overlap in the chart).  It averages 40 
log points for the plants in the High-Tech part of manufacturing.  For High-Tech, trend dispersion in TFPR rose 
mildly through the 1990s and then more substantially in the post-2000 period.  For the remainder of manufacturing, 
trend dispersion of TFP was relatively constant through the 1990s but rose in the post-2000 period.  In Appendix C, 
we also report a version of Figure A1 that is based on the Wooldridge (2009) revenue productivity residual (RPR) 
estimation instead of our TFPR measure; Figure C1 reports these results, confirming that the general upward trend 
of TFPR is robust to the RPR productivity concept. 
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and survival to idiosyncratic differences in TFP across plants. We estimate establishment-level 

regressions relating employment growth from 𝑡𝑡 to 𝑡𝑡 + 1 to measured TFP in period 𝑡𝑡 for all 

incumbents in period 𝑡𝑡 with appropriate controls.  We define employment growth for 

establishments between periods 𝑡𝑡 and 𝑡𝑡 + 1 using the Davis, Haltiwanger and Schuh (1996) 

(hereafter DHS) concept that can accommodate entry and exit.  

Equation (2) is our basic specification:  

 

𝑔𝑔𝑒𝑒,𝑒𝑒+1 = 𝜆𝜆𝑒𝑒+1 + 𝛽𝛽𝑦𝑦 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒 ∗ 𝑌𝑌𝑌𝑌𝑌𝑌𝑙𝑙𝑔𝑔𝑒𝑒𝑒𝑒 + 𝛿𝛿1𝑦𝑦 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒 ∗ 𝑌𝑌𝑌𝑌𝑌𝑌𝑙𝑙𝑔𝑔𝑒𝑒𝑒𝑒 ∗ 𝑙𝑙𝑇𝑇𝑇𝑇𝑙𝑙𝑑𝑑𝑒𝑒     

+𝛿𝛿2𝑦𝑦 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒 ∗ 𝑌𝑌𝑌𝑌𝑌𝑌𝑙𝑙𝑔𝑔𝑒𝑒𝑒𝑒 ∗ 𝑙𝑙𝑇𝑇𝑇𝑇𝑙𝑙𝑑𝑑𝑒𝑒2                                                 

+𝛽𝛽𝑚𝑚 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒 ∗ 𝑀𝑀𝑀𝑀𝑡𝑡𝑌𝑌𝑇𝑇𝑇𝑇𝑒𝑒 + 𝛿𝛿1𝑚𝑚 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒 ∗ 𝑀𝑀𝑀𝑀𝑡𝑡𝑌𝑌𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒 ∗ 𝑙𝑙𝑇𝑇𝑇𝑇𝑙𝑙𝑑𝑑𝑒𝑒  

+𝛿𝛿2𝑚𝑚 ∗ 𝐿𝐿𝑙𝑙𝑒𝑒𝑒𝑒 ∗ 𝑀𝑀𝑀𝑀𝑡𝑡𝑌𝑌𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒 ∗ 𝑙𝑙𝑇𝑇𝑇𝑇𝑙𝑙𝑑𝑑𝑒𝑒2 + 𝑋𝑋𝑒𝑒𝑒𝑒′ Θ+ εe,t+1                 

(2) 

 

where 𝑔𝑔𝑒𝑒,𝑒𝑒+1 is the DHS employment growth rate for establishment e between time 𝑡𝑡 and time 

𝑡𝑡 + 1 , 𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒 is total factor productivity for establishment 𝑇𝑇 at time 𝑡𝑡 deviated from (six-digit 

NAICS) industry-by-year means, and 𝑙𝑙𝑇𝑇𝑇𝑇𝑙𝑙𝑑𝑑𝑒𝑒 is a simple linear time trend (which we also 

include as a quadratic term in many specifications).  𝑌𝑌𝑌𝑌𝑌𝑌𝑙𝑙𝑔𝑔𝑒𝑒𝑒𝑒 is a dummy equal to 1 if the 

plant’s firm is young (age less than five) in year 𝑡𝑡, 𝑀𝑀𝑀𝑀𝑡𝑡𝑌𝑌𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒 is a dummy equal to 1 if the plant’s 

firm is mature in year 𝑡𝑡, and  𝑋𝑋𝑒𝑒𝑒𝑒   is a set of controls discussed further below.  Note that trend 

terms are not entered as main effects since there is a full set of year effects that capture general 

trends as well as national cyclical effects. We estimate equation (2) using our propensity score 

weights.  All of the terms involving TFP are fully saturated with young and mature dummies, as 

the evidence in the prior sections suggest that the dispersion of plant-level growth dynamics 

differs systematically across plants owned by young and more mature firms.   

While this is a reduced form specification, it is broadly consistent with the specifications 

of selection and growth dynamics from the literature we discussed above.  First, it is consistent 

with the adjustment cost model calibration exercises in Appendix D that show, estimating the 

equivalent of equation (2) in the simulated data, that an increase in adjustment frictions will yield 

a decline in the responsiveness of plant-level growth to lagged realizations of TFP.  Second, by 

using DHS growth rates, we can incorporate both the extensive margin (exit) and the intensive 

margin of plant-level growth.  Standard empirical specifications of exit in the literature (see, e.g., 
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Syverson (2011)) relate the decision to exit between 𝑡𝑡 and 𝑡𝑡 + 1 to the realization of TFP in 

period 𝑡𝑡 along with other controls (e.g., endogenous state variables such as size, which is part of 

our  𝑋𝑋𝑒𝑒𝑒𝑒   as described below).  As we have already noted, adjustment cost models of employment 

growth yield predictions that relate the growth in employment from period 𝑡𝑡 to 𝑡𝑡 + 1 to the 

realization of TFP in period 𝑡𝑡 along with period-𝑡𝑡 size.  In this sense, equation (2) produces a 

reduced-form yet direct estimate of policy functions generated by canonical models.23  In 

interpreting the timing of equation (2), it is useful to note that TFP in period 𝑡𝑡 is measured for 

calendar year 𝑡𝑡 while establishment growth is measured from March of 𝑡𝑡 to March of 𝑡𝑡 + 1. 

Thus, the empirical timing of the data is closer to the timing in the theoretical specifications in 

Appendix D than might first appear.24 

 Our question is whether the response to idiosyncratic productivity shocks has changed 

over time. The inclusion of the 𝑙𝑙𝑇𝑇𝑇𝑇𝑙𝑙𝑑𝑑𝑒𝑒 variable allows us to estimate a time-varying relationship 

between productivity and growth.  In unreported results we have considered alternative ways to 

capture a changing trend (e.g., interacting a linear trend with decade dummies), and results are 

robust to considering such alternatives.  In the exercises described following our discussion of 

the regression analysis, we exploit this time-varying productivity responsiveness estimation to 

understand the changing contribution of job reallocation to aggregate productivity growth. 

We estimate specification (2) for 1981-2010 with the following controls as captured by 

𝑋𝑋𝑒𝑒𝑒𝑒: the young firm dummy, establishment size, firm size, state effects and a state-level business 

cycle indicator (the change in state-level unemployment rate).25  We also interact the state-level 

cyclical indicator with plant-level TFP following FGH.  The cyclical variables are all interacted 

with the young and mature dummies.  Since we are interested in the changing response and the 

Great Recession is at the end of our sample, we do not want our estimates of the changing trend 

responses  (the main coefficients of interest) to be driven by the changes in the response to TFP 

over the cycle.   

                                                           
23 There is also a measurement/econometric justification for (2) given the timing of the data.  TFP in period 𝑡𝑡 is 
measured for calendar year 𝑡𝑡 while establishment growth is measured from March of 𝑡𝑡 to March of 𝑡𝑡 + 1.  Similar 
remarks apply to our labor productivity analysis below. 
24 In Appendix D, we show declining responsiveness of firm-growth to current or lagged realizations in productivity 
from an increase in adjustment frictions. 
25 For firm size effects, we use firm size classes in period t.  For establishment size effects, we have considered both 
establishment size classes and log employment at the establishment level in period t.  We obtain very similar results 
for both cases, and in the paper we use log employment at the establishment level.  
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The first column of Table 1 shows the estimates for the plants in High-Tech 

Manufacturing while the second column shows the estimates for the plants in Non Tech 

Manufacturing.  We only report the main effects for TFP by firm age group and the interactions 

with the trend terms.  All of the effects of interest for the High Tech sector in column 1 of Table 

1 are statistically significant at the five percent level.  For plants in Non Tech Manufacturing, 

four of the six coefficients in column 2 of Table 1 are statistically significant at the 10 percent 

level or better.  Columns 3 and 4 of Table 1 report results for the changing responsiveness of exit 

that underlies part of the patterns of the first two columns.   

The estimates for parameters 𝛽𝛽𝑦𝑦 and 𝛽𝛽𝑚𝑚 are given by the “TFP*Young” and 

“TFP*Mature” rows of Table 1. These positive coefficients show that, consistent with previous 

literature, growth and productivity are positively related. On average, establishments that are 

more productive than others in their industry are more likely to grow, while those that are less 

productive are more likely to contract or exit.  This relationship is stronger among establishments 

of young than mature firms, consistent with stronger selection dynamics at work among recently 

entered businesses.  The positive relationship between productivity and growth at the 

establishment level is consistent with a positive contribution of reallocation to aggregate 

productivity growth. 

The estimates for parameters 𝛿𝛿1𝑦𝑦 and 𝛿𝛿1𝑚𝑚 are given by the “TFP*Young*Trend” and 

“TFP*Mature*Trend” rows of Table 1, respectively.  These are our key coefficients of interest as 

they show how the marginal responsiveness of establishments to their own idiosyncratic 

productivity has changed with time.  Notably, in the High Tech Manufacturing sector these 

coefficients are positive and significant for plants of both young and mature firms, suggesting 

that productivity responsiveness strengthened in the early years of the sample (which begins in 

1980), while the coefficients are close to zero in the Non Tech Manufacturing sector.  Both 

inside and outside of High Tech, however, the coefficients on the quadratic term are negative, 

suggesting interesting dynamics in productivity responsiveness that we now describe graphically. 

Figure 6 shows the pattern of the marginal effect of TFP on plant-level growth for young 

and mature plants by decade.  To compute these statistics, we set the cyclical indicator (the state 

level change in unemployment) to zero so the effects reflect controlling for the cycle but are 

evaluated at a neutral cyclical state.  The top and bottom panels of Figure 6 show the patterns for 

High Tech Manufacturing and Non Tech Manufacturing plants, respectively.  As mentioned 
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above, the figure makes apparent that plants of young firms are more responsive to productivity 

than are plants of mature firms, particularly in High-Tech.  Taken together with earlier findings, 

the high pace of reallocation of young plants is not driven by a high variance of TFP but rather 

by a high responsiveness to TFP differences.  This is consistent with, for example, a learning 

model in which young plants are especially responsive to TFP as they learn where to find 

themselves in the productivity distribution.   

Our main focus is the variation in the responsiveness over time.  First, consider High 

Tech Manufacturing, shown on Figure 6a.  The difference in responsiveness between plants in 

young and mature firms implies that overall responsiveness will change given changes in the age 

composition.  For example, the increase in the share of activity accounted for by young 

businesses in High-Tech during the 1990s implies an increase in overall responsiveness, while 

the decrease during the post-2000 period implies a decrease in overall responsiveness.  We also 

find interesting patterns within age groups.  For plants in young firms, responsiveness increases 

from the 1980s to the 1990s and then declines in the post-2000 period.  For plants in mature 

firms, responsiveness decreases throughout the time sample but accelerates during the post-2000 

period.   

Continuing our study of Figure 6a, note that the magnitudes of the coefficients readily 

lend themselves to quantitatively meaningful interpretations since productivity is deviated from 

its industry-year mean (and hence has mean zero).  Recall that Figure 5a shows the standard 

deviation of within-industry productivity for High-Tech Manufacturing establishments; 

multiplying the relevant standard deviation by the relevant coefficient on Figure 5a suggests that 

a young-firm plant with productivity that was one standard deviation above its industry-year 

mean had an employment growth rate that was about 12 percentage points higher than the 

industry average in the 1980s, and it was about 17 percentage points higher in the 1990s but only 

about 10 percentage points higher in the 2000s.  Among mature firms, the growth differential 

was about 5 percentage points in the 1980s, 6 percentage points in the 1990s, and 3 percentage 

points in the 2000s.  For plants of both young and mature firms, if productivity dispersion had 

remained constant throughout the period then the decline in relative growth from the 1990s to the 

2000s would have been even larger.26 

                                                           
26 More precisely, to calculate the growth advantage of the plant that is a standard deviation above the mean versus 
the average plant in an industry, we simply multiply the standard deviation by the responsiveness coefficient.  Rising 
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Figure 6b shows the analogous patterns for Non Tech Manufacturing.  Here again we 

find that plants in young firms are more responsive to TFP than plants in mature firms.  For Non 

Tech Manufacturing there has been a decline in the share of young business activity throughout 

the period implying a decline in overall responsiveness due to composition effects.  Within age 

groups, we find a decline in responsiveness throughout the period with an acceleration of the 

decline in the post-2000 period.  As above, we can construct rough estimates of the changing 

growth gap between high- and average-productivity plants (within industries) using standard 

deviation estimates from Figure 5b.  Among young firms, the growth rate gap between plants 

with productivity one standard deviation above the mean and plants at the mean was roughly 10 

percentage points in the 1980s, 9 percentage points in the 1990s, and only 6 percentage points in 

the 2000s.  Among mature firms, the growth advantage was about 5 percentage points 

throughout the time period, though the advantage would have fallen had productivity dispersion 

remained flat. 

 In Figure C3 of Appendix C, we report analogous results based on the Wooldridge 

(2009) revenue productivity residual (RPR) estimation method.  Results are quite similar both 

qualitatively and quantiatively.27  Thus, using a measure of revenue productivity that more 

plausibly only reflects idiosyncratic productivity and demand shocks, we find evidence of 

changing responsiveness rather than changing shocks driving the decline in dynamism in the post 

2000 period.   

