
1 
 

Changing Business Dynamism and Productivity: 

Shocks vs. Responsiveness 

By RYAN A. DECKER, JOHN HALTIWANGER, RON S. JARMIN, AND JAVIER 

MIRANDA* 

The pace of job reallocation has declined in the U.S. in recent 

decades.  We draw insight from canonical models of business 

dynamics in which reallocation can decline due to (a) lower 

dispersion of idiosyncratic shocks faced by businesses, or (b) weaker 

marginal responsiveness of businesses to shocks.  We show that shock 

dispersion has actually risen, while the responsiveness of business-

level employment to productivity has weakened.  Moreover, declining 

responsiveness can account for a significant fraction of the decline in 

the pace of job reallocation, and we find suggestive evidence this has 

been a drag on aggregate productivity. 

* Ryan Decker: Federal Reserve Board, ryan.a.decker@frb.gov; John Haltiwanger: University of Maryland and NBER, 

halt@umd.edu; Ron S Jarmin:  U.S. Census Bureau, ron.s.jarmin@census.gov; Javier Miranda, U.S. Census Bureau, 

javier.miranda@census.gov.  John Haltiwanger is also a Schedule A part-time employee of the U.S. Census Bureau at the 

time of the writing of this paper.  We gratefully acknowledge financial support from the Kauffman Foundation.  Cody 

Tuttle provided excellent research assistance.  We thank John Abowd, Rudi Bachmann, Martin Baily, Jonathan Baker, 

Dave Byrne, Chris Foote, Lucia Foster, Clément Gorin, Bronwyn Hall, Matthias Kehrig, Pete Klenow, Kristin McCue, 

three anonymous referees, the journal editor, and conference or seminar participants at the 2015 Atlanta  Fed Conference 

on Secular Changes in Labor Markets, the ASSA 2016 meetings, the 2016 Brookings “productivity puzzle” conference, the 

3rd International ZEW conference, the 2016 ICC conference, BYU, University of Chicago, Drexel University, the Federal 

Reserve Board, the Richmond Fed, the spring 2017 Midwest Macro meetings, the 2017 UNC IDEA conference, and the 

2017 NBER Summer Institute meetings for helpful comments.  We are grateful for the use of the manufacturing 

productivity database developed in Foster, Grim, and Haltiwanger (2016) as well as the revenue productivity database 

developed in Haltiwanger et al. (2017).  Any opinions and conclusions expressed herein are those of the authors and do not 

necessarily represent the views of the U.S. Census Bureau or of the Board of Governors or its staff.  The statistics reported 

in this paper have been reviewed and approved by the Disclosure Review Board of the Bureau of the Census (DRB-B0029-

CED-20190314, DRB-B0056-CED-20190529, CBDRB-FY20-138).

mailto:ryan.a.decker@frb.gov
mailto:halt@umd.edu
mailto:ron.s.jarmin@census.gov
mailto:javier.miranda@census.gov


2 
 

Changing patterns of business dynamics—the entry, growth, decline, and exit of businesses—

have attracted increasing attention in recent literature.  In particular, since the early 1980s the U.S. 

has seen a decline in the pace of “business dynamism” across many measures including the rate of 

business entry, the prevalence of high-growth firm outcomes, the rate of internal migration, and 

the rate of job and worker reallocation.1   Declining business dynamism has attracted attention in 

part because business dynamics are closely related to aggregate productivity growth in healthy 

market economies, reflecting the movement of resources from less-productive to more-productive 

uses (Hopenhayn and Rogerson (1993), Foster, Haltiwanger, and Krizan (2001)).  We draw 

insights from canonical models of firm dynamics in which declining reallocation reflects either a 

decline in the responsiveness of individual businesses to their underlying productivity or a decline 

in the dispersion of firm-level productivity shocks.  Empirically, we find robust evidence of 

declining firm-level responsiveness amid rising dispersion of firm-level productivity shocks.  We 

show that declining responsiveness accounts for a significant share of the aggregate decline in job 

reallocation and has been a drag on aggregate productivity. 

“Job reallocation” measures the pace of job flows across businesses and is defined as total job 

creation by entering and expanding establishments plus total job destruction by downsizing and 

exiting establishments.  Figure 1 shows the pace of aggregate job reallocation for the U.S. overall, 

the manufacturing sector, and the high-tech sector.  The U.S. experienced an overall decline in the 

pace of job reallocation since the early 1980s.  Even the high-tech sector saw a decline starting in 

the early 2000s.  Understanding the causes of declining job reallocation has proven difficult.  

Decker et al. (2016b) show that it reflects in part a decline in firm-level growth rate skewness, or 

high-growth firm activity generally, but they do not investigate underlying causes.  Young firms 

tend to exhibit a higher pace of job reallocation, and the share of activity accounted for by young 

firms has declined (Decker et al. (2014)), so some decline in reallocation is to be expected given 

composition effects.  However, most of the variation in reallocation rates in recent decades has 

occurred within narrow age classes.2 

 
1 For job reallocation and employment volatility see Davis et al. (2007), Decker et al. (2014), and Decker et al. (2016b).  For business entry see 

Decker et al. (2014) and Karahan, Pugsley, and Sahin (2018).  For worker reallocation see Hyatt and Spletzer (2013) and Davis and Haltiwanger 
(2014).  For migration see Molloy et al. (2016).  For high-growth firms see Decker et al. (2016b), Haltiwanger, Hathaway, and Miranda (2014), 
and Guzman and Stern (2016). 

2 In Appendix III we describe a shift-share exercise to study the role of composition effects across firm age for explaining the overall decline in 
job reallocation. Figure A5 in the appendix reports the results.  We are sympathetic to the view that studying the sources of the decline in startups 
and young firms is important for understanding the decline in job reallocation (e.g., Pugsley, Sedlacek and Sterk (2017)).  Our focus is on the 
decline in job reallocation within firm age groups, which Figure A5 shows is quite important. 
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We study changing job reallocation patterns motivated by the framework of standard models of 

firm dynamics following Hopenhayn (1992) and a rich subsequent literature.  In such models, 

reallocation arises from businesses’ responses to their constantly shifting individual productivity 

and profitability environment.  Businesses facing strong idiosyncratic productivity and 

profitability conditions  expand (job creation), while those facing weak conditions downsize or 

exit (job destruction).  The reallocation rate reflects the aggregation of these individual decisions.  

As such, a decline in the pace of reallocation can arise from one of two forces.  First, the dispersion 

or volatility of idiosyncratic (business-level) conditions (which we call “shocks”) could decline; 

in other words, a more tranquil business environment could reduce the need and incentives for 

businesses frequently and significantly to change their size or operating status.  Second, or 

alternatively, the business-level responsiveness to those shocks could weaken; that is, businesses 

may hire or downsize less in response to a given shock (conditional on their initial level of 

employment), perhaps due (for example) to rising costs of factor adjustment. 

These model-based considerations give rise to two competing hypotheses for declining job 

reallocation rates: the “shocks” hypothesis, in which the dispersion of idiosyncratic productivity 

or profitability realizations has declined; and the “responsiveness” hypothesis, in which businesses 

have become more sluggish in responding to realized shocks.3   We explore these hypotheses in 

high-quality business microdata for the U.S.  We show that the dispersion of “shocks” faced by 

individual businesses has not in fact declined but has risen.  However, business-level 

responsiveness to those shocks has declined markedly in the manufacturing sector and in the 

broader U.S. economy.4 

These changes in responsiveness largely account for the observed decline in aggregate job 

reallocation.  In the manufacturing sector, where we have high-quality measures of establishment-

level productivity, we find that declining responsiveness accounts for virtually all of the decline in 

the pace of job reallocation from the 1980s to the post-2000 period (holding constant the age 

distribution of businesses).  Even outside of manufacturing, where we have a more limited measure 

of firm-level productivity, declining responsiveness can account for about half of the late-1990s 

to post-2010s decline in job reallocation.   

 
3 The general “shocks vs. responsiveness” framework has proven useful elsewhere; see Berger and Vavra (2019). 
4 Rising labor productivity dispersion outside manufacturing was first documented in a related working paper, Decker et al. (2016a), and in 

Barth et al. (2016).  Andrews et al. (2015) documented rising gaps in the growth of firm-level labor productivity in several OECD countries.  Kehrig 
and Vincent (2017, 2020) present related evidence of a decline in responsiveness to a shock concept we denote as TFPR in our analysis below. 
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Business-level responses to productivity also facilitate productivity selection, and weaker 

responsiveness is indicative of weaker selection.  We isolate the effect of changing responsiveness 

on an index of aggregate productivity using a simple counterfactual exercise.   Aggregate total 

factor productivity (TFP) increased by about 30 percent in the U.S. manufacturing sector from the 

1980s to 2000s, but our counterfactual exercise suggests TFP would have increased by about 33 

percent if responsiveness in the 2000s were the same as in the early 1980s.  We find similar effects 

on aggregate labor productivity for the U.S. private, nonfarm sector.   

Taken together, our results suggest that declining reallocation is not simply a benign result of a 

less turbulent economy.  Rather, declining reallocation appears to reflect weaker responses of 

businesses to their own economic environment, and the consequences of weaker responsiveness 

for aggregate living standards are nontrivial due to the important role of productivity selection.  

Determining the causes of weakening responsiveness is beyond the scope of this paper; however, 

we describe several possible avenues of investigation that are suggested by the model framework 

we employ.     

Section I describes our conceptual framework and its empirical predictions for the “shocks” and 

“responsiveness” hypotheses.  Section II describes our data, including our measures of 

productivity.  Section III describes our empirical approach and results on “shocks” and 

“responsiveness.”  Section IV quantifies the implications for aggregate reallocation and 

productivity.  Section V describes robustness exercises, and section VI concludes. 

I. Conceptual Framework 

A. General formulation 

We begin by specifying, in quite general terms, the relationship of firm-level employment 

growth to firm-level productivity realizations (shocks) and initial employment in a one-factor 

(labor) model of business dynamics.5   Consider the employment growth policy function given by: 

(1) 𝑔𝑔𝑗𝑗𝑗𝑗 = 𝑓𝑓𝑡𝑡(𝐴𝐴𝑗𝑗𝑗𝑗,𝐸𝐸𝑗𝑗𝑗𝑗−1) 

 

 
5 We use the term “firm” loosely in this section.  Our empirics feature both firm- and establishment-level data. 



5 
 

where 𝑔𝑔𝑗𝑗𝑗𝑗 is employment growth for firm j from 𝑡𝑡 − 1 to 𝑡𝑡, 𝐴𝐴𝑗𝑗𝑗𝑗 is the productivity (or, more 

generally, profitability) realization in time 𝑡𝑡, and 𝐸𝐸𝑗𝑗𝑗𝑗−1 is initial employment.  More concretely, 

we can motivate the canonical formulation in (1) with a model in which firms have a revenue 

function given by 𝐴𝐴𝑗𝑗𝑗𝑗𝐸𝐸𝑗𝑗𝑗𝑗
𝜙𝜙, where 𝜙𝜙 < 1 due to either decreasing returns or imperfect  competition; 

and the productivity process is 𝑙𝑙𝑙𝑙𝐴𝐴𝑗𝑗𝑗𝑗 = 𝜌𝜌𝑎𝑎𝑙𝑙𝑙𝑙𝐴𝐴𝑗𝑗𝑗𝑗−1 + 𝜂𝜂𝑗𝑗𝑗𝑗 (so 𝜂𝜂𝑗𝑗𝑗𝑗 is the innovation to productivity 

in period 𝑡𝑡).  In typical models of this nature, 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 > 0; that is, among any two firms, the one 

with higher 𝐴𝐴𝑗𝑗𝑗𝑗—holding initial employment constant—will have higher growth.  We also include 

a time subscript 𝑡𝑡 in 𝑓𝑓𝑡𝑡(∙) to allow the relationship between growth and the underlying state 

variables to change over time (due, e.g., to changing employment adjustment costs). 

While some expositions of this class of models specify 𝑔𝑔𝑗𝑗𝑗𝑗 as a function of the change in 

productivity (or of the innovation 𝜂𝜂𝑗𝑗𝑗𝑗), we deliberately feature the level of 𝐴𝐴𝑗𝑗𝑗𝑗 in (1).  Empirically, 

it is easier to relate the growth rate of firms (for which we have universe data) to productivity 

levels (for which we have cross-sectionally representative samples) than to changes or innovations 

(which require productivity data that are longitudinally representative).  Moreover, the formulation 

in which 𝐴𝐴𝑗𝑗𝑗𝑗 is specified in levels, as in (1), is quite general since, under minimal assumptions, the 

inclusion of 𝐸𝐸𝑗𝑗𝑗𝑗−1 along with 𝐴𝐴𝑗𝑗𝑗𝑗 in the policy function fully incorporates information contained 

in 𝐴𝐴𝑗𝑗𝑗𝑗−1 and, therefore, the difference between 𝐴𝐴𝑗𝑗𝑗𝑗 and 𝐴𝐴𝑗𝑗𝑗𝑗−1.6  That is, we can specify (1) using 

the level of 𝐴𝐴𝑗𝑗𝑗𝑗 and initial employment without significant loss of generality while improving the 

model’s empirical comparability.   

For empirical purposes, we focus on a log-linear approximation of (1) given by. 

(2)  𝑔𝑔𝑗𝑗𝑗𝑗 = 𝛽𝛽0 + 𝛽𝛽1𝑡𝑡𝑎𝑎𝑗𝑗𝑗𝑗 + 𝛽𝛽2𝑡𝑡𝑒𝑒𝑗𝑗𝑗𝑗−1 + 𝜀𝜀𝑗𝑗𝑗𝑗 

 

where the lowercase variables 𝑎𝑎 and 𝑒𝑒 refer to the logs of productivity and employment, 

respectively.  The parameter 𝛽𝛽1𝑡𝑡 is our measure of productivity responsiveness—it measures the 

marginal response of firm employment growth to firm productivity.  In the typical model setting 

𝛽𝛽1𝑡𝑡 > 0, but the magnitude of this relationship depends on model parameters, distortions,  

adjustment frictions, and potentially firm characteristics (as we describe below).  We refer to a 

 
6 We formally show this in the appendix.  The employment growth policy function can be specified in terms of levels of 𝐴𝐴𝑗𝑗𝑗𝑗 even in a frictionless 

model.  Nevertheless, our empirical exercises are all robust to specifying the growth policy function in terms of changes in, or innovations to, 𝐴𝐴𝑗𝑗𝑗𝑗.  



6 
 

change in 𝛽𝛽1𝑡𝑡 as a change in responsiveness.  Since the policy function specified in (1) and 

approximated by (2) determines firm-level employment changes, it also determines the aggregate 

job reallocation rate (which is simply the employment-weighted average of the absolute value of 

firm-level growth).  Therefore, a decline in reallocation can be caused by either a decline in 

marginal responsiveness (𝛽𝛽1𝑡𝑡) or a change in the distribution of 𝐴𝐴𝑗𝑗𝑗𝑗 shocks, a quite general result. 

We next explore two concrete model specifications to illustrate numerically the implications of 

the shocks vs. responsiveness hypotheses. 

B. Labor adjustment costs 

Consider a canonical model of firm dynamics with labor adjustment costs in the tradition of 

Hopenhayn and Rogerson (1993).  For simplicity we abstract from firm entry and exit.  Faced 

with costs on labor adjustment, firms no longer adjust their labor demand to reach the firm size 

that would be implied by 𝐴𝐴𝑗𝑗𝑗𝑗 in a frictionless environment.  Moreover, an increase in adjustment 

costs reduces responsiveness to 𝐴𝐴𝑗𝑗𝑗𝑗 (conditional on initial employment).   

In Appendix I, we describe this model in detail under both non-convex cost and convex cost 

specifications; here, we initially summarize the results of numerical simulations using the model 

with non-convex adjustment costs (with the kinked adjustment costs explored in Hopenhayn and 

Rogerson (1993), Cooper, Haltiwanger and Willis (2007), and Elsby and Michaels (2013)).  We 

then provide an overview of the analogous results with convex adjustment costs.  We solve the 

model then simulate a panel of firms, allowing us to study job reallocation and productivity 

responsiveness (𝛽𝛽1𝑡𝑡 from equation 2) as well as another key moment, the dispersion of revenue 

per worker.  The results using non-convex adjustment costs are in Figure 2. 

Figures 2a and 2b illustrate our central hypotheses: declining reallocation can result from rising 

adjustment costs (i.e., lower responsiveness), as shown in 2a, or from declining shock (TFP or 𝑎𝑎𝑗𝑗𝑗𝑗) 

dispersion, as shown in 2b.  We focus first on adjustment costs.  As these costs rise, job reallocation 

falls (Figure 2a) because the responsiveness coefficient weakens (the red long-dashed line on 

Figure 2c).  As a result, dispersion of revenue per worker rises (the short-dashed green line in 

Figure 2c).  In the absence of adjustment costs, equalization of marginal products would imply 

zero dispersion of revenue per worker; with adjustment costs, revenue per worker is positively 
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correlated with 𝑎𝑎𝑗𝑗𝑗𝑗 and exhibits positive dispersion.  Additionally, as we show in the appendix 

(Figure A4), aggregate productivity declines as adjustment costs rise. 

Alternatively, declining reallocation can result from declining dispersion of 𝑎𝑎𝑗𝑗𝑗𝑗, as shown on 

Figure 2b.  Figure 2d shows that, in this scenario, the dispersion of revenue productivity falls, as 

does the responsiveness coefficient.  Therefore, this model can generate a decline in job 

reallocation if 𝑎𝑎𝑗𝑗𝑗𝑗 dispersion falls; other symptoms of declining 𝑎𝑎𝑗𝑗𝑗𝑗 dispersion are weaker 

responsiveness and lower revenue productivity dispersion.  

 All results in Figure 2 also hold under convex adjustment costs except for the dependence of 

the responsiveness coefficient on the dispersion of 𝑎𝑎𝑗𝑗𝑗𝑗 (see appendix discussion and Figure A1).7  

Under convex adjustment costs, decision rules are approximately linear (see, e.g., Caballero, Engel 

and Haltiwanger (1997)) such that changes in second moments of shocks do not affect marginal 

responsiveness; responsiveness does not decline with 𝑎𝑎𝑗𝑗𝑗𝑗 dispersion under convex adjustment 

costs.8  The non-convex case therefore introduces some interaction between the shocks and 

responsiveness hypotheses, which we discuss further below. 

C. Correlated “wedges” 

The properties of the formulation in (1) and (2) are more general than the specific adjustment 

cost specifications just described.  For example, consider a model with revenue function given by 

𝑆𝑆𝑗𝑗𝑗𝑗𝐴𝐴𝑗𝑗𝑗𝑗𝐸𝐸𝑗𝑗𝑗𝑗
𝜙𝜙, where  𝑆𝑆𝑗𝑗𝑗𝑗 is a firm-specific distortion or “wedge” that can be thought of as a tax (when 

𝑆𝑆𝑗𝑗𝑗𝑗 < 1) or a subsidy (when 𝑆𝑆𝑗𝑗𝑗𝑗 > 1).  Let wedges be related to fundamentals such that log wedges 

(lower case) are determined by 𝑠𝑠𝑗𝑗𝑗𝑗 = −𝜅𝜅𝑎𝑎𝑗𝑗𝑗𝑗 + 𝜈𝜈𝑗𝑗𝑗𝑗 where, consistent with much of the recent 

literature, we assume 𝜅𝜅 ∈ (0,1), and 𝑣𝑣𝑗𝑗𝑗𝑗 is independent of 𝑎𝑎𝑗𝑗𝑗𝑗 with 𝔼𝔼�𝑣𝑣𝑗𝑗𝑗𝑗� = 0.9   In Appendix I 

 
7 For both the non-convex (Figure 2) and convex (Figure A1) setups we arrange the baseline scenario to target the pace of job reallocation in 

the 1980s among continuing U.S. manufacturing establishments; we also use the 1980s moments for the dispersion and persistence of shocks (see 
Table A1 in the appendix).  The qualitative pattern of the impact of changing adjustment costs on responsiveness is similar across cost specifications, 
but the convex cost case generates a baseline responsiveness coefficient that is more quantitatively similar to our empirical results.  While we do 
not generate structural estimates of adjustment costs in this paper, Cooper, Haltiwanger and Willis (2007) find that both convex and non-convex 
costs are needed to match the patterns in the data. 

8 Non-convex adjustment costs give rise to inaction ranges.  As productivity dispersion falls there is a decrease in the fraction of firms that make 
zero adjustment (i.e., the “real options” effect).  But declining productivity dispersion also implies smaller adjustments among those firms that do 
adjust (i.e., the “volatility” effect).  Vavra (2014) argues that the volatility effect dominates the real options effect in the steady state, a general 
result extending back to Barro (1972).  Bloom (2009), Bloom et al. (2018), and others use a similar model to study the effects of uncertainty on 
business cycles; even in their model, the volatility effect dominates at annual frequency (see also Bachmann and Bayer (2013)). 

9 A common finding in the literature is that indirect measures of wedges (i.e., revenue productivity measures like TFPR) are positively correlated 
with measures of fundamentals (technical efficiency and demand shocks) and have lower variance than fundamentals; see Foster, Haltiwanger, and 
Syverson (2008), Hsieh and Klenow (2009), and Blackwood et al. (forthcoming).   



8 
 

we show that an increase in 𝜅𝜅 acts in the same fashion as an increase in adjustment costs:  

reallocation declines, responsiveness declines, revenue labor productivity dispersion rises, and 

aggregate productivity declines (throughout the paper, we refer to increasing 𝜅𝜅 as “increasingly 

correlated wedges”).  A decline in the dispersion of productivity shocks also yields a decline in 

reallocation and revenue productivity dispersion but, as in the convex adjustment cost model, 

responsiveness is not sensitive to dispersion in 𝑎𝑎𝑗𝑗𝑗𝑗.  The properties of the correlated wedge model 

are illustrated in Figure A2 of the appendix. 

