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1  Empirical papers of relevance that focus on the connection between aggregate and micro
productivity growth include: (i) for the U.S.: Baily, Hulten and Campbell (1992), Baily, Bartelsman and
Haltiwanger (1996, 1997),  Bartelsman and Dhrymes (1994),  Dwyer (1995, 1997), Haltiwanger
(1997), and Olley and Pakes (1996); (ii) for other countries: Tybout (1996), Aw, Chen and Roberts
(1997), Liu and Tybout (1996), and Griliches and Regev (1995).

I.  Overview

Recent research using establishment and firm level data has raised a variety of conceptual and

measurement questions regarding our understanding of aggregate productivity growth.1   Several key,

related findings are of interest.  First, there is large scale, ongoing reallocation of outputs and inputs

across individual producers.  Second, the pace of this reallocation varies over time (both secularly and

cyclically) and across sectors.  Third, much of this reallocation reflects within rather than between

sector reallocation.  Fourth, there are large differentials in the levels and the rates of growth of

productivity across establishments within the same sector.  The rapid pace of output and input

reallocation along with differences in productivity levels and growth rates are the necessary ingredients

for the pace of reallocation to play an important role in aggregate (i.e., industry) productivity growth. 

However, our review of the existing studies indicates that the measured contribution of such reallocation

effects varies over time and across sectors and is sensitive to measurement methodology.  An important

objective of this paper is to sort out the role of these different factors so that we can understand the

nature and the magnitude of the contribution of reallocation to aggregate productivity growth.

These recent empirical findings have been developed in parallel with an emerging theoretical

literature that seeks to account for the heterogeneous fortunes across individual producers and to

explore the role of such micro heterogeneity for aggregate productivity growth.  This theoretical strand
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combined with the literature concerning the role of reallocation forms the theoretical underpinning of this

paper. Of course the idea that productivity growth in a market economy invariably involves

restructuring and reallocation across producers is not new.  For example, Schumpeter (p. 83, 1942)

coined the term, “creative destruction”, which he described as follows:

“The fundamental impulse that keeps the capital engine in motion comes from the new
consumers’ goods, the new methods of production and transportation, the new markets...[The
process] incessantly revolutionizes from within, incessantly destroying the old one, incessantly
creating a new one.  This process of Creative Destruction is the essential fact of capitalism.”

However, what is new in the emerging empirical literature is the growing availability of longitudinal

establishment level data that permit characterization and analysis of the reallocation across individual

producers within narrowly defined sectors and, in turn, the connection of this reallocation to aggregate

productivity growth. 

In this paper, we seek to synthesize and extend this emerging literature on the connection

between micro and aggregate productivity growth dynamics.  We focus primarily on the empirical

findings and we find, as will become clear, that the measured quantitative contribution of the role of

reallocation for aggregate productivity growth varies significantly across studies.  Our objective is to

understand the sources of the differences in results across studies.  We pursue this objective in two

ways.  First, we compare the results carefully across studies taking note of differences on a variety of

dimensions including country, sectoral coverage, time period, frequency, and measurement

methodology.  Second, we exploit establishment-level data for the U.S. manufacturing sector as well as

for a few selected service sector industries to conduct our own independent investigation of the relevant

issues.  The inclusion of service sector results is of particular interest since the existing literature has
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almost exclusively focused on manufacturing industries.

The paper proceeds as follows.  In section II, we provide a summary of  theories that can

account for the observed heterogeneous fortunes across establishments in the same narrowly defined

sector.  In addition, we consider the related theoretical literature on creative destruction models of

growth.  This brief discussion of theoretical underpinnings is of considerable help in putting the results

on the relationship between micro and macro productivity growth into perspective.   In section III, we

present a review and synthesis of the recent literature.  As already noted above, there are significant

differences in the quantitative findings across studies.  Section IV presents a discussion of key

measurement and methodological questions that can potentially account for these differences.  In

section V, we present a sensitivity and robustness analysis of alternative measurement methodologies

using establishment-level data for the U.S. manufacturing sector.  Section VI presents new evidence on

the relationship between micro and aggregate productivity behavior using selected service sector

industries.  Section VII provides concluding remarks.