Putting the pieces together, the patterns imply an overall increase and then decline in 

responsiveness of growth to TFP for plants in High Tech Manufacturing.  This is driven by a 

number of factors: (i) the higher responsiveness of plants in young firms and the shifting age 

                                                           
productivity dispersion means that the gap in productivity separating the average plant and the plant that is one 
standard deviation above average grows over time; for example, Figure 6a shows that a young-firm plant with 
productivity one standard deviation above the industry-year mean was about 35 log points more productive than 
average at the beginning of the time series and almost 50 log points more productive than average by 2010.  The net 
growth differential figures calculated in the text reflect offsetting effects from rising dispersion (and hence rising 
productivity advantage) and declining marginal responsiveness, with the declining responsiveness factor being so 
large that it typically outweighs the rising dispersion factor. 
27 Figure C3 reports decade averages of coefficients from the regression in (3) but using RPR in place of TFP.  We 
again observe a pattern of responsiveness for young-firm plants in High-Tech Manufacturing that rises from the 
1980s to the 1990s, then falls in the 2000s.  The decline from the 1990s to the 2000s among young High-Tech 
businesses is not as notable in the RPR-based regressions as it is in the TFPR-based regressions, but it is still 
significant as we show below in aggregate productivity counterfactuals.  High-Tech Manufacturing plants of mature 
firms see broadly steady responsiveness from the 1980s to the 1990s followed by a sharp decline in the 2000s.  The 
bottom panel of Figure C3 likewise shows that the RPR responsiveness patterns among Non Tech Manufacturing 
plants are quite similar to those based on TFPR and reported on in Figure 5. 
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composition; (ii) the increase and then decrease in the responsiveness of plants in young firms; 

and (iii) the decline in responsiveness for plants of both young and mature firms in the post-2000 

period.   

There may be interactions between the effects we have detected.  The rising dispersion of 

TFP (and its innovations) in the post-2000 period could be contributing to declining 

responsiveness through expansion of inaction bands, as noted in our theoretical framework 

discussion above.  But this cannot account for all of the declining responsiveness since rising 

dispersion of TFP typically should yield an increase in the pace of reallocation and we find the 

opposite in the post-2000 period.  In addition, the 1990s exhibited a mild increase in productivity 

dispersion accompanied by an increase in responsiveness for plants in young firms (and rising 

reallocation).   

   Another potential source of interaction is the role of selection in influencing the 

observed dispersion in TFP.  Columns 3 and 4 of Table 1 report results from regressions in 

which a binary exit indicator serves as the dependent variable (making this a linear probability 

model). We find that part of our declining responsiveness in the post-2000 period is due to a 

declining responsiveness of exit to productivity shocks.  Figure A2 provides the graphical 

representation of the changing responsiveness of exit.  For High Tech Manufacturing, we find 

exit for young plants became more responsive during the 1990s and then responsiveness 

declined.  For Non Tech Manufacturing, exit for young plants became less responsive throughout 

the period.  For mature plants (both tech and non tech), exit responsiveness does not change 

much from the 1980s to the 1990s but then declines in the post-2000 period.   

The findings on exit are interesting in their own right as they imply that in the post-2000 

period low-productivity plants are more likely to survive, which will be a drag on aggregate 

productivity.  The reduced covariance between survival and productivity can also contribute to 

rising dispersion since low-productivity plants are more likely to survive.  But again the patterns 

over time suggest this cannot be a dominant part of the story for changing dispersion.  During the 

1990s, we find increased responsiveness of exit but mild increases in dispersion in productivity.  

This also holds for the alternative RPR measure of productivity (see appendix Figure C.1). 

Taken together, these results have important implications for the evolution of firm 

dynamics in recent decades.  We find significant evidence that the way in which individual 

businesses respond to their idiosyncratic realizations of productivity has changed over time.  The 
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positive relationship between realized productivity and subsequent employment growth remains 

robust, but it has weakened over time (particularly since 2000).  From the standpoint of the firm 

dynamics models described above, our results can be viewed as evidence that policy functions 

have changed over time, particularly for young businesses but also for older ones.28  In the post-

2000 period, these changes are consistent with an increase in adjustment costs or other frictions 

that reduce marginal responsiveness to productivity in these models.  The changes are most 

striking among High-Tech businesses, where we observe a pattern of rising and falling 

productivity responsiveness that coincides with the ICT-driven acceleration and deceleration of 

aggregate productivity growth documented by Fernald (2014) and others. 

We emphasize that it is especially in the post-2000 period that there is evidence of 

increasing frictions.  During the 1990s in High Tech, responsiveness of plants of young firms 

increased.  This is not consistent with rising frictions, but it does not necessarily follow that this 

pattern is driven by a decrease in frictions over this period since this is a period with rising TFP 

dispersion especially for plants of young firms (see Figure 5). 

 

C. Implications for aggregate (industry-level) productivity 

How important are the changes in responsiveness for aggregate fluctuations in 

productivity?  For this purpose, we exploit counterfactual differences in the weighted average of 

plant-level productivity based on the estimated models of changing responsiveness.  Recall that 

in section IV.A (and more formally in Appendix D) we showed that the Olley-Pakes covariance 

indices computed in our numerical analysis of a calibrated model decline with a rise in 

adjustment costs.  Motivated by these findings, we begin with the index of industry-level 

productivity underlying the Olley-Pakes decomposition:   

 

𝑙𝑙𝑒𝑒 = ∑ 𝜃𝜃𝑒𝑒𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒   (3) 

                                                           
28 These results contrast with Karahan, Pugsley and Sahin (2016), who argue that the dynamics of incumbent firms 
(in a Hopenhayn framework) have not changed over this same time period.  These authors point to aggregated 
average growth rates for various incumbent age classes as evidence for stable incumbent firm dynamics.  We differ 
from their approach by directly estimating incumbent firm policy functions at the establishment level.  Viewed 
through their framework, our results suggest that factors in addition to changes in the growth of the labor force are 
likely relevant for understanding the decline in startup rates, though the labor force demographic evidence is an 
important component of the final explanation. 
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where 𝜃𝜃𝑒𝑒𝑒𝑒 is the weight for establishment 𝑇𝑇 in year 𝑡𝑡 and 𝑙𝑙𝑒𝑒𝑒𝑒 is establishment-level (log) 

productivity.29  The Olley-Pakes decomposition of this index is given by 𝑙𝑙𝑒𝑒 = 𝑙𝑙�𝑒𝑒 + 𝑐𝑐𝑌𝑌𝑐𝑐(𝜃𝜃𝑒𝑒𝑒𝑒,𝑙𝑙𝑒𝑒𝑒𝑒) 

where 𝑙𝑙�𝑒𝑒 is the unweighted average productivity and 𝑐𝑐𝑌𝑌𝑐𝑐(𝜃𝜃𝑒𝑒𝑒𝑒,𝑙𝑙𝑒𝑒𝑒𝑒) is the Olley-Pakes covariance.  

Our objective in this section is to isolate empirically the impact of the change in responsiveness 

on the patterns of the second term of this index.  We do this by using the estimated model of 

responsiveness using a diff-in-diff counterfactual.  Specifically, we use the estimated changing 

responsiveness model to compute:   

 

Δ𝑒𝑒𝑒𝑒+1  = �(𝜃𝜃𝑒𝑒,𝑒𝑒+1
𝑇𝑇 − 𝜃𝜃𝑒𝑒,𝑒𝑒+1

𝑁𝑁𝑇𝑇 )𝑙𝑙𝑒𝑒𝑒𝑒
𝑒𝑒

 (4) 

where 𝜃𝜃𝑒𝑒𝑒𝑒+1𝑇𝑇  is the predicted employment share for establishment 𝑇𝑇 in period 𝑡𝑡 + 1 based upon 

the estimated model with the parameters reflecting the changing pattern of responsiveness 

(where the 𝑙𝑙 superscript refers to “trend”), and 𝜃𝜃𝑒𝑒𝑒𝑒+1𝑁𝑁𝑇𝑇  is the predicted employment share for 

establishment  𝑇𝑇 in period 𝑡𝑡 + 1 based upon the estimated model with the parameters reflecting 

the pattern of responsiveness at the beginning of the sample period (that is, we set the trend terms 

equal to zero, or 𝑁𝑁𝑙𝑙 means “no trend”).30  In computing the predicted employment share in each 

period, we use the actual realizations of productivity and initial employment for each 

establishment each period and then use the estimated model parameters to predict employment 

growth into the following period.  This counterfactual diff-in-diff isolates the difference in the 

change in the productivity index accounted for by changes in responsiveness; it is the implied 

difference in the productivity index in the current period implied by the difference in 

responsiveness.  Note that in making the calculation in (4), we hold constant plant-level 

productivity and hence the unweighted productivity distribution is unchanged.  Since this implies 

that the unweighted mean productivity is the same in the two counterfactuals of the diff-in-diff, 

this diff-in-diff isolates the impact of the changing responsiveness on the OP covariance term31  

                                                           
29 FGH show that the index of industry-level productivity in (3) yields fluctuations in industry-level productivity that 
mimic the patterns of productivity from aggregated statistics.  For example, FGH construct measures of industry-
level productivity growth using traditional growth accounting techniques with aggregated plant-level data yielding 
industry output and input measures.  The correlation between such traditional measures and the industry-level 
measures that emerge from (3) from pooled industry by year data is 0.70 when employment weights are used in (3) 
and is 0.80 when output weights are used in (3).   
30  We set the cyclical effects to zero by setting the state-level change in unemployment to zero.   
31 This approach is related to, but distinct from, the accounting productivity decompositions in the literature (see, 
e.g., Foster, Haltiwanger and Krizan (2001) for a review).  Our present approach differs since it focuses only on 
model-driven reallocation that is identified to be the reallocation arising specifically from variation in productivity 
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 A key advantage of this diff-in-diff counterfactual analysis is that it will only capture the 

effect of time-varying responsiveness within firm age groups.  Our empirical results show that 

young firms are more responsive than mature firms on average, consistent with Jovanovic (1982) 

lifecycle dynamics of firms.  Those differences will be present in both the counterfactual with 

and the counterfactual without the trend, as will the changing age structure of firms overall.  

Thus, our diff-in-diff counterfactual will yield a non-zero productivity contribution if and only if 

there are changes in responsiveness within firm age groups.   

The results of this counterfactual exercise are depicted on Figure 7; the figure can be 

interpreted as follows.  Each annual observation reports ∆𝑒𝑒𝑒𝑒+1 from (4).  For example, the 

observation for 𝑡𝑡 + 1 = 1981 has ∆19801981= 0 because the trend variable begins then, and for 

High-Tech Manufacturing the year 2001 again gives ∆20002001= 0.  But the 2004 observation for 

High-Tech shows that if responsiveness from 2003 to 2004 had been at the 1981 pace instead of 

the actual pace (as estimated by our model) then the productivity index in 2004 would have been 

about half a log point higher (∆20032004= −0.005).    

For High Tech Manufacturing plants, the increasing responsiveness over the 1980s and 

1990s yields an implied counterfactual increase in the index that peaks at about half a log point 

per year in the 1990s.  The sharp decline in responsiveness during the post-2000 period implies a 

decline in the productivity index of as much as 2 log points per year by 2010.  Some caution 

needs to be used in interpreting the magnitude at the end points—and certainly extrapolating out 

of sample—since the pattern in Figure 7 is driven by fitting a quadratic trend.  But we regard our 

findings as implying that the drag on this index of industry level productivity due to the decline 

in responsiveness may be quite substantial.32   

It is interesting that the changing responsiveness starts to be a drag on productivity in 

                                                           
across businesses.  In addition, this approach focuses only on the reallocation components since the exercise holds 
constant the productivity distribution at the micro level between t and t+1.  Still, in any given period this approach is 
close to quantifying the change in the Olley-Pakes covariance for a given distribution of productivity across plants.  
Decker et al. (2017) use the Dynamic Olley-Pakes decomposition developed by Melitz and Polanec (2015) to show 
that these accounting decompositions also show a decline in the contribution of the change in the covariance terms 
(often interpreted as indicators of allocative efficiency) in the post-2000 period. Alon et al. (2017) likewise use the 
Dynamic Olley-Pakes decomposition but focus on the cumulative contribution of changes in entry rates.  In 
appendix D, we show that in the simulated data this diff-in-diff Counterfactual declines with a rise in adjustment 
costs. 
32 Another source of caution is that since we are using a TFPR measure the rising dispersion of TFPR may reflect 
endogenous factors in a manner similar to the labor productivity measures we use in the next section.  Under this 
view, the counterfactual may partially reflect transitory or one-time gains.  We note however that we obtain similar 
implications using the RPR measure in appendix C.  
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2003, about the time that Fernald (2014) finds a trend break in productivity growth in the IT 

sector.  For Non Tech Manufacturing plants, the changing responsiveness has relatively little 

impact until the post-2000 period, consistent with the estimates in Table 1 that are near zero on 

the linear trend terms but negative on the quadratic terms.  By 2005 the acceleration of the 

decline in responsiveness in this part of manufacturing yields as much as a half a log point drag 

on productivity per year. 

In Appendix C, we report results of this counterfactual exercise that rely on the 

Wooldridge (2009) revenue productivity residual (RPR) method.  The results for High-Tech 

Manufacturing are broadly consistent with the TFPR-based results, as shown on Figure C4, with 

rising responsiveness implying an increasing in the index of productivity in the 1990s followed 

by a decline in the 2000s.  Interestingly, among Non Tech Manufacturing plants we find that the 

RPR method results in an earlier decline in the index from declining responsiveness than does 

the TFPR approach.  

 Given that we use the actual distribution in TFP in each year for these counterfactuals, 

the changing patterns of dispersion we have shown are also potentially contributing factors.  

However, since we are examining a “diff-in-diff” comparison, the changing pattern of dispersion 

influences both the counterfactual with and without the changing trend response.  We also note 

that some caution should be used in interpreting our counterfactual results as yielding patterns 

that mimic actual aggregate (industry-level) productivity growth since there may be changes in 

the within-plant productivity components of aggregate (industry-level) growth that we have not 

estimated in this context.  Fernald (2014), Byrne et al. (2016) and Gordon (2016) highlight many 

factors that are likely contributing to within-plant (and within-firm) declines in productivity 

growth in the post-2000 period.  In addition to the factors they emphasize, there may be a role for 

declining entrepreneurship in declining within-firm productivity growth.  If young firms play a 

critical role in the innovative process, then a decline in the share of young firm activity can also 

contribute to a declining pace of within-firm productivity growth.  We include some further 

discussion and analysis of within-firm productivity growth patterns below. 

 

 

V. Beyond Manufacturing 
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Thus far, our analysis has focused on the Manufacturing sector.  As mentioned above, 

this is a sector in which we have high-quality data on TFP, which allows us to map the 

theoretical framework discussed above to the data on employment growth.  While we find the 

evidence from Manufacturing—and High-Tech Manufacturing in particular—to be compelling, 

an important question is whether the patterns of productivity dispersion and responsiveness we 

have documented are present in other areas of the economy.  Much of the innovation that 

characterizes the U.S. economy, particularly after 2000, has been in the Information sector (e.g., 

software publishing, internet portals, and so on).  Moreover, the patterns of changes in business 

formation and in the dispersion and skewness of firm growth rates are even more dramatic in 

non-manufacturing components of the High-Tech sector (see Decker et al. (2016)). Relatively 

little is known about the connection between reallocation dynamics and productivity growth 

outside of Manufacturing.33   

While the question of productivity responsiveness and aggregate productivity growth is 

difficult to answer in the absence of precise concepts and data for TFP in the non-manufacturing 

sectors, we can provide evidence using output per worker as our productivity concept.  For this 

purpose, we employ the RE-LBD dataset (described in Section III above), which permits the 

measurement of revenue per worker at the firm level.  A key strength of the RE-LBD is its 

comprehensive coverage of the U.S. private, non-farm sector from the mid-1990s to 2013. We 

emphasize that our analysis in this section differs from the previous section not only in its labor-

based definition of productivity but also in the use of firms as the unit of analysis (rather than 

establishments). 