This wedge specification could be viewed as a reduced form encompassing the adjustment cost 

specification discussed in subsection B above (albeit with some important subtle differences given 

the explicitly dynamic components of an adjustment cost model).  But this interpretation also may 

capture other possible changes in the distribution of wedges.  For example, rising dispersion in 

variable markups that are correlated with fundamentals can play a similar role (see, e.g., De 

Loecker, Eeckhout, and Unger (2020); Edmond, Midrigan, and Xu (2018); Autor et al. (2019, 

forthcoming)). 

D. Additional considerations 

Our discussion thus far has focused on the intensive margin of responsiveness.  However, related 

predictions apply for the extensive margin: Hopenhayn and Rogerson (1993) find that a rise in 

adjustment frictions reduces entry and exit.  The empirical prediction of increased adjustment 

costs, then, is that not only will the growth of continuing firms become less responsive to firm 

productivity, but so will exit, a prediction we explore empirically.   

Our motivating discussion also neglects post-entry dynamics from learning that can influence 

the responsiveness of both the extensive and intensive margins by firm age (see, e.g., Jovanovic 

(1982)).  We consider this possibility in our empirical analysis.  This variation by firm age is 

interesting in its own right but also permits us to abstract from changes in average responsiveness 

due to the changing age structure of firms.  Given the decline in the U.S. firm entry rate in recent 

decades, if young firms have different average responsiveness from mature firms, aggregate 

responsiveness could have changed due to composition effects.  We control for potentially 

exogenous changes in entry rates in the U.S. by studying responsiveness within firm age groups. 

We consider additional nuances in our empirical work.  For changes in the shock process, we 

consider not only the evolution of the dispersion in  𝑎𝑎𝑗𝑗𝑗𝑗 but also, for restricted samples, the 
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evolution of the dispersion of innovations to the shock process and the persistence of this process.10  

We also estimate responsiveness to innovations or changes in productivity, and we explore how 

changes in responsiveness vary across industries that have undergone different trends in 

productivity dispersion and persistence.  

E. Summing up 

In general, reallocation declines when either responsiveness or shock (𝑎𝑎𝑗𝑗𝑗𝑗) dispersion decline.  A 

decline in responsiveness can be generated by, for example, an increase in adjustment costs 

(convex or non-convex) or, more generally, an increase in the correlation between reduced form 

wedges and the 𝑎𝑎𝑗𝑗𝑗𝑗 fundamental; in these cases, the dispersion of revenue labor productivity rises.  

A decline in the dispersion of the 𝑎𝑎𝑗𝑗𝑗𝑗 shock, while capable of generating a decline in reallocation, 

also reduces the dispersion of revenue labor productivity (and, in the  case of non-convex costs, 

reduces responsiveness as well).  These model predictions provide sufficient empirical moments 

for distinguishing between the shocks and responsiveness hypotheses.  A critical point here is that 

we empirically examine both responsiveness and shock dispersion. 

The gold standard empirical test of the responsiveness hypothesis is to estimate the changing 

relationship between the growth rate of employment and 𝑎𝑎𝑗𝑗𝑗𝑗, controlling for initial employment.   

For the manufacturing sector, we can construct measures of 𝑎𝑎𝑗𝑗𝑗𝑗 (and 𝜂𝜂𝑗𝑗𝑗𝑗, the innovation to 𝑎𝑎𝑗𝑗𝑗𝑗, for 

restricted samples).  For other sectors, we can only measure revenue per worker.  However, in the 

adjustment cost models, an increase in adjustment frictions also implies a declining covariance 

between growth and the realization of revenue per worker.11  Given this auxiliary prediction, we 

also explore changing “responsiveness” for non-manufacturing businesses using the changing 

relationship between employment growth and revenue per worker. 

II. Data and measurement 

The main database for our analysis is the U.S. Census Bureau’s Longitudinal Business Database 

(LBD), to which we attach other data as detailed below.  The LBD includes annual location, 

employment, industry, and longitudinal linkages for the universe of private non-farm 

 
10 In the adjustment cost framework, a decline in shock persistence can reduce responsiveness. 
11 See Appendix Figure A3a. These remarks also hold for revenue productivity measures such as TFPR as we discuss in our empirical analysis. 
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establishments, with firm identifiers based on operational control (not an arbitrary tax identifier).  

Employment measures in the LBD come from payroll tax and survey data.  We use the LBD for 

1981-2013 (during which consistent establishment NAICS codes are available from Fort and 

Klimek (2016)).  For some exercises we focus on the high-tech sector; we define high-tech on a 

NAICS basis following Hecker (2005).12  As in previous literature, we construct firm age as the 

age of the firm’s oldest establishment when the firm identifier first appears in the data, after which 

the firm ages naturally.   

For both our manufacturing and private sector economy analysis, we use the LBD to measure 

employment growth, initial employment, and exit (characterized as an establishment or firm that 

has positive employment activity in March of calendar year 𝑡𝑡 and zero activity in March of 

calendar year  𝑡𝑡 + 1).  We use these LBD measures of growth and exit even when we merge in 

productivity measures from elsewhere (described next); that is, we have measures of growth and 

exit for the universe of businesses.  

A. Manufacturing: Measuring establishment-level productivity 

We construct establishment-level productivity for over 2 million plant-year observations (1981-

2013) using updated data following the measurement methodology of Foster, Grim, and 

Haltiwanger (2016) (hereafter FGH) combining the Annual Survey of Manufacturers (ASM) with 

the quinquennial Census of Manufacturers (CM); see Appendix II for detail.  The resulting ASM-

CM is representative of the manufacturing sector in any given year, but it is based on a rotating 

sample and thus lacks the complete longitudinal coverage of the LBD; this is why we use LBD 

measures of employment and employment growth.13  Thus, a critical feature of our empirical 

approach (for manufacturing) is integrating the high-quality longitudinal growth measures from 

the LBD in any given year with the cross-sectional measures of productivity from the ASM-CM. 

The productivity shocks we measure are intended to capture variation in both technical efficiency 

and demand or product appeal.  To make our measurement approach transparent, it is helpful to 

 
12 Hecker (2005) defines industries as high-tech based on the 14 four-digit NAICS industries with the largest share of STEM workers. This 

definition includes industries in manufacturing (NAICS 3254, 3341, 3342, 3344, 3345, 3364), information (5112, 5161, 5179, 5181, 5182), and 
services (5413, 5415, 5417). 

13 We also use propensity score weights (based on a logit model of industry, firm size, and firm age) to adjust the ASM-CM-LBD sample to 
represent the LBD (in the cross section) in each year (see FGH).  These weights are cross-sectionally representative in any given year but are not 
ideal for using samples of ASM-CM that are present in both 𝑡𝑡 and 𝑡𝑡 + 1.  We discuss this further below. 
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be explicit about the assumed production and demand structure.  Consider establishment-level 

demand function 𝑃𝑃𝑗𝑗𝑗𝑗 = 𝐷𝐷𝑗𝑗𝑗𝑗𝑄𝑄𝑗𝑗𝑗𝑗
𝜙𝜙−1 (where 𝐷𝐷𝑗𝑗𝑗𝑗 is an idiosyncratic demand shock, 𝜙𝜙 − 1 is the inverse 

demand elasticity, and 𝑗𝑗 indexes establishments) with Cobb-Douglas production, that is, 𝑄𝑄𝑗𝑗𝑗𝑗 =

𝐴̃𝐴𝑗𝑗𝑗𝑗 ∏𝑋𝑋𝑗𝑗𝑗𝑗
𝛼𝛼𝑥𝑥 for inputs 𝑋𝑋𝑗𝑗𝑗𝑗 (where 𝐴̃𝐴𝑗𝑗𝑗𝑗 is technical efficiency, or TFPQ).  A composite measure of 

productivity “TFP” reflecting idiosyncratic technical efficiency and demand shocks can be defined 

as 𝐴𝐴𝑗𝑗𝑗𝑗 = 𝐷𝐷𝑗𝑗𝑗𝑗𝐴̃𝐴𝑗𝑗𝑗𝑗
𝜙𝜙 .  The ASM-CM data provide survey-based measures of revenue, capital (𝐾𝐾), 

employee hours (𝐿𝐿), materials (𝑀𝑀), and energy (𝑁𝑁).14  Then establishment revenue is given by 

(lower case variables are in logs): 

(3) 𝑝𝑝𝑗𝑗𝑗𝑗 + 𝑞𝑞𝑗𝑗𝑗𝑗 = 𝛽𝛽𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗 + 𝛽𝛽𝑙𝑙𝑙𝑙𝑗𝑗𝑗𝑗 + 𝛽𝛽𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗 + 𝛽𝛽𝑛𝑛𝑛𝑛𝑗𝑗𝑗𝑗 + 𝜙𝜙𝑎𝑎�𝑗𝑗𝑗𝑗 + 𝑑𝑑𝑒𝑒𝑒𝑒 

 

where 𝛽𝛽𝑥𝑥 = 𝜙𝜙𝛼𝛼𝑥𝑥 for factor 𝑋𝑋, and 𝑡𝑡 denotes time (in years).15  The 𝛽𝛽𝑥𝑥 coefficients are factor 

revenue elasticities that reflect both demand parameters and production function factor elasticities.  

The implied revenue function residual, which we denote as TFP, is given by: 

(4) 𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗 = 𝑝𝑝𝑗𝑗𝑗𝑗 + 𝑞𝑞𝑗𝑗𝑗𝑗 − �𝛽𝛽𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗 + 𝛽𝛽𝑙𝑙𝑙𝑙𝑗𝑗𝑗𝑗 + 𝛽𝛽𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗 + 𝛽𝛽𝑛𝑛𝑛𝑛𝑗𝑗𝑗𝑗� = 𝜙𝜙𝑎𝑎�𝑗𝑗𝑗𝑗 + 𝑑𝑑𝑗𝑗𝑗𝑗 , 

 

that is, this measure of TFP is a composite of idiosyncratic technical efficiency and demand shocks.  

In terms of the conceptual framework described previously (and in Appendix I), this is the relevant 

measure of fundamental shocks consistent with demand and technology assumptions made in this 

section.  With estimates of the revenue elasticities, this measure of TFP can be computed from 

observable establishment-level revenue and input data.  We refer to this measure as “TFP” or 

“productivity” in what follows, but it should be viewed as the composite shock reflecting both 

technical efficiency and product demand or appeal.  Our use of the revenue function residual to 

capture fundamentals is not novel to this paper.  Cooper and Haltiwanger (2006) estimate the 

revenue function residual in their analysis of capital adjustment costs.  Hsieh and Klenow (2009) 

 
14 Labor input is total hours measured from the survey responses in the ASM/CM.  We estimate factor elasticities for equipment and structures 

separately but refer only to generic “capital” for expositional simplicity here. See Appendix II for more discussion of production factor measurement 
in the data. 

15 Output (𝑞𝑞) is total value of shipments plus total change in the value of inventories, deflated by industry deflators from the NBER-CES 
Manufacturing Industry Database.  Capital is measured separately for structures and equipment using a perpetual inventory method.  Labor is total 
hours of production and non-production workers.  Materials are measured separately for physical materials and energy (each deflated by an industry-
level deflator).  Outputs and inputs are measured in constant 1997 dollars.  More details are in Appendix II. 



12 
 

use a closely related measure as their empirical measure of “TFPQ.”16  Blackwood et al. 

(forthcoming) use a similar measure in their analysis of allocative efficiency as a proxy for 

“TFPQ.”17  

Below we discuss two alternative approaches to estimating the revenue function residual concept 

for TFP in (4), but first we describe another productivity concept that is widely used in the 

literature, “TFPR,” which is given by: 

(5) 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗 = 𝑝𝑝𝑗𝑗𝑗𝑗 + 𝑞𝑞𝑗𝑗𝑗𝑗 − �𝛼𝛼𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑙𝑙𝑙𝑙𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑛𝑛𝑛𝑛𝑗𝑗𝑗𝑗� = 𝑝𝑝𝑗𝑗𝑗𝑗 + 𝑎𝑎�𝑗𝑗𝑗𝑗 . 

 

The key conceptual and measurement distinction between TFP in (4) and TFPR in (5) is using 

revenue versus output elasticities; under the assumptions made in this section, TFPR confounds 

technical efficiency and endogenous price factors.  As emphasized by Foster, Haltiwanger, and 

Syverson (2008), Hsieh and Klenow (2009), and Blackwood et al. (forthcoming), this implies 

TFPR is an endogenous measure in this context (i.e., when prices are idiosyncratic and 

endogenous).  Without frictions or wedges, TFPR will exhibit no within-industry dispersion and 

is therefore not an appropriate measure of fundamentals.  With adjustment costs or correlated 

distortions, however, TFPR will be positively correlated with fundamentals.  Empirically, TFPR 

and fundamentals are strongly positively correlated (Foster, Haltiwanger, and Syverson (2008) and 

Blackwood et al. (forthcoming)).  The high correlation in practice helps rationalize the widespread 

use of TFPR as a measure of TFP in the empirical literature.18  For our purposes, TFPR is a useful 

measure since, in our model, an increase in adjustment costs, or increasingly correlated wedges, 

yield a decline in the responsiveness of growth to TFPR and a rise in dispersion of TFPR.  In this 

respect, TFPR has properties similar to revenue per worker.  We emphasize that, given the potential 

endogeneity limitation of TFPR, we do not consider it to be as clean a measure of “shocks” as is 

 
16 The empirical measure of TFPQ used by Hsieh and Klenow (2009) is proportional to the revenue function residual measure of TFP given by 

(4).  The measure they use for TFPQ (in logs) is (𝑝𝑝𝑗𝑗𝑗𝑗 + 𝑞𝑞𝑗𝑗𝑗𝑗)
1
𝜙𝜙
− �𝛼𝛼𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑙𝑙𝑙𝑙𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑚𝑚𝑚𝑚𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑛𝑛𝑛𝑛𝑗𝑗𝑗𝑗� = 𝑎𝑎�𝑗𝑗𝑗𝑗 + 𝑑𝑑𝑗𝑗𝑗𝑗

𝜙𝜙
  (see their equation 19); that is, their 

TFPQ measure is equal to our measure of TFP from (4) divided by 𝜙𝜙.  While proportional, it is more challenging to construct their measure of 
TFPQ since it also requires an estimate of 𝜙𝜙, which requires decomposing the revenue elasticities into their demand and output elasticities 
components (see Blackwood et al. (forthcoming)).  Both the Hsieh and Klenow empirical measure and our measure are inclusive of any idiosyncratic 
demand shocks.  Foster, Haltiwanger, and Syverson (2008) define TFPQ to be technical efficiency.   

17 The gold standard is to use establishment- or firm-level prices permitting separation of technical efficiency and demand (and also alternative 
estimate approaches for output and demand elasticities).  However, such prices are available for only limited products in the Economic Censuses 
(see Foster, Haltiwanger, and Syverson (2008)). 

18 It is also a measure of fundamentals if plants are price takers.  Moreover, De Loecker et al. (2016) suggest that TFPR might be a preferred 
measure in the presence of unmeasured differences in materials prices and other inputs that reflect quality; output prices are likely correlated with 
such measures, so TFPR helps capture such variation.   
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the TFP concept from (4).  Rather, TFPR is a measure of revenue productivity (reflecting the 

product of prices and technical efficiency). 

We now describe how we estimate our various manufacturing productivity measures.  The 

construction of TFP from (4) requires estimates of the 𝛽𝛽𝑥𝑥 revenue elasticities.  We obtain estimates 

in two different ways, resulting in two alternative TFP-based measures.  Our first and preferred 

TFP measure relies on the first-order condition (for factor 𝑋𝑋) from static profit maximization: 

(6) 𝛼𝛼𝑥𝑥𝜙𝜙 = 𝛽𝛽𝑥𝑥 = 𝑊𝑊𝑥𝑥𝑥𝑥𝑋𝑋𝑗𝑗𝑗𝑗
𝑃𝑃𝑗𝑗𝑗𝑗𝑄𝑄𝑗𝑗𝑗𝑗

, 

 

where 𝑊𝑊𝑥𝑥𝑥𝑥 is the price of factor 𝑋𝑋 such that 𝛽𝛽𝑥𝑥 is the share of that factor’s costs in total revenue.  

The condition in (6) will not hold for all establishments at all times if there are adjustment frictions 

or wedges, but we only need (6) to hold on average when pooled through time and over 

establishments within industries, an assumption commonly used in the literature (e.g., Syverson 

(2011)).  We obtain factor shares of revenue from the NBER-CES database (at the 4-digit SIC 

level prior to 1997 and the 6-digit NAICS level thereafter) then extract revenue function residuals 

using equations (3) and (4).  We call this measure TFPS (for “TFP-Shares”). 

Our second TFP measure is based on estimation of the revenue function in (4) using the proxy 

method GMM approach of Wooldridge (2009), allowing elasticities to vary at the 3-digit NAICS 

level (see Appendix II for details; see other applications in, e.g., Gopinath et al. (2017) and 

Blackwood et al. (forthcoming)).  We refer to this measure as TFPP (for “TFP-Proxy”).  The TFPP 

method allows us to avoid reliance on first-order conditions, but the estimation process involves 

high-order polynomials and so requires large samples.  Following the literature, then, we use 

higher levels of aggregation for estimating industry elasticities—we use 3-digit NAICS compared 

to the 6-digit NAICS used for TFPS.19  This limitation of the proxy methods makes TFPS our 

preferred measure, but our results are robust to using TFPP. 

For the TFPR measure from (5), we construct output elasticities as cost shares of inputs out of 

total costs (under the assumption of constant returns to scale).20  We use the NBER-CES 

 
19 Blackwood et al. (forthcoming) find that the Wooldridge (2009) method residuals are highly sensitive to outliers, but pooling across more 

observations mitigates this problem.   
20 See, e.g., Baily, Hulten, and Campbell (1992); Foster, Haltiwanger, and Krizan (2001); Syverson (2011); Ilut, Kehrig, and Schneider (2018); 

and Bloom et al. (2018).  We construct time-invariant elasticities; in unreported exercises, we allow elasticities to vary over time with a Divisia 
index and find similar results. 
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productivity database to recover factor cost shares.  Cost shares equal factor elasticities under the 

assumptions of cost minimization and full adjustment of factors; again, however, one need not 

assume full adjustment for each establishment in each time period but rather that this holds 

approximately when pooling across all plants in the same industry over time.  Like TFPS, our 

TFPR measure avoids the noisiness of estimation and allows us to use output elasticities that vary 

at the detailed industry level.   

 Our data are not ideally suited for tracking the persistence of, and innovations to, the TFP 

measures given the panel rotation of the ASM and our use of CM data.  However, for results 

requiring us to estimate persistence of innovations, we exclude years for which we do not have a 

representative sample of continuing plants in 𝑡𝑡 and 𝑡𝑡 − 1 in our ASM-CM data (first panel years 

and Census years).  Additionally, we acknowledge that our establishment-level measures of TFP 

are vulnerable to errors arising from omitted factors.  For example, use of intangible capital in 

production is a potential source of measurement error (discussed further below).   

Our preferred “shock” measures are TFPP and TFPS, which are measures of fundamentals under 

the demand structure and production function assumptions made in this section.  TFPR is a closely 

related measure but, under the same assumptions, reflects both fundamentals and endogenous 

prices.  Exploring richer demand and production structures is an open area for future research.21  

B. Total economy revenue labor productivity 

While TFP is the preferred concept in a shocks vs. responsiveness framework, we can only 

estimate TFP in the manufacturing sector.  For the economy generally, we rely on revenue per 

worker (“revenue labor productivity” or RLP), which is necessarily a firm-level (rather than 

establishment-level) concept in our data.  As discussed above, rising adjustment frictions or 

increasingly correlated distortions also imply rising RLP dispersion and declining 

“responsiveness” of growth with respect to RLP.     

 
21 Much attention has recently been given to the possibility of variable markups across producers in the same industry (e.g., De Loecker, 

Eeckhout, and Unger (2020)).  The De Loecker, Eeckhout, and Unger (2020) approach uses the dispersion of the cost shares of fully flexible 
production factors in total revenue to indirectly identify markups as a residual.  An alternative approach to identification of variable markups is to 
maintain the CES demand structure assumption but consider oligopolistic competition (e.g., Hottman, Redding, and Weinstein (2016)).  In this 
approach, while firm-level markups are increasing in market share, our revenue function based on the CES demand structure is still appropriate. 
Sorting these issues out more fully is an important area for future research likely requiring price and quantity data for both outputs and inputs.  See 
Eslava and Haltiwanger (2020) for discussion of these issues. 
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Combining LBD employment (summed from the establishment to the firm level) with revenue 

measures in the Census Bureau’s Business Register (BR) (aggregated across EIN reporting units 

to the firm level) yields an enhanced LBD that we refer to as the RE-LBD.22  Revenue data are 

available from 1996 to 2013 and are derived from business tax returns.23  We construct annual 

firm employment growth rates on an “organic” basis to represent changes in establishment-level 

employment rather than artificial growth caused by mergers and acquisitions.24   

For firm-level exercises, we assign each firm a consistent “modal” industry code based on the 

NAICS industry in which it has the most employment over time.  In exercises reported in an earlier 

working paper version (Decker et al. (2018)), we found our results are robust to an alternative 

approach in which we explicitly control for all industries in which firms have activity rather than 

assigning each firm a single industry code.  We omit firms in the Finance, Insurance, and Real 

Estate sectors (NAICS 52-53) from all analysis due to the difficulty of measuring output and 

productivity in those sectors. 

 

III. Empirical Approach and Results 

A. “Shocks” hypothesis 

We now study the dispersion of our various productivity measures.  For this purpose, we use 

within-industry productivity: for any productivity measure 𝑧𝑧 (which is in logs), we specify 

establishment- or firm-level productivity as 𝑧𝑧𝑗𝑗𝑗𝑗 − 𝑧𝑧𝑡̅𝑡, where 𝑧𝑧𝑡̅𝑡 is the average for plant 𝑗𝑗′𝑠𝑠 industry 

in year 𝑡𝑡.  Figure 3a reports the standard deviation of our three (within-industry, log) measures for 

manufacturing —TFPS, TFPP, and TFPR—averaged for the 1980s, the 1990s, and the 2000s (up 

through 2013).  Our preferred measure, TFPS, sees an increase from about 0.46 in the 1980s to 

0.51 in the 2000s.  The other measures also show widening dispersion.  Figure 3b reports the 

 
22 The Business Register is the main source dataset for a variety of Census Bureau products including the LBD, County Business Patterns, and 

Statistics of U.S. Businesses. 
23 See Appendix II for more details on revenue data construction.  About 20 percent of LBD firm-year observations cannot be matched to BR 

revenue data because firms can report income under EINs that may fall outside of the set of EINs that Census considers part of that firm for 
employment purposes.  We address potential match-driven selection bias by constructing inverse propensity score weights. 