II.  Theoretical Underpinnings 

This section draws together theories and evidence related to the reasons for cross-sectional

heterogeneity in plant-level and firm-level outcomes.  A pervasive empirical finding in the recent

literature  is that within sector differences dwarf between sector differences in behavior.  For example,

Haltiwanger (Table 1, 1997) shows that 4-digit industry effects account for less than 10 percent of the

cross-sectional heterogeneity in output, employment, capital equipment, capital structures, and

productivity growth rates across establishments. 

The magnitude of within-sector heterogeneity implies that idiosyncratic factors dominate the
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determination of which plants create and destroy jobs and which plants achieve rapid productivity 

growth or suffer productivity declines. An examination of the literature suggests that the following may

account for plant-level heterogeneity: uncertainty; plant-level differences in managerial ability, capital

vintage, location and disturbances; and diffusion of knowledge. Starting with the first of these, one likely

reason for heterogeneity in plant-level outcomes is the considerable uncertainty that surrounds the

development, adoption, distribution, marketing and regulation  of new products and production

techniques. Uncertainty about the demand for new products or the cost-effectiveness of alternative

technologies encourages firms to experiment with different technologies, goods and production facilities

(Roberts and Weitzman, 1981). Experimentation, in turn, generates  differences in outcomes

(Jovanovic, 1982 and Ericson and Pakes, 1989). Even when incentives for experimentation are absent,

uncertainty about future cost or demand conditions encourages firms to differentiate their choice of

current  products and technology so as to optimally position themselves for possible future

circumstances (Lambson, 1991).    

Another possible reason is that differences in entrepreneurial and managerial ability lead to

differences in job and productivity growth rates among firms and plants. These differences include the

ability to identify and develop new products,  to organize production activity, to motivate workers, and

to adapt to changing circumstances.  There seems little doubt that these and other ability differences

among managers generate much of the observed heterogeneity in plant-level outcomes.  Business

magazines, newspapers  and academic case studies (e.g., Dial and Murphy, 1995) regularly portray the

decisions and actions of particular management teams or individuals as crucial determinants of success

or failure.  High levels of compensation, often heavily skewed toward  various forms of incentive pay
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2  Many economic analyses attribute a key role to managerial ability in the organization of firms
and production units.   Lucas (1977), for example, provides an early and influential formal treatment.

(Murphy, 1997), also suggest that senior managers play key roles in business performance, including

productivity and job growth outcomes.2  A related idea is that it takes time for new businesses to learn

about their abilities.

Other factors that drive heterogeneity in plant-level productivity, output and input growth

outcomes involve plant- and firm-specific location and disturbances. For example, energy costs and

labor costs vary across locations, and so do the timing of changes in factor costs.   Cost differences

induce different employment and investment decisions among otherwise similar plants and firms.  These

decisions, in addition, influence the size and type of labor force and capital stock that a business carries

into the future. Thus, current differences in cost and demand conditions induce contemporaneous 

heterogeneity in plant-level job and productivity growth, and they also cause businesses to differentiate

themselves in ways that lead to heterogeneous responses to common shocks in the future. The role of 

plant-specific shocks to technology, factor costs and product demand in accounting for the pace of job

reallocation has been explored in Hopenhayn (1992), Hopenhayn and Rogerson (1993), and Campbell

(1997).  

Slow diffusion of information about technology, distribution channels, marketing strategies, and

consumer tastes is another  important source of plant-level heterogeneity in productivity and job

growth.  Nasbeth and Ray (1974) and Rogers (1983) document multi-year lags in the diffusion of

knowledge about new technologies among firms producing related products.  Mansfield, Schwartz and

Wagner (1981) and Pakes and Schankerman (1984)  provide evidence of long imitation and product
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3  Knowledge diffusion plays a key role in many theories of firm-level dynamics, industrial
evolution, economic growth and international trade.  See, for example, Grossman and Helpman (1991),
Jovanovic and Rob (1989),  and Jovanovic and MacDonald (1994).