When studying TFP and Manufacturing, we adopted a “shock responsiveness” 

interpretation of the relationship between business-level growth and productivity; here we adopt 

a looser interpretation with a ready acknowledgement that gross output per worker (the measure 

of labor productivity we use in this section) is endogenous reflecting not only TFP but also 

changes in adjustment frictions.  Recall from section IV that we noted that an increase in 

adjustment frictions implies an increase in the within-industry dispersion of labor productivity 

across firms.  The relevant mechanism is that an increase in adjustment frictions slows down the 

                                                           
33 Significant exceptions include the numerous studies of Retail Trade cited above that highlight the shift in the 
business model toward large, national chains that has been productivity enhancing. See, for example, Foster, 
Haltiwanger and Krizan (2006), Jarmin, Klimek and Miranda (2009) and Foster et al. (2015). 
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tendency for marginal revenue products to be equalized which, in turn, will yield an increase in 

the dispersion of measured labor productivity.34  Thus, observed increases in the within-industry 

dispersion of labor productivity may reflect increases in the dispersion of shocks, increases in 

adjustment frictions or both.35   

Even using labor productivity measures it is still the case that an increase in adjustment 

frictions will reduce the covariance between firm employment growth and labor productivity for 

the empirically plausible range of adjustment costs.  As we show in Appendix D, an increase in 

adjustment frictions yields a decrease in the responsiveness of firm-level employment growth 

from 𝑡𝑡 to 𝑡𝑡 + 1 to the realization of revenue labor productivity in 𝑡𝑡 (holding constant the level of 

employment in 𝑡𝑡).  We note for this exercise that the timing of the measures is closely related to 

that for the prior analysis:  specifically, we are measuring employment growth from March 𝑡𝑡 to 

March 𝑡𝑡 − 1, and the productivity measure is for the calendar year 𝑡𝑡 while we control for the 

(log) level of employment in March 𝑡𝑡.     

 

A. Productivity and growth at the firm level 

Figure 8a (the top panel of Figure 8) reports the interdecile range of within-industry labor 

productivity differences across firms in the High-Tech sector.  Note that our definition of High-

Tech is broader in this section than it was in our discussion of Manufacturing results; in our labor 

productivity exercises, High-Tech includes not only High-Tech Manufacturing but also certain 

industry groups from Services and Information.  The dispersion of labor productivity in High 

Tech increases substantially over our sample period within firm age groups.  Notably, however, 

                                                           
34 It is this type of insight that has led researchers such as Hsieh and Klenow (2009) to interpret increases in the 
dispersion of the average product of labor as representing an increase in the distortions or wedges that are impeding 
the equalization of marginal revenue products.  The strict interpretation by Hsieh and Klenow (2009) depends on 
strong functional form assumptions (see Haltiwanger (2016) and Haltiwanger, Kulick and Syverson (2016)), but this 
perspective is potentially relevant in our setting.  We take a more agnostic position here acknowledging that changes 
in dispersion of labor productivity may reflect changes in shocks, changes in frictions or both.  If we used the Hsieh 
and Klenow (2009) assumptions of Cobb-Douglas production with constant returns to scale and iso-elastic demand 
with common markups, then we would interpret the rising dispersion in labor productivity within sectors as 
reflecting increasing wedges or distortions. We cannot rule out this interpretation, and it is consistent with our 
findings of smaller responsiveness of growth to productivity differences within sectors.  The simple model we 
consider in Appendix D elaborates on these issues. 
35 There may be other factors at work as well.  For example, changes in the dispersion of capital intensity across 
firms in the same industry will yield changes in the dispersion of measured labor productivity.  This could arise if 
there is some change in the production structure of firms and may be relevant, for example, in the presence of biased 
technological change where not all firms adopt new technologies.  Alternatively, changes in capital intensities may 
reflect changes in the adjustment frictions for capital.  Thus, changes in responsiveness of employment growth 
detected by our analysis may in fact reflect changes in the responsiveness of capital accumulation. 
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the dispersion of labor productivity is much higher among young firms than mature firms, while 

TFP dispersion is roughly equal for young and mature (see Figure 5).  This pattern is consistent 

with the discussion in section IV that young firms face greater uncertainty, learning or other 

frictions.  This pattern also highlights the importance of controlling for firm age in empirical 

exercises.  The declining share of young firms in High Tech over this period acts as a dampening 

factor on overall rising within-industry dispersion in High Tech.  Figure 8b shows that labor 

productivity dispersion is also rising among firms outside the High Tech sector, again 

importantly controlling for firm age, and young firms have much higher dispersion than more 

mature firms.     

Our finding of rising within-industry productivity dispersion is broadly consistent with 

other work documenting increased differences between firms.  For example, Andrews, Criscuolo 

and Gal (2015) find a widening productivity gap between “frontier firms” and others, concluding 

that the pace of technological diffusion has slowed.  While the authors do not provide direct 

evidence for the hypothesis that slowed technological diffusion is the cause of increasing 

productivity dispersion, the diffusion hypothesis could play a role; however, our estimates of 

TFP persistence (in Appendix B) suggest that the group of “frontier firms” is sufficiently fluid to 

somewhat limit the diffusion story’s explanatory power.  Weakening responsiveness of growth 

and survival to productivity that we document in the next section is an alternative, but not 

mutually exclusive, explanation.  Both explanations allow for a decoupling of technological 

progress and aggregate productivity growth.36  However, as we have discussed above, declining 

responsiveness is potentially consistent with increased adjustment frictions or other forces that 

slow down the tendency for marginal revenue products to be equalized.    

The evidence on labor productivity dispersion suggests that changes in productivity 

shock patterns are not the cause of declining aggregate job reallocation.  If the only factor at 

                                                           
36 Andrews, Criscuolo and Gal (2015) (ACG) provide evidence of rising productivity dispersion within broad 
sectors using ORBIS data on both labor productivity (similar to our approach here) and multifactor productivity 
(similar to our analysis in Section IV).  While ORBIS coverage of the U.S. is weaker than its coverage of other 
countries, we view our evidence as strongly supportive of the notion that gaps between the most productive firms 
and other firms have increased since the late 1990s.  In that sense our work is complementary to the work of ACG, 
though we caution that their measures of productivity dispersion are sufficiently conceptually different from ours as 
to make direct quantitative comparisons difficult.  ACG measure the difference between “frontier firms” and 
average firms, where the frontier firms are usually defined as the top 50 or 100 firms within a broad (2-digit) sector, 
and in the case of the U.S. their unit of analysis is actually the establishment (Pinto Ribeiro, Menghinello and De 
Backer (2010)).  Our measure of dispersion is defined within detailed (6-digit NAICS) industries and is based upon 
percentiles rather than the selection of an absolute number of businesses.   
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work were changing shock patterns, we should have observed a decline in labor productivity 

dispersion.  Instead we observe the opposite.  To explore these issues further, we now study the 

relationship between labor productivity and growth using an approach similar to our analysis in 

Section IV.  We measure DHS employment growth, but in this case we use firm-level growth 

rather than establishment-level growth.  We then estimate the following equation:  

 

𝑔𝑔𝑓𝑓,𝑒𝑒+1
𝐸𝐸 = 𝜆𝜆𝑒𝑒+1 + 𝛽𝛽𝑦𝑦 ∗ 𝐿𝐿𝑙𝑙𝑓𝑓𝑒𝑒 ∗ 𝑌𝑌𝑌𝑌𝑌𝑌𝑙𝑙𝑔𝑔𝑓𝑓𝑒𝑒 + 𝛿𝛿1𝑦𝑦 ∗ 𝐿𝐿𝑙𝑙𝑓𝑓𝑒𝑒 ∗ 𝑌𝑌𝑌𝑌𝑌𝑌𝑙𝑙𝑔𝑔𝑓𝑓𝑒𝑒 ∗ 𝑙𝑙𝑇𝑇𝑇𝑇𝑙𝑙𝑑𝑑𝑒𝑒     

+𝛿𝛿2𝑦𝑦 ∗ 𝐿𝐿𝑙𝑙𝑓𝑓𝑒𝑒 ∗ 𝑌𝑌𝑌𝑌𝑌𝑌𝑙𝑙𝑔𝑔𝑓𝑓𝑒𝑒 ∗ 𝑙𝑙𝑇𝑇𝑇𝑇𝑙𝑙𝑑𝑑𝑒𝑒2                                                 

+𝛽𝛽𝑚𝑚 ∗ 𝐿𝐿𝑙𝑙𝑓𝑓𝑒𝑒 ∗ 𝑀𝑀𝑀𝑀𝑡𝑡𝑌𝑌𝑇𝑇𝑇𝑇𝑒𝑒 + 𝛿𝛿1𝑚𝑚 ∗ 𝐿𝐿𝑙𝑙𝑓𝑓𝑒𝑒 ∗ 𝑀𝑀𝑀𝑀𝑡𝑡𝑌𝑌𝑇𝑇𝑇𝑇𝑓𝑓𝑒𝑒 ∗ 𝑙𝑙𝑇𝑇𝑇𝑇𝑙𝑙𝑑𝑑𝑒𝑒  

+𝛿𝛿2𝑚𝑚 ∗ 𝐿𝐿𝑙𝑙𝑓𝑓𝑒𝑒 ∗ 𝑀𝑀𝑀𝑀𝑡𝑡𝑌𝑌𝑇𝑇𝑇𝑇𝑓𝑓𝑒𝑒 ∗ 𝑙𝑙𝑇𝑇𝑇𝑇𝑙𝑙𝑑𝑑𝑒𝑒2 + 𝑋𝑋𝑓𝑓𝑒𝑒′ Θ+ εf,t+1                 

(5) 

 

Equation (5) is almost identical to (2) except that growth, productivity, and size are all measured 

at the firm level (versus the establishment level as in (2)).  The variable 𝐿𝐿𝑙𝑙𝑓𝑓𝑒𝑒 is our measure of 

firm-level labor productivity, which is (log) deviated from detailed industry-year mean.  We 

estimate this equation over a shorter time period (1997-2013) reflecting the limitations of our 

revenue dataset, but we include the same controls in 𝑋𝑋𝑓𝑓𝑒𝑒 (see Section IV).  As we discuss above, 

this specification stretches the “shocks vs. responsiveness” interpretation we adopted in our TFP-

based regressions, but it is still useful for studying the relationship between growth and 

productivity and can be similarly used in counterfactual exercises.  We estimate (5) using 

propensity score weights given that we have only about 80 percent of the firms in the LBD have 

revenue productivity measures. 

Table 2 reports results of the regression from (5) for all firms and for the High Tech and 

Non Tech sectors separately.  The first three columns report regressions using the DHS growth 

rate denominator inclusive of exit; the last three columns report results using only a binary exit 

outcome as the dependent variable.  Figure 9 graphically shows the time series pattern of the 

coefficients for overall growth.   

As shown on Figure 9a (the top panel of Figure 9), we find a significant positive 

relationship between productivity in year 𝑡𝑡 and employment growth from 𝑡𝑡 to 𝑡𝑡 + 1 among both 

young and mature firms in both High-Tech and Non Tech industries, consistent with our TFP 

results and existing literature (e.g., Syverson (2011)).  The productivity/growth relationship is 

stronger for young than for mature firms.  All categories of firms see a reduction in the strength 
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of the productivity/growth relationship.  The reduction in strength is greater for young High Tech 

firms than young Non Tech firms.   

The probability of exit is decreasing strongly in productivity, with young firms being 

particularly sensitive to productivity selection.  Figure 9b shows that the negative relationship 

between productivity and exit is moderating among all young firms, with a particularly strong 

effect among young High Tech firms.  Broadly speaking, the evidence suggests that the survival 

and growth differential between high- and low-productivity firms in the High Tech sector is 

declining over time.     

In summary, we find that the relationship between productivity and growth at the firm 

level, while robust, is weakening over time in most sectors of the economy and among both 

young and mature firms.  The same is true for exit with a general weakening of the productivity 

selection mechanism across sectors and age classes.  The decline in this relationship is 

particularly pronounced in the High-Tech sector.  The results on both labor productivity 

dispersion and the relationship between labor productivity and growth broadly confirm our TFP-

based results from Manufacturing and suggest that the patterns documented in the latter sector 

are likely to hold in other areas of the economy.  As we argued above, the framework of firm 

dynamics models, applied to our evidence, suggests that slowing reallocation indicates the 

presence of increased frictions rather than changes in the distribution of idiosyncratic 

productivity shocks.  Our evidence shows rising dispersion of idiosyncratic shocks in 

manufacturing and rising dispersion of labor productivity more broadly.  The former, holding 

other factors constant, should have yielded an increase in the pace of reallocation.  The latter is 

inherently endogenous but is consistent with rising frictions and distortions.   

 

B. Reallocation and aggregate labor productivity 

Following the approach from Section IV, we can quantify the labor productivity 

regression results by relating them to aggregate productivity growth using shift-share analysis.  

With the only differences being the use of labor productivity (versus TFP) and firm-level data 

(versus establishment), we again construct a base-year index using the analogue to equation (3) 
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and a model-based diff-in-diff counterfactual using equation (4).37  We report results for High 

Tech and Non Tech firms on Figure 10. 

While this exercise is mechanically identical to that performed with TFP in Section IV, 

we caution that the economic interpretation is more complicated.  As mentioned above, labor 

productivity dispersion is endogenous to productivity responsiveness even beyond the selection 

effects that influence the distribution of TFP.  While selection effects can make the dispersion of 

both TFP and labor productivity endogenous to responsiveness, in the case of labor productivity 

dispersion there are additional mechanisms of slowed responsiveness yielding a slowed pace of 

marginal revenue product equalization and related issues associated with capital deepening and 

other factors.  Labor productivity dispersion rose during the 1996-2013 period, and this increase 

is likely at least partially endogenous to the decline in responsiveness we document.  This 

complicates the shocks/responses intuition that guided our discussion of related exercises in 

Section IV.   

In particular, these considerations imply that the productivity counterfactuals in Figure 10 

partially reflect cumulative factors in addition to simple annual responsiveness mechanisms.  The 

lower productivity we estimate for each year partly reflect both current and cumulative past 

shocks to which firms still have yet to fully adjust.  The diff-in-diff calculation each year is thus 

an estimate of the gains in productivity there would be if adjustment dynamics suddenly reverted 

to their more responsive 1997 rates using the current dispersion of productivity, which is in part 

driven by previous adjustment dynamics.  We note again that our diff-in-diff approach yields a 

contribution only through changing responsiveness within firm age groups. 