24 The organic growth rate calculation is straightforward but requires highly specific definitions of firm-level employment.  For a firm 𝑗𝑗, let 
𝐸𝐸𝑗𝑗𝑗𝑗+1 be the sum of employment in March of year 𝑡𝑡 + 1 among all establishments owned by firm 𝑗𝑗 in year 𝑡𝑡 + 1, and let 𝐸𝐸𝑗𝑗𝑗𝑗 be the sum of 
employment in March of year 𝑡𝑡 among all establishments owned by firm 𝑗𝑗 in March of year 𝑡𝑡 + 1 inclusive of establishments that closed between 
March of years 𝑡𝑡 and 𝑡𝑡 + 1. Then the firm-level growth rate between March of years t and t+1 is given by 𝑔𝑔𝑗𝑗𝑡𝑡+1 = (𝐸𝐸𝑗𝑗𝑗𝑗+1 − 𝐸𝐸𝑗𝑗𝑗𝑗)/(0.5𝐸𝐸𝑗𝑗𝑗𝑗 +
0.5𝐸𝐸𝑗𝑗𝑗𝑗+1).  See Haltiwanger, Jarmin, and Miranda (2013) for more discussion of organic firm growth. 
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standard deviation of (within-industry, log) revenue labor productivity (RLP) for the total U.S. 

economy (the first column).  Since our RLP data cover a shorter time span than our TFP data, we 

show more time detail.  As is apparent, RLP dispersion has risen over this time period for the 

whole economy, showing that rising productivity dispersion is not just a manufacturing 

phenomenon.  The remaining bars in Figure 3b report RLP dispersion for manufacturing only; 

specifically, the second set of bars is RLP dispersion in the ASM-CM, and the third set of bars is 

RLP dispersion in manufacturing from the RE-LBD. 

Figures 3a and 3b reveal several insights.  First, consistent with previous literature (e.g., 

Syverson (2004, 2011)), within-industry dispersion in TFP is large; for example, a level of 0.51 

(51 log points) for TFPS implies that an establishment one standard deviation above the mean for 

its industry is about 𝑒𝑒 .51 ≈ 1.7 times as productive as the mean.  Within-industry RLP is even 

more dispersed—as may be expected given potential dispersion in non-labor production factors, 

especially capital.  Second, the three TFP measures, while substantially different in construction, 

yield broadly similar dispersion trends.  Third, the rise in revenue productivity dispersion observed 

in manufacturing survey data is confirmed by administrative data (compare the second and third 

sets of bars in Figure 3b).  Bils, Klenow, and Ruane (2020) argue that rising revenue productivity 

dispersion observed in the ASM is due to increasing survey-based measurement error, but Figure 

3b shows that the rise in various measures of productivity dispersion in the U.S. is evident in 

administrative data, apparently not an artifact of survey limitations.25 

Recall we assume TFP follows 𝑎𝑎𝑗𝑗𝑗𝑗 = 𝜌𝜌𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗−1 + 𝜂𝜂𝑗𝑗𝑗𝑗 .  In Figure 3c we report the dispersion of 

revenue TFP innovations (𝜂𝜂𝑗𝑗𝑗𝑗; bottom left panel of Figure 3), and Figure 3d reports the persistence 

of revenue TFP levels (𝜌𝜌𝑎𝑎; bottom right panel).26  The dispersion of innovations has also risen, 

while the persistence of shocks has declined only modestly, in recent decades.   

Figure 3 implies that shock dispersion has not declined, as might be expected from declining 

reallocation, but, if anything, has actually risen.  In other words, the dispersion and volatility of 

shocks faced by businesses have not evolved in a way that could explain declining job reallocation.  

The business environment has not become less idiosyncratically turbulent; rather, it has become 

 
25 Recall that while the ASM measures of revenue and employment are from survey responses, the RE-LBD measures are from business tax 

returns (for revenue) and payroll tax records (for employment). 
26 The AR(1) estimates for TFPS and TFPP in Figure 3d are somewhat lower than those in the literature (e.g., Foster, Haltiwanger, and Syverson 

(2008), which use a narrow sample of products, and Cooper and Haltiwanger (2006), which use only large plants that are in existence continuously 
from 1972-1988).  
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more so.  These findings for the standard deviation of TFPS and TFPP realizations (and 

innovations) are direct evidence of rising shock dispersion.  The findings for TFPR and RLP are 

indirect evidence.  All else equal, the data on shock dispersion should imply a rising pace of 

reallocation, while we observe the opposite.  We therefore reject the “shocks” hypothesis. 

B. “Responsiveness” hypothesis: Initial exploration 

We next evaluate the “responsiveness” hypothesis for declining job reallocation—that is, the 

hypothesis that declining job reallocation is a result of dampened responsiveness of firms and 

establishments to their idiosyncratic productivity shocks.  The evidence of rising revenue 

productivity dispersion we document above already is consistent with responsiveness weakening; 

as shown in our model discussion, rising revenue productivity dispersion may reflect either 

declining responsiveness or rising dispersion of fundamentals.  We can directly test the 

responsiveness hypothesis by estimating responsiveness itself in the data.   

We proceed in a manner analogous to our measurement of responsiveness in model-simulated 

data above; that is, we estimate an expanded version of equation (2): 

(7) 𝑔𝑔𝑗𝑗𝑗𝑗+1 = 𝛽𝛽0 + 𝛽𝛽1𝑎𝑎𝑗𝑗𝑗𝑗 + 𝑇𝑇�𝑎𝑎𝑗𝑗𝑗𝑗, 𝑡𝑡� + 𝛽𝛽2𝑒𝑒𝑗𝑗𝑗𝑗 + 𝑇𝑇�𝑒𝑒𝑗𝑗𝑗𝑗 , 𝑡𝑡� + 𝑋𝑋𝑗𝑗𝑗𝑗′ Θ + 𝜀𝜀𝑗𝑗𝑗𝑗+1. 

 

Equation (7) forms the core of our approach to measuring changes in responsiveness over time, so 

we will describe it in some detail.  Individual establishments or firms are indexed by 𝑗𝑗, and time 

(in years) is indexed by 𝑡𝑡.  Note carefully the naming and timing convention of variables in (7):  

The dependent variable, 𝑔𝑔𝑗𝑗𝑗𝑗+1, is annual “DHS” employment growth between March of calendar 

year 𝑡𝑡 and March of calendar year 𝑡𝑡 + 1.27  Productivity (𝑎𝑎𝑗𝑗𝑗𝑗) is measured for the calendar year 𝑡𝑡.  

Initial employment (𝑒𝑒𝑗𝑗𝑗𝑗) is log employment as of March of year 𝑡𝑡.  The naming and timing 

conventions in (7) represent an empirical analogue to equation (2) given the timing of the 

measurement of growth and productivity in the data.28 

 
27 DHS growth rates are commonly used in the literature and refer to Davis, Haltiwanger, and Schuh (1996).  The DHS growth rate in equation 

(7)  is 𝑔𝑔𝑗𝑗𝑗𝑗+1 = (𝐸𝐸𝑡𝑡+1 − 𝐸𝐸𝑡𝑡)/(.5𝐸𝐸𝑗𝑗𝑗𝑗 + .5𝐸𝐸𝑗𝑗𝑗𝑗+1).  It is measured from the LBD.     
28 At first glance it might appear that equation (7) has slightly different timing than (2).  However, equation (2) can be interpreted as expressing 

the growth of employment from the beginning to the end of period 𝑡𝑡 as a function of the realization of productivity in period 𝑡𝑡 and initial (beginning 
of period 𝑡𝑡) employment.  Equation (7) approximates this empirically by expressing growth of employment from March of calendar year 𝑡𝑡 to March 
of calendar year 𝑡𝑡 + 1 as a function of the realization of productivity during calendar year 𝑡𝑡 and initial employment measured in March of calendar 
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In our baseline results, we measure productivity (𝑎𝑎𝑗𝑗𝑗𝑗) by the level of (log) TFP.  We extend that 

baseline specification in a variety of ways, including the use of innovations to or changes in (rather 

than levels of) TFP.  For our baseline specifications using the log of TFPS or TFPP (either 

realizations or innovations),  𝛽𝛽1 estimates “responsiveness” (or the response of growth to 

productivity at the establishment or firm level) and corresponds to 𝛽𝛽1𝑡𝑡 from equation (2), our 

responsiveness regression on model-simulated data.  In extended analyses we obtain insights into 

changing responsiveness with respect to TFPR and RLP.  For all of our measures of productivity, 

we permit this responsiveness to vary over time via 𝑇𝑇(𝑎𝑎𝑗𝑗𝑗𝑗, 𝑡𝑡) as described below.   

Initial employment, another critical state variable in our model, is given by 𝑒𝑒𝑗𝑗𝑗𝑗, which is 

measured as log establishment-level employment from the LBD in March of calendar year t.  𝑋𝑋𝑗𝑗𝑗𝑗′  

includes detailed industry fixed effects (e.g., 6 digit NAICS) interacted with year effects, 

establishment size (in the case of specifications for manufacturing), firm size, state fixed effects, 

the change in state unemployment rates (to measure state-level business cycle effects), and 

interaction terms between the change in state unemployment rates and productivity; our liberal 

inclusion of cyclical indicators is intended in part to avoid result contamination from the Great 

Recession.29 We estimate equation (7) on our manufacturing establishment sample (covering 

1981-2013) for our TFPS, TFPP, and TFPR measures, and on our total economy firm sample 

(covering 1997-2013) in which 𝑎𝑎𝑗𝑗𝑗𝑗 is replaced with the log of revenue labor productivity (RLP). 

As stated, equation (7) allows productivity responsiveness to vary over time via 𝑇𝑇(𝑎𝑎𝑗𝑗𝑗𝑗, 𝑡𝑡), which 

we define variously as follows: 

 

(8) 𝑇𝑇�𝑎𝑎𝑗𝑗𝑗𝑗 , 𝑡𝑡� ∈

⎩
⎪⎪
⎨

⎪⎪
⎧
𝛿𝛿𝑎𝑎𝑗𝑗𝑗𝑗𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑡𝑡,

𝛾𝛾97𝑎𝑎𝑗𝑗𝑗𝑗𝕀𝕀{𝑡𝑡≥1997},

𝜆𝜆80𝑠𝑠𝑎𝑎𝑗𝑗𝑗𝑗𝕀𝕀{𝑡𝑡∈(1980,1990)} + 𝜆𝜆90𝑠𝑠𝑎𝑎𝑗𝑗𝑗𝑗𝕀𝕀{𝑡𝑡∈[1990,2000)}

+𝜆𝜆00𝑠𝑠𝑎𝑎𝑗𝑗𝑗𝑗𝕀𝕀{𝑡𝑡≥2000} − 𝛽𝛽1𝑎𝑎𝑗𝑗𝑗𝑗

 

 

 
year 𝑡𝑡.  We explore implications of timing assumptions further in Appendix I.  For example, in our simulated models responsiveness to lagged 
realizations of productivity also declines as adjustment costs rise. 

29 In unreported exercises, we omit the cyclical controls in 𝑋𝑋𝑗𝑗𝑗𝑗′  and find very similar results.  Moreover, to further ensure the Great Recession 
does not drive our results, in unreported exercises we end our sample in 2007 and still find similar results. 
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The first element of (8) defines the time function as a simple linear trend with coefficient 𝛿𝛿.  The 

second element uses a dummy variable to split the manufacturing sample roughly in half, such that 

overall responsiveness is equal to 𝛽𝛽1 prior to 1997 and 𝛽𝛽1 + 𝛾𝛾97 thereafter.  The third element 

allows responsiveness to vary by decade, where the final “decade” is 2000-2013; by subtracting 

𝛽𝛽1𝑎𝑎𝑗𝑗𝑗𝑗, we remove the main effect specified in (7) so the decade coefficients can be interpreted in 

a fully saturated manner.  We also permit the effects of initial employment to vary over time in an 

analogous fashion. 

We emphasize that the employment growth measure and the initial calendar-year 𝑡𝑡 employment 

measure are from the LBD; this is important for two reasons.  First, the LBD growth measure uses 

longitudinal linkages available for all establishments.  This means we can track employment 

growth from March of year 𝑡𝑡 to 𝑡𝑡 + 1 for each establishment in the representative ASM-CM cross 

section for which we have TFP measures in calendar year 𝑡𝑡.  When we use innovations to, or 

changes in, TFP we reduce the set of years available but, again, track the employment growth for 

all establishments for which we measure innovations in 𝑡𝑡.  Second, the LBD’s administrative 

employment measures we use to measure growth and initial employment are of high quality, 

minimizing concerns about possible division bias from measurement error in initial employment. 

For the manufacturing analysis, the employment measure used to construct the growth rates and 

initial employment differs from the source data for total hours used to construct the TFP measures.  

See Section V.E below for further discussion and robustness analysis.   

Table 1 reports results from establishment- and firm-level regressions using annual DHS 

employment growth (inclusive of exit) for the dependent variable, as in equation (7).  All 

regressions include the 𝑋𝑋𝑗𝑗𝑗𝑗′ Θ term from equation (7), but we do not report those coefficients.30  We 

divide the table into four parts reflecting our four productivity concepts:  Panel A includes 

regressions using TFPS (in which factor elasticities are revenue shares) and TFPP (in which factor 

elasticities are estimated by proxy method), while Panel B includes regressions using TFPR (in 

which factor elasticities are simply cost shares), and RLP (real revenue per worker).   

Consider the first section of Panel A, under the heading “TFPS (revenue share based)”. This 

section refers to establishment-level regressions in which the dependent variable is employment 

growth and the productivity variable 𝑎𝑎𝑗𝑗𝑗𝑗 is TFPS.  The first column specifies changing 

 
30 We report only 𝛽𝛽1 and the time function 𝑇𝑇(𝑎𝑎𝑗𝑗𝑗𝑗, 𝑡𝑡) coefficients to satisfy data disclosure constraints. 
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responsiveness with the linear time trend described in (8).  For TFPS, we estimate a base 

responsiveness coefficient of 𝛽̂𝛽1 = 0.2965, a significant positive number indicating strong 

selection early in the data time period, but we also find 𝛿𝛿 = −0.0035, which indicates 

responsiveness has weakened over time, as hypothesized.  The regression reported in the next 

column uses the post-1997 responsiveness shifter from (8).  Here we find a pre-1997 

responsiveness coefficient of 𝛽̂𝛽1 = 0.2905, but after 1997 the responsiveness coefficient is equal 

to the base estimate plus the coefficient on the post-1997 interaction, 𝛾𝛾�97 − 0.0952, for a total 

responsiveness coefficient in the post-1997 period of 0.1953—a number that is still consistent 

with positive responsiveness and productivity selection, but much weaker responsiveness than in 

the earlier period.  The next column reports estimates from the fully saturated decade indicators 

(𝜆𝜆) from (8).  Here we see the clear step down in productivity responsiveness, from about 0.29 in 

the 1980s to 0.20 in the 2000s, and the lower rows of this regression column report p values from 

t tests of equality between the various decade coefficients; in the case of TFPS, each decade 

coefficient is statistically different from the others. 

The remainder of Table 1 proceeds analogously to the TFPS analysis, substituting the 

alternative productivity measures into otherwise identical regressions.  Within manufacturing, 

while the quantitative results differ some between the alternative measures, and the exact timing 

of the decline in responsiveness varies somewhat, overall the qualitative results are strikingly 

similar and confirm a multi-decade decline in responsiveness. 

Results for the whole economy using RLP (revenue labor productivity) as the productivity 

concept are in the second section (or right-hand side) of Panel B.  Again, these data have a shorter 

time window.  We estimate a clear decline in responsiveness as shown by the negative, significant 

value for 𝛿𝛿 (the trend term).  In other words, the weakening of responsiveness we observe in 

manufacturing has occurred across the economy generally. 

Table 2 reports regressions that mimic those in Table 1 except that the dependent variable is now 

exit (firm shutdown, a binary indicator that is unity if the firm exits the data between years 𝑡𝑡 and 

𝑡𝑡 + 1) rather than growth.  While the DHS growth rate indicator used in Table 1 is inclusive of 

exit, it is useful to focus on the extensive margin in isolation.31  We focus on our preferred measure, 

TFPS.  The second column of Panel A shows an exit coefficient that goes from -0.0801 in the pre-

 
31 The exit specifications eliminate any concerns about division bias.  
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1997 period to -0.0461 (i.e., -0.0801 + 0.0340) thereafter.  The third column shows a substantial 

and statistically significant weakening of exit responsiveness from the 1980s to the 1990s along 

with some further modest (and marginally significant) weakening in the 2000s.   
A useful way to quantify the magnitude of the Table 1 and Table 2 results—and of the decline 

in responsiveness—is to link them to the actual distribution of productivity.  We compute the 

implied difference in employment growth (or exit)  between the establishment (or firm) that is one 

standard deviation above its industry mean and the establishment (or firm) that is at the industry 

mean by multiplying each regression coefficient by the standard deviation of productivity.  From 

Figure 3a we take the average of the standard deviation of TFPS across decades (0.48) to isolate 

the effect of changing responsiveness (i.e., avoid confounding the responsiveness change with 

changes in dispersion) and multiply it by the decade coefficients found in the TFPS regressions in 

Table 1 and Table 2.    

The result is in Figure 4a, where we flip the sign of the exit coefficients for comparability.  

During the 1980s, an establishment that was one standard deviation above its industry in terms of 

TFPS grew its employment (over one year) by 14 percentage points more than the industry mean, 

a striking illustration of the intensity of productivity selection within industries.32  That same 

establishment also faced an exit risk 3.7 percentage points lower than its industry mean.  In the 

1990s, the growth rate differential fell to 12 percentage points while the exit risk differential 

narrowed to 2.8 percentage points.  By the 2000s, the growth differential was 10 percentage points 

and the exit risk differential was 2.5 percentage points.  While productivity selection is still clearly 

evident, the decline in responsiveness has weakened selection materially, substantially narrowing 

the growth and survival advantage of high-productivity establishments.   
Figure 4b shows the same differentials for RLP economywide (using the standard deviation of 

RLP from Figure 3b); since we do not have decade dummy coefficients for RLP, here we use 𝛿𝛿, 

the linear trend coefficient, combined with the base coefficient 𝛽̂𝛽1, to construct annual 

responsiveness coefficients, then we report multi-year averages at the beginning and end of the 

period.  The result is qualitatively similar to the TFP-based manufacturing results: the growth and 

survival advantage of high-productivity firms (those firms whose revenue per worker is one 

standard deviation above their industry mean), while still evident, has deteriorated over time.  The 

 
32 Again, we obtain the 14 percentage point result by multiplying the 1980s coefficient from the third column of Table 1 (0.2859) by the average 

dispersion of TFPS from Figure 3a (0.48), that is, 0.2859 * 0.48 = 0.14. 
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growth differential between high- and average-productivity firms has fallen from 25 percentage 

points (1996-1999 average) to below 21 percentage points (2011-2013), while the exit probability 

differential has gone from 7.6 to 6.7 percentage points. 

Tables 1 and 2 and Figure 4 strongly demonstrate that responsiveness has weakened among U.S. 

businesses.  We observe weakening responsiveness to four independent measures of 

establishment- or firm-level productivity, and we see the decline in three different specifications: 

negative linear trend estimates, a negative and significant step down in the second half of the 

sample versus the first half (using the post-1997 indicator), and significantly different 

responsiveness coefficients in the 1980s, the 1990s, and the 2000-onward period.  Employment 

growth responsiveness has weakened, as has the sensitivity of establishment or firm exit.  

As discussed above, there should also be a decline in responsiveness to the innovation to, or the 

change in, productivity.  As previously noted, our data are not ideally suited to measuring 

productivity changes; our ASM-CM sample is representative in any specific year but is not 

designed to be longitudinally representative.  With that caveat in mind, we estimate our 

manufacturing regressions replacing the level of productivity (𝑎𝑎𝑗𝑗𝑗𝑗) with the innovation to 

productivity (given by 𝜂𝜂𝑗𝑗𝑗𝑗 = 𝑎𝑎𝑗𝑗𝑗𝑗 − 𝜌𝜌𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗−1) and with the change in productivity (∆𝑎𝑎𝑗𝑗𝑗𝑗 = 𝑎𝑎𝑗𝑗𝑗𝑗 −

𝑎𝑎𝑗𝑗𝑗𝑗−1).  We focus on our preferred productivity measure, TFPS, and report the results in Table 3.33  

Note that this exercise significantly reduces our sample size (from over 2 million establishment-

year observations to fewer than 1 million).  Regardless, we still observe a decline in responsiveness 

of employment growth to TFPS innovations or changes, with a particular step down between the 

1990s and the 2000s.  In other words, our main results are broadly robust to the use of productivity 

innovations or changes rather than productivity levels.   
Taken together with the evidence of rising productivity dispersion, these results suggest that the 

costs or incentives to adjust employment in response to changing economic circumstances have 

changed over time.  While declining responsiveness can arise from declining shock dispersion in 

certain theoretical environments (the model with non-convex adjustment costs above, though not 

the other specifications we describe), shock dispersion and the dispersion of revenue per worker 

have actually risen; the latter is consistent with model setups in which rising adjustment costs or, 

 
33 Tables 1 and 2 show that the various TFP measures deliver broadly similar results, so in all remaining empirical exercises we dispense with 

our TFPP and TFPR measures and report only TFPS results.  As noted above, TFPS—the TFP measure based on elasticities from factor shares of 
revenue—is our preferred TFP measure, as it allows for endogenous prices while avoiding the imprecision of revenue function estimation.  We also 
continue to report specifications based on RLP to gain perspective on non-manufacturing activity. 
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more generally, increasingly correlated wedges drive a decline in responsiveness.  In robustness 

exercises described further below, we provide more evidence that changing responsiveness is not 

the result of changes in the distribution of shocks (whether in terms of dispersion or persistence). 