4See Aghion and Howitt  (1992), Caballero and Hammour (1994, 1996), Campbell (1997),
Stein (1997), Cooley, Greenwood and Yorokglu (1996), and Chari and  Hopenhayn (1991)

5 Growth may be more or less than optimal since there are effects that work in opposite
directions.  On the one hand, appropriability and intertemporal spillover effects make growth slower 

development lags.3  

Part of the differences across plants may reflect the vintage of the installed capital. 4  Suppose,

for example, that new technology can only be adopted by new plants.   Under this view, entering

technologically sophisticated plants  displace older, outmoded plants and gross output and input flows

reflect a process of creative destruction.  A related idea is that it may not be the vintage of the capital

but rather the vintage of the manager or the organizational structure that induces plant-level

heterogeneity (see, e.g.,  Nelson and Winter, 1982). 

These models of plant-level heterogeneity are closely related to the theoretical growth models

emphasizing the role of creative destruction.  Creative destruction models of economic growth stress 

that the process of adopting new products and new processes inherently  involves the destruction of old

products and processes.  Creative destruction manifests itself in many  forms. An important paper that

formalizes these ideas is Aghion and Howitt (1992). They consider a model of endogenous growth

where endogenous innovations yield creative destruction.  Specifically, the creator of a new innovation 

gets some monopoly rents until the next innovation comes along at  which point the knowledge

underlying the rents becomes obsolete.  The  incentives for investment in R&D and thus growth are

impacted by this process of creative destruction.5 
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than optimal. The appropriability effect derives from the fact that,  in their model, research on new
innovations requires skilled labor as does the production of the intermediate goods where new
innovations  are implemented.  A fixed supply of skilled labor implies that skilled  labor earns part of the
returns from new innovations. The inability of the research firms to capture all of the value from the
innovations  reduces their incentives to conduct research.  The intertemporal  spillover effect derives
from the fact that current and future innovators derive  benefits (i.e., knowledge)  from past innovations
but do not compensate past innovators for this benefit. The fact that private research firms do not
internalize the destruction of rents generated by their  innovation works in the opposite direction.  This
business stealing effect can actually yield too high a growth rate. They also find, however, that the
business stealing effect also tends to make  innovations too small.    

An alternative but related type of creative destruction growth model mentioned above as a

source of plant-level heterogeneity is the vintage capital model.  One form of these models (Caballero

and Hammour, 1994 and Campbell,  1997) emphasizes the  potential role of entry and exit.  If new

technology can only be adopted by new establishments, growth occurs only via entry and  exit, and this

requires output and input reallocation.  An alternative  view is that new technology is embodied in new

capital (e.g.,  Cooper, Haltiwanger, and Power, 1997), but that existing plants can adopt new

technology by retooling.  Under this latter view, both within plant and between  plant job reallocation

may be induced in the retooling process.    If, for example, there is  skill biased technical change, the

adoption of new technology through  retooling will yield a change in the desired mix  of skilled workers

at an establishment.  In addition, there may be an  impact on the overall desired level of employment at

the establishment.

 In all of these creative destruction models, the reallocation of outputs and inputs across 

producers plays a critical role in economic growth.  In  these models, stifling reallocation stifles growth.  

 It is important  to emphasize, however, that there are many forces that may cause growth and the pace

of reallocation to deviate from  optimal outcomes.   As mentioned above in the context of Aghion and
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6  Indeed, Blanchard and Kremer (1997) argue that for transition economies, such holdup
problems are potentially severe  enough that the restructuring process is better described as  
"disruptive destruction" rather than creative destruction.

Howitt  (1992), a generic problem is that agents (firms, innovators, workers)  do not internalize the

impact of their actions on others.   In an analogous manner, Caballero and Hammour (1996) emphasize

that the  sunkness of investment in new capital   implies potential ex post holdup problems that yield

several harmful  side effects.  They explore  the hold-up problem generated by worker-firm  bargaining

over wages after the firm's investment in specific capital.6     A related point is that, even though

reallocation may be vital for  growth, there are clearly losers in the process.  The losers include the

owners of the outmoded businesses that fail  as well as the displaced workers. 