With the above details in mind, the effects we find are quite large.  By 2012, the 

weakening productivity/growth relationship accounts for about 6 log points in the productivity 

index.  In contrast to the TFP-based results from Manufacturing, our labor productivity-based 

calculations for the entire economy show a similar pattern for firms inside and outside High 

Tech.  In unreported results we find that this is driven by particularly strong declines in the 

sensitivity of exit to productivity among firms outside High Tech.  Moreover, Figure A4 in 

                                                           
37 The analogue to the productivity index in (3) yields industry-level indices that are very similar to a traditional 
index of gross output per worker at the industry level.  The correlation between the industry level indices from the 
analogue to (3) and traditional indices is 0.76.  At the economy-wide level, the correlation between the growth rate 
in traditional gross output per worker labor productivity measures and the employment-weighted micro based 
estimate is 0.81.  We also show in Appendix Figure A.4 that the industry-level indices using (3) yield patterns very 
similar to the traditional index of gross output per worker using BLS industry level indices. 
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Appendix A shows diff-in-diff results for only the Manufacturing sector, with results separated 

by High Tech and Non Tech Manufacturing as in our TFP-based exercises.  Within 

Manufacturing, we do indeed find stronger results for High-Tech than for other firms, which is 

qualitatively consistent with our TFP-based investigation. 

 

C. Changing Patterns of Within-Firm Productivity Growth 

One missing piece from our analysis thus far is that we have provided little evidence on 

patterns of within-firm productivity growth.  Our focus has been on the changing patterns of 

reallocation and the potential implications of these changes for productivity growth.  To help put 

those results into perspective, it is instructive to examine the patterns of within-firm productivity 

at the micro level alongside the changing patterns of the contribution of reallocation.  For this 

purpose, we use the firm labor productivity database and construct two related but distinct 

measures of within-industry productivity growth for each 6-digit NAICS industry.  The first 

measure is the simple unweighted mean of within-firm productivity growth for each industry.  

The second is the employment-weighted mean of within-firm productivity growth using the 

employment weights at time 𝑡𝑡 for the productivity growth between 𝑡𝑡 and 𝑡𝑡 + 1.  We compute 

these measures at the 6-digit industry level and then show averages across industries using time-

invariant employment weights for each industry.   

Figure 11 shows within-firm productivity growth for the average industry for industries 

in both High Tech and Non Tech using both the weighted and the unweighted approaches.  We 

show HP filtered series given our focus on low-frequency variation.  Several patterns are worth 

noting.  First, for High Tech, within-firm productivity growth declines using both the weighted 

and the unweighted measures.  Second, for Non Tech, within-firm productivity growth declines 

for the weighted measure but exhibits less systematic variation for the unweighted measure.  

Third, for both High Tech and Non Tech, the weighted measure is much larger than the 

unweighted measure.  Moreover, the unweighted measure is always negative for Non Tech and 

turns negative for High Tech early in the sample.  This latter finding might at first glance be 

surprising since it implies negative productivity growth for the average firm in Non Tech 

throughout and even for High Tech in the second half of the sample.  However, as discussed by 

Decker et al. (2017), when interpreting the unweighted mean within-firm productivity growth it 
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is important to emphasize that it overwhelmingly reflects the contribution of very small firms.  

More than 90 percent of firms have fewer than 20 employees.   

Decker et al. (2017) shed further light on this issue by noting that the difference between 

the weighted and the unweighted measure is given by: 

 

��𝜃𝜃𝑓𝑓𝑒𝑒 − 1/𝑁𝑁�∆𝑝𝑝𝑓𝑓𝑒𝑒
𝑓𝑓

 

where 𝜃𝜃𝑓𝑓𝑒𝑒 is the employment share of firm 𝑓𝑓 in period 𝑡𝑡, ∆𝑝𝑝𝑓𝑓𝑒𝑒 is the growth (log difference) in 

firm-level productivity from 𝑡𝑡 to 𝑡𝑡 + 1 and 𝑁𝑁 is the number of firms in the industry.  The 

implication is that a positive difference between the weighted and the unweighted mean reflects a 

positive relationship between within-firm productivity growth and initial shares.  Returning to 

Figure 11, weighted within-firm productivity growth is always positive for both High Tech and 

Non Tech—but it is declining.   

For the purposes of the current analysis, the main inference we draw is that there is no 

evidence of increasing within-firm productivity growth over the period during which we have 

observed a declining contribution of reallocation.38  Instead, during the period of a declining 

contribution of reallocation there is also declining within-firm productivity growth.  This is 

important since one possibility is that some structural change had occurred so that there was a 

substitution away from productivity-enhancing reallocation to greater within-firm productivity 

growth.  For example, it might have been that as the High Tech sector matured in the post-2000 

period, the productivity gains in High Tech came increasingly from within-firm innovations 

rather than through reallocation dynamics.  Figure 11 suggests this is not the case.   

 

VI. Investigating mechanisms in Manufacturing 

In this section we return to our analysis of the Manufacturing sector using TFP data from 

the ASM/CM/LBD linked data employed in Section IV.  While a thorough examination of the 

causes of the empirical patterns we describe above is beyond the scope of the present study, we 

can provide evidence on several common hypotheses with a particular focus on High Tech 

                                                           
38 Alon et al. (2017) also use the Dynamic Olley Pakes decomposition method described by Melitz and Polanec 
(2015) to study the productivity slowdown. The authors show that declining entry has had a significant cumulative 
negative effect on aggregate productivity growth, consistent with our emphasis on the contribution of changing firm 
dynamics. 
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Manufacturing businesses: capital substitution, globalization, and composition changes within 

High-Tech. 

A. The response of equipment investment 

The changing responsiveness of employment growth to productivity shocks, especially by 

plants of young firms, may be due to changing margins of adjustment.  One possible change in 

the margin of adjustment is that establishments that have high productivity may be expanding 

through capital accumulation rather than employment growth.  To investigate the possible role of 

capital-labor substitution, we examine the changing responsiveness patterns of equipment 

investment to productivity shocks.  The ASM/CM data we are using has equipment investment 

flows in each year, so it is straightforward to construct equipment investment rates as the real 

investment in equipment divided by beginning-of-period equipment capital.   

We estimate the analogue to equation (2), this time using as the dependent variable the 

equipment investment rate instead of the employment growth rate.39  Both investment and 

employment growth are endogenous margins of adjustment, so we can think about our 

specifications as reduced form specifications relating both of these margins of adjustments to 

productivity shocks, controlling for initial size in the period.  When estimating equation (2) for 

employment growth rates, we controlled for initial size by using lagged plant- and firm-level 

employment controls.  In this analysis of equipment investment, we additionally control for the 

beginning-of-period (log) capital stock.  Thus, our specification includes the key state variables:  

the realization of productivity and initial capital and employment.40 

                                                           
39 The timing is slightly different for the equipment investment as opposed to the employment growth specifications.  
In the employment growth specification, the dependent variable is employment growth between March of t to March 
of t+1 as a function of initial size in t and the realization of productivity in period t.  In the investment specification, 
the dependent variable is the investment rate throughout period t as a function of initial size (measured by both 
capital and labor) and the realization of productivity in period t.  There is a time to build assumption in capital 
accumulation with investment in period t contributing to capital to be used in period t+1 (available for use at the 
beginning of period t+1).  Given this time to build assumption, the difference in timing is not large – employment is 
from March t to March t+1 while the investment rate instead captures the capital accumulation from January of t to 
January t+1.  Moreover, our model exercises in Appendix D suggest that our responsiveness framework is not 
sensitive to specific timing concerns.  Note that Cooper and Haltiwanger (2006) used as a key moment to estimate 
and calibrate their adjustment cost model the correlation between the investment equipment rate in period t and the 
realization of the profitability in period t.  Our specification can be interpreted as identifying how this covariance 
between investment and profitability is changing over time.   
40 As a robustness check, we have re-estimated specification (2) with the employment growth rate as the dependent 
variable but adding lagged capital as a control.  This alternative specification makes the employment growth rate 
specification consistent with the investment equipment rate specification.  In unreported results, we find the 
coefficients reported in Table 1 are robust to including lagged capital as a control. 
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Table 3 reports the estimated coefficients plants in High Tech Manufacturing.  Consistent 

with theory, literature, and the employment-based results we describe above, equipment 

investment is positively related to plant productivity.  Moreover, plants of young firms are more 

responsive than plants of mature firms, as in our employment growth results.  However, it is 

apparent the responsiveness of equipment investment is changing over time, particularly for 

young-firm plants.   

Figure 12 shows the changing marginal responsiveness of equipment investment to 

productivity for plants of young and mature firms in recent decades.  Strikingly, the patterns in 

Figure 12 mimic the patterns of employment growth responsiveness shown in Figure 6.  Just as 

with employment growth, equipment investment responsiveness increases from the 1980s to the 

1990s but then declines sharply in the post-2000 period.  We can again quantify the magnitude of 

these changes in responsiveness by referencing productivity dispersion numbers from Figure 5a.  

In the 1990s, a young-firm plant with TFP one standard deviation above the industry-year mean 

had an equipment investment rate 8 percentage points higher than a plant with the industry-by-

year mean productivity; this difference is less than 4 percentage points in the post-2000 period.  

The growth differential among mature firms falls as well.   

The strong similarity between Figures 12 and 6 implies that, among High Tech 

Manufacturing businesses, the post-2000 declining responsiveness of employment growth in 

Figure 6 is not accounted for by rising responsiveness of equipment investment over this same 

period of time.  In unreported results, however, we find that among Non Tech Manufacturing 

businesses there is rising investment responsiveness from the 1980s to the 1990s, with 

responsiveness remaining elevated in the 2000s.  Given the employment-responsiveness 

evidence from Table 1 and Figure 6, it does appear that capital-labor substitution may play a role 

in changing employment growth dynamics outside of the High Tech sector. 

 

B. Globalization 

Globalization may be playing a role since increased exposure to foreign trade facilitates 

adjustment by scaling international operations.  That is, it may be that rather than growing 

domestically, productive firms are more likely to expand and produce in other countries, a 

dynamic that could eliminate or even reverse the standard positive correlation between growth 

and productivity.  There is substantial evidence already that the decline in US manufacturing 
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employment is closely linked to rising import penetration of production activity from low wage 

countries (see, e.g., Bernard, Jensen and Schott (2006), Schott (2008) and Pierce and Schott 

(2016)).  We build on that research to explore the impact of rising import penetration for 

changing responsiveness of U.S. establishments to productivity differentials.   

Bernard, Jensen and Schott (2006) and Schott (2006) develop measures of import 

penetration ratios from low wage countries.  Their measures vary by 4-digit SIC industry from 

1972-2005 and by 6-digit NAICS industry from 1989-2005.  We extend the latter using the 

public domain information from Census on imports by country and industry.41  We integrate 

these public domain data into our data infrastructure from 1981-2010.  Our ability to integrate 

this is facilitated by our having 4-digit SIC codes in the micro level data from 1981-1996 and 6-

digit NAICS codes from 1981-2010; hence, we need not rely on aggregate SIC/NAICS 

concordances.42  

Using these extended import data, we find that import penetration ratios from low-wage 

countries are very small in the 1980s, rise slightly in the 1990s and then rise dramatically in the 

post-2000 period (as shown on Figure A5 in Appendix A).  Of particular interest for current 

purposes is that the rise is especially pronounced for the 6-digit NAICS industries in High-Tech. 

We exploit the 6-digit NAICS variation in import penetration ratios to explore the 

possible role of this dimension of globalization in accounting for the patterns of changing 

responsiveness we have detected.  Table 4 presents results of a modified version of estimating 

specification (2).  The additional regressors added are the 6-digit NAICS import penetration ratio 

for each year and the interaction of this ratio with lagged TFP.  We permit the coefficients on 

this interaction effect to differ between plants belonging to young and mature firms.  We report 

the same coefficients as in Table 1 with the addition of these two interaction effects.  We note 

that the main effect of the import penetration (not reported) is negative and significant.  

Consistent with Bernard, Jensen and Schott (2006), we find that plants in industries with 

especially large increases in import penetration have lower net employment growth. 

                                                           
41 To construct low-wage import penetration data by year and industry, Bernard, Jensen and Schott first construct 
domestic absorption for each industry. Next, they construct total imports of goods produced by each industry that are 
sourced in a low-wage country, which are defined as countries whose GDP per capita is less than 5 percent of the 
U.S.  Import penetration is the ratio of low-wage imports to total domestic absorption, by industry and year.  We 
thank Peter Schott for providing the import data and guidance necessary for extending the dataset. 
42 We integrate the SIC based import penetration ratios from 1981-88 and the NAICS based ratios from 1989-2010 
into the micro data.  We use the internally consistent NAICS codes in the micro data from 1981-2010 to conduct our 
analysis.  The latter provides micro based concordances between NAICS and SIC for the 1981-88 period.   
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Our interest is in the role of globalization for changing responsiveness.  The last two rows 

of Table 4 show that the interaction effect for young plants of lagged TFP and the import 

penetration ratio is estimated to be negative and significant.  This implies that young-firm plants 

in industries with especially large increases in import penetration ratios have larger decreases in 

responsiveness.  In Figure 13, we quantify the impact of changing import penetration ratios using 

the estimated effects from Table 4.  The overall effects show, consistent with Figure 6, that the 

marginal effect of productivity on employment growth increased from the 1980s to 1990s for 

plants of young High-Tech firms and then declined in the post-2000 period.  We compute the 

fraction of these patterns accounted for by the changing import penetration ratios by using the 

coefficients from Table 4 along with the aggregate pattern of import penetration ratios for High-

Tech Manufacturing.  The impact of rising penetration is very modest in terms of accounting for 

the change in the 1980s to 1990s.  It goes the “wrong way” but it is small.  However, in the 

change in responsiveness from the 1990s to 2000s, the rapid rise in the import penetration ratios 

accounts for a substantial share (about 16 percent) of the overall decline in responsiveness.   

While this investigation does not uncover specific micro mechanisms that yield the 

connection between import penetration to changing dynamism and productivity responsiveness, 

it does suggest this is a promising area for future research.   

 

C. Changing Specialization of High-Tech 

We also investigate the hypothesis that the declining responsiveness of growth to 

productivity during the post 2000s is the transition from “general-purpose” to “special-purpose” 

equipment manufacturing in the U.S as documented by Byrne (2015).  Businesses manufacturing 

these special-purpose products might be less responsive to productivity due to demand 

constraints or uncompetitive environments that reduce adjustment imperatives.  We investigate 

this hypothesis in Appendix F.  We verify evidence of the changing structure of High-Tech 

manufacturing but find no evidence that this accounts for the declining responsiveness observed 

in High-Tech Manufacturing.     