C. “Responsiveness” hypothesis: Young versus mature firms 

One critical change in the composition of U.S. businesses in recent decades may be affecting 

these results: the secular decline in young firm activity.  If young firms are typically more 

responsive to shocks than are more mature firms, overall responsiveness would decline as young 

firm activity falls.  The potential for firm age-based composition effects to affect our results is 

possibly a significant limitation of the exercises presented in Table 1, so we next study changing 

responsiveness within firm age groups by estimating the following: 

 

(9) 
𝑔𝑔𝑗𝑗𝑗𝑗+1 = �𝛽𝛽1

𝑦𝑦𝑎𝑎𝑗𝑗𝑗𝑗 + 𝑇𝑇𝑦𝑦�𝑎𝑎𝑗𝑗𝑗𝑗, 𝑡𝑡� + 𝛽𝛽2
𝑦𝑦𝑒𝑒𝑗𝑗𝑗𝑗 + 𝑇𝑇𝑦𝑦(𝑒𝑒𝑗𝑗𝑗𝑗, 𝑡𝑡)�𝕀𝕀{𝑦𝑦=1}

+�𝛽𝛽1𝑚𝑚𝑎𝑎𝑗𝑗𝑗𝑗 + 𝑇𝑇𝑚𝑚�𝑎𝑎𝑗𝑗𝑗𝑗, 𝑡𝑡� + 𝛽𝛽2𝑚𝑚𝑒𝑒𝑗𝑗𝑗𝑗 + 𝑇𝑇𝑚𝑚(𝑒𝑒𝑗𝑗𝑗𝑗, 𝑡𝑡)�𝕀𝕀{𝑚𝑚=1}

+𝑋𝑋𝑗𝑗𝑗𝑗′ Θ + 𝜀𝜀𝑗𝑗𝑗𝑗+1,
 

 

where 𝑦𝑦 indicates young firms (those with age less than five), 𝑚𝑚 indicates mature firms (those with 

age five or greater), and each 𝕀𝕀{.} is a corresponding age dummy indicator.  We focus on firm age, 

even in establishment-level regressions; we assign each establishment the firm age of its parent 

firm.  𝑇𝑇𝑦𝑦(𝑎𝑎𝑗𝑗𝑗𝑗, 𝑡𝑡) and 𝑇𝑇𝑚𝑚(𝑎𝑎𝑗𝑗𝑗𝑗, 𝑡𝑡) (and the corresponding effects for 𝑒𝑒𝑗𝑗𝑗𝑗) are defined as in (8) with 

the addition of firm age superscripts on all relevant coefficients.  We also include interactions of 

the cyclical controls with firm age in 𝑋𝑋𝑗𝑗𝑗𝑗′ .34 

Table 4 reports results from the regression in (9) for TFPS and RLP.  As before, we report results 

with employment growth as the dependent variable (Panel A, on the left) and exit as the dependent 

variable (Panel B, on the right).  As can be seen in all specifications—TFPS and RLP, with both 

growth and exit as dependent variables—young firms are indeed more responsive than mature 

firms (even within decades).  In other words, young firms face more intense selection.  As such, 

some portion of the decline in responsiveness reported in Table 1 does indeed reflect the changing 

 
34 Disclosure limitations preclude a more detailed age analysis. 
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age composition of firms.  However, as the trend and decade coefficients demonstrate, 

responsiveness has declined over time within firm age groups.   

Responsiveness has particularly declined among young firms, which have historically been more 

responsive.  The 2000s growth coefficient for young firms, 0.25, is weaker than the initial 1980s 

coefficient for mature firms, 0.27.  Following the exercise used for Figure 4, the growth differential 

for young firms with TFPS one standard deviation above their industry-year mean has declined 

from over 17 percentage points in the 1980s to just over 12 percentage points in the 2000s, while 

the exit risk differential has narrowed from 4.9 to 3.3 percentage points. 

D. “Responsiveness” hypothesis: High-tech 

As shown in Figure 1, patterns of reallocation in the high-tech sector have differed from the 

broader economy in recent decades.  In particular, in high-tech the pace of reallocation rose during 

the 1980s and 1990s before declining in the 2000s.  Given our shocks vs. responsiveness 

framework, the reallocation patterns lead us to expect productivity responsiveness to behave 

similarly; that is, we expect productivity responsiveness in the high-tech sector to strengthen 

during the 1980s and 1990s, then weaken thereafter.   

We estimate equation (9) separately for high-tech and non-tech businesses (see the data 

discussion for details on industry classification).  Again, we report results using the TFPS and RLP 

productivity concepts.  Table 5 reports the results of these regressions, where we report only 

growth regressions (omitting exit regressions for brevity; recall that our DHS growth variable is 

inclusive of exit). We focus first on TFPS results, the first four columns of the table.  While the 

results for non-tech establishments (the first two columns) are similar to those of the economy 

generally (shown in Table 4), responsiveness patterns in high-tech (the third and fourth columns) 

are different, in a manner consistent with aggregate reallocation patterns.  This can be clearly seen 

in the decade-specific responsiveness coefficients: responsiveness rises between the 1980s and 

1990s and steps back down in the 2000s.  This rising and falling pattern is particularly evident 

among young high-tech firms.  Figures 5a and 5b report growth differentials with the method from 

Figure 4; among young high-tech firms in manufacturing, the employment growth differential 

between high-productivity establishments and average establishments rose from 12 percentage 
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points in the 1980s to over 15 percentage points in the 1990s then fell to less than 8 percentage 

points in the 2000s.35 

The last two columns of Table 5 report regressions using RLP as the productivity concept.  Our 

RLP data only begin in 1996, but the high-tech responsiveness pattern is evident even in the linear 

trend coefficients (𝛿𝛿𝑦𝑦 and 𝛿𝛿𝑚𝑚), particularly among young firms.  Figures 5c and 5d report the 

coefficients in terms of growth rate differentials, averaged for 1996-1999 and 2011-2013; among 

young high-tech firms, the growth rate differential between high-productivity firms and their 

industry average has declined from 30 to 23 percentage points. 

Table 5 and Figure 5 tell a rich story about productivity responsiveness and selection in recent 

decades.  Consistent with patterns of job reallocation, responsiveness among non-tech businesses 

has declined steadily and significantly in recent decades, particularly among young firms, which 

have historically faced intense selection but increasingly behave more like mature firms.  In high-

tech, we observe rising responsiveness from the 1980s into the 1990s then falling responsiveness 

thereafter.  These patterns are consistent with aggregate patterns of job reallocation.  More broadly, 

Table 5 is consistent with the results of Tables 1-4, which tell a story of pervasive decline in 

productivity responsiveness by the end of the 2000s. 

The high-tech productivity responsiveness pattern is also consistent with patterns of aggregate 

productivity growth during the 1990s and the 2000s.  Aggregate productivity growth in the U.S. 

increased during the 1990s before stepping down in the early-to-mid 2000s, driven largely by 

industries that produce or heavily use ICT products (Fernald (2014)).  The Table 5 patterns of 

responsiveness in high-tech have this same inverted u-shape pattern. 

 

IV. Aggregate implications 

A. Aggregate job reallocation 

The motivating fact of the paper is the decline in job reallocation.  While theory suggests a tight 

link between business-level responsiveness and aggregate job reallocation, a natural question is 

whether the responsiveness changes we document are sufficiently large to matter in the aggregate.  

 
35 Recall that this exercise compares high-productivity establishments—those with TFPS that is one standard deviation above their industry-

year mean—to establishments at the industry-year mean. 
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In this section, we conduct a counterfactual exercise to relate our responsiveness estimates to 

changes in aggregate job reallocation.   

Job reallocation from establishment-level (firm-level) data is equal to the employment-weighted 

sum of the absolute value of establishment-level (firm-level) employment growth rates.  

Establishment- and firm-level growth rates are the outcome variable for our responsiveness 

regressions above, so we can use our empirical responsiveness estimates to compute implied 

aggregate reallocation with and without estimated changes in establishment- or firm-level 

responsiveness.  For this exercise, we focus on the specifications that permit changing 

responsiveness that varies by firm age group (reported in Table 4). 

 Consider the decade-specific regression coefficients reported in Table 4.  For any given 

establishment’s actual observed firm age, initial employment, TFPS productivity, and control 

variables, these regression coefficients provide a predicted employment growth rate 𝑔𝑔�𝑡𝑡+1 that 

varies by decade.  Moreover, these predicted growth rates also provide predicted employment for 

each establishment given by 𝐸𝐸�𝑗𝑗𝑗𝑗+1 = (1 + 𝑔𝑔�𝑗𝑗𝑗𝑗+1)𝐸𝐸𝑗𝑗𝑗𝑗, where 𝐸𝐸𝑗𝑗𝑗𝑗 is the establishment’s actual 

observed initial employment in March of calendar year 𝑡𝑡.  Given predicted employment, we can 

compute the establishment’s predicted employment share of total employment as 𝜃𝜃�𝑗𝑗𝑗𝑗+1 =

�𝐸𝐸�𝑗𝑗𝑗𝑗+1 + 𝐸𝐸𝑗𝑗𝑗𝑗�/∑ �𝐸𝐸�𝑗𝑗𝑗𝑗+1 + 𝐸𝐸𝑗𝑗𝑗𝑗�𝑗𝑗 .36  Thus, for any given year 𝑡𝑡 + 1, we can predict aggregate job 

reallocation as 𝐽𝐽𝐽𝐽�𝑡𝑡+1 = ∑ 𝜃𝜃�𝑗𝑗𝑗𝑗+1�𝑔𝑔�𝑗𝑗𝑗𝑗+1�𝑗𝑗 . 

Since we can construct predicted aggregate job reallocation for any given year, we can also 

construct an estimate of the effect of changing responsiveness on aggregate job reallocation using 

our establishment-level microdata.  For any given year 𝑡𝑡, let 𝐽𝐽𝐽𝐽�𝑡𝑡+1
𝐷𝐷𝐷𝐷 = ∑ 𝜃𝜃�𝑗𝑗𝑗𝑗+1𝐷𝐷𝐷𝐷 �𝑔𝑔�𝑗𝑗𝑗𝑗+1𝐷𝐷𝐷𝐷 �𝑗𝑗  be the 

predicted job reallocation rate given the actual decade-specific responsiveness coefficients 

described in Table 4 (where the “DR” superscripts refer to “declining responsiveness”).  

Separately, we construct a constant-responsiveness (“CR”) version of predicted job reallocation, 

𝐽𝐽𝐽𝐽�𝑡𝑡+1
𝐶𝐶𝐶𝐶 = ∑ 𝜃𝜃�𝑗𝑗𝑗𝑗+1𝐶𝐶𝐶𝐶 �𝑔𝑔�𝑗𝑗𝑗𝑗+1𝐶𝐶𝐶𝐶 �𝑗𝑗 , where the 1980s coefficients are used for all years 𝑡𝑡. 

The effect of declining responsiveness on aggregate job reallocation is given by the difference 

between the two predicted job reallocation objects: 

 

 
36 Here we measure employment shares using the Davis, Haltiwanger, and Schuh (1996) approach, which is necessary for correct aggregation. 

In implementing these counterfactuals, we are using the same timing conventions as in equation (7).   
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(10) ∆𝑡𝑡+1(𝐽𝐽𝐽𝐽) = 𝐽𝐽𝐽𝐽�𝑡𝑡+1
𝐷𝐷𝐷𝐷 − 𝐽𝐽𝐽𝐽�𝑡𝑡+1

𝐶𝐶𝐶𝐶 = ∑ 𝜃𝜃�𝑗𝑗𝑗𝑗+1𝐷𝐷𝐷𝐷 �𝑔𝑔�𝑗𝑗𝑗𝑗+1𝐷𝐷𝐷𝐷 �𝑗𝑗 − ∑ 𝜃𝜃�𝑗𝑗𝑗𝑗+1𝐶𝐶𝐶𝐶 �𝑔𝑔�𝑗𝑗𝑗𝑗+1𝐶𝐶𝐶𝐶 �𝑗𝑗 . 

 

Equation (10) isolates the effect of declining responsiveness on aggregate job reallocation by 

comparing model-predicted reallocation under measured declining responsiveness trends to 

model-predicted reallocation when responsiveness is held constant at its 1980s strength (where by 

“model” we refer to the empirical regression model).  While real-world reallocation may depend 

on additional factors beyond productivity responsiveness, these factors are controlled for in our 

counterfactual since both terms of equation (10) are based entirely on model-driven (i.e., 

responsiveness-driven) reallocation.  If responsiveness coefficients do not change over time, then 

∆𝑡𝑡+1(𝐽𝐽𝐽𝐽) = 0, even if actual job reallocation has changed.  Moreover, for each year 𝑡𝑡, equation 

(10) takes as given the actual empirical distribution of productivity and initial employment. 

We calculate ∆𝑡𝑡+1(𝐽𝐽𝐽𝐽) in every year then take the average over the 2000s to obtain an average 

effect of -3.6 percentage points; that is, by the 2000s, declining responsiveness has reduced the 

aggregate job reallocation rate in manufacturing by 3.6 percentage points (relative to the higher 

responsiveness of the 1980s).  Actual job reallocation in manufacturing, holding age composition 

constant, declined about 2.7 percentage points from the 1980s to the 2000s.37  We seemingly over-

account for the decline in the pace of job reallocation.  However, the counterfactual exercise 

isolates the effect of declining responsiveness, taking the distribution of establishment-level 

productivity as given and abstracting from all other drivers of reallocation.   Put differently, the 

counterfactual yields what reallocation would have been in the 2000s if responsiveness had been 

the same as it was in the 1980s, but with the 2000s distributions of productivity and employment.     

We conduct an analogous exercise for the decline in job reallocation from the 1996-99 to 2011-

13 for the entire U.S. private sector.  That is, we use equation (10) where predicted employment 

shares and growth rates are based on responsiveness to revenue labor productivity as estimated in 

the third column of Table 4.  The constant responsiveness (CR) scenario holds responsiveness at 

its initial value (i.e., setting the trend coefficients 𝛿𝛿𝑦𝑦 = 𝛿𝛿𝑚𝑚 = 0), while the declining 

responsiveness (DR) scenario allows responsiveness to vary according to the estimated trend 

coefficients (which effectively provide a specific responsiveness coefficient for any given year).  

 
37 For this purpose, we use the decline in Figure 1 adjusted for the changing firm age composition of manufacturing shown in Figure A5 of the 

appendix, since our counterfactual exercise relies on age-specific coefficients. 
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Notably, this exercise is subject to the (significant) limitation that, when studying the entire private 

sector, we cannot measure firm-level TFP but, rather, rely on firm-level real labor productivity.  

That said, the average effect for the 2011-2013 period is -1.4 percentage points, suggesting that 

declining responsiveness since the late 1990s has reduced economywide job reallocation rates by 

about 1.4 percentage points.  The actual decline—again holding firm age composition constant—

was about 3.0 percentage points.38  Even with the limitation of using labor productivity instead of 

more precise “shock” measures, the decline in estimated responsiveness “accounts” for about half 

of the total decline in U.S. job reallocation.   

B. Aggregate productivity 

 

Our methodology for estimating aggregate reallocation effects can also be applied to estimating 

aggregate productivity implications of declining responsiveness.  We first define an aggregate 

productivity index as the employment-weighted average of establishment (firm) productivity, 

∑ 𝜃𝜃𝑗𝑗𝑗𝑗+1𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗  (where 𝜃𝜃𝑗𝑗𝑗𝑗+1 is an employment weight as specified previously).  This index tracks the 

effect of changing the allocation of employment from t to t+1 holding the productivity distribution 

in t constant.  It is related to the type of weighted measure of productivity used by Olley and Pakes 

(1996) and Foster, Haltiwanger, and Krizan (2001)).39  It is useful in our setting since it permits 

inference using a narrow counterfactual isolating the impact of declining responsiveness; in 

particular, we construct the effect of changing responsiveness on the aggregate productivity index 

for manufacturing as follows: 

 

(11) ∆𝑡𝑡+1(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) = ∑ 𝜃𝜃�𝑗𝑗𝑗𝑗+1𝐷𝐷𝐷𝐷 𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗 − ∑ 𝜃𝜃�𝑗𝑗𝑗𝑗+1𝐶𝐶𝐶𝐶 𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗  

 

 
38 Since this exercise relies on firm-level data and firm-level responsiveness coefficients, we cannot directly compare our estimated effect to 

the actual reallocation decline reported in Figure 1 (since that figure reports establishment-based reallocation rates, as is standard in the literature).  
Decker et al. (2016b) report the decline in the firm-based reallocation rate for the U.S. (see their Figure A1).  To adjust this decline for changing 
age composition, we approximate the fraction of the firm-based reallocation decline that occurred within firm age classes using our Figure A5 (in 
the appendix), which provides this fraction for establishment-based reallocation.  

39 The weighted average of establishment-level productivity tracks measured aggregate productivity well (see Figure A.1 of Decker et al. 
(2017)).  However, conceptually it is only equal to aggregate productivity under the assumptions of constant returns to scale and perfect competition 
and using the composite input as weights. 
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where, as in our reallocation counterfactual, 𝜃𝜃�𝑗𝑗𝑗𝑗+1𝐷𝐷𝐷𝐷  refers to the predicted employment weight of 

establishment 𝑗𝑗 given that establishment’s initial employment 𝐸𝐸𝑗𝑗𝑗𝑗, productivity 𝑎𝑎𝑗𝑗𝑗𝑗, and actual 

estimated responsiveness coefficients (which decline over time, hence DR for “declining 

responsiveness”) as reported in Table 4; while 𝜃𝜃�𝑗𝑗𝑗𝑗+1𝐶𝐶𝐶𝐶  refers to the predicted employment weight of 

that same establishment 𝑗𝑗 if responsiveness stays constant over time at its 1980s value. 

As in our reallocation counterfactual, our productivity counterfactual in (11) isolates the effect 

of declining responsiveness on the aggregate productivity index.  ∆𝑡𝑡+1(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) measures the impact 

of changing responsiveness on the aggregate productivity index abstracting from other drivers of 

aggregate productivity dynamics; in Appendix I, we show that this difference-based counterfactual 

closely mimics the actual decline in aggregate productivity induced by rising adjustment costs in 

our theoretical model framework (see Figure A4).   

As in our reallocation counterfactual, we construct this productivity effects measure for every 

year then average these effects over the 2000s.  We obtain an average effect of about -2.3 log 

points; we interpret this as implying that, during the 2000s on average, the weighted index of 

establishment-level TFP is only 97.7 percent of what it would have been if responsiveness had 

stayed constant at its 1980s strength.  To put this into perspective, according to the BLS, 

manufacturing TFP increased by about 30 percent from the 1980s to the 2000s; taking the 

difference-based counterfactual as an indicator of the actual drag on productivity, productivity 

would have risen by about 33 percent without the decline in responsiveness. 

We also use the analogue of (11) for the U.S. private sector broadly during the 1996-99 to 2011-

13 period.  Again, this exercise suffers from the limitation of using revenue labor productivity for 

estimated responsiveness (as in our reallocation counterfactual) and, additionally, requires a 

productivity index based on labor productivity.  With that in mind, we find an effect of -3.2 log 

points; this implies that for 2011-2013, the weighted index of firm-level revenue labor productivity 

is about 96.8 percent of what it would have been if responsiveness had stayed constant since the 

1990s.  According to the BLS, labor productivity increased by about 36 percent from the late 1990s 

to the 2011-13 period.  Taking the difference-based counterfactual as an indicator of the actual 

drag on productivity, aggregate labor productivity would have risen by about 40 percentage points 

without the decline in responsiveness.  We interpret these effects as nontrivial, though we 
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emphasize that our productivity counterfactual methodology is an approximation; a more rigorous 

estimate would require a fully featured, carefully calibrated structural model.40 

Our reallocation and aggregate productivity exercises suggest that the decline in responsiveness 

we document has significant aggregate consequences.  A large fraction of the decline in aggregate 

job reallocation can be explained by the decline in responsiveness, and the implications for 

aggregate productivity are nontrivial. 

 

V. Robustness exercises 

Tables 1-5 demonstrate robustness of our responsiveness results to alternative productivity 

measures, including innovations to productivity.  We show that our changing responsiveness 

evidence holds up within firm age groups and is evident in a variety of time trend specifications.  

Our results typically have extremely high statistical significance.  This robustness notwithstanding, 

we now briefly explore several other issues. 

A. Investment responsiveness 

One possible explanation for declining employment responsiveness is that businesses 

increasingly respond to idiosyncratic shocks by adjusting factors other than employment.  This 

may be thought of as a capital/labor substitution mechanism.  While our economywide firm dataset 

lacks information on factors other than labor, the manufacturing data are much richer.  Here we 

focus on manufacturing establishments and study the responsiveness of equipment investment to 

productivity over time.  We estimate specification (9) replacing the DHS employment growth rate 

with the investment rate 𝐼𝐼𝑗𝑗𝑗𝑗 𝐾𝐾𝑗𝑗𝑗𝑗⁄ , where 𝐼𝐼𝑗𝑗𝑗𝑗 is establishment-level equipment investment throughout 

year 𝑡𝑡, and 𝐾𝐾𝑗𝑗𝑗𝑗 is the stock of capital equipment at the beginning of the year.  Models of business 

dynamics with adjustment costs produce policy functions and intuition for capital investment that 

are similar to the policy functions and intuition for employment growth.41   

 
40 One approach would be to use a simulated method of moments estimation of competing driving forces in a structural model using our 

estimates of changes in the shock process and responsiveness as moments in the estimation.  With estimated structural parameters in hand, a rigorous 
counterfactual could be constructed. 