III.  Review of Existing Empirical Evidence

The theoretical literature on creative destruction as well as the underlying theories of

heterogeneity characterize technological change as a  noisy, complex process with considerable

experimentation (in terms of entry and retooling) and failure (in terms of contraction and exit) playing

integral roles.  In this section, we review the evidence from the recent empirical literature that has

developed in parallel with the theoretical literature.  We conduct this review in two parts: first, we

provide a brief review of the micro patterns of output, input and productivity growth; second, we

consider the aggregate implications of these micro patterns.  Our review of micro patterns is brief since

we regard the results discussed in this section as well-established and there are excellent recent survey

articles by Bartelsman and Doms (1997) and Caves (1997) that cover much of the same material in

more detail.  Moreover, it is the aggregate consequences of these micro patterns that are more open to
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7 The calculations in Baldwin, Dunne, and Haltiwanger (1995) are an updated version of earlier
calculations by Dunne, Roberts and Samuelson (1989).  The five-year gross flows and the shares
accounted for by entry and exit are somewhat lower in the later work for equivalent periods reflecting
the improvement in longitudinal linkages in the Census of Manufacturers over time.

debate and, as we make clear, there are a number of measurement issues that generate the variation

that is found across studies on this dimension.

A.  Brief Review of Key Micro Patterns  

We begin our review by briefly summarizing a few key patterns that have become well-

established in this literature. Virtually all of the findings refer to manufacturing.  They are:  

Large scale reallocation of outputs and inputs within sectors: The rate of within-sector

reallocation of output and inputs is of great magnitude.  Davis and Haltiwanger (1997) summarize much

of the recent literature on gross job flows; they note that in the United States, more that 1 in 10 jobs is

created in a given year and more than 1 in 10 jobs is destroyed every year.  Similar patterns hold for

many other market economies.  Much of this reallocation reflects reallocation within narrowly defined

sectors.  For example, Davis and Haltiwanger (1997) report that across a variety of studies only about

10 percent of reallocation reflects shifts of employment opportunities across 4-digit industries.  

Entry and exit play a significant role in this process of reallocation.  For annual changes,

Davis, Haltiwanger and Schuh (1996) report that about 20 percent of job destruction and 15 percent of

job creation is accounted for by entry and exit.  For 5-year changes, Baldwin, Dunne, and Haltiwanger

(1995) report that about 40 percent of creation and destruction are accounted for by entry and exit,

respectively.7 

Persistent differences in levels of productivity.   There are large and persistent differences
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in productivity across plants in the same industry (see Bartelsman and Doms (1997) for an excellent

discussion).  In analyzing persistence, many studies report transition matrices of plants in the relative

productivity distribution within narrowly defined industries (see, e.g., Baily, Hulten and Campbell

(1992) and Bartelsman and Dhrymes (1994)).  These transition matrices exhibit large diagonal and

near-diagonal elements indicating that plants that are high in the distribution in one period tend to stay

high in the distribution in subsequent periods.  In contrast, establishment-level productivity growth rates

exhibit an important transitory component.   Baily, Hulten and Campbell (1992) and Dwyer (1995)

present strong evidence of regression to the mean effects in productivity growth regressions.  

Low productivity helps predict exit:  Many studies (e.g., Baily, Hulten and Campbell (1992), 

Olley and Pakes (1996) and  Dwyer (1995)) find that the productivity level helps predict exit.  Low

productivity plants are more likely to exit even after controlling for other factors such as establishment

size and age.  A related set of findings is that observable plant characteristics are positively correlated

with productivity including size, age, wages, adoption of advanced technologies, and exporting (see,

e.g., Baily, Hulten and Campbell (1992), Doms, Dunne and Troske (1996), Olley and Pakes (1996),

Bernard and Jensen (1995)).    It has been more difficult to find correlates of changes in productivity. 

For example, Doms, Dunne and Troske (1996) find that plants that have adopted advanced

technologies are more likely to be high productivity plants but that the change in productivity is only

weakly related to the adoption of such advanced technologies.

B.  Reallocation and Aggregate Productivity Growth

Empirical analysis of the implications of the pace of reallocation and restructuring for

productivity dynamics has been recently provided by Baily, Hulten, and Campbell (1992), Olley and
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8  Baldwin (1995) presents some related analysis of the contribution of plant turnover to
productivity growth for Canada but his methodology differs sufficiently from the rest of the literature that
it is not easy to integrate his work into this discussion.

9  In the case of Taiwan, a simple average (or simple median) of the industry-level results
reported in the Aw, Chen and Roberts (1997) paper is presented. 