 

VII. Conclusion 
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The post-2000 period in the U.S. has been characterized by declines in both gross job 

flows and aggregate productivity growth.  The decline in both has been most dramatic in the 

High Tech areas of the economy.   

A key insight from previous literature on declining business dynamism, that patterns of 

young firm activity and gross job flows differ markedly across sectors, is of particular relevance 

to the productivity question.  During the 1980s and 1990s, the decline in dynamism was 

dominated by the Retail Trade sector related to the well-documented shift away from “Mom and 

Pop” retail businesses to large, national chains.  Since the evidence also shows that the 

productivity of large, national chains is substantially greater than that of Mom and Pop 

businesses, this decline in dynamism in Retail Trade arguably reflects benign changes in retail 

business models so that the typical Retail Trade establishment has become both more productive 

and more stable over time.  In the post-2000 period, however, there has been an acceleration of 

the overall decline in indicators of business dynamism that has been led by declines in key 

innovative sectors such as High Tech where reallocation and entrepreneurship had previously 

been rising.  Since 2000, this is the sector with the largest declines in these indicators.   

We focus our attention in this paper to changing patterns of responsiveness within firm 

age groups.  We first show that while the changing age structure of firms is an important 

contributing factor to the observed variation in reallocation dynamics, it is far from the dominant 

factor.  Focusing on dynamics within firm age groups, we study the role of changes in the 

idiosyncratic productivity or profitability “shocks” faced by individual businesses vs. changes in 

how businesses respond to those shocks.  Focusing on the Manufacturing sector and using a large 

dataset on establishment-level TFP, we find that the distribution of productivity has not become 

less volatile or otherwise evolved in a way that would be expected to reduce job reallocation.  

However, by directly estimating the employment growth policy functions governing business-

level responses to productivity, we learn that marginal productivity responses at the business 

level have tracked patterns of aggregate reallocation.  In the High Tech sector, responsiveness 

rose in the 1990s then fell in the 2000s, consistent with reallocation data for that sector.  For the 

manufacturing sector broadly, responsiveness declined steadily throughout 1980-2010.  We 

conclude that aggregate patterns of reallocation are closely related to changes in the marginal 

responses of individual businesses to their own productivity; canonical models of firm dynamics 

suggest that this declining marginal responsiveness is likely related to increased costs or frictions 
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on adjustment.43  These TFP-based results for the Manufacturing sector are broadly echoed by an 

alternative approach based on a revenue productivity residual (RPR) definition of productivity in 

place of TFP. 

We find further support for the notion that responsiveness has declined by studying firm-

level labor productivity for the entire U.S. economy and the High-Tech sector (including High 

Tech businesses outside of Manufacturing).  Consistent with our TFP-based results from 

Manufacturing, we find evidence of a sharp weakening of the relationship between firm-level 

growth and productivity in the post-2000 period with particularly strong declines in the High-

Tech sector.  We also find rising dispersion of within industry firm-level labor productivity 

dispersion consistent with declining responsiveness that emerges from some type of increase in 

frictions or distortions. 

The changing pattern of responsiveness of plant-level growth and survival to TFP has 

implications for aggregate (industry-level) productivity growth.  We find that increased 

responsiveness of growth and survival to idiosyncratic differences in TFP in High Tech 

Manufacturing during the 1990s yielded an increase in the an industry-level Olley-Pakes 

covariance productivity index of as much as half a log point per year.  In turn, we find that the 

decline in responsiveness of plant-level growth to idiosyncratic TFP differences in High Tech 

yields a decline in the Olley-Pakes covariance index of as much as two log points per year.  Our 

economywide evidence based on labor productivity finds similarly substantial declines in the 

covariance indices from declining responsiveness.     

Declines in responsiveness could potentially be balanced by increased within-firm 

productivity growth. A plausible hypothesis is that there is a tradeoff between productivity 

growth from reallocation and within productivity growth (e.g., technological and organizational 

changes might induce frictions in adjustments that are leveled by within-firm growth). We find 

no evidence of increasing within-firm productivity growth over the period during which we have 

observed a declining contribution of reallocation.  Instead, we find declining within-firm 

productivity growth during this period as well.   

                                                           
43 Using industry variation, Goldschlag and Tabarrok (2014) find no evidence that federal regulation counts relate 
with changes in the pace of gross flows.  Davis and Haltiwanger (2014) find evidence relating employment 
protection policies to lower rates of reallocation.  Molloy et al. (2016) find no evidence of a role for land use 
regulations or improved worker-firm matches in declining worker flows. 
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Though the primary focus of this paper is to document declining productivity 

responsiveness and analyze its implications using multiple data sources and methodologies, we 

also briefly investigate three possible mechanisms underlying these changing patterns of firm 

dynamics.  First, we investigate the hypothesis that the changing responsiveness reflects plants 

changing their margin of adjustment from employment to capital; we find that during the post-

2000 period the High Tech sector saw a decline in investment responsiveness while 

responsiveness was flat outside of High Tech.  Second, we explore the possibility that 

globalization may be playing a role since increased exposure to foreign trade facilitates 

adjustment by scaling international operations.  We find evidence in support of this hypothesis in 

that it is especially in detailed industries with large increases in import penetration from low-

wage countries that young High Tech plants have exhibited large declines in responsiveness in 

the post-2000 period.  Such changes in import penetration account for about 16 percent of the 

decline in responsiveness of young plants in High-Tech manufacturing in the post-2000 period.  

Finally, we investigate compositional changes in Manufacturing reflecting movement from 

general-purpose to special-purpose technology production, finding no evidence of a role of these 

shifts in declining responsiveness. 

In addition to shedding light on the drivers of declining business dynamism, these 

findings comprise a novel and important contribution to the literature on the productivity 

slowdown in the U.S. in the post-2000 period.  We interpret the micro evidence as implying that 

the productivity slowdown in the post-2000 period in High Tech industries cannot be explained 

solely by a decline in the pace of innovation and technological change.  We draw this inference 

from multiple pieces of evidence.  First, our findings focus on changes in responsiveness within 

firm age groups.  Second, in the post-2000 period we find rising within-industry productivity 

dispersion in High Tech.  A slowdown in the pace of innovation should, other things equal, yield 

a decline in within-industry productivity dispersion.  We find the opposite in the post-2000 

period in High Tech. 
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Figure 1: Sectoral trends in job reallocation 

 
Note: Y axis does not start at zero. Data are HP trends using parameter set to 100. Industries are defined 
on a consistent NAICS basis. Data include all firms (new entrants, continuers, and exiters). Author 
calculations from the Longitudinal Business Database. 
 
Figure 2: Employment shares for young (<5) firms by broad sector 

 
Note: Young firms have age less than 5. Industries are defined on a consistent NAICS basis. Data include 
all firms (new entrants, exiters, and continuers). Author calculations from the Longitudinal Business 
Database. 
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Figure 3:  Annual change in reallocation rate:  Actual and holding age composition constant 

(a) 1987-1989 to 1997-1999 

 

(b) 1997-1999 to 2004-2006 

 
Note: Sectors are defined on a consistent NAICS basis. Author calculations from the Longitudinal 
Business Database. 

  

-1.2%
-1.0%
-0.8%
-0.6%
-0.4%
-0.2%
0.0%
0.2%
0.4%
0.6%

Actual
Holding Age Constant

-1.2%

-1.0%

-0.8%

-0.6%

-0.4%

-0.2%

0.0%

0.2%

Actual
Holding Age Constant



57 
 

Figure 4: Job reallocation in High-Tech, Information, Manufacturing and Tech Manufacturing 

Note: Y axis does not start at zero. High-Tech is defined as in Hecker (2005). Information and 
Manufacturing sectors are defined on a consistent NAICS basis. Author calculations from the 
Longitudinal Business Database. 
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Figure 5: Within-industry TFP dispersion (standard deviation), young vs. mature 
(a) High-Tech Manufacturing 

 
 

(b) Non Tech Manufacturing 

 
Note: Young firms have age less than 5. Manufacturing plants. The standard deviation is the based on 
within-detailed industry log TFP.   High-Tech is defined as in Hecker (2005). Author calculations from 
the Longitudinal Business Database, the Annual Survey of Manufacturers, and the Census of 
Manufacturers. HP Trends Depicted.  
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Figure 6:  Marginal effect of TFP on plant-level net employment growth:  young vs. mature 
(a)  High-Tech plants 

 
 

(b) Non Tech plants 

 
Note: Young firms have age less than 5. High-Tech is defined as in Hecker (2005). Author calculations 
from the Longitudinal Business Database, the Annual Survey of Manufacturers, and the Census of 
Manufacturers.  
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Figure 7: Diff-in-diff counterfactual (TFP), Manufacturing 

 
Note: Figure depicts counterfactual change in reallocation contribution to aggregate TFP growth. High-
Tech is defined as in Hecker (2005). Author calculations from the Longitudinal Business Database, the 
Annual Survey of Manufacturers, and the Census of Manufacturers. 
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Figure 8: Within-industry dispersion in labor productivity, young vs. mature 
(a) High-Tech firms 

 
 

(b) Non Tech firms 

 
Note: Y axes do not begin at zero. Data reflect interdecile range of log labor productivity deviated from 
industry by year means. Young firms have age less than five. High-Tech is defined as in Hecker (2005). 
Author calculations from the RE-LBD. 
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Figure 9: Labor productivity and growth at the firm level (economywide) 
(a) Overall DHS employment growth (including exit) 

 
 

(b) Firm exit 

 
Note: Annual coefficients constructed from Table 2. Young firms have age less than five. High-Tech 
defined as in Hecker (2005). Author calculations from the RE-LBD. Finance, Insurance and Real Estate 
(NAICS 52-53) omitted. 
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Figure 10: Diff-in-diff counterfactual (labor productivity)

 
Note: Figure depicts counterfactual change in reallocation contribution to aggregate labor productivity 
growth. High-Tech is defined as in Hecker (2005). Author calculations from the RE-LBD. 
 
Figure 11:  Within-firm productivity growth in the average industry 

 
Note: Average within-firm productivity growth, with and without employment weights. 
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 Figure 12:  Marginal effect of TFP on plant-level equipment investment in High-Tech  

 
Note: Young firms have age less than 5. High-Tech is defined as in Hecker (2005). Author calculations 
from the Longitudinal Business Database, the Annual Survey of Manufacturers, and the Census of 
Manufacturers. 
 
 
Figure 13: The role of globalization in changing responsiveness (High-Tech Manufacturing) 

 
Note:  “Overall” bars for young and mature are the change in marginal responsiveness of employment 
growth to productivity across decades.  Globalization reflects implied change in marginal responsiveness 
accounted for by changes in import penetration ratios from low wage countries. 
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Table 1: Estimated Impact of Lagged Productivity on Plant-Level Employment Growth and Exit   
 

 Growth including exit Exit 
   

 High-Tech Non Tech High-Tech Non Tech 
TFP*Young 0.2025*** 0.2767*** -0.0292* -0.0905*** 

 (0.0390) (0.0090) (0.0162) (0.0037) 
     

TFP*Young*Trend 0.0317*** 0.0014 -0.0160*** -0.0005 

 (0.0061) (0.0014) (0.0025) (0.0006) 
     

TFP*Young*Trend2 -0.0012*** -0.00024*** 0.0005*** 0.0001*** 

 (0.0002) (0.00005) (0.0001) (0.00002) 
     

TFP*Mature 0.1228*** 0.1439*** -0.0403*** -0.0464*** 

 (0.0174) (0.0043) (0.0072) (0.0018) 
     

TFP*Mature*Trend 0.0054** 0.0005 -0.0016 -0.0012 

 (0.0026) (0.0007) (0.0011) (0.0003) 
     

TFP*Mature*Trend2 -0.0003*** -0.00004* 0.0001*** 0.00005*** 

 (0.0001) (0.00002) (0.00003) (0.00001) 
     

Notes:  Standard Errors in Parentheses.  Dependent variable in Overall Growth columns is DHS growth rate.  
Dependent variable in Exit columns is indicator=1 if exit, 0 otherwise (linear probability Tech Sample is more than 
120000 plant-year observations from 1981-2010.  Non Tech Sample has more than 2 million observations.  Young 
firms have age less than 5.  Unreported are estimates of controls including year effects, state effects, firm age 
dummies, firm size dummies, log plant level employment in period t, state cyclical indicators (change in state level 
unemployment rate), state cyclical indicators interacted with TFP.  All variables that use TFP including all 
interactions are fully interacted with firm age dummies.  
* p < 0.1, ** p < 0.05, *** p < 0.01. 
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Table 2: Estimated Relationship Between Firm-level Employment Growth and Exit and 
Labor Productivity 
 
 Growth including exit  Exit  
       
 All firms High-Tech Nontech All Firms High-Tech Nontech 
       
LP*Young 0.3484*** 0.3845*** 0.3467*** -0.1225*** -0.1258*** -0.1224*** 
 0.0004 0.0020 0.0005 0.0002 0.0009 0.0002 
             
LP*Young*Trend -0.0047*** -0.0141*** -0.0043*** 0.0014*** 0.0026*** 0.0014*** 
 0.0001 0.0006 0.0001 0.0001 0.0002 0.0001 
       
LP*Young*Trend2 0.0000*** 0.0004*** 0.0000*** 0.0000*** -0.0001*** 0.0000*** 
 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
       
LP*Mature 0.2530*** 0.2755*** 0.2522*** -0.0756*** -0.0710*** -0.0758*** 
 0.0004 0.0021 0.0004 0.0002 0.0009 0.0002 
       
LP*Mature*Trend -0.0055*** -0.0042*** -0.0056*** 0.0019*** -0.0008*** 0.0020*** 
 0.0001 0.0006 0.0001 0.0000 0.0002 0.0000 
       
LP*Mature*Trend2 0.0001*** 0.0000 0.0001*** 0.0000*** 0.0001*** -0.0001*** 
 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
       
N 55383000 55383000 55383000 55383000 55383000 55383000 
R2 0.1090 0.1263 0.1083 0.0937 0.1053 0.0931 
Dependent variable in all regressions is firm-level employment growth rate (DHS). All regressions include 
controls for state business cycle (change in state unemployment rate) and firm employment size in period t-1. 
Labor productivity is measured as log difference from 6-digit NAICS industry mean. High-Tech is defined as in 
Hecker (2005).  Observations rounded to nearest thousand. 
*** p<0.01; ** p<0.05; * p<0.10 
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Table 3: Estimated Impact of Productivity on Plant-Level Equipment Investment Rate   
 

TFP*Young 0.0826*** 

 (0.0236) 
  

TFP*Young*Trend 0.0189*** 

 (0.0037) 
  

TFP*Young*Trend2 -0.0008*** 

 (0.0001) 
  

TFP*Mature 0.0232** 

 (0.0105) 
  

TFP*Mature*Trend 0.0024 

 (0.0016) 
  

TFP*Mature*Trend2 -0.0001* 

 (0.00005) 
  