41 To make results comparable and minimize disclosure issues we use exactly the same specification as (9) except replacing the dependent 
variable.  Unreported specifications where we also control for the initial capital stock each period (allowing such effects to vary over time as with 
other variables) produce similar results.  Also in unreported exercises we find that adding the initial capital stock variable to the employment growth 
regressions in Table 5 does not materially affect our main results. 
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We estimate the investment responsiveness specification separately for high-tech and non-tech 

establishments, and for brevity we report only the regression in which the time functions 𝑇𝑇𝑦𝑦(𝑎𝑎𝑗𝑗𝑗𝑗, 𝑡𝑡) 

and 𝑇𝑇𝑚𝑚(𝑎𝑎𝑗𝑗𝑗𝑗, 𝑡𝑡) are specified as decade-specific coefficients (the last element in (8)).  Table 6 

reports the results based again on our preferred TFP measure, TFPS, standing in for 𝑎𝑎𝑗𝑗𝑗𝑗.  In the 

first column, among all industries we see rising investment responsiveness from the 1980s to the 

1990s followed by a drop in the 2000s.  This pattern is consistent with capital/labor substitution 

between the 1980s and 1990s while employment responsiveness was falling, after which 

investment joins employment in becoming less responsive in the 2000s.  The non-tech column is 

similar. 
The high-tech column is striking: while responsiveness among high-tech establishments was 

stronger than the rest of the manufacturing sector during the 1980s, by the 2000s it is far weaker 

than the rest of manufacturing and is in fact no longer statistically significant (though the difference 

between the 1990s and the 2000s is significant).  We observe a similar pattern among both young 

and mature firms.  In other words, productivity selection for growth via equipment investment 

appears completely absent in high-tech manufacturing during the 2000s.  Similarly to our 

employment results, we can quantify investment responsiveness in terms of the differential 

between high-productivity establishments (those that are one standard deviation more productive 

than their industry mean) and average (within industry) establishments.  Among high-tech young 

firm establishments, this differential in investment rates rose from 4.8 percentage points to 7.4 

percentage points from the 1980s to the 1990s before falling close to zero in the 2000s.  

In recent years researchers have given increasing focus to intangible capital (e.g., Corrado, 

Hulten, and Sichel (2009); Haskel and Westlake (2017)).  Weakening responsiveness of 

employment and equipment investment could have been accompanied by changes in the 

responsiveness of intangible capital investment, which we cannot measure with our data.  For 

example, high-productivity firms may be investing more in managerial capabilities (see, e.g., 

Bloom and Van Reenen (2007)).  Investment in other forms of intangible capital, such as software 

or intellectual property, also may play a growing role (e.g., Crouzet and Eberly (2018)). 

B. Worker hours 

Another potential explanation for declining employment responsiveness is that businesses 

may increasingly adjust hours per worker in response to shocks, offsetting the decline in 
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employment responsiveness.  There are multiple factors that limit hours per worker as a margin of 

adjustment (see, e.g, the discussion in Cooper, Haltiwanger, and Willis, (2007) and citations 

therein).  Still, we can study this adjustment margin for production worker hours in manufacturing. 

For production workers in manufacturing, we have measures of both total hours and the 

number of production workers on a quarterly basis.  This permits constructing a measure of 

production hours per worker.42  As noted above, the ASM is representative in the cross section for 

any given year, but it is not necessarily longitudinally representative, so the time series dimension 

of our measure of growth in production worker hours faces a similar limitation to our measures of 

TFP innovations and changes (whereas our employment growth exercises utilize the LBD universe 

data).  With that caveat in mind, we estimate equation (7), replacing the dependent variable with 

the DHS growth rate of production hours per worker and limiting the sample to longitudinally 

covered establishments as in certain previous exercises. 

The results are in Table 7, where we focus on decade-specific responsiveness coefficients 

and TFPS for parsimony.  The responsiveness of hours per worker growth to productivity is small 

and does not change systematically between the 1980s and the 2000s.  An establishment with a 

one standard deviation higher productivity than its industry mean has about a half percentage point 

higher growth in hours per worker in both the 1980s and the 2000s.  During the 1990s, the 

relationship between hours per worker growth and productivity is not significant. 

The change in the responsiveness of hours per worker to TFPS is much smaller than the 

analogous change in responsiveness of employment growth reported in Table 1.  In Table 1, the 

responsiveness of employment growth declined by about 9 percentage points from the 1980s to 

the 2000s while there is no change in the responsiveness of hours per worker growth over the same 

period.  For the change from the 1990s to the 2000s, responsiveness of employment growth 

declined by about 5 percentage points (Table 1), while responsiveness of hours per worker growth 

increased by about 1 percentage point.  It is apparent that changing responsiveness on the hours 

per worker margin cannot mitigate the large decline in the responsiveness of employment growth. 

 
42 As discussed in Appendix II, for our TFP estimates we construct a measure of total hours for all workers.  However, for employment counts 

of all workers we only have a point-in-time measure for March.  Dividing total hours by a point-in-time measure for employment would be a poor 
measure of hours per worker as it would reflect seasonal variation in employment.  The ASM provides the number of production workers in March, 
June, August, and November; we divide annual total hours by the average of these quarterly numbers. 
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C. Shock mismeasurement and dispersion-dependent responsiveness 

In section III.A, we presented evidence that TFP dispersion and revenue labor productivity 

dispersion are rising, contrary to the “shocks” hypothesis in which declining reallocation might be 

explained by declining shock dispersion.  There are two potential questions about this result.  First, 

some researchers have argued that the rise in productivity dispersion in manufacturing is, in some 

part, an artifact of increasing measurement error in the ASM establishment sample (Bils, Klenow, 

and Ruane (2020)). We have already shown evidence that this is not likely, since rising dispersion 

of revenue labor productivity is evident even in RE-LBD administrative data.  However, there 

might still be concern that our finding of declining responsiveness reflects increasingly 

mismeasured productivity (e.g., from mismeasured inputs like capital).  Second, in the case of non-

convex adjustment costs, responsiveness varies with productivity dispersion in a manner that 

complicates the “shocks vs. responsiveness” dichotomy (see Appendix I). 

These two issues are distinct, but both hinge on whether responsiveness is related to measured 

dispersion.  We investigate this question using cross-industry variation in the time series of shock 

dispersion.  In the ASM, we classify 4-digit NAICS industries into three groups based on terciles 

of the 1980s-2000s change in within-industry TFPS dispersion.  The top tercile of industries saw 

a mean change of +0.11 in the standard deviation of TFPS; the middle tercile saw a mean change 

of +0.04, and the bottom tercile saw a mean change of -0.02.  We interact dummy indicators of 

these terciles with our responsiveness coefficients in a regression otherwise similar to those 

reported in the first column of Table 1, focusing on the linear trend variable to avoid the 

proliferation of coefficients.  These results are shown in the first column of Table 8.  Focusing on 

the coefficients interacting productivity with tercile indicators and the trend, we do not find that 

the responsiveness trend is monotonic in the change in dispersion.  The largest downward trend is 

seen in the middle tercile of industries, while the second-largest downward trend is in the bottom 

tercile of industries. The top tercile of industries—those with the largest gains in TFPS 

dispersion—see the smallest downward trend in responsiveness.  We cannot reject the hypothesis 

that the trends in the top and bottom terciles are equal, but we (marginally) reject the hypothesis 

of equality between the top and middle terciles. These results provide evidence that the decline in 

responsiveness is not driven by changes in measured dispersion. 
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D. Changing shock persistence 

Figure 3d shows the persistence of productivity shocks has declined from the 1980s to the 

2000s.  We view these changes as modest.  However, in models of labor adjustment costs such as 

ours, a decline in shock persistence can, by itself, reduce responsiveness as firms are reluctant to 

pay a cost to respond to shocks that are likely to be transitory.  We again exploit industry 

variation to explore whether declining shock persistence might explain declining 

responsiveness.43  We divide 4-digit NAICS industries (within manufacturing) into terciles based 

on their change in persistence from the 1980s to the 2000s, where persistence is measured as the 

estimated AR(1) coefficient in the TFPS process.  The top tercile has a mean change of +0.10, 

the middle tercile has a mean change of -0.02, and the bottom tercile has a mean change of -0.11.  

As in our dispersion exercises in the previous subsection, we interact tercile dummies with 

productivity and time trends to allow responsiveness trends to vary across the persistence terciles 

(and, again, we focus on the linear trend to avoid coefficient proliferation).   

The results are reported in the second column of Table 8.  At the industry level, the decline in 

responsiveness is not monotonic in the change in persistence.  The largest decline in 

responsiveness is seen in the middle persistence tercile, followed by the bottom tercile then the top 

tercile.  We cannot reject the hypothesis that the bottom and top persistence terciles see the same 

decline in responsiveness.  Moreover, if declining persistence were to explain declining 

responsiveness, we would expect establishments in the top tercile, in which persistence actually 

rose, to see rising responsiveness over time, rather than the negative trend we observe.  Changing 

shock persistence does not appear to be driving our findings on declining responsiveness. 

E. Employment measurement error and division bias 

Initial employment is a control in our responsiveness regressions but also enters the calculation 

of measured employment growth.  This raises questions about division bias in the presence of 

measurement error in employment, which could introduce bias in our estimated responsiveness 

coefficients when using employment growth as the dependent variable.  

 
43 Here we note, yet again, that ASM data are not optimal for calculating longitudinal variables like persistence. 



35 
 

We first note that our analysis of exit uses a dependent variable equal to one if a plant or firm 

exits between 𝑡𝑡 and 𝑡𝑡 + 1 based on productivity and employment measures in 𝑡𝑡.  Measurement 

error in initial employment does not cause division bias in this specification.  Our results on exit 

show a systematic pattern of declining responsiveness.   

For the specifications with the DHS growth rate as the dependent variable, we explore the 

potential consequences of measurement error in employment in period 𝑡𝑡 by using lagged 

employment (employment in March of calendar year 𝑡𝑡 − 1) as an instrument.  This potentially 

mitigates measurement error division bias problems since employment in March of calendar year 

𝑡𝑡 − 1 does not appear in the DHS growth rate from March of calendar year 𝑡𝑡 to 𝑡𝑡 + 1. The potential 

division bias carries over to the specifications with RLP where the denominator of RLP in year 𝑡𝑡 

is employment in March of calendar year 𝑡𝑡 from the LBD. (Recall, however, that the employment 

values used for constructing TFPS, TFPP, and TFPR are total hours from the ASM-CM, a different 

source of employment from the LBD).  For the RLP regressions, we also instrument RLP in year 

𝑡𝑡 with lagged RLP (from year 𝑡𝑡 − 1).  We describe these results in Appendix III.B and Table A2.  

The IV results are broadly similar to our main regression results. 

 

VI. Conclusion 

Resource reallocation plays a critical role in productivity dynamics.  The U.S. has seen a decline 

in the pace of job reallocation in recent decades that has proven difficult to understand.  We study 

changing patterns of reallocation by drawing insight from canonical models of firm dynamics.  In 

such models, a decline in the pace of job reallocation can arise from one of two sources: (1) the 

dispersion or volatility of idiosyncratic shocks faced by businesses—the business-specific 

conditions that drive hiring and downsizing decisions—could have declined; or (2) business-level 

responsiveness to idiosyncratic conditions may have weakened.   

We show that shock dispersion has not declined but has actually risen, and business-level 

responsiveness to shocks—in terms of employment growth and survival—has weakened.  Our 

finding of weakening responsiveness is robust to alternative productivity measures, three different 

time-trend specifications, and changing firm age composition.  It holds for both the level of shocks 

and the innovations to shocks.  Equipment investment has also become less responsive, at least in 

the last two decades, suggesting that capital/labor substitution is not a likely explanation, though 
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we cannot rule out substitution into intangible production factors.  Hours per worker have not 

become more responsive.  We find no evidence of a role for plausible sources of measurement 

error. 

We further show that the decline in responsiveness can account for a large fraction of the 

observed decline in aggregate job reallocation:  Within manufacturing, declining responsiveness 

can account for virtually the entire decline of reallocation since the 1980s.  For the entire 

economy, the decline in responsiveness appears to account for about half of the decline in 

reallocation since the late 1990s.  The decline in responsiveness we document is sufficient in 

magnitude to be a large driver of aggregate job reallocation trends.  

Weakening business-level responsiveness to idiosyncratic productivity also has potentially 

significant implications for aggregate productivity since it implies weaker productivity selection.  

We find suggestive evidence that the decline in responsiveness has been a significant drag on 

aggregate productivity. 

We view our results on declining responsiveness as independently significant and as substantial 

progress on questions about changing business dynamics in the U.S.  Discovering the ultimate 

causes of declining responsiveness is important but beyond the scope of this paper.  Our model 

framework suggests that changing firm-level behavior, rather than a more tranquil profitability 

environment, should be the focus of further research; for example, rising factor adjustment costs 

or changes in the relationship between revenue distortions and business-level productivity can 

readily produce both declining responsiveness and the rising dispersion of revenue-based 

productivity measures we observe.  This could be the result of regulatory changes that affect the 

cost of hiring or downsizing; alternatively changes in the economic environment that are more 

interpretable in the “correlated wedges” framework could be to blame.  As examples of the former, 

Davis and Haltiwanger (2014) focus on changes in employment-at-will doctrines in the U.S. 

judicial system, rising prevalence of occupational licensing, increasing use of non-competes even 

in sectors such as fast-food restaurants, and potential indirect factors (such as zoning) that impair 

geographic labor mobility.  Alternatively, the “correlated wedges” interpretation could 

accommodate a role for rising product market power (as studied by De Loecker, Eeckhout, and 

Unger (2020)) or labor market power, as firms may absorb high productivity shocks through higher 

markups.   
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Our estimated negative effects of declining responsiveness on aggregate productivity are 

noteworthy.  However, we also acknowledge that reallocation is costly.  While job reallocation 

can facilitate job growth and job-to-job transitions—an important source of wage gains—job 

destruction imposes profound costs on workers, families, and communities.  Optimal policies for 

labor and other markets must balance these considerations against the benefits of productivity-

enhancing reallocation for overall living standards.  Identifying the source of declining 

responsiveness is a critical avenue for future research. 
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FIGURE 1. JOB REALLOCATION PATTERNS DIFFER BY SECTOR 

Notes: HP trends using parameter set to 100. Industries defined on a consistent NAICS basis; high-tech is defined as in Hecker (2005). Data include 
all firms (new entrants, continuers, and exiters). Source: LBD. 

 

 
FIGURE 2. THE SHOCKS AND RESPONSIVENESS HYPOTHESES, MODEL RESULTS (NON-CONVEX COST) 
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Notes: Panels c and d share same legend. Results relative to model baseline calibration (vertical purple line) with downward adjustment cost F_=0 
and TFP dispersion 𝜎𝜎𝐴𝐴 = 0.46 (see Appendix I and Table A1 for model calibration details). “s.d. RLP” refers to the standard deviation of revenue 
labor productivity in model-simulated data. 

 

 
FIGURE 3. WITHIN-INDUSTRY PRODUCTIVITY DISPERSION HAS RISEN 

Notes: Dispersion measures refer to standard deviation of within-industry (log) productivity. Panels a, c, and d share same legend. Persistence 
measures refer to AR(1) parameter. Source: ASM-CM (panels a, c, and d); RE-LBD (panel b). 

 
FIGURE 4. JOB GROWTH AND EXIT HAVE BECOME LESS RESPONSIVE TO PRODUCTIVITY 

Notes: Compares employment growth rate or (inverse) exit probability of establishment (panel a) or firm (panel b) that is one standard deviation 
above its industry-year mean productivity, versus the mean. Source: ASM-CM (panel a); RE-LBD (panel b). 
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FIGURE 5. EMPLOYMENT GROWTH RESPONSIVENESS: YOUNG VS. MATURE FIRMS, HIGH-TECH VS. NON-TECH 

Notes: Compares employment growth rate of establishment (panels a, b) or firm (panels c, d) that is one standard deviation above its industry-year 
mean productivity, versus the mean. Source: ASM-CM (panels a, b); RE-LBD (panels c, d).  

0

5

10

15

20

Pe
rc

en
ta

ge
 p

oi
nt

s

High-tech Non-tech

a. Young firms (Manufacturing TFPS)

1980s 1990s 2000s

0

5

10

15

20

Pe
rc

en
ta

ge
 p

oi
nt

s

High-tech Non-tech

b. Mature firms (Manufacturing TFPS)

0

5

10

15

20

25

30

Pe
rc

en
ta

ge
 p

oi
nt

s

High-tech Non-tech

c. Young firms (Economywide RLP)

1996-99 2011-13

0

5

10

15

20

25

30

Pe
rc

en
ta

ge
 p

oi
nt

s

High-tech Non-tech

d. Mature firms (Economywide RLP)



45 
 

TABLE 1—BUSINESS-LEVEL EMPLOYMENT GROWTH RESPONSIVENESS HAS WEAKENED 

Panel A        
 TFPS (revenue share based)  TFPP (proxy method) 
Productivity: 𝛽𝛽1 0.2965 0.2905   0.2086 0.1876  
 (0.0097) (0.0068)   (0.0086) (0.0060)  
Prod*trend: 𝛿𝛿 -0.0035    -0.0043   
 (0.0005)    (0.0004)   
Prod*post-97: 𝛾𝛾97  -0.0952    -0.0958  
  (0.0084)    (0.0074)  
Prod*1980s: 𝜆𝜆80𝑠𝑠   0.2859    0.2185 
   (0.0095)    (0.0086) 
Prod*1990s: 𝜆𝜆90𝑠𝑠   0.2462    0.1053 
   (0.0060)    (0.0052) 
Prod*2000s: 𝜆𝜆00𝑠𝑠   0.2001    0.0995 
   (0.0059)    (0.0051) 
        
p value: 𝜆𝜆80𝑠𝑠 = 𝜆𝜆90𝑠𝑠   0.00    0.00 
p value: 𝜆𝜆80𝑠𝑠 = 𝜆𝜆00𝑠𝑠   0.00    0.00 
p value: 𝜆𝜆90𝑠𝑠 = 𝜆𝜆00𝑠𝑠   0.00    0.43 
        
Obs. (thousands) 2,375 2,375 2,375  2,375 2,375 2,375 
        
Panel B        
 TFPR (cost share based)  RLP (revenue per worker) 
Productivity: 𝛽𝛽1 0.2040 0.1779   0.2762   
 (0.0094) (0.0067)   (0.0003)   
Prod*trend: 𝛿𝛿 -0.0046    -0.0029   
 (0.0005)    (0.0000)   
Prod*post-97: 𝛾𝛾97  -0.0981      
  (0.0081)      
Prod*1980s: 𝜆𝜆80𝑠𝑠   0.1939     
   (0.0094)     
Prod*1990s: 𝜆𝜆90𝑠𝑠   0.1212     
   (0.0058)     
Prod*2000s: 𝜆𝜆00𝑠𝑠   0.0820     
   (0.0054)     
        
p value: 𝜆𝜆80𝑠𝑠 = 𝜆𝜆90𝑠𝑠   0.00     
p value: 𝜆𝜆80𝑠𝑠 = 𝜆𝜆00𝑠𝑠   0.00     
p value: 𝜆𝜆90𝑠𝑠 = 𝜆𝜆00𝑠𝑠   0.00     
        
Obs. (thousands) 2,375 2,375 2,375  58,700   

Notes: Dependent variable is annual employment growth. All coefficients are statistically significant with 𝑝𝑝 < 0.01. TFPS, TFPP, and 
TFPR columns are establishment regressions in manufacturing for 1981-2013. RLP columns are economywide firm regressions for 
1997-2013. All regressions include controls described in equation (7) and related text. 

Source: LBD, ASM-CM, and author calculations.  
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TABLE 2—BUSINESS-LEVEL EXIT RESPONSIVENESS HAS WEAKENED 

Panel A 
 TFPS (revenue share based)  TFPP (proxy method) 
Productivity: 𝛽𝛽1 -0.0757 -0.0801   -0.0830 -0.0781  
 (0.0043) (0.0030)   (0.0038) (0.0027)  
Prod*trend: 𝛿𝛿 0.0009    0.0014   
 (0.0002)    (0.0002)   
Prod*post-97: 𝛾𝛾97  0.0340    0.0352  
  (0.0037)    (0.0033)  
Prod*1980s: 𝜆𝜆80𝑠𝑠   -0.0773    -0.0868 
   (0.0042)    (0.0038) 
Prod*1990s: 𝜆𝜆90𝑠𝑠   -0.0586    -0.0473 
   (0.0026)    (0.0022) 
Prod*2000s: 𝜆𝜆00𝑠𝑠   -0.0517    -0.0478 
   (0.0026)    (0.0023) 
        
p value: 𝜆𝜆80𝑠𝑠 = 𝜆𝜆90𝑠𝑠   0.00    0.00 
p value: 𝜆𝜆80𝑠𝑠 = 𝜆𝜆00𝑠𝑠   0.00    0.00 
p value: 𝜆𝜆90𝑠𝑠 = 𝜆𝜆00𝑠𝑠   0.06    0.89 
        
Obs. (thousands) 2,375 2,375 2,375  2,375 2,375 2,375 
        
Panel B        
 TFPR (cost share based)  RLP (revenue per worker) 
Productivity: 𝛽𝛽1 -0.0721 -0.0664   -0.0857   
 (0.0042) (0.0030)   (0.0001)   
Prod*trend: 𝛿𝛿 0.0014    0.0007   
 (0.0002)    (0.0000)   
Prod*post-97: 𝛾𝛾97  0.0330      
  (0.0036)      
Prod*1980s: 𝜆𝜆80𝑠𝑠   -0.0714     
   (0.0042)     
Prod*1990s: 𝜆𝜆90𝑠𝑠   -0.0430     
   (0.0025)     
Prod*2000s: 𝜆𝜆00𝑠𝑠   -0.0370     
   (0.0024)     
        
p value: 𝜆𝜆80𝑠𝑠 = 𝜆𝜆90𝑠𝑠   0.00     
p value: 𝜆𝜆80𝑠𝑠 = 𝜆𝜆00𝑠𝑠   0.00     
p value: 𝜆𝜆90𝑠𝑠 = 𝜆𝜆00𝑠𝑠   0.09     
        
Obs. (thousands) 2,375 2,375 2,375  58,700   

Notes: Dependent variable is a binary establishment or firm exit indicator. All coefficients are statistically significant with 𝑝𝑝 < 0.01. 
TFPS, TFPP, and TFPR columns are establishment regressions in manufacturing for 1981-2013. RLP columns are economywide firm 
regressions for 1997-2013. All regressions include controls described in equation (7) and related text. 