(1)

Pakes (1996), Bartelsman and Dhrymes (1994), Dwyer (1995, 1997) and Haltiwanger (1997) using

plant-level manufacturing data from the U.S.;  Aw, Chen and Roberts (1997) using firm-level data from

Taiwan; Tybout (1996) and Liu and Tybout (1996) using data from Columbia, Chile, and Morocco; 

and Griliches and Regev (1995) using data from Israel.8  Virtually of the studies consider some form of

decomposition of an index of industry-level productivity:

here  Pit is the index of industry productivity, set is the share of plant e in  industry i (e.g., output share),

and pet is an index of plant-level productivity.   

Using plant-level data, the industry index and its components can be constructed for measures

of labor and multifactor productivity.  Many studies have decomposed the time series changes in

aggregate (i.e., industry-level) productivity into components that reflect a within component (holding

shares fixed in some manner) and other effects that reflect the reallocation of the shares across plants

including the impact of entry and exit.  Table 1 presents a summary of results from a variety of studies

using different countries, time periods, frequency of measured changes, productivity concepts (i.e.,

multifactor vs. labor) and measurement methodologies.9  The differences along these many dimensions
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make fine comparisons difficult so our objective in considering the alternative studies is to consider

broad patterns.  In the next section, we consider  methodological issues in detail and then conduct our

own sensitivity analysis.  For now, we attempt to compare studies on dimensions that are relatively easy

to compare.  

One core aspect that is roughly comparable across studies is the contribution of the within plant

contribution to aggregate productivity growth.  Even for this measure, there are differences in the

methodology along a number of dimensions.  These include whether the measure of productivity is

multifactor or labor, whether the share is based on output or employment weights, and whether the

share is based on the initial share at the base period or the average share (averaged over base and end

period). 

The fraction of within plant contribution to multifactor productivity growth ranges from 0.23 to

1.00 across studies, while the fraction of the within plant contribution to labor productivity growth

ranges from 0.79 to 1.20 across studies.  It is obviously difficult to draw conclusions even in broad

terms about whether the within plant contribution is large or small. The variation across countries may

reflect a variety of factors.  Nevertheless, careful examination of the individual studies indicates that this

variation is due in part to there being considerable sensitivity to time period, frequency, and cross

industry variation. 

To shed light on the sensitivity to business cycles and industry, Table 2 presents a few selected

results from different time periods and industries from the Baily, Hulten and Campbell (1992) and

Haltiwanger (1997) studies.  For the 1977-82 period, the within plant contribution for manufacturing in

general is negative for both studies reflecting the fact that, while there is modest overall productivity
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10  Baily, Bartelsman and Haltiwanger (1997) provide a more extensive analysis of the role of
reallocation for the cyclical behavior of productivity.

growth over this period, its source is not the within plant component.  In contrast, for the 1982-87

period the within plant contribution is large and positive during a period of robust productivity growth. 

This apparent sensitivity to the business cycle (1982 was during a severe slump in U.S. manufacturing)

is interesting in its own right.  These results suggest that overall productivity is less procyclical than

within plant productivity.  The inference is that reallocation effects tend to generate a countercyclical

“bias” and thus recessions are times that the share of activity accounted for by less productive plants

decreases either through contraction or exit10.  The more general point in the current context is that the

within plant contribution varies substantially with the cycle.

 Table 2 also shows that the results tend to vary dramatically by detailed industry.  Steel mills

(SIC 3312, Blast Furnaces) exhibit tremendous cyclicality in the behavior of productivity while

telecommunications equipment (SIC 3661, Telephone and Telegraph Equipment) does not.  Moreover,

the fraction accounted for by within plant changes is large and stable for telecommunications and very

large and variable for steel mills.

Given the discussion of theoretical underpinnings in section II, an obvious question is the

contribution of plant entry and exit to these aggregate productivity dynamics.  While many studies

consider this issue, the precise measurement of the contribution of net entry and exit is quite sensitive to

the decomposition methodology that is used.  This sensitivity, in turn, makes cross-study comparisons

of the contribution of net entry especially difficult.  Nevertheless, some aspects of the underlying role of

entry and exit can be directly compared across studies.  
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11  Although the earlier vintage arguments suggest that it may be that younger plants should have
higher productivity.  While such vintage effects may be present, the evidence clearly suggests that the
impact of selection and learning effects dominate.