Notes:  Standard Errors in Parentheses.  Tech Sample is more than 120000 plant-year observations from 1981-2010.  
Young firms have age less than 5.  Unreported are estimates of controls including year effects, state effects, firm age 
dummies, firm employment  size dummies, log plant level employment in period t, dummies for initial capital, state 
cyclical indicators (change in state level unemployment rate), state cyclical indicators interacted with TFP.  All 
variables that use TFP including all interactions are fully interacted with firm age dummies.  
* p < 0.1, ** p < 0.05, *** p < 0.01. 
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Table 4: Estimated Impact of Lagged Productivity on Plant-Level Employment Growth with 
Import Penetration Ratio Effects (High-Tech) 
 

TFP*Young 0.2085*** 

 (0.0390) 
  

TFP*Young*Trend 0.0298*** 

 (0.0061) 
  

TFP*Young*Trend2 -0.0011*** 

 (0.0002) 
  

TFP*Mature 0.1246*** 

 (0.0174) 
  

TFP*Mature*Trend 0.0052** 

 (0.0026) 
  

TFP*Mature*Trend2 -0.0003*** 
 (0.0001) 
  
TFP*Young*Import Penetration -0.0037*** 
 (0.0011) 
  
TFP*Mature*Import Penetration 0.0002 

 (0.0004) 
  

Notes:  Standard Errors in Parentheses.  Tech Sample is more than 120000 plant-year observations from 1981-2010.  
Young firms have age less than 5.  Unreported are estimates of controls including year effects, state effects, firm age 
dummies, firm size dummies, log plant level employment in period t, state cyclical indicators (change in state level 
unemployment rate), state cyclical indicators interacted with TFP, and a main effect for the 6-digit import 
penetration ratio.  All variables that use TFP including all interactions are fully interacted with firm age dummies. * 
p < 0.1, ** p < 0.05, *** p < 0.01. 
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Appendix A. Figures and tables to supplement the main text 

 
Figure A1: Within-industry TFP dispersion (std deviation) in Manufacturing, High-Tech 
Manufacturing and Non Tech Manufacturing (HP Trends) 

 
Note: The standard deviation is the based on within-detailed industry log TFP.  High-Tech is defined as in 
Hecker (2005). Manufacturing is defined on a consistent NAICS basis. Author calculations from the 
Longitudinal Business Database, the Annual Survey of Manufacturers, and the Census of Manufacturers. 
Hodrick Prescott Trends depicted. 
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Figure A2:  Marginal effect of TFP on plant exit: young vs. mature 
(a)  High-Tech plants 

 
 

(b) Non Tech plants 

 
Note: Young firms have age less than 5. High-Tech is defined as in Hecker (2005). Author calculations 
from the Longitudinal Business Database, the Annual Survey of Manufacturers, and the Census of 
Manufacturers. 
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Figure A3: Diff-in-diff counterfactual (Revenue Labor Productivity), Manufacturing 

 
Note: Figure depicts counterfactual change in reallocation contribution to aggregate labor productivity 
growth. High-Tech is defined as in Hecker (2005). Author calculations from the RE-LBD. 

Figure A4: Average industry-level productivity growth, BLS and aggregated microdata, Tech 
and Non Tech (HP filtered) 

 
Source: BLS and author calculations from RE-LBD. 
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Figure A5:  Import penetration ratios from low-wage countries 

   
Source:  Extended versions of Import Penetration Ratios from Bernard, Jensen and Schott (2006) and 
Schott (2008).  Reported statistics are averages across 6-digit NAICS industries for High-Tech and Non 
Tech industries. 
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Table A.1: High-Technology Industries 

NAICS Code Industry 

Information and Communications Technology (ICT) High-Tech 

3341 Computer and peripheral equipment manufacturing 

3342 Communications equipment manufacturing 

3344 Semiconductor and other electronic component manufacturing 

3345 Navigational, measuring, electromedical, and control instruments manufacturing 

5112 Software publishers 

5161 Internet publishing and broadcasting 

5179 Other telecommunications 

5181 Internet service providers and Web search portals 

5182 Data processing, hosting, and related services 

5415 Computer systems design and related services 

Miscellaneous High-Tech 

3254 Pharmaceutical and medicine manufacturing 

3364 Aerospace product and parts manufacturing 

5413 Architectural, engineering, and related services 

5417 Scientific research-and-development services 
Source: Bureau of Labor Statistics, Hecker (2005) 
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Appendix B.   Persistence and Innovation in TFP in Manufacturing 

Our data infrastructure is not ideally suited for estimating persistence since this requires 

relying on the longitudinal nature of the ASM/CM, which is less robust than the longitudinal 

properties of the LBD.  That is, estimating productivity persistence parameters requires pairwise 

continuing plants in 𝑡𝑡 and 𝑡𝑡 + 1 to be measured in the ASM/CM.  The panel rotation of the ASM 

as well as Census years make this a challenge.  That is, in the first years of a new ASM panel and 

in Census years we have a much smaller and less representative set of continuing plants than 

other years.  For this exercise we exclude those years.44  With these caveats in mind, we estimate 

an AR(1) model of TFP applied to continuing plants.  Figure B1 reports these AR(1) 

coefficients, averaged by decade, separately for plants in High-Tech Manufacturing and plants in 

Non Tech Manufacturing.  The estimates for both categories are in the 0.6 to 0.7 range and are 

reasonably stable over time.  For High-Tech Manufacturing, there is a slight decrease in the 

persistence of plant-level TFP from the 1980s to the 1990s, but it rebounds in the 2000s.45 

For the set of years where we can estimate the AR(1) process, we can also recover the 

distribution of innovations to plant-level TFP for continuing plants.  Since this is for selected 

years we report averages of standard deviation of innovations to TFP by decade as we did with 

persistence; these are reported on Figure B2.  We find patterns that mimic the pattern of 

dispersion in TFP.  That is, the dispersion of innovations for High-Tech rises mildly in the 1990s 

and then rises more substantially in the post-2000 period, but the magnitude is reasonably stable 

over time.   

  

                                                           
44 Even for other years, our propensity score weights are not ideally suited for making the sample of continuers 
representative.  In principle, we can develop separate propensity score weights for this restricted sample of 
continuing plants.  Doing so is more of a challenge, given the rotating nature of the ASM sample.   
45 We conduct this persistence exercise using the Wooldridge (2009) revenue productivity residual (RPR) estimation 
method.  The RPR persistence pattern is generally consistent with the TFPR result. 



75 
 

Figure B1:  Persistence of plant-level TFP: High-Tech vs. Non Tech Manufacturing 

 
Note: High-Tech is defined as in Hecker (2005). Author calculations from the Longitudinal Business 
Database, the Annual Survey of Manufacturers, and the Census of Manufacturers. 
 
Figure B2:  Standard deviation of innovations to plant-level TFP: High-Tech vs Non Tech 

 
Note: High-Tech is defined as in Hecker (2005). Author calculations from the Longitudinal Business 
Database, the Annual Survey of Manufacturers, and the Census of Manufacturers.  
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Appendix C. Alternative TFP calculation 

 

Here we consider an alternative revenue productivity residual measure that explicitly 

incorporates potentially endogenous plant-level prices.  Let 𝑙𝑙𝑒𝑒𝑒𝑒 = 𝐷𝐷𝑒𝑒𝑒𝑒𝑄𝑄𝑒𝑒𝑒𝑒
𝜑𝜑−1 where 𝐷𝐷𝑒𝑒𝑒𝑒 is an 

idiosyncratic demand shock and  𝜑𝜑 − 1 is the inverse demand elasticity.  Then plant-level 

revenue is given by (lower case variables are in logs): 

 

𝑝𝑝𝑒𝑒𝑒𝑒 + 𝑞𝑞𝑒𝑒𝑒𝑒 = 𝛽𝛽𝑘𝑘𝑘𝑘𝑒𝑒𝑒𝑒 + 𝛽𝛽𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒 + 𝛽𝛽𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒 + 𝛽𝛽𝑒𝑒𝑇𝑇𝑒𝑒𝑒𝑒 + 𝜑𝜑𝑀𝑀𝑒𝑒𝑒𝑒 + 𝑑𝑑𝑒𝑒𝑒𝑒 (C1) 

 

where 𝛽𝛽𝑖𝑖 = 𝜑𝜑𝛼𝛼𝑖𝑖 for factor i.  That is, the 𝛽𝛽𝑖𝑖 coefficients are the revenue elasticities that reflect 

both demand parameters and the production function factor elasticities.  The revenue elasticities 

can be estimated consistently using the Wooldridge (2009) one-step GMM method.  The latter 

builds on the proxy methodology of Olley and Pakes (1996) and Levinsohn and Petrin (2001).  

With estimates of the revenue function elasticities, the revenue productivity residual can be 

recovered which is given by: 

 

𝑅𝑅𝑙𝑙𝑅𝑅𝑒𝑒𝑒𝑒 = 𝜑𝜑𝑀𝑀𝑒𝑒𝑒𝑒 + 𝑑𝑑𝑒𝑒𝑒𝑒 (C2) 

 

The revenue productivity residual is a function of idiosyncratic demand and TFPQ shocks.   We 

note that the 𝑅𝑅𝑙𝑙𝑅𝑅𝑒𝑒𝑒𝑒 is distinct conceptually from 𝑙𝑙𝑙𝑙𝑙𝑙𝑅𝑅𝑒𝑒𝑒𝑒.  The former is based on revenue per 

unit input using revenue elasticities that incorporate demand parameters while the latter is 

revenue per unit input using factor elasticities from cost shares.  This implies that even with 

endogenous prices in the face of plants facing downward sloping demand functions that RPR 

will exhibit dispersion regardless of any frictions or distortions.   

 We implement this methodology following the guidance of Foster et al. (2016) in 

estimating the revenue elasticities to vary at the 3-digit NAICS level.  They find that the proxy 

method estimates using the Woolridge method are sensitive to outliers and pooling across a large 

number of observations mitigates this sensitivity.    After estimating the elasticities, we compute 

the revenue productivity residuals and deviate the latter from 6-digit NAICS industry by year 

means.  We find that 𝑅𝑅𝑙𝑙𝑅𝑅𝑒𝑒𝑒𝑒 has a correlation of 0.76 with 𝑙𝑙𝑙𝑙𝑙𝑙𝑅𝑅𝑒𝑒𝑒𝑒.   
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We replicate the exercises we have conducted with 𝑙𝑙𝑙𝑙𝑙𝑙𝑅𝑅𝑒𝑒𝑒𝑒 with the alternative measure 

of 𝑅𝑅𝑙𝑙𝑅𝑅𝑒𝑒𝑒𝑒.  Figure C1 shows the evolution of within industry dispersion in 𝑅𝑅𝑙𝑙𝑅𝑅𝑒𝑒𝑒𝑒 for all 

manufacturing industries, manufacturing High-Tech and non-manufacturing High-Tech.  As with 

Figure A3 of Appendix A (which depicts analogous patterns for TFP), we observe gradually 

rising RPR dispersion throughout the time period, with higher dispersion in High-Tech 

Manufacturing than in the rest of the sector.  Figure C2 reports AR(1) coefficients for plant-level 

RPR (see Appendix B for a discussion of this measure and its limitations in our dataset).  Again, 

consistent with the TFP persistence results (depicted on Figure B1 of Appendix B), we find little 

change in productivity persistence over the time period.  Taken together, the dispersion and 

persistence results shown here confirm our conclusions from TFP data: changes in the 

distributional characteristics of plant-level productivity cannot explain aggregate patterns of job 

reallocation. 

We estimate equation (2) using RPR in place of TFP.  Figure C3 reports annual 

regression coefficients relating productivity and growth, averaged by decade.  The results are 

generally consistent with those reported for TFP on Figure 5 with young firm productivity 

responsiveness in High-Tech that rises from the 1980s to the 1990s then falls in the 2000s.  

Among mature firms in High-Tech, responsiveness is somewhat flat from the 1980s to the 1990s 

before falling markedly in the 2000s. 

Finally, Figure C4 reports the  diff-in-diff counterfactual described by equation (4).  

Among High-Tech plants, declining responsiveness produces a counterfactual that is broadly 

similar—both qualitatively and quantitatively—with the TFP-based results from Figure 6, with a 

productivity “drag” that is only slightly smaller under RPR than under TFP.  Among Non Tech 

plants, the counterfactual produces somewhat different results from those reported in Figure 6, 

with a gap opening up early in the sample then remaining stable (and negative) after the late 

1990s.  In general the RPR results confirm the TFP-based findings suggesting a quantitatively 

significant change in the contribution of reallocation to aggregate productivity growth. 
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Figure C1: Within-Industry Dispersion in the Revenue Productivity Residual (Std Deviation) in 
Total Manufacturing, High-Tech Manufacturing and Non Tech Manufacturing (HP Trends) 

 
Note: The standard deviation is the based on within-detailed industry log  revenue productivity residual.  
High-Tech is defined as in Hecker (2005). Manufacturing is defined on a consistent NAICS basis. Author 
calculations from the Longitudinal Business Database, the Annual Survey of Manufacturers, and the 
Census of Manufacturers. Hodrick Prescott Trends depicted. 
 