Source: LBD, ASM-CM, and author calculations.   
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TABLE 3—EMPLOYMENT GROWTH ALSO LESS RESPONSIVE TO PRODUCTIVITY INNOVATIONS AND CHANGES 

  
 Innovation 𝜂𝜂𝑗𝑗𝑗𝑗 

 

 Change (∆𝑎𝑎𝑗𝑗𝑗𝑗) 
Prod*1980s: 𝜆𝜆80𝑠𝑠 0.3970  0.3318 
 (0.0279)  (0.0254) 
Prod*1990s: 𝜆𝜆90𝑠𝑠 0.3909  0.3334 
 (0.0124)  (0.0117) 
Prod*2000s: 𝜆𝜆00𝑠𝑠 0.2999  0.2513 
 (0.0126)  (0.0118) 
    
p value: 𝜆𝜆80𝑠𝑠 = 𝜆𝜆90𝑠𝑠 0.84  0.96 
p value: 𝜆𝜆80𝑠𝑠 = 𝜆𝜆00𝑠𝑠 0.00  0.00 
p value: 𝜆𝜆90𝑠𝑠 = 𝜆𝜆00𝑠𝑠 0.00  0.00 
    
Observations (thousands) 854  854 

Notes: First (second) column shows regression of employment growth on TFPS innovation (first difference) and controls as described 
in equation (7) and related text. All coefficients are statistically significant with 𝑝𝑝 < 0.01. 

Source: LBD, ASM-CM, and author calculations.  
 

TABLE 4—GROWTH AND EXIT RESPONSIVENESS HAVE WEAKENED WITHIN FIRM AGE GROUPS 

          
 Panel A—dependent variable:  Panel B—dependent variable: 
 employment growth 𝑔𝑔𝑗𝑗𝑗𝑗+1  Exit between 𝑡𝑡 and 𝑡𝑡 + 1 
 TFPS  RLP  TFPS  RLP 
Prod*Young: 𝛽𝛽1

𝑦𝑦 0.4069   0.3217  -0.1075   -0.1065 
 (0.0137)   (0.0003)  (0.0060)   (0.0001) 
Prod*Young*trend: 𝛿𝛿𝑦𝑦 -0.0054   -0.0034  0.0014   0.0009 
 (0.0006)   (0.0000)  (0.0003)   (0.0000) 
Prod*Mature: 𝛽𝛽1𝑚𝑚 0.2722   0.2493  -0.0690   -0.0747 
 (0.0096)   (0.0003)  (0.0042)   (0.0001) 
Prod*Mature*trend: 𝛿𝛿𝑚𝑚 -0.0029   -0.0024  0.0007   0.0005 
 (0.0005)   (0.0000)  (0.0002)   (0.0000) 
          
Prod*Young*1980s: 𝜆𝜆80𝑠𝑠

𝑦𝑦   0.3666     -0.1020   
  (0.0136)     (0.0059)   
Prod*Young*1990s: 𝜆𝜆90𝑠𝑠

𝑦𝑦   0.3603     -0.0898   
  (0.0092)     (0.0039)   
Prod*Young*2000s: 𝜆𝜆00𝑠𝑠

𝑦𝑦   0.2542     -0.0689   
  (0.0093)     (0.0039)   
          
Prod*Mature*1980s: 𝜆𝜆80𝑠𝑠𝑚𝑚   0.2710     -0.0727   
  (0.0094)     (0.0042)   
Prod*Mature*1990s: 𝜆𝜆90𝑠𝑠𝑚𝑚   0.2185     -0.0529   
  (0.0058)     (0.0025)   
Prod*Mature*2000s: 𝜆𝜆00𝑠𝑠𝑚𝑚   0.1941     -0.0507   
  (0.0059)     (0.0026)   
          
p value: 𝜆𝜆80𝑠𝑠

𝑦𝑦 = 𝜆𝜆90𝑠𝑠
𝑦𝑦    0.67     0.06   

p value: 𝜆𝜆80𝑠𝑠
𝑦𝑦 = 𝜆𝜆00𝑠𝑠

𝑦𝑦    0.00     0.00   
p value: 𝜆𝜆90𝑠𝑠

𝑦𝑦 = 𝜆𝜆00𝑠𝑠
𝑦𝑦    0.00     0.00   

          
p value: 𝜆𝜆80𝑠𝑠𝑚𝑚 = 𝜆𝜆90𝑠𝑠𝑚𝑚    0.00     0.00   
p value: 𝜆𝜆80𝑠𝑠𝑚𝑚 = 𝜆𝜆00𝑠𝑠𝑚𝑚    0.00     0.00   
p value: 𝜆𝜆90𝑠𝑠𝑚𝑚 = 𝜆𝜆00𝑠𝑠𝑚𝑚    0.00     0.55   
          
Observations (thousands) 2,375 2,375  58,700  2,375 2,375  58,700 

Notes: All coefficients are statistically significant with 𝑝𝑝 < 0.01. TFPS columns are establishment-level regressions in manufacturing 
data for 1981-2013. RLP columns are firm-level regressions on economywide data for 1997-2013. All regressions include controls 
described in equation (7) and related text. Young firms have age less than five. 

Source: LBD, ASM-CM, and author calculations.  
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TABLE 5—RESPONSIVENESS PATTERNS DIFFER BETWEEN HIGH-TECH AND NON-TECH INDUSTRIES 

          
 Dependent variable: employment growth (𝑔𝑔𝑡𝑡+1) from 𝑡𝑡 to 𝑡𝑡 + 1 
 TFPS  RLP 
 Non-tech  High-tech  Non-tech  High-tech 
Prod*Young: 𝛽𝛽1

𝑦𝑦 0.4171   0.3195   0.3207  0.3436 
 (0.0145)   (0.0387)   (0.0003)  (0.0015) 
Prod*Young*trend: 𝛿𝛿𝑦𝑦 -0.0054   -0.0058   -0.0033  -0.0054 
 (0.0007)   (0.0020)   (0.0000)  (0.0001) 
Prod*Mature: 𝛽𝛽1𝑚𝑚 0.2786   0.1969   0.2481  0.2813 
 (0.0101)   (0.0302)   (0.0003)  (0.0014) 
Prod*Mature*trend: 𝛿𝛿𝑚𝑚 -0.0030   -0.0022a   -0.0023  -0.0044 
 (0.0005)   (0.0016)   (0.0000)  (0.0001) 
          
Prod*Young*1980s: 𝜆𝜆80𝑠𝑠

𝑦𝑦   0.3801   0.2488     
  (0.0144)   (0.0371)     
Prod*Young*1990s: 𝜆𝜆90𝑠𝑠

𝑦𝑦   0.3658   0.3190     
  (0.0097)   (0.0331)     
Prod*Young*2000s: 𝜆𝜆00𝑠𝑠

𝑦𝑦   0.2637   0.1575     
  (0.0095)   (0.0332)     
          
Prod*Mature*1980s: 𝜆𝜆80𝑠𝑠𝑚𝑚   0.2792   0.1657     
  (0.0099)   (0.0293)     
Prod*Mature*1990s: 𝜆𝜆90𝑠𝑠𝑚𝑚   0.2212   0.1915     
  (0.0061)   (0.0176)     
Prod*Mature*2000s: 𝜆𝜆00𝑠𝑠𝑚𝑚   0.1964   0.1340     
  (0.0060)   (0.0216)     
          
p value: 𝜆𝜆80𝑠𝑠

𝑦𝑦 = 𝜆𝜆90𝑠𝑠
𝑦𝑦    0.36   0.14     

p value: 𝜆𝜆80𝑠𝑠
𝑦𝑦 = 𝜆𝜆00𝑠𝑠

𝑦𝑦    0.00   0.06     
p value: 𝜆𝜆90𝑠𝑠

𝑦𝑦 = 𝜆𝜆00𝑠𝑠
𝑦𝑦    0.00   0.00     

          
p value: 𝜆𝜆80𝑠𝑠𝑚𝑚 = 𝜆𝜆90𝑠𝑠𝑚𝑚    0.00   0.45     
p value: 𝜆𝜆80𝑠𝑠𝑚𝑚 = 𝜆𝜆00𝑠𝑠𝑚𝑚    0.00   0.38     
p value: 𝜆𝜆90𝑠𝑠𝑚𝑚 = 𝜆𝜆00𝑠𝑠𝑚𝑚    0.00   0.04     
          
Observations (thousands) 2,239 2,239  136 136  55,870  2,826 

Notes: High-tech industries defined as in Hecker (2005). All coefficients statistically significant with 𝑝𝑝 < 0.01 unless otherwise noted. 
TFPS columns are establishment-level regressions in manufacturing data for 1981-2013. RLP columns are firm-level regressions on 
economywide data for 1997-2013. All regressions include controls described in equation (7) and related text. Young firms have age less 
than five. 

a. Not statistically significant. 

Source: LBD, ASM-CM, and author calculations.  

 

 
TABLE 6—INVESTMENT RATE RESPONSIVENESS HAS ALSO WEAKENED (MANUFACTURING) 

    
 Dependent variable: capital investment rate 
 All industries Non-tech High-tech 
Prod*Young*1980s: 𝜆𝜆80𝑠𝑠

𝑦𝑦  0.0670 0.0668 0.1005 
 (0.0098) (0.0103) (0.0330) 
Prod*Young*1990s: 𝜆𝜆90𝑠𝑠

𝑦𝑦  0.1768 0.1785 0.1550 
 (0.0139) (0.0147) (0.0312) 
Prod*Young*2000s: 𝜆𝜆00𝑠𝑠

𝑦𝑦  0.1003 0.1048 0.0133a 

 (0.0092) (0.0086) (0.0281) 
    
Prod*Mature*1980s: 𝜆𝜆80𝑠𝑠𝑚𝑚  0.0414 0.0393 0.0746 
 (0.0068) (0.0071) (0.0283) 



49 
 

Prod*Mature*1990s: 𝜆𝜆90𝑠𝑠𝑚𝑚  0.1151 0.1144 0.1294 
 (0.0082) (0.0087) (0.0200) 
Prod*Mature*2000s: 𝜆𝜆00𝑠𝑠𝑚𝑚  0.0619 0.0658 -0.0020a 

 (0.0051) (0.0053) (0.0194) 
    
p value: 𝜆𝜆80𝑠𝑠

𝑦𝑦 = 𝜆𝜆90𝑠𝑠
𝑦𝑦   0.00 0.00 0.22 

p value: 𝜆𝜆80𝑠𝑠
𝑦𝑦 = 𝜆𝜆00𝑠𝑠

𝑦𝑦   0.00 0.00 0.04 
p value: 𝜆𝜆90𝑠𝑠

𝑦𝑦 = 𝜆𝜆00𝑠𝑠
𝑦𝑦   0.00 0.00 0.00 

    
p value: 𝜆𝜆80𝑠𝑠𝑚𝑚 = 𝜆𝜆90𝑠𝑠𝑚𝑚   0.00 0.00 0.12 
p value: 𝜆𝜆80𝑠𝑠𝑚𝑚 = 𝜆𝜆00𝑠𝑠𝑚𝑚   0.02 0.00 0.03 
p value: 𝜆𝜆90𝑠𝑠𝑚𝑚 = 𝜆𝜆00𝑠𝑠𝑚𝑚   0.00 0.00 0.00 
    
Observations (thousands) 2,375 2,239 136 

Notes: Equipment investment. Manufacturing only with TFPS productivity concept. High-tech industries defined as in Hecker (2005). 
All coefficients statistically significant with 𝑝𝑝 < 0.05 (and almost always with 𝑝𝑝 < 0.01) unless otherwise noted. All regressions include 
controls described in equation (7) and related text. 

a. Not statistically significant. 

Source: LBD, ASM-CM, and author calculations.  
 

TABLE 7—RESPONSIVENESS OF HOURS PER WORKER GROWTH IS SMALL AND LITTLE CHANGED 

  
 TFPS 
Prod*1980s: 𝜆𝜆80𝑠𝑠 0.0110 
 (0.0044) 
Prod*1990s: 𝜆𝜆90𝑠𝑠 0.0012a 

 (0.0035) 
Prod*2000s: 𝜆𝜆00𝑠𝑠 0.0102 
 (0.0028) 
  
p value: 𝜆𝜆80𝑠𝑠 = 𝜆𝜆90𝑠𝑠 0.08 
p value: 𝜆𝜆80𝑠𝑠 = 𝜆𝜆00𝑠𝑠 0.87 
p value: 𝜆𝜆90𝑠𝑠 = 𝜆𝜆00𝑠𝑠 0.04 
  
Observations (thousands) 854 

Notes: Regression of hours per worker growth on TFPS and controls as described in section V.B. Coefficients are statistically significant 
with 𝑝𝑝 < 0.01 unless otherwise noted. 

a. Not statistically significant. 

Source: LBD, ASM-CM, and author calculations.  
 

TABLE 8—RESPONSIVENESS DOES NOT VARY SYSTEMATICALLY WITH INDUSTRY SHOCK DISPERSION OR PERSISTENCE 

 
  
 Responsiveness by 

dispersion tercilea 

 

 Responsiveness by 
persistence tercileb 

Prod*BottomTercile 0.2792  0.2771 
 (0.0120)  (0.0112) 
Prod*MiddleTercile 0.3372  0.3338 
 (0.0144)  (0.0139) 
Prod*TopTercile 0.2782  0.2659 
 (0.0160)  (0.0153) 
    
Prod*BottomTercile*trend -0.0036  -0.0032 
 (0.0006)  (0.0006) 
Prod*MiddleTercile*trend -0.0045  -0.0045 
 (0.0008)  (0.0007) 
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Prod*TopTercile*trend -0.0026  -0.0026 
 (0.0007)  (0.0008) 
    
p value: Prod*BottomTercile = Prod*MiddleTercile 0.00  0.00 
p value: Prod*MiddleTercile = Prod*TopTercile 0.00  0.00 
p value: Prod*BottomTercile = Prod*TopTercile 0.95  0.50 
    
p value: Prod*Bottom*trend = Prod*Middle*trend 0.32  0.09 
p value: Prod*Middle*trend = Prod*Top*trend 0.05  0.05 
p value: Prod*Bottom*trend = Prod*Top*trend 0.25  0.47 
    
Observations (thousands) 2,375  2,375 

Notes: All regression coefficients are statistically significant with 𝑝𝑝 < 0.01. Bottom, middle, and top terciles refer to the change in TFPS 
dispersion (first column) or persistence (second column), where top is the highest change and bottom is the lowest change. 

a. The mean industry-level changes in dispersion are -0.02, +0.04, and +0.11 for the bottom, middle, and top terciles, respectively. 

b. The mean industry-level changes in persistence are -0.11, -0.02, and +0.10 for the bottom, middle, and top terciles, respectively. 

Source: LBD, ASM-CM, and author calculations.  
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Appendix I: Model framework 

A. General formulation 

Consider a class of models in which revenue of firm2 𝑗𝑗 in time 𝑡𝑡 is given by 𝐴𝐴𝑗𝑗𝑗𝑗𝐸𝐸𝑗𝑗𝑗𝑗
𝜙𝜙, where 

𝐴𝐴𝑗𝑗𝑗𝑗 is a composite shock reflecting both technical efficiency and, potentially, demand shocks, 𝐸𝐸𝑗𝑗𝑗𝑗 

is employment, and 𝜙𝜙 < 1 reflects revenue function curvature arising from imperfect 

competition due to, for example, product differentiation (related arguments go through for 

decreasing returns to scale).  Suppose the shock 𝐴𝐴𝑗𝑗𝑗𝑗 follows the process ln𝐴𝐴𝑗𝑗𝑗𝑗 = 𝜌𝜌𝑎𝑎 ln𝐴𝐴𝑗𝑗𝑗𝑗−1 +

𝜂𝜂𝑗𝑗𝑗𝑗.  This setup is common to a wide range of models of firm dynamics and typically gives rise 

to an employment growth policy function given by: 

 𝑔𝑔𝑗𝑗𝑗𝑗 = 𝑓𝑓𝑡𝑡�𝐴𝐴𝑗𝑗𝑗𝑗 ,𝐸𝐸𝑗𝑗𝑗𝑗−1� (A1) 

where 𝑔𝑔𝑗𝑗𝑗𝑗 is employment growth from 𝑡𝑡 − 1 to 𝑡𝑡; this is the same as equation (1) in the main 

text.  It is commonly the case that 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

> 0; that is, for any two firms with the same employment, 

the firm with higher 𝐴𝐴 has higher growth.  For empirical purposes, (A1) leads to the following 

log-linear approximation: 

 𝑔𝑔𝑗𝑗𝑗𝑗 = 𝛽𝛽0 + 𝛽𝛽1𝑎𝑎𝑗𝑗𝑗𝑗 + 𝛽𝛽2𝑒𝑒𝑗𝑗𝑗𝑗−1 + 𝜀𝜀𝑗𝑗𝑗𝑗 (A2) 

While (A1) and its empirical counterpart (A2) are quite general, it is useful to illustrate 

the employment growth function using a special case of a simple model that is free of frictions or 

distortions (which we will add below).  In this case, the firm’s first-order condition, in logs 

(indicated by lowercase), is given by: 

 𝑒𝑒𝑗𝑗𝑗𝑗 =
1

1 − 𝜙𝜙
�ln

𝜙𝜙
𝑊𝑊𝑡𝑡

+ 𝑎𝑎𝑗𝑗𝑗𝑗� (A3) 

                                                           
1 All of the code used to produce the results in the paper can be found at openicpsr-120432. 
2 We use the term “firm” for expositional purposes; in model exercises we do not distinguish between firms and 
establishments.  Our empirical exercises using TFP measures and manufacturing data rely on establishments, while 
our economywide exercises using RLP rely on firms. 
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where 𝑊𝑊𝑡𝑡 is the industry wage.  Taking time differences (indicated by ∆) and sweeping out year 

and industry effects yields the firm-level growth rate (measured as log first differences for 

convenience): 

 ∆𝑒𝑒𝑗𝑗𝑗𝑗 =
1

1 − 𝜙𝜙
∆𝑎𝑎𝑗𝑗𝑗𝑗 (A4) 

Equation (A4) provides an employment growth function that is different from its expression in 

(A1); in particular, (A4) expresses employment growth as a function of the change in 𝑎𝑎𝑗𝑗𝑗𝑗, which 

is intuitive in this frictionless environment (note also the importance of revenue function 

curvature parameter 𝜙𝜙).  However, (A4) can be transformed to express employment growth as a 

function of the productivity level instead.  To see this, we start with (A3), consider it for 𝑡𝑡 − 1, 

and invert it to express productivity in terms of employment: 

 𝑎𝑎𝑗𝑗𝑗𝑗−1 = (1 − 𝜙𝜙)𝑒𝑒𝑗𝑗𝑗𝑗−1 − ln
𝜙𝜙

𝑊𝑊𝑡𝑡−1
 (A5) 

Substituting (A5) into (A4) (and, again, sweeping out industry and year effects) yields: 

 ∆𝑒𝑒𝑗𝑗𝑗𝑗 = 1
1−𝜙𝜙

𝑎𝑎𝑗𝑗𝑗𝑗 − 𝑒𝑒𝑗𝑗𝑗𝑗−1, (A6) 

That is, employment growth can be expressed as a function of the level of 𝑎𝑎𝑗𝑗𝑗𝑗, as well as the level 

of 𝑒𝑒𝑗𝑗𝑗𝑗−1, as in (A1) and (A2).  This is useful for two reasons.  First, as noted in the text, it is 

convenient to specify the growth function in terms of productivity levels for empirical purposes, 

since productivity data in manufacturing are constructed to be representative in the cross section 

but not necessarily longitudinally.  Second, in models with labor adjustment costs (such as the 

one we will describe below), the productivity level is the relevant state variable arising from the 

firm value function. 

We now turn to two illustrative special cases of the general model framework that can 

motivate (A1) and (A2): a model with labor adjustment costs, and a model with static 

distortionary wedges that are correlated with fundamentals.  We explore these models to 

demonstrate how (A1) arises from firm optimization problems and how it is affected by model 

parameters and frictions or distortions on employment demand decisions. 

B. Model with labor adjustment costs 

Consider the following model of firm-level adjustment costs.  A firm maximizes the 

present discounted value of profits.  The firm’s value function and its components are specified 

as follows: 
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 𝑉𝑉�𝐸𝐸𝑗𝑗𝑗𝑗−1,𝐴𝐴𝑗𝑗𝑗𝑗� = max�𝐴𝐴𝑗𝑗𝑗𝑗𝐸𝐸𝑗𝑗𝑗𝑗
𝜙𝜙 −𝑊𝑊𝑡𝑡𝐸𝐸𝑗𝑗𝑗𝑗 − 𝐶𝐶�𝐻𝐻𝑗𝑗𝑗𝑗 ,𝐸𝐸𝑗𝑗𝑗𝑗−1� + 𝛽𝛽𝔼𝔼𝐴𝐴(𝐸𝐸𝑗𝑗𝑗𝑗,𝐴𝐴𝑗𝑗𝑗𝑗+1� (A7) 

with 

 

𝐶𝐶�𝐻𝐻𝑗𝑗𝑗𝑗 ,𝐸𝐸𝑗𝑗𝑗𝑗−1� =

⎩
⎪
⎨

⎪
⎧𝛾𝛾

2
�
𝐻𝐻𝑗𝑗𝑗𝑗
𝐸𝐸𝑗𝑗𝑗𝑗−1

�
2

+ 𝐹𝐹+ max�𝐻𝐻𝑗𝑗𝑗𝑗, 0� + 𝐹𝐹− max�−𝐻𝐻𝑗𝑗𝑗𝑗 , 0� if 𝐻𝐻𝑗𝑗𝑗𝑗 ≠ 0

0 otherwise

 

 

where 𝜙𝜙 < 1 due to product differentiation such that 𝐴𝐴𝑗𝑗𝑗𝑗𝐸𝐸𝑗𝑗𝑗𝑗
𝜙𝜙 is the revenue function for firm 𝑗𝑗, 𝐸𝐸𝑗𝑗𝑗𝑗 

is employment for  time 𝑡𝑡, 𝐻𝐻𝑗𝑗𝑗𝑗 is net hires made at the beginning of time 𝑡𝑡 such that 𝐻𝐻𝑗𝑗𝑗𝑗 = 𝐸𝐸𝑗𝑗𝑗𝑗 −

𝐸𝐸𝑗𝑗𝑗𝑗−1 (this can be positive or negative), 𝑊𝑊𝑡𝑡 is the wage, and 𝐴𝐴𝑗𝑗𝑗𝑗 is a composite shock reflecting 

both technical efficiency and demand shocks.  We interpret the revenue function curvature as 

reflecting product differentiation rather than decreasing returns to help draw out the potential 

relationship between revenue productivity and technical efficiency when prices are endogenous.  