Figure C2:  Persistence of Revenue Productivity Residual for Plants:  High-Tech vs. Non Tech 

 
Note: High-Tech is defined as in Hecker (2005). Author calculations from the Longitudinal Business 
Database, the Annual Survey of Manufacturers, and the Census of Manufacturers.  
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Figure C3:  Marginal effect of revenue productivity residual on plant-level net employment 
growth 
 

(a)  High-Tech plants 

 

(b) Non Tech plants 

 

Note: Young firms have age less than 5. High-Tech is defined as in Hecker (2005). Author calculations 
from the Longitudinal Business Database, the Annual Survey of Manufacturers, and the Census of 
Manufacturers.  
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Figure C4: Diff-in-diff counterfactual (RPR productivity), Manufacturing 

 
Note: Figure depicts counterfactual change in reallocation contribution to aggregate TFP. High-Tech is 
defined as in Hecker (2005). Author calculations from the Longitudinal Business Database, the Annual 
Survey of Manufacturers, and the Census of Manufacturers. 
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Appendix D. Illustrative Model of Adjustment Costs 

 

Consider the following model of firm-level adjustment costs.  We use the term “firm” 

here for expositional convenience although much (but not all) of our empirical analysis is at the 

plant-level.  A firm maximizes the present discounted value of profits.  The firm’s value function 

and its components are specified as follows: 

𝑉𝑉(𝑙𝑙𝑒𝑒𝑒𝑒−1;𝐴𝐴𝑒𝑒𝑒𝑒) =  𝐴𝐴𝑒𝑒𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒
𝜑𝜑 − 𝑤𝑤𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒 − 𝐶𝐶(𝐻𝐻𝑒𝑒𝑒𝑒) + 𝛽𝛽𝑉𝑉(𝑙𝑙𝑒𝑒𝑒𝑒;𝐴𝐴𝑒𝑒𝑒𝑒+1) 

with: 

𝐶𝐶(𝐻𝐻𝑒𝑒𝑒𝑒) = �
𝛾𝛾
2
�
𝐻𝐻𝑒𝑒𝑒𝑒
𝑙𝑙𝑒𝑒𝑒𝑒−1

�
2

0,   𝑌𝑌𝑡𝑡ℎ𝑇𝑇𝑇𝑇𝑤𝑤𝑒𝑒𝑒𝑒𝑇𝑇
+ 𝑙𝑙+max (𝐻𝐻𝑒𝑒𝑒𝑒, 0) + 𝑙𝑙−max (−𝐻𝐻𝑒𝑒𝑒𝑒, 0) 𝑒𝑒𝑓𝑓 𝐻𝐻𝑒𝑒𝑒𝑒 ≠ 0 

 

𝑀𝑀𝑒𝑒𝑒𝑒 = 𝜌𝜌𝑀𝑀𝑒𝑒𝑒𝑒 + 𝜂𝜂𝑒𝑒𝑒𝑒 

𝑙𝑙𝑒𝑒𝑒𝑒 = 𝑙𝑙𝑒𝑒𝑒𝑒−1 + 𝐻𝐻𝑒𝑒𝑒𝑒 

 

where 𝜑𝜑 < 1 due to product differentiation so that 𝐴𝐴𝑒𝑒𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒
𝜑𝜑  is the revenue function,  𝑙𝑙𝑒𝑒𝑒𝑒 is 

employment used in production during time 𝑡𝑡,  𝐻𝐻𝑒𝑒𝑒𝑒 is net hires made at the beginning of time 𝑡𝑡, 

or 𝐻𝐻𝑒𝑒𝑒𝑒 = 𝑙𝑙𝑒𝑒𝑒𝑒 − 𝑙𝑙𝑒𝑒,𝑒𝑒−1 (this can be positive or negative and is chosen prior to production), 𝑤𝑤𝑒𝑒 is 

the wage rate, and  𝑀𝑀𝑒𝑒𝑒𝑒 = log (𝐴𝐴𝑒𝑒𝑒𝑒) is the revenue shock reflecting potentially TFPQ and demand 

shocks (although as we discuss below we neglect the latter in the current discussion for 

expositional convenience).  We focus on the interpretation of curvature in the revenue function 

arising from product differentiation rather than decreasing returns to help draw out the issues 

relating revenue productivity to technical efficiency.  That is, let firm-level prices be given by  

𝑙𝑙𝑒𝑒𝑒𝑒 = 𝑄𝑄𝑒𝑒𝑒𝑒
𝜑𝜑−1 where 𝑄𝑄𝑒𝑒𝑒𝑒 = �̃�𝐴𝑒𝑒𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒  is firm-level output subject to a CRTS technology.  This 

implies that 𝐴𝐴𝑒𝑒𝑒𝑒 = �̃�𝐴𝑒𝑒𝑒𝑒
𝜑𝜑 .  In terms of the terminology of the literature and the main text, �̃�𝐴𝑒𝑒𝑒𝑒 is 

TFPQ; and since labor is the only factor of production, both TFPR and RLP (revenue labor 

productivity) are given by 𝑙𝑙𝑒𝑒𝑒𝑒�̃�𝐴𝑒𝑒𝑒𝑒. 

This simple adjustment cost model is similar to Cooper, Haltiwanger and Willis (2007, 

2016) and Elsby and Michaels (2013) and, in principle, accommodates both convex and non-

convex costs.  The latter make it so that the solution has the following form: 

𝑉𝑉 = max (𝑉𝑉𝐼𝐼 ,𝑉𝑉𝐻𝐻) 
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where 

𝑉𝑉𝐼𝐼 =  𝐴𝐴𝑒𝑒𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒−1
𝜑𝜑 − 𝑤𝑤𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒−1 + 𝛽𝛽𝑉𝑉(𝑙𝑙𝑒𝑒𝑒𝑒;𝐴𝐴𝑒𝑒𝑒𝑒+1) 𝑒𝑒𝑓𝑓 𝐻𝐻𝑒𝑒𝑒𝑒 = 0 

 

𝑉𝑉𝐻𝐻 =  𝐴𝐴𝑒𝑒𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝛼𝛼 − 𝑤𝑤𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒 − 𝐶𝐶(𝐻𝐻𝑒𝑒𝑒𝑒) + 𝛽𝛽𝑉𝑉(𝑙𝑙𝑒𝑒𝑒𝑒;𝐴𝐴𝑒𝑒𝑒𝑒+1) 𝑒𝑒𝑓𝑓 𝐻𝐻𝑒𝑒𝑒𝑒 ≠ 0 

 

with the notation indicating that 𝑉𝑉𝐼𝐼 is the value of inaction (i.e., zero net hiring), and 𝑉𝑉𝐻𝐻 is the 

value of nonzero net hiring (in either positive or negative amounts). 

 We calibrated this model with shock processes and parameters that are consistent with 

relevant data and the existing literature.  We do this to make the calibration as realistic as 

possible.  However, the model is missing some key features of the data.  First, we do not model 

entry or exit.  Second, as discussed in the main text, we do not have any life cycle learning 

dynamics or frictions that make young firms different from more mature firms.  Given these 

limitations, we regard the calibration as mostly providing guidance about the qualitative 

predictions about key moments that we explore in the data as described in the text.  

 In our initial calibration we conduct partial equilibrium exercises taking the real wage as 

constant.  We also consider a simple way of accounting for general equilibrium considerations 

by specifying a perfectly inelastic aggregate labor supply and allowing the wage to adjust to 

clear the labor market.  Since our partial equilibrium analysis is consistent with a perfectly elastic 

labor supply, these two calibrations provide perspective on the potential impact of general 

equilibrium considerations.  As will become clear, for our moments of interest the results are 

very similar in the perfectly elastic and inelastic cases.  This is not surprising given our focus on 

second moments such as variances and covariances in the cross section across firms in any given 

period. 

 Our calibration approach is as follows. We set 𝛽𝛽 = 0.96, consistent with annual data.  

We specify that 𝜑𝜑 = 0.8; this is within the range of estimates of  markups estimated in the 

literature (for the latter this is consistent with a markup of 25 percent).  For the shock process, we 

specify 𝜎𝜎𝑎𝑎 = 0.35, consistent with the standard deviation of TFP in Manufacturing during the 

1980s that we report in Figure A.1; and we set 𝜌𝜌 = 0.65, consistent with the AR(1) coefficient 

on TFP that we find among Manufacturing establishments in the 1980s (see Figure B.1).  These 

values are also broadly consistent with the RPR based measures of productivity residuals from 

Appendix C. 
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 These assumptions imply that TFP innovations have an implied standard deviation of 

𝜎𝜎𝜂𝜂 = 0.26.  We then calibrate the adjustment cost parameter(s) to target the value of 0.25 for the 

job reallocation rate, which is about the value of job reallocation in the Manufacturing sector in 

the 1980s.  Focusing only on kinked (non-convex) adjustment costs (i.e., setting 𝛾𝛾 = 0), we find 

that the target reallocation rate implies 𝑙𝑙+ = 0.85 when 𝑙𝑙− = 0.  Here we have arbitrarily 

set 𝑙𝑙− = 0 in our baseline, but we consider alternatives in the calibrations discussed below.  For 

quadratic adjustment costs (i.e., 𝑙𝑙+ = 𝑙𝑙− = 0) we find that matching the job reallocation rate of 

0.25 requires 𝛾𝛾 = 1.3.  We are not in a position to identify convex vs. non-convex costs since, 

unlike Cooper, Haltiwanger and Willis (2007, 2014), we are not calibrating or estimating 

moments that would enable this identification.  For the moments we focus on in our empirical 

analysis, we find broadly similar patterns of increases in adjustment costs either from convex or 

non-convex costs.  Since the empirical evidence in the literature points towards including non-

convexities to account for some properties of the micro evidence, we focus the remainder of this 

analysis on the model with kinked adjustment costs.    

 An important property of our baseline calibration that matches the job reallocation rate in 

the 1980s is that TFPQ, TFPR and RLP (the latter two are the same in this setting given one 

factor of production) are highly correlated.  The correlation is about 0.90 (this also holds in our 

general equilibrium analysis below).  It is this property that underlies our finding that the 

responsiveness estimates of growth to realizations of productivity are essentially the same 

whether we use TFPQ or TFPR/RLP as the measure of productivity.   

 We consider two types of experiments in the simulation.  The first is an increase in 

adjustment frictions.  The second is a change in the dispersion of TFP.  For this analysis, we 

focus on the kinked adjustment costs starting with 𝑙𝑙+ = 0.85,𝑙𝑙− = 0, that is, our baseline non-

convex cost calibration described above.  We then increase 𝑙𝑙− from zero to study an increase an 

adjustment costs.  This permits us to obtain perspective on increasing adjustment costs from a 

starting point where we match the patterns of shocks and reallocation in the 1980s.  In our 

second experiment, we start from the same baseline but consider a decline in the dispersion of 

TFP.  Thus, in a similar fashion we obtain perspective on the implications of a decline in TFP 

dispersion from a starting point that matches the patterns in the 1980s. 

 

A. Changing adjustment costs 
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In what follows, we describe results from the partial equilibrium version of the model (or, 

equivalently, the model setup in which labor supply is perfectly elastic).  Figures D.1 and D.2 

show the impact of increasing adjustment frictions (i.e., the downsizing cost 𝑙𝑙−, holding fixed 

𝑙𝑙+ = 0.85) for the key moments of interest.  We find that an increase in adjustment frictions 

yields:  (i) a decline in the job reallocation rate; (ii) a decline in the estimated coefficient of a 

regression of firm-level growth between 𝑡𝑡 and 𝑡𝑡 + 1 on TFP in period 𝑡𝑡 (where we include log 

employment in period 𝑡𝑡 as a control; (iii) an increase in the dispersion of labor productivity 

(defined as revenue per worker); and (iv) a decline in the Olley-Pakes covariance (between size 

and productivity) for both TFP and revenue labor productivity (where employment serves as the 

weights).  Each of these relationships are generally monotonic, with the exception of the Olley-

Pakes covariance for revenue labor productivity (which we discuss further below).  For the 

Olley-Pakes covariances, we use the standard Olley-Pakes decomposition given by: 

 𝑙𝑙𝑖𝑖𝑒𝑒 = �𝜃𝜃𝑒𝑒𝑒𝑒𝑝𝑝𝑒𝑒𝑒𝑒 =
𝑒𝑒∈𝑖𝑖

�̅�𝑝𝑖𝑖𝑒𝑒 + 𝑐𝑐𝑌𝑌𝑐𝑐(𝜃𝜃𝑒𝑒𝑒𝑒,𝑝𝑝𝑒𝑒𝑒𝑒) (D1) 

where 𝑙𝑙𝑖𝑖𝑒𝑒 is industry aggregate productivity defined as the weighted average of firm-level 

productivity, �̅�𝑝𝑖𝑖 is the unweighted average of (log) firm-level productivity for the firms in the 

industry, 𝜃𝜃𝑒𝑒 is the share of industry employment accounted for by firm 𝑇𝑇, and 𝑝𝑝𝑒𝑒 is the (log) 

labor productivity of firm 𝑇𝑇.  We use the simulated data to implement this decomposition and 

report the covariance terms for both TFP and revenue labor productivity in Figure D.2. 

 There are many possible moments relating growth to realizations of TFP that are 

similarly sensitive to adjustment costs.  For example, in unreported regression results (in which 

we always include period-𝑡𝑡 log employment as a control) we find that increasing adjustment 

costs yields (i) a decline in the estimated coefficient of a regression of firm-level growth between 

𝑡𝑡 and 𝑡𝑡 + 1 on TFP in period 𝑡𝑡 + 1; (ii) a decline in the estimated coefficient of a regression of 

firm-level growth between 𝑡𝑡 and 𝑡𝑡 + 1 on the change in TFP from period 𝑡𝑡 to 𝑡𝑡 + 1; and (iii) a 

decline in the estimated coefficient of a regression of firm-level growth between 𝑡𝑡 and 𝑡𝑡 + 1 on 

the innovation of TFP  (𝜂𝜂𝑖𝑖𝑒𝑒).  In principle, we could use any of these moments to detect a change 

in adjustment frictions.  We use the specification reported in Figure D.1 for measurement and 

related econometric reasons as we discuss in the main text.  But as that discussion notes, the 

exact timing in the model vs. the data are different so that it is reassuring that the predictions on 
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responsiveness hold equally well qualitatively in the numerical analysis using current or lagged 

productivity. 

 The model-based predictions in D.1 and D.2 are the primary moments that we explore 

empirically in the main text.  In the empirical analysis we also consider the estimated coefficient 

of firm-level growth between 𝑡𝑡 and 𝑡𝑡 + 1 on revenue labor productivity in 𝑡𝑡 (with log period-𝑡𝑡 

employment as a control as usual).  Given the simple revenue functions under consideration, the 

model implies that this estimated coefficient is identical to the estimated coefficient on TFP that 

we report in Figure D.1.  This precise equivalence is model dependent, but the general inference 

should not be. That is, in response to an increase in adjustment frictions, there should be a 

decline in the covariance between firm-level growth and realizations of labor productivity 

(holding initial employment constant). 

 

B. Changing TFP dispersion 

 

   Figure D.3 shows how key moments change in response to changes in the dispersion of 

TFP.  Figure D.3 shows that in response to an increase in dispersion of TFP:  (i) job reallocation 

increases, (ii) the dispersion in real labor productivity increases, and (iii) the estimated 

coefficient of a regression of firm level growth between t and t+1 on TFP in period t increases 

(where we include as a control log employment in period t).  As before this last finding also 

holds using real labor productivity as the regressor given this simple model.  

 While the results in Figure D.3 are generally intuitive, one of the findings merits further 

discussion—specifically, the finding that responsiveness increases with the standard deviation of 

shocks to TFP.  The net effect of TFP dispersion on responsiveness reflects two competing 

mechanisms (as discussed in the main text).  The first is the “real options effect” documented by 

previous literature on non-convex adjustment costs.  Non-convex costs create “inaction bands” 

or regions of the range of productivity innovations in which firms prefer inaction (i.e., zero 

hiring) to action.  Inaction bands tend to widen as shock dispersion or volatility rises (consistent 

with an “uncertainty” interpretation), which, ceteris paribus, reduces responsiveness.  We 

observe this effect in our simulated data when we examine only the extensive margin: a given 

absolute change in TFP is more likely to induce action when TFP dispersion is smaller (holding 

initial employment constant).  However, in the model this effect is more than offset by the 
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“volatility effect” or the notion that adjustments—when they actually do occur—are larger when 

TFP is more widely dispersed.  In the model the volatility effect dominates, so overall 

responsiveness as measured by our regressions increases with dispersion.   

 

C. General equilibrium  

 We have also examined a version of the same calibration exercise that permits the market 

wage to clear the labor market under the assumption of perfectly inelastic labor supply.  A 

limitation of the partial equilibrium exercises is that with a fixed wage and perfectly elastic labor 

supply, the experiments create large changes in the average size of firms.  This is particularly 

relevant when studying aggregate productivity: one of the terms in the Olley-Pakes productivity 

decomposition is the unweighted average of firm-level productivity, which can fall when some 

adjustment costs increase as firms hoard labor.  In general equilibrium, the wage should adjust to 

dampen this hoarding incentive.  For this and other reasons, we examine a case in which general 

equilibrium effects are extremely salient to provide insights into the degree to which general 

equilibrium concerns may affect our intuition.  The results of this exercise are reported in Figures 

D.4-D.6.  Comparing the latter to the partial equilibrium results suggests that the patterns in 

Figures D.1 through D.3 reported above are actually quite robust to this alternative. 

 

D. The Olley-Pakes Covariance and the Diff-in-Diff Counterfactual 

 

 The patterns we have emphasized in Figures D.1-D.6 are, for the most part, robust to 

changes in key parameters of the curvature of the revenue function, the shock space and the 

adjustment cost parameters.  There is one important exception that highlights the importance of 

using multiple moments in our evaluation of the empirical patterns in the data.  Specifically, we 

note that in a frictionless benchmark with zero adjustment costs (in contrast to our benchmark 

above, in which hiring costs are set to 𝑙𝑙+ = 0.85), there will be zero labor productivity 

dispersion and in turn a zero Olley-Pakes covariance term for labor productivity.  This 

frictionless benchmark yields predictions that are far from reality (e.g., the pace of reallocation is 

over 100 percent of employment), which can be seen on Figure D7.  As adjustment frictions rise 

from this frictionless benchmark, labor productivity dispersion rises (Figure D7) as does the OP 

labor productivity covariance (Figure D8).  However, since the responsiveness of firm growth 



87 
 

between 𝑡𝑡 and 𝑡𝑡 + 1 on real labor productivity in 𝑡𝑡 (with log period-𝑡𝑡 employment as a control) 

declines monotonically with an increase in adjustment frictions (Figure D7), as adjustment 

frictions rise sufficiently, the Olley-Pakes labor productivity covariance declines with further 

increases in adjustment frictions (Figure D8).  This pattern is related to that found in Bartelsman, 

Haltiwanger and Scarpetta (2013) who found that rising distortions reduce the Olley-Pakes labor 

productivity covariance as long as the benchmark is characterized by sufficient frictions. 

 In our empirical analysis, we use a diff-in-diff approach for our analysis of Olley-Pakes 

covariance terms that makes this discussion largely moot.  That is, as described in the main text 

we compute the counterfactual diff-in-diff that isolates the impact of the changing 

responsiveness on the OP covariance terms.  Since this diff-in-diff has as a starting point the 

responsiveness at the beginning of our sample, our starting point is far from the frictionless 

environment but rather incorporates the adjustment costs consistent with the pace of job 

reallocation at the beginning of our sample.   

 For the sake of completeness, we compute the same diff-in-diff counterfactuals in the 

simulated data.  Following our empirical approach, we use our model to generate simulated 

panels of firm-level data then run the same responsiveness regressions on those simulated data.  

Using the responsiveness coefficients we obtain from this exercise, we conduct a diff-in-diff 

exercise analogous to our empirical analysis.  Specifically, we construct regression-predicted OP 

covariance terms for a variety of adjustment cost specifications; then, we apply the regression 

coefficients from the data generated with baseline adjustment costs to the data generated with 

higher costs and again construct predicted OP covariance terms.  For any given adjustment cost 

specification, we then calculate the diff-in-diff generated by the two OP covariance terms just 

described: that is, the predicted OP covariance term using the appropriate regression coefficient 

for a given cost specification and the predicted OP covariance term generated by applying the 

baseline responsiveness coefficient to the higher-cost data scenario.  Figure D.9a shows the 

patterns of the diff-in-diff counterfactuals for the partial equilibrium case, and Figure D.9b 

shows the counterfactuals for the case where we incorporate general equilibrium considerations.   
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Figure D1:  Responses of key moments to changes in adjustment costs 

 
Note: Kinked adjustment costs. The x axis reflects values of 𝑙𝑙−, or the cost of reducing employment, 
holding the hiring cost 𝑙𝑙+ fixed at 𝑙𝑙+ = 0.85. Partial equilibrium model with fixed wage and perfectly 
elastic labor supply. 
 
Figure D2:  Responses of Olley-Pakes covariances to changes in adjustment costs 

 
Note: Kinked adjustment costs. The x axis reflects values of 𝑙𝑙−, or the cost of reducing employment, 
holding the hiring cost 𝑙𝑙+ fixed at 𝑙𝑙+ = 0.85. Partial equilibrium model with fixed wage and perfectly 
elastic labor supply.  
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Figure D3:  Responses of key moments to changes in TFP dispersion 

 
Note: Model with kinked adjustment costs (𝑙𝑙+ = 0.85). Partial equilibrium model with fixed wage and 
perfectly elastic labor supply. 
 
Figure D4:  Responses of key moments to changes in adjustment costs (inelastic labor supply) 

 
Note: The x axis reflects values of 𝑙𝑙−, or the cost of reducing employment, holding the hiring cost 𝑙𝑙+ 
fixed at 𝑙𝑙+ = 0.85. General equilibrium model with flexible wage and inelastic labor supply.  
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Figure D5:  Responses of Olley-Pakes covariances to changes in adjustment costs (inelastic 
labor supply) 

 
Note: Model with kinked adjustment costs. The x axis reflects values of 𝑙𝑙−, or the cost of reducing 
employment, holding the hiring cost 𝑙𝑙+ fixed at 𝑙𝑙+ = 0.85. General equilibrium model with flexible 
wage and inelastic labor supply. 
 
Figure D6:  Responses of key moments to changes in TFP dispersion (inelastic labor supply) 

 
Note: Model with kinked adjustment costs (𝑙𝑙+ = 0.85). General equilibrium model with flexible wage 
and inelastic labor supply.  
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Figure D.7: Responses of key moments to changes in adjustment costs from frictionless 
benchmark (inelastic labor supply) 

 
Note: Model with no upward adjustment costs (𝑙𝑙+ = 0) with varying downward adjustment costs (𝑙𝑙−) 
indicated on the x axis. General equilibrium model with flexible wage and inelastic labor supply. 
 
Figure D8: Responses of Olley-Pakes covariances to changes in adjustment costs from 
frictionless benchmark (inelastic labor supply) 

 
Note: Model with no upward adjustment costs (𝑙𝑙+ = 0) with varying downward adjustment costs (𝑙𝑙−) 
indicated on the x axis. General equilibrium model with flexible wage and inelastic labor supply. 
  

0.1

0.6

1.1

1.6

2.1

2.6

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9 1 1.1 1.2 1.3 1.4
Adjustment Costs

Reallocation
sd LP
Lag TFP coefficient (Right Axis)

0.00

0.03

0.06

0.09

0.12

0.15

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9 1 1.1 1.2 1.3 1.4
Adjustment Costs

OP Cov TFP

OP Cov LP (Right Axis)



92 
 

Figure D.9a: Response of Diff-in-Diff Counterfactuals to Increase in Adjustment Costs (Partial 
Equilibrium) 

  
Note: Kinked adjustment costs. The x axis reflects values of 𝑙𝑙−, or the cost of reducing employment, 
holding the hiring cost 𝑙𝑙+ fixed at 𝑙𝑙+ = 0.85. Partial equilibrium model with fixed wage and perfectly 
elastic labor supply. 
 
Figure D.9b: Response of Diff-in-Diff Counterfactuals to Increase in Adjustment Costs (General  
Equilibrium) 

 
Note: Kinked adjustment costs. The x axis reflects values of 𝑙𝑙−, or the cost of reducing employment, 
holding the hiring cost 𝑙𝑙+ fixed at 𝑙𝑙+ = 0.85. General equilibrium model with flexible wage and inelastic 
labor supply. 
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Appendix E. Multi-Unit Firms Operating in Multiple Industries 

 

In the firm-level analysis, we deviate firm-level log revenue per worker from the firm’s 

industry-by-year mean.  This requires assigning a firm to a single industry.  For this purpose, we 

use the modal industry of the firm based upon employment.  Since 95 percent of firms are single-

unit establishment firms this is unlikely to have large implications for empirical exercises that 

pool across single-unit and multi-unit firms.  Indeed, in unreported results we have repeated the 

exercises using labor productivity for single-unit establishment firms only and obtain very 

similar results.  In interpreting this, it is useful to note that the dispersion of within-industry 

productivity and the regressions on changing responsiveness use firm-level data without activity 

weighting.  The one exercise that might be more sensitive to this issue is the diff-in-diff 

counterfactual since this is an employment-weighted exercise.  

In this appendix, we consider an alternative way of treating multi-unit firms operating in 

multiple industries that will also potentially impact the single unit establishment firms as well.  

Specifically, the method used in the main text for generating the relative within-industry measure 

of productivity is equivalent to estimating a simple fixed effects regression of log revenue per 

worker on interacted industry-by-year effects and then using the residual as the relative 

productivity measure.  As an alternative, we consider a regression of log revenue per worker on 

industry-by-year effects where each firm has up to five (6-digit NAICS) industry effects.  

Moreover, each of the (up to) five industry-by-year effects are interacted with a share variable 

that is equal to the share of employment within the firm for that industry.  For a single unit 

establishment firm, only one industry effect is included, with the share variable equal to one.   

  Figure E1 is the analogue to Figure 7 showing within-industry dispersion for young and 

mature firms for tech and Non Tech firms.  For computing statistical measures by industry group 

we still use the predominant modal industry but note that the industry grouping in Figure E1 is 

much broader than a 6-digit NAICS industry.  Figure E2 is the analogue to Figure 8 in the main 

text, reporting the time-varying coefficients relating firm-level employment growth to firm-level 

labor productivity, based on firm-level productivity generated with this alternative demeaning 

method.  Finally, Figure E3 is the analogue to Figure 9 in the main text, reporting diff-in-diff 

counterfactual results for the changing contribution of reallocation to aggregate productivity 

growth, again based on the alternative demeaning method.  Observe that each figure based on the 
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alternative demeaning method broadly confirms the results in the main text (that are based on a 

simple one-industry-per-firm approach).  While the productivity counterfactual is modestly 

smaller in magnitude under the alternative approach, it still reveals large effects of the 

weakening relationship between productivity and growth. 
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Figure E1: Within-industry dispersion in labor productivity, young vs. mature (alternative 
method for demeaning) 

(a) High-Tech firms 

 
 

(b) Non Tech firms 

 
Note: Y axes do not begin at zero. Data reflect interdecile range of log labor productivity deviated from 
industry by year means. Young firms have age less than five. High-Tech is defined as in Hecker (2005). 
Author calculations from the RE-LBD. 
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Figure E2: Labor productivity and growth at the firm level (economywide, including exit), 
alternative demeaning method 

 
Note: Annual coefficients from analogue of Table 2 using the alternative measure. Young firms have age 
less than five. High-Tech defined as in Hecker (2005). Author calculations from the RE-LBD. Finance, 
Insurance and Real Estate (NAICS 52-53) omitted. 
 
Figure E3: Diff-in-diff counterfactual (labor productivity using alternative demeaning) 

 
Note: Figure depicts counterfactual change in reallocation contribution to aggregate labor productivity 
growth. High-Tech is defined as in Hecker (2005). Author calculations from the RE-LBD  
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Appendix F. The changing composition of High-Tech Manufacturing 

In the High-Tech Manufacturing sector, another possible cause of declining productivity 

responsiveness after 2000 is the transition from “general-purpose” to “special-purpose” 

equipment manufacturing in the U.S documented by Byrne (2015).46  One hypothesis is that 

manufacturers of special-purpose products may be less responsive to productivity shocks due to 

demand constraints or uncompetitive environments that reduce adjustment imperatives.   

To investigate this hypothesis, we begin by examining the share of employment accounted for by 

the general purpose industries identified by Byrne (2015) in the High-Tech Manufacturing data.  

Figure F1 shows that during the 1990s the share of employment in among general purpose 

technology producers grew rapidly but, consistent with Byrne (2015) (which examined revenue 

shares), the general purpose share has fallen substantially since the late 1990s.  Given these 

compositional changes, it is possible that the changing responsiveness reflects differential 

responsiveness across industries.   

To explore the role of this composition effect, we estimate specification (3) separately for 

each 6-digit industry in High-Tech Manufacturing but, importantly, we omit time trend 

interactions from the specification.  With the estimated responsiveness coefficients for each 6-

digit industry, we compute the employment-weighted aggregate responsiveness in each year 

using the actual year 6-digit employment weights.47  If the shift from general-purpose to special-

purpose tech products is driving a decline in average productivity responsiveness, we would 

expect general-purpose plants to be more responsive than special-purpose plants, and this would 

be manifest in shift-share analyses that hold responsiveness constant but allow employment 

shares to shift over time as in the data. 

Figure F2 shows the implied changing responsiveness over time due to composition 

effects.  It is apparent there is no implied increase in responsiveness due to composition effects 

from the 1980s to the 1990s (which would have been expected if general-purpose producers were 

more responsive on average), and there is actually a modest increase in responsiveness from the 

1990s to the 2000s from composition effects rather than a decline.  Interestingly, the average 

responsiveness of producers of special-purpose technologies is slightly higher than that of 

                                                           
46 We thank Christopher Foote for this insight. 
47 We use employment weights given our interest in the implications of changing responsiveness for job 
reallocation. 
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general-purpose technology producers, which is why the aggregate responsiveness in our shift-

share analysis rises slightly from the 1990s to the 2000s.  Declining responsiveness must 

therefore be a within-category phenomenon with respect to the general-purpose/special-purpose 

taxonomy.  These findings suggest that the rising and then declining pace of job reallocation in 

High-Tech Manufacturing cannot be accounted for by the changing composition of High-Tech. 

 

Figure F1:  General purpose technology share of High-Tech Manufacturing 

 
Note:  Tabulations from the LBD by authors.  General purpose High-Tech 4-digit industries are NAICS 
3341 (Computers), NAICS 3342 (Communication Equipment) and NAICS 3344 (Semi-conductors). 
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Figure F2: Change in responsiveness due to industry composition changes (High-Tech) 

 
Note:  Specification (2) as in Table 1 estimated for every 6-digit NAICS industry but without any trend 
effects.  Reported coefficients are employment-weighted averages of the 6-digit NAICS industry 
estimated coefficients.  Employment-weights vary by year. 