That is, let firm-level price be given by 𝑃𝑃𝑗𝑗𝑡𝑡 = 𝐷𝐷𝑗𝑗𝑗𝑗𝑄𝑄𝑗𝑗𝑗𝑗
𝜙𝜙−1, where 𝑄𝑄𝑗𝑗𝑗𝑗 = 𝐴̃𝐴𝑗𝑗𝑗𝑗𝐸𝐸𝑗𝑗𝑗𝑗 is firm-level output 

subject to a constant returns technology, with 𝐴𝐴𝑗𝑗𝑗𝑗 = 𝐷𝐷𝑗𝑗𝑗𝑗𝐴̃𝐴𝑗𝑗𝑗𝑗
𝜙𝜙 .  That is, 𝐴𝐴𝑗𝑗𝑗𝑗 is what we refer to as 

“TFP” in the main text and reflects both technical efficiency and demand shocks, both in the 

conceptual framework and empirical analysis.  Since labor is the only production factor, TFPR 

and revenue labor productivity (RLP) are both given by 𝑃𝑃𝑗𝑗𝑗𝑗𝐴̃𝐴𝑗𝑗𝑗𝑗.  Note that in the alternative price-

taking version of the model (where 𝜙𝜙 = 1), TFP, TFPR, and RLP are equivalent.  We focus on 

the 𝜙𝜙 < 1 case in our calibration.  We also abstract from demand shocks for clarity of exposition 

(i.e., 𝐷𝐷𝑗𝑗𝑗𝑗 = 1 ∀ 𝑗𝑗, 𝑡𝑡) in the remaining discussion.  Our TFP shocks should be interpreted as 

reflecting the type of composite shocks we consider empirically. 

This simple adjustment cost model is similar to Cooper, Haltiwanger, and Willis (2007, 

2015), Elsby and Michaels (2013), and Bloom et al. (2018) and, in principle, accommodates both 

convex and non-convex adjustment costs.  In particular, given the cost function 𝐶𝐶(𝐻𝐻𝑗𝑗𝑗𝑗), which 

depends upon 𝐸𝐸𝑗𝑗𝑗𝑗−1, the policy rule for hiring depends on the initial state faced by the firm, 

which is summarized as (𝐸𝐸𝑗𝑗𝑗𝑗−1,𝐴𝐴𝑗𝑗𝑗𝑗).     

We view the model as primarily illustrative but seek a reasonable baseline calibration that 

matches key features of the data and the parameters of the existing literature.  Appropriate 

caution is needed since we do not model entry or exit, and we do not have any lifecycle learning 

dynamics or frictions that make young firms different from more mature firms.  We regard the 
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calibration as providing guidance about the qualitative predictions for the key data moments we 

study but within a reasonable range of the parameter space. 

Our main calibration exercise, described in detail below, implements “general 

equilibrium” in the sense that we fix the labor supply then find the wage that clears the labor 

market.  Given a rigid labor supply, this may be thought of as an extreme scenario.  However, in 

unreported exercises we consider the opposite extreme in which labor supply is perfectly elastic 

and the wage is fixed (i.e., partial equilibrium).  A limitation of the partial equilibrium exercise is 

that when the wage is fixed, adjustment frictions can have large effects on average firm size and 

therefore productivity via channels that are unrelated to reallocation.  However, our key results 

on how adjustment costs affect reallocation rates, firm-level productivity responsiveness, and the 

effect of changing responsiveness on aggregate productivity growth do not substantively depend 

on general versus partial equilibrium.   

Our method for solving the model is as follows. We create a state space for employment, 

with 2,400 points (distributed more densely at lower values), and for TFP realizations, with 115 

points.  We specify firm-level TFP to follow an AR(1) process, ln𝐴𝐴𝑗𝑗𝑗𝑗 = 𝜌𝜌𝑎𝑎 ln𝐴𝐴𝑗𝑗𝑗𝑗−1 + 𝜂𝜂𝑗𝑗𝑗𝑗, and in 

practice we use a Tauchen (1986) method for generating TFP draws.  Table A1 reports our 

calibration choices, some of which are standard in the literature and others of which are designed 

to target specific data moments.  We describe two alternative adjustment cost specifications: 

kinked adjustment costs (as described in the main text) and convex adjustment costs.  We start 

with the kinked adjustment cost case.  Empirically determined calibration choices are intended to 

produce a model economy that resembles the U.S. manufacturing sector in the 1980s, the initial 

timing of our empirical exercises, but the qualitative model results in which we are interested are 

not sensitive to these specific calibration choices. 

We obtain policy functions using value function iteration then simulate 2,000 firms for 

1,000 periods, jumping off from the stationary distribution of productivity but discarding the first 

100 periods.  Given a fixed (inelastic) labor supply, we check market clearing then adjust the 

wage using simple bisection until the labor market clears.  We estimate responsiveness 

regressions and construct other statistics described in the text by using the simulated data 

generated by the model when in equilibrium. 

We perform several exercises on the model-simulated data with a focus on three key 

outcomes: aggregate job reallocation, the dispersion of revenue productivity (where in the model, 
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revenue productivity is given by 𝐴𝐴𝑗𝑗𝑗𝑗𝐸𝐸𝑗𝑗𝑗𝑗
𝜙𝜙−1), and the responsiveness of growth to productivity as 

measured with the regression in equation (2) of the main text. In other words, we measure the 

standard deviation of labor productivity in the model economy, and we estimate the regression 

from (A2), that is, 

 𝑔𝑔𝑗𝑗𝑗𝑗 = 𝛽𝛽0 + 𝛽𝛽1𝑎𝑎𝑗𝑗𝑗𝑗 + 𝛽𝛽2𝑒𝑒𝑗𝑗𝑗𝑗−1 + 𝜀𝜀𝑗𝑗𝑗𝑗, (A8) 

where, as in the main text, 𝑔𝑔𝑗𝑗𝑗𝑗 is DHS employment growth from year 𝑡𝑡 − 1 to year 𝑡𝑡, 𝑎𝑎𝑗𝑗𝑗𝑗 is 

productivity, and 𝑒𝑒𝑗𝑗𝑗𝑗−1 is (initial) employment.  This is the same as equation (A2) and follows a 

timing convention that is analogous to our empirical work (though we confirm below that this 

timing convention is unimportant for the model’s qualitative results).  “Responsiveness” is 

measured by 𝛽𝛽1. 

We study labor productivity dispersion and responsiveness under two model experiments 

starting from the model’s baseline calibration.  In our first experiment, we study the effects of 

declining responsiveness, in this case resulting from a rise in adjustment costs.  In particular, 

starting with the baseline calibration (where upward adjustment has a cost parameter of 𝐹𝐹+ =

1.03) we raise the cost of downward adjustments (𝐹𝐹−).  Figure 2 in the main text shows the result 

of this experiment.  Rising adjustment costs generate declining reallocation (Figure 2a) due to 

lower responsiveness (2c), with the additional result of wider labor productivity dispersion, each 

of which we observe in our empirical exercises.  This experiment suggests that declining 

responsiveness, as generated by rising labor adjustment costs, can cause declining reallocation, 

with the additional symptom of rising labor productivity dispersion. 

In our second experiment, we reduce the parameter governing TFP dispersion, starting 

from its baseline calibrated value of 𝜎𝜎𝑎𝑎 = 0.46.  This is also reported in Figure 2 in the main 

text.  As TFP dispersion falls, aggregate job reallocation declines (Figure 2b), labor productivity 

dispersion decreases, and responsiveness becomes weaker (Figure 2d; we discuss this more 

below).  This summarizes the “shocks” hypothesis: the declining pace of job reallocation we 

observe empirically could be explained by declining dispersion of TFP realizations if we were to 

also observe declining labor productivity dispersion.  As shown in the main text, however, we 

actually observe rising labor productivity dispersion in our empirical work.   

We must make one side note here:  As noted above and shown in Figure 2c, in the model 

with non-convex adjustment costs, when shock dispersion declines, so too does responsiveness.  

At first glance, this dispersion dependence of responsiveness in the non-convex costs model may 
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complicate the shocks vs. responsiveness hypothesis.  However, three points are important to 

note.  First, this is unique to the model with non-convex costs; as we will discuss below (and 

show in Figures A1 and A2), responsiveness is unaffected by changes in dispersion when 

adjustment costs are convex, or in the correlated wedges model without adjustment costs.  

Second, we can easily conclude that the declining responsiveness we observe in the data is not 

driven by declining shock dispersion because we also empirically find rising shock dispersion 

(apparent in our TFPS and TFPP productivity measures) and rising revenue productivity 

dispersion (apparent in our TFPR and revenue labor productivity measures).  Third, as we show 

in the main text, using industry variation we find no monotonic relationship between changes in 

TFP dispersion and changes in responsiveness. 

The model results are robust to a wide range of conditions.  Figure A3a shows that 

responsiveness regressions using lagged (rather than current) TFP or current RLP make the same 

qualitative predictions as regressions using lag TFP, as do regressions using current TFP 

innovations or differences (in the main text, we also find that our empirical results are robust to 

using innovations or differences).   

Figure A3b reports responsiveness coefficients from instrumental variables regressions 

performed on model-simulated data; these correspond with those we estimated on empirical data 

(described in the main text, Appendix III.B, and Table A2) and are motivated by concerns about 

division bias and measurement error in employment.  Figure A3c addresses the measurement 

error issue more specifically by considering scenarios in which the econometrician observes firm 

employment, firm labor productivity, or both with error.3  Error in employment measurement is 

introduced with a multiplicative disturbance term drawn from an independent normal distribution 

with mean 1 and standard deviation 0.033 (such that employment disturbances of 10 percent map 

to three standard deviations from the mean);4 error in labor productivity measurement is 

generated by applying the employment disturbance term to the denominator in revenue per 

worker.  As shown in Figure A3c, this source of measurement error does not dramatically affect 

responsiveness coefficients, such that the decline in responsiveness we observe empirically is 

unlikely to be caused by rising measurement error over time. That said, the best approach to 

                                                           
3 Recall that in our manufacturing regressions, the employment variable used to measure productivity, which comes 
from the ASM/CM, is independent of the employment variable used to measure employment levels and growth, 
which comes from the LBD. 
4 This choice is arbitrary and does not have qualitative implications. 
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concerns about measurement error is our empirical investigation using cross-industry variation, 

covered in the main text and Table 8.  

Figure A4a reports the effects of rising adjustment costs on aggregate productivity in the 

model with non-convex adjustment costs.  The black solid line shows true (model) aggregate 

productivity.  The dashed orange line replicates the productivity index exercise described in 

section IV.B of the main text; in that exercise, we empirically estimate the effects of declining 

responsiveness on aggregate productivity by constructing an aggregate productivity index that 

depends on estimated responsiveness coefficients (see that discussion for more detail).   

The productivity index used in section IV.B is given by ∑ 𝜃𝜃𝑗𝑗𝑗𝑗𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗 , where 𝜃𝜃𝑗𝑗𝑗𝑗 is the 

employment weight of firm 𝑗𝑗 and 𝑎𝑎𝑗𝑗𝑗𝑗 is TFP; we can construct this index and related 

counterfactuals using model-simulated data to study the index’s relationship with true 

productivity.  For every adjustment cost scenario, we use simulated data and corresponding 

regression coefficients to construct ∑ 𝜃𝜃�𝑗𝑗𝑗𝑗𝐻𝐻𝐻𝐻𝑗𝑗 𝑎𝑎𝑗𝑗𝑗𝑗, the aggregate productivity index as predicted by 

the responsiveness regressions under that adjustment cost scenario (where “HC” stands for “high 

cost”).  We then construct a counterfactual index using the same simulated data but applying the 

responsiveness coefficient from the low-cost baseline scenario, ∑ 𝜃𝜃�𝑗𝑗𝑗𝑗𝐵𝐵𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗  (where “B” stands for 

baseline, referring to the use of the responsiveness coefficient from the low-cost baseline 

scenario).  Then ∑ 𝜃𝜃�𝑗𝑗𝑗𝑗𝐻𝐻𝐻𝐻𝑎𝑎𝑗𝑗𝑗𝑗 − ∑ 𝜃𝜃�𝑗𝑗𝑗𝑗𝐵𝐵𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗  is the effect of changing responsiveness on the aggregate 

productivity index, in the model-simulated data.  The dashed orange line in Figure A4a shows 

this counterfactual productivity index, which tracks true aggregate productivity reasonably well, 

lending support to our empirical approach for estimating the effects of changing responsiveness 

on aggregate productivity.  

Our shocks vs. responsiveness approach is also useful if changing responsiveness is 

generated by convex labor adjustment instead of non-convex.  We construct an alternative 

baseline calibration of the model in which non-convex costs are set to zero (𝐹𝐹− = 𝐹𝐹+ = 0), but 

γ=1.75 to again replicate a job reallocation rate of 0.18, leaving all other parameters unchanged 

relative to Table A1.  (Recall from the model description that γ governs quadratic adjustment 

costs on employment).  From this alternative convex cost baseline, we conduct both of our model 

experiments: (1) raise adjustment cost γ above its baseline value, and (2) reduce TFP dispersion 

𝜎𝜎𝑎𝑎.  These results are in Figure A1.  The qualitative results of the experiments for job 
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reallocation, responsiveness, and revenue productivity dispersion are the same as those found in 

our non-convex cost experiments except that, as mentioned above, responsiveness is unaffected 

by changes in shock dispersion (providing an even cleaner shocks vs. responsiveness 

dichotomy).  The productivity results for the convex cost case are reported in Figure A4b.  

Finally, we note that declining responsiveness can also be derived from an increase in the 

curvature of the revenue function (generated by reducing 𝜙𝜙).  This is shown in Figure A3d; 

notably, while increased curvature reduces responsiveness in each of our example model 

frameworks, its implications for revenue productivity dispersion (not shown) are model 

dependent. 

C. Alternative framework: Wedges 

The shocks vs. responsiveness insight is more general than the specific adjustment costs 

models described above.  As an example, here we show how a broader interpretation can be 

adopted, following the seminal work of Hsieh and Klenow (2009). 

Hsieh and Klenow (2009) show how measured revenue productivity dispersion can exist 

in equilibrium if there are static distortions or “wedges” affecting firms’ first-order conditions.  

This framework can be viewed as a reduced form way of capturing not only adjustment frictions 

(under certain specifications of the wedge process) but also a wide variety of other factors that 

distort first-order conditions. 

Consider a simple one-factor (employment) model in the spirit of Hsieh and Klenow 

(2009).  Firms maximize period 𝑡𝑡 profits given by: 

 𝑆𝑆𝑗𝑗𝑗𝑗𝐴𝐴𝑗𝑗𝑗𝑗𝐸𝐸𝑗𝑗𝑗𝑗
𝜙𝜙 −𝑊𝑊𝑡𝑡𝐸𝐸𝑗𝑗𝑗𝑗 (A9) 

where 𝐴𝐴𝑗𝑗𝑗𝑗𝐸𝐸𝑗𝑗𝑗𝑗
𝜙𝜙 is revenue and 𝑆𝑆𝑗𝑗𝑗𝑗 is a firm-specific wedge, which can be thought of as a tax when 

𝑆𝑆𝑗𝑗𝑗𝑗 < 1 or as a subsidy when 𝑆𝑆𝑗𝑗𝑗𝑗 > 1.  Suppose the wedge 𝑆𝑆𝑗𝑗𝑗𝑗 follows the following process: 

 𝑠𝑠𝑗𝑗𝑗𝑗 = −𝜅𝜅𝑎𝑎𝑗𝑗𝑗𝑗 + 𝜈𝜈𝑗𝑗𝑗𝑗, (A10) 

where lowercase indicates logs.  Consistent with much of the recent literature, we assume 𝜅𝜅 ∈

(0,1), and 𝑣𝑣𝑗𝑗𝑗𝑗 is independent of 𝑎𝑎𝑗𝑗𝑗𝑗 with 𝔼𝔼�𝑣𝑣𝑗𝑗𝑗𝑗� = 0.5  Equation (A10) states that firms with 

more favorable fundamentals (e.g., higher TFP) face more substantial wedges (meaning, lower 

                                                           
5 By “consistent with the literature,” we mean a common finding in the literature is that indirect measures of wedges 
(i.e., revenue productivity measures like TFPR) are positively correlated with measures of fundamentals (technical 
efficiency and demand shocks) and have lower variance than fundamentals.  See Foster, Haltiwanger, and Syverson 
(2008) and Blackwood et al. (forthcoming).   
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𝑆𝑆𝑗𝑗𝑗𝑗), but the variance of (log) wedges is lower than the variance of fundamentals.  This 

relationship between 𝑆𝑆𝑗𝑗𝑗𝑗 and 𝐴𝐴𝑗𝑗𝑗𝑗 is critical for producing empirically plausible aggregate 

reallocation rates (under reasonable parameterizations of 𝜙𝜙) in the absence of explicit adjustment 

frictions. 

Given (A9) and (A10), the first-order condition, in logs (indicated by lowercase), is given 

by: 

 𝑒𝑒𝑗𝑗𝑗𝑗 = 1
1−𝜙𝜙

�ln � 𝜙𝜙
𝑊𝑊𝑡𝑡
� + (1 − 𝜅𝜅)𝑎𝑎𝑗𝑗𝑗𝑗 + 𝜈𝜈𝑗𝑗𝑗𝑗�. (A11) 

Taking time differences (indicated by ∆), sweeping out year and industry effects, and 

incorporating the transformation described in the first section of this appendix, we obtain an 

employment growth function (expressed in log differences): 

 ∆𝑒𝑒𝑗𝑗𝑗𝑗 = 1
1−𝜙𝜙

�(1 − 𝜅𝜅)𝑎𝑎𝑗𝑗𝑗𝑗 − (1 − 𝜙𝜙)𝑒𝑒𝑗𝑗𝑗𝑗−1 + 𝜈𝜈𝑗𝑗𝑗𝑗�. (A12) 

Employment growth can be expressed as a function of the productivity level and lagged 

employment, along with the shock to the wedge and the model parameters.  Equation (A12) 

shows that the relationship between employment growth and productivity depends not only on 𝜙𝜙 

but also on 𝜅𝜅, which determines the covariance between firm productivity and firm distortions.  

A higher value of 𝜅𝜅 results in weaker responsiveness of growth to productivity because stronger 

𝜅𝜅 means that wedge shocks partially offset productivity shocks.   In the text, we refer to a higher 

𝜅𝜅 as reflecting a more positive correlation between fundamentals and distortions.  By this we 

mean that the implicit tax on firms is increasing in fundamentals.  In this case the implicit tax is 

larger the less positive is 𝑠𝑠𝑗𝑗𝑗𝑗.  Note also that aggregate job reallocation, which in this context can 

be thought of as the dispersion of employment growth rates, is decreasing in 𝜅𝜅. 

This framework also has implications for revenue productivity dispersion.  Log revenue 

per worker is given by ln𝑊𝑊𝑡𝑡
𝜙𝜙

+ 𝜅𝜅𝑎𝑎𝑗𝑗𝑗𝑗 − 𝜈𝜈𝑗𝑗𝑗𝑗, such that the dispersion of revenue labor productivity 

is increasing in 𝜅𝜅. 

This model, albeit highly simplified, thus yields rich empirical predictions, which we 

report in a manner analogous to our simulations from the model with labor adjustment costs.  

That is, we calibrate the “wedges” model, using the wedge correlation parameter 𝜅𝜅 to target the 

empirical reallocation rate of the 1980s, then we conduct experiments varying 𝜅𝜅 and 𝜎𝜎𝐴𝐴 (the 

dispersion of TFP).  These exercises are shown in Figure A2 in a manner comparable to Figures 
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2 and A1.  Figures A2a and A2c report the results of raising 𝜅𝜅 from its baseline value; as 

discussed above, responsiveness and job reallocation fall while revenue labor productivity 

dispersion rises. Declining responsiveness through this mechanism, as in the other models, yields 

a decline in aggregate productivity, as shown in Figure A4c. 

The wedge model also yields similar implications for changes in the variance of shocks, 

shown in Figure A2b.  A decline in the variance of 𝑎𝑎𝑗𝑗𝑗𝑗 yields declining reallocation and revenue 

productivity dispersion but, as in the model with convex adjustment costs, does not affect 

responsiveness (thus, responsiveness depends on TFP dispersion only in the model with non-

convex adjustment costs). 

Finally, as in the models with adjustment costs, in the wedge model a decline in 

responsiveness can be generated through a decline in revenue function curvature, as shown in 

Figure A3d. 
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Appendix II: Data 

A. Longitudinal Business Database 

For longitudinal information we rely on the Longitudinal Business Database (LBD), 

which covers the universe of private nonfarm employer business establishments in the U.S.  The 

LBD records establishment employment, payroll, detailed industry, and location annually (with 

employment corresponding to March 12).  Establishments are linked over time by high-quality 

longitudinal identifiers, and firm identifiers link establishments of multi-establishment firms.  

See Jarmin and Miranda (2002) for a description of the LBD, which is constructed from the 

Census Bureau’s Business Register.  The LBD’s high-quality longitudinal linkages make it ideal 

for studying growth and survival outcomes of businesses. 

In our regression specifications we include several establishment characteristic controls 

derived from the LBD.  Key among them is firm age.  We follow the large LBD-based literature 

in defining firm age as follows.  Upon the first appearance of a firm identifier in the LBD, we 

assign firm age as the age of the firm’s oldest establishment, where an establishment has age 0 

during the year in which it first reports positive payroll.  Thereafter, the firm ages naturally (i.e., 

we add one year to the firm’s age for each calendar year after the firm identifier’s first 

observation).  This allows us to abstract from spurious changes in firm identifiers.  We also use 

firm identifiers to measure firm size, which is the sum of employment across all the firm’s 

establishments.  In our regressions we control for firm size based on four cutoffs: fewer than 250 

employees, 250-499 employees, 500-999 employees, and 1,000 or more employees (these 

cutoffs follow Foster, Grim, and Haltiwanger (2016), hereafter FGH). 

B. Revenue-enhanced LBD (RE-LBD) 

While the LBD does not include revenue data, revenue information is available in the 

Business Register at the employer identification number (EIN) level starting in the mid-1990s.  

Importantly, EINs are not a straightforward firm or establishment identifier in that multiple 

establishments can have the same EIN, and some firms can have multiple EINs (e.g., splitting the 

firm by geography or separating tax functions from payroll functions).  In the case of multi-

establishment firms, in general revenue data are not broken out by establishment.  Haltiwanger et 

al. (2017) deal with these various challenges and create firm-level revenue data by aggregating 
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across EINs of the same firm.6  They then match these revenue figures to the LBD at the firm 

level, finding nominal revenue figures for about 80 percent of LBD firms.  The resulting revenue 

dataset is roughly representative of the overall LBD in terms of observables like firm age, firm 

size, sector, multi- or single-establishment status, and patterns of firm growth.  Nevertheless, 

Haltiwanger et al. (2017) construct propensity scores for the entire LBD using logistic 

regressions with dependent variable equal to 1 for firms with revenue data and 0 otherwise.  

These regressions are run separately for birth, deaths, and continuers, and they rely on 

observables including firm size, firm age, employment growth rate, industry, and multi-

establishment status.  We use the resulting propensity scores (in inverse) as sampling weights in 

all regressions.  We deflate revenue with the GDP deflator, but this is unimportant as all 

empirical exercises will implicitly control for industry-level prices as we deviate firm 

productivity from industry-year means.  More generally, we follow Haltiwanger et al. (2017) 

closely in our measurement approach using the RE-LBD. 

C. Manufacturing data 

We supplement the LBD with manufacturing data from the Census of Manufacturers 

(CM) and the Annual Survey of Manufacturers (ASM), a dataset we obtain from FGH and 

update through 2013.  The CM surveys almost the universe of manufacturing establishments 

every five years (those ending in “2” and “7”); we use CM data from 1982 through 2012.7  The 

ASM, conducted in non-CM years, surveys roughly 50,000-70,000 establishments; we use ASM 

data from 1981 through 2013.  The ASM is a series of five-year panels (starting in years ending 

in “4” and “9”) with probability of panel selection being a function of industry and size.   

We combine the CM and ASM into an annual manufacturing establishment dataset 

covering 1981-2013, and we link the combined ASM-CM with the LBD by establishment and 

year using internal Census Bureau establishment identifiers that are consistent across these 

datasets.  We create a dummy variable equal to 1 for those establishments that appear in both the 

ASM-CM and the LBD and 0 for those establishments that appear only in the LBD.  We then 

create propensity scores using a logistic regression to predict ASM-CM presence based on the 

following variables: whether the establishment is part of a multi-establishment firm, size 

                                                           
6 This is a complicated process involving careful attention to details including industry and legal form of 
organization, which can affect the way in which revenue data are reported and the way EINs map to firms. 
7 Very small establishments (those with fewer than five employees) are not surveyed by the CM; the Census Bureau 
fills in data for these with administrative records.  We do not include these cases. 
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(employment), payroll, detailed industry, and firm age.  We estimate these propensity scores 

separately for each year; we then use them (in inverse) as sampling weights in all regressions. 

As discussed in the main text, we use the LBD to measure employment growth and 

survival for each plant-year observation for which we have the TFP measures.  This implies we 

are using the LBD through 2014 for this purpose.    

D. Output and production factors 

We require measures of revenue and production factors to construct TFPS, TFPP, and 

TFPR.  We calculate real establishment-level revenue (or, under TFPR assumptions, output) as 

𝑄𝑄𝑗𝑗𝑗𝑗 = �𝑇𝑇𝑇𝑇𝑆𝑆𝑗𝑗𝑗𝑗 + 𝐷𝐷𝐹𝐹𝑗𝑗𝑗𝑗 + 𝐷𝐷𝑊𝑊𝑗𝑗𝑗𝑗� 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡⁄ , where 𝑇𝑇𝑇𝑇𝑆𝑆𝑗𝑗𝑗𝑗 is total value of shipments, 𝐷𝐷𝐹𝐹𝑗𝑗𝑗𝑗 is the 

change in (the value of) finished goods inventories, 𝐷𝐷𝑊𝑊𝑗𝑗𝑗𝑗 is the change in (the value of) work-in-

progress inventories, and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 is the industry-level shipments deflator, which varies by 

detailed industry (4-digit SIC prior to 1997 and 6-digit NAICS thereafter) and is taken from the 

NBER-CES Manufacturing Productivity Database.  If the resulting 𝑄𝑄𝑗𝑗𝑗𝑗 is not greater than zero, 

then we simply set 𝑄𝑄𝑗𝑗𝑗𝑗 = 𝑇𝑇𝑇𝑇𝑆𝑆𝑗𝑗𝑗𝑗 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡⁄ .   

For the purposes of TFP estimation, we construct labor from the ASM in terms of total 

hours (𝑇𝑇𝐻𝐻𝑗𝑗𝑗𝑗) as follows: 

 
𝑇𝑇𝐻𝐻𝑗𝑗𝑗𝑗 = �

𝑃𝑃𝐻𝐻𝑗𝑗𝑗𝑗
𝑆𝑆𝑊𝑊𝑗𝑗𝑗𝑗

𝑊𝑊𝑊𝑊𝑗𝑗𝑗𝑗
if 𝑆𝑆𝑊𝑊𝑗𝑗𝑗𝑗 > 0 and 𝑊𝑊𝑊𝑊𝑗𝑗𝑗𝑗 > 0

𝑃𝑃𝐻𝐻𝑗𝑗𝑗𝑗 otherwise
 

(A13) 

where 𝑃𝑃𝐻𝐻𝑗𝑗𝑗𝑗 is production worker hours, 𝑆𝑆𝑊𝑊𝑗𝑗𝑗𝑗 is total payroll, and 𝑊𝑊𝑊𝑊𝑗𝑗𝑗𝑗 is the payroll of 

production workers. 

We measure capital separately for structures and equipment using the perpetual inventory 

method: 𝐾𝐾𝑗𝑗𝑗𝑗+1 = (1 − 𝛿𝛿𝑡𝑡+1)𝐾𝐾𝑗𝑗𝑗𝑗 + 𝐼𝐼𝑗𝑗𝑗𝑗+1 where 𝐾𝐾 is the capital stock, 𝛿𝛿 is a year- (and industry-) 

specific depreciation rate, and 𝐼𝐼 is investment.  At the earliest year possible for a given 

establishment, we initialize the capital stock by multiplying the establishment’s reported book 

value by a ratio of real capital to book value of capital derived from BEA data (where the ratio 

varies by 2-digit SIC or 3-digit NAICS).  Thereafter, we observe annual capital expenditures and 

update the capital stock accordingly, where we deflate capital expenditures using BLS deflators.8 

                                                           
8 See FGH for more detail.  In a small number of cases (less than 0.5 percent) we cannot initialize the capital stock 
as described; in such cases we follow Bloom et al. (2013) using I/K ratios. 
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We calculate materials as 𝑀𝑀𝑗𝑗𝑗𝑗 = �𝐶𝐶𝑃𝑃𝑗𝑗𝑗𝑗 + 𝐶𝐶𝑅𝑅𝑗𝑗𝑗𝑗 + 𝐶𝐶𝑊𝑊𝑗𝑗𝑗𝑗�/𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑡𝑡, where 𝐶𝐶𝐶𝐶 is the cost of 

materials and parts, 𝐶𝐶𝐶𝐶 is the cost of resales, 𝐶𝐶𝐶𝐶 is the cost of work done for the establishment 

(by others) on the establishment’s materials, and 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀 is the industry materials deflator.  We 

calculate energy costs as 𝑁𝑁𝑗𝑗𝑗𝑗 = �𝐸𝐸𝐸𝐸𝑗𝑗𝑗𝑗 + 𝐶𝐶𝐹𝐹𝑗𝑗𝑗𝑗�/𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑡𝑡, where 𝐸𝐸𝐸𝐸 is the cost of purchased 

electricity, 𝐶𝐶𝐶𝐶 is the cost of purchased fuels consumed for heat, power, or electricity generation, 

and 𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸 is the industry energy deflator. 

We use the production factor and output measures described above for each of our three 

TFP measures (TFPS, TFPP, and TFPR). 

E. Cost and revenue shares: TFPS and TFPR 

TFPS and TFPR productivity estimates require industry-level factor expenditures as 

shares of revenue (for TFPS) or cost (for TFPR) to construct factor elasticity estimates.  We 

obtain these shares at the detailed industry level (4-digit SIC prior to 1997, 6-digit NAICS 

thereafter) from the NBER-CES Manufacturing Productivity Database, which reports industry-

level figures for expenditures on equipment, structures, materials, energy, and labor.  We average 

these cost shares across all of 1981-2013 to obtain time-invariant elasticities, though our results 

are robust to instead using time-varying elasticities as in FGH.   

F. Proxy method: TFPP 

Our TFPP productivity concept requires us to estimate factor elasticities using proxy 

methods.  Given the challenge of identifying exogenous shocks to fundamentals, a long literature 

(e.g., Olley and Pakes (1996), Levinsohn and Petrin (2003)) proposes using a variable production 

factor as a “proxy” for identification.  Blackwood et al. (forthcoming) compare multiple proxy-

based TFP concepts with other concepts from the literature.  Some literature achieves this using a 

two-step procedure (see Ackerberg, Caves, and Frazer (2015)), but we follow Wooldridge (2009) 

in implementing a single-step GMM approach using lagged values of capital and variable inputs 

as instruments.  We refer the reader to the just-mentioned research for more detail on the general 

approach to proxy estimation of production functions.  For our purposes, we estimate factor 

elasticities separately by 2- and 3-digit industries using energy as the proxy variable.   

 

 



15 
 

Appendix III: Additional empirical results 

A. Reallocation has declined within firm age bins 

As noted in the text, the aggregate decline in job reallocation is not simply a composition 

effect due to declining young firm activity.  Rather, we also observe declining reallocation within 

firm age bins. To see this, we first create seven firm age groups (ages 0, 1, 2, 3, 4, 5 and 6+).  We 

then study the change in aggregate (weighted average) job reallocation in year 𝑡𝑡 relative to a base 

year 𝑡𝑡0 with the following shift-share decomposition: 

𝑅𝑅𝑡𝑡 − 𝑅𝑅𝑡𝑡0 = �𝜔𝜔𝑎𝑎𝑎𝑎0(𝑅𝑅𝑎𝑎𝑎𝑎 − 𝑅𝑅𝑎𝑎𝑎𝑎0)
𝑎𝑎

+ �𝑅𝑅𝑎𝑎𝑎𝑎0(𝜔𝜔𝑎𝑎𝑎𝑎 − 𝜔𝜔𝑎𝑎𝑎𝑎0)
𝑎𝑎

+ �(𝑅𝑅𝑎𝑎𝑎𝑎 − 𝑅𝑅𝑎𝑎𝑎𝑎0)(𝜔𝜔𝑎𝑎𝑎𝑎 − 𝜔𝜔𝑎𝑎𝑎𝑎0)
𝑎𝑎

 

where 𝑅𝑅𝑡𝑡 is the aggregate (or, as we will specify it below, sector-level) job reallocation rate, 𝑎𝑎 

indexes age bins, 𝜔𝜔𝑎𝑎𝑎𝑎 is the employment share of age group 𝑎𝑎 in time 𝑡𝑡, and 𝑅𝑅𝑎𝑎𝑎𝑎 is the 

reallocation rate for age group 𝑎𝑎 in time 𝑡𝑡.  The first term is a within-age-group component based 

on the change in flows among firms of that age.  The second term is a between-group component 

capturing the change in the age composition.  The third term is a cross term.  We focus on the 

overall component and the within component; the residual coming from composition shifts and 

cross terms reflects the extent to which composition effects account for the aggregate change. 

To abstract from business cycle issues, we construct this counterfactual between the 

business cycle peaks of 1987-1989, 1997-1999, 2004-2006, and 2011-2013.  We study the long 

differences in reallocation rates between these three periods.  Figure A5 illustrates the results, 

showing both the overall change in reallocation for a sector and the change in the within-age-

group term, indicated by the “Holding age constant” bars.  As is evident, the decline in 

reallocation within age groups explains the bulk of the overall decline.  In other words, the 

changing age composition of U.S. firms resulting from changing patterns of firm entry does not 

explain the patterns of reallocation that motivate this paper. 

B. Instrumental variables: Empirical results 

A particular challenge for our empirical approach is that our workhorse regressions given 

by equations (7) and (9) in the main text feature initial employment (𝐸𝐸𝑗𝑗𝑗𝑗) on the right-hand-side 

(as the state variable) and on the left-hand-side (in the DHS growth dependent variable).  

Additionally, in our economywide regressions using labor productivity, initial employment also 
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appears in the denominator of the productivity indicator (which is real revenue per worker).9  In 

Appendix I, we explore this problem by running instrumental variables regressions on model-

simulated data.  Regressions in which an employment lag is used to instrument for initial 

employment (i.e., use 𝐸𝐸𝑗𝑗𝑗𝑗−1 as an instrument for 𝐸𝐸𝑗𝑗𝑗𝑗), and regressions in which we additionally 

instrument for productivity using a lag, find that responsiveness still declines as adjustment costs 

rise.  This suggests that we can evaluate robustness of our main responsiveness results to the 

employment endogeneity issue using similar instrumental variables regressions in our empirical 

exercises. 

For brevity, we focus on the time-trend regression specifications for studying changing 

responsiveness.  Table A2 reports results of instrumental variables regressions.  The first column 

reports establishment-based results for the manufacturing sector using our preferred productivity 

measure, TFPS, and instrumenting for initial employment.  The second column reports 

economywide firm-based results instrumenting for initial employment, and the third column 

reports economywide firm-based results instrumenting for initial employment and for 

productivity.  In each column, and for both young and mature firms, we observe declining 

responsiveness as indicated by the negative (and statistically significant) coefficient on the linear 

trend variables. 

 

  

                                                           
9 Initial employment is also used in TFP estimation in our manufacturing-only exercises; however, the employment 
variable used for TFP is independently constructed from our ASM-CM dataset (see Appendix II). 



17 
 

Appendix references 
 
Ackerberg, Daniel A., Kevin Caves, and Garth Frazer. 2015. “Identification Properties of Recent 

Production Function Estimators.” Econometrica 83 no. 6:2411-2451. 
 
Blackwood, Glenn, Lucia Foster, Cheryl Grim, John Haltiwanger and Zoltan Wolf. 

Forthcoming. “Macro and Micro Dynamics of Productivity: From Devilish 
Details to Insights.” American Economic Journal: Macroeconomics. 

 
Bloom, Nicholas, Erik Brynjolfsson, Lucia Foster, Ron Jarmin, Itay Saporta-Eksten, and 

John Van Reenen. 2013. “Management in America.” CES-WP-13-01, CES 
Discussion Paper Series, Washington, DC. 

 
Bloom, Nicholas, Max Floetotto, Nir Jaimovich, Itay Saporta-Eksten, and Stephen J. 

Terry. 2018. “Really Uncertain Business Cycles.” Econometrica 86 no. 3:1031-
65. 

 
Cooper, Russell, John Haltiwanger, and Jonathan Willis. 2007. “Search Frictions: 

Matching Aggregate and Establishment Observations.” Journal of Monetary 
Economics 54 Supplement 1: 56-78. 

 
Cooper, Russell, John Haltiwanger, and Jonathan Willis. 2015. “Dynamics of Labor 

Demand: Evidence from Plant-level Observations and Aggregate Implications.” 
Research in Economics 69 no. 1:37-50. 

 
Elsby, Michael W. L. and Ryan Michaels. 2013. “Marginal Jobs, Heterogeneous Firms, and 

Unemployment Flows.” American Economic Journal: Macroeconomics 5 no. 1:1-48. 
 
Foster, Lucia, Cheryl Grim, and John Haltiwanger. 2016. “Reallocation in the Great 

Recession: Cleansing or Not?” Journal of Labor Economics 34 no. S1 (Part 2, 
January 2016):S293-S331. 

 
Hsieh, Chang-Tai and Peter J. Klenow. 2009. “Misallocation and Manufacturing TFP in 

China and India.” Quarterly Journal of Economics, 124(4): 1403-48. 
 
Foster, Lucia, John Haltiwanger, and Chad Syverson, 2008. “Reallocation, Firm 

Turnover, and Efficiency: Selection on Productivity or Profitability?” American 
Economic Review, 98(1): 394-425.  

 
Haltiwanger, John, Ron S. Jarmin, Robert Kulick and Javier Miranda. 2017. “High Growth 

Young Firms: Contribution to Job Growth, Revenue Growth and Productivity” In 
Measuring Entrepreneurial Businesses: Current Knowledge and Challenges edited by 
John Haltiwanger, Erik Hurst, Javier Miranda, and Antoinette Schoar. Chicago: 
University of Chicago Press. 

 



18 
 

Jarmin, Ron S., and Javier Miranda. 2002. "The Longitudinal Business Database." CES 
Working Paper no. 02-17. Washington, D.C.: Center for Economic Studies, U.S. 
Census Bureau.  

 
Levinsohn, James and Amil Petrin. 2003. “Estimating Production Functions Using Inputs to 

Control for Unobservables.” Review of Economic Studies 70 no. 2:317-41. 
 
Olley, G. Steven and Ariel Pakes. 1996. “The Dynamics of Productivity in the 

Telecommunications Industry.” Econometrica, 64 no. 6:1263-98. 
 
Tauchen, George. 1986. “Finite State Markov-Chain Approximations to Univariate and Vector 

Autoregressions.” Economics Letters 20 no. 2:177-181. 
 
Wooldridge, Jeffrey M. 2009. “On Estimating Firm-Level Productivity Functions Using Proxy 

Variables to Control for Unobservables.” Economics Letters 104 no. 3:112-4.  
  



19 
 

Table A1: Baseline model calibration 
 Description Value Calibration rationale 
𝜙𝜙 Inverse demand elasticity parameter 0.67 Standard in literature 
𝛽𝛽 Discount factor 0.96 Standard in literature 
𝜌𝜌𝑎𝑎 (Log) TFP AR(1) coefficient 0.80 Estimated TFPS AR(1), 1980s average 
𝜎𝜎𝑎𝑎 Standard deviation of (log) TFP 0.46 Estimated TFPS standard deviation, 1980s average 
𝜎𝜎𝜂𝜂 Standard deviation of TFP innovation 0.28 Implied by 𝜌𝜌 and 𝜎𝜎𝑎𝑎 
𝐹𝐹+ Upward kinked adjustment cost 1.03 Target job reallocation rate = 0.18 (1980s average)* 

𝐹𝐹+ = 0 in convex cost model. 
𝐹𝐹− Downward kinked adjustment cost 0.00 (Rely on upward cost for baseline calibration) 
𝛾𝛾 Convex adjustment cost parameter 0.00 No convex cost in non-convex cost model. 

𝛾𝛾 = 1.75 in convex cost model. 
𝜅𝜅 Wedge/productivity correlation parameter 0.83 Wedge model only; target job reallocation rate 0.18* 

With 𝜎𝜎𝜈𝜈 = 0.04. 
Moment targets refer to U.S. manufacturing sector. 
*1980s average reallocation rate among continuing establishments (Business Dynamics Statistics). 
 

 
Table A2: Instrumental variables regressions, employment growth responsiveness 
 TFPS: RLP: RLP: 
 IV for employment IV for employment IV for emp & RLP 
Prod*Young: 𝛽𝛽1

𝑦𝑦 0.4358 0.3170 0.1499 
 (0.0177) (0.0013) (0.0016) 
Prod*Young*trend: 𝛿𝛿𝑦𝑦 -0.0042 -0.0033 -0.0015 
 (0.0009) (0.0001) (0.0001) 
Prod*Mature: 𝛽𝛽1𝑚𝑚 0.3123 0.2581 0.1092 
 (0.0104) (0.0010) (0.0001) 
Prod*Mature*trend: 𝛿𝛿𝑚𝑚 -0.0020 -0.0032 -0.0014 
 (0.0005) (0.0001) (0.0001) 
    
Observations (thousands) 2,179 4,909 4,909 
Note: All coefficients statistically significant with 𝑝𝑝 < 0.01.  All regressions include controls described in 
equation (7) and related text.  RLP regressions use 10 percent random sample of RE-LBD. 
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Note: Panels c and d share same legend. Results relative to model baseline calibration (vertical purple line) with downward
adjustment cost γ=1.75 and TFP dispersion σA=0.46 (see Appendix I and Table A1 for model calibration details).
"s.d. RLP" refers to the standard deviation of revenue labor productivity in model-simulated data.

Figure A1: The shocks and responsiveness hypotheses, model results (convex cost)
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Note: Panels c and d share same legend. Results relative to model baseline calibration (vertical purple line) with TFP/
wedge correlation parameter κ=0.83 and TFP dispersion σA=0.46 (see Appendix I and Table A1 for model calibration
details). "s.d. RLP" refers to the standard deviation of revenue labor productivity in model-simulated data.

Figure A2: The shocks and responsiveness hypotheses, model results (wedge model)
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Figure A3: Alternative responsiveness coefficient β1 specifications in model-simulated data
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Figure A4: Aggregate productivity and responsiveness
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Figure A5: Most variation in job reallocation is within firm age classes
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