Returning to Table 1, we see that one important factor is the horizon over which the

productivity growth is measured.  By construction, the share of activity accounted for by exits in the

base year and entrants in the end year are increasing in the horizon over which the base and end year

are measured.  At an annual frequency, we observe that the share of employment accounted for by

exits in the U.S. in the year t-1 is only 0.02 and by entrants in year t is only 0.01.  In contrast, at a ten-

year horizon, the share of employment accounted for by plants in the U.S. in year t-10 that ultimately

exit over the ten years  is 0.28 while the share of employment accounted for by plants in year t that

entered over the ten years  is 0.26.  These results imply that the contribution of any differences in

productivity between entering and exiting plants will be greater for changes measured over a longer

horizon.

The influence of the horizon also is likely to impact the observed productivity differences

between exiting plants in the base year and entering plants in the end year via selection and learning

effects.  That is, one year old plants are likely to have on average a lower productivity than ten year old

plants because of selection and learning effects.  Many studies (e.g., Olley and Pakes (1996), Liu and

Tybout (1996), Aw, Chen and Roberts (1997)) present results suggesting that selection and learning

effects play an important role.  The results in Table 1 reflect this in that the relative productivity of

entering plants in the end year to exiting plants in the base year is increasing for changes measured over

a longer horizon.11
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12  The first term in this decomposition (the “within component”) is identical to that in Baily,
Hulten and Campbell (1992).  They essentially combined the second two terms by calculating a term

Putting these results on entry and exit together helps account for the finding that studies that

focus on high frequency  variation (e.g., Baily, Bartelsman and Haltiwanger (1997) and Griliches and

Regev (1995)) tend to find a small contribution of net entry to aggregate productivity growth while

studies over a longer horizon find a large role for net entry (e.g., Baily, Bartelsman and Haltiwanger

(1996), Haltiwanger (1997), and Aw, Chen and Roberts (1997)).   We return to this theme in

subsequent sections.

Overall, however, the fact remains that it is difficult to assess the contribution of reallocation to

productivity growth by a simple comparison of results across studies.  Obviously, part of the reason for

this is that the results across studies are from different countries, time periods, frequencies, and sectoral

coverage.  Indeed, exploiting the variation along these dimensions would be useful to shed light on the

factors that yield variation in the contribution of reallocation to productivity growth.  However, part of

the reason for the differences across studies reflects differences in the decomposition methodology

across studies.  To disentangle these differences, we conduct our own analysis and consider in detail

the sensitivity of results to alternative measurement methodologies.  We now turn our attention to this

sensitivity analysis.      IV.  Measurement and Methodological Issues

A.  Alternative Decomposition Methodologies

To illustrate the sensitivity to measurement methodology, we consider two alternative

decomposition methodologies.  The first decomposition method (denoted method 1 in what follows) we

consider is a modified version of that used by Baily, Hulten, and Campbell (1992) and is given by:12
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based upon the sum of changes in shares of activity weighted by ending period productivity.  In
addition, they did not deviate the terms in the between and net entry terms from initial levels.  As
Haltiwanger (1997) points out, this implies that even if all plants have the same productivity in both
beginning and end periods, the between component and the net entry component in the Baily, Hulten
and Campbell decomposition will, in general, be nonzero.  See Haltiwanger (1997) for further
discussion.

(2)

 

where C denotes continuing plants, N denotes entering plants, and X denotes exiting plants. The first

term in this decomposition represents a within plant component based on plant-level changes, weighted

by initial shares in the industry.  The second term represents a between-plant component that reflects

changing shares, weighted by the deviation of initial plant productivity from the initial industry index. 

The third term represents a cross (i.e.,covariance-type)  term.  The last two terms represent the

contribution of entering and exiting plants, respectively.  

In this decomposition, the between-plant term and the entry and exit terms involve deviations of

plant-level productivity from the initial industry index.  For a continuing plant, this implies that an

increase in its share contributes positively to the between-plant component only if the plant has higher

productivity than average initial productivity for the industry.  Similarly, an exiting plant contributes

positively only if the plant exhibits productivity lower than the initial average, and an entering plant

contributes positively only if the plant has higher productivity than the initial average.  

This decomposition differs somewhat from others that have appeared in the literature in some
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(3)

subtle but important ways.   Key distinguishing features of the decomposition used here are:  (i) an

integrated treatment of entry/exit and continuing plants; (ii) separating out within and between effects

from cross/covariance effects.  Some of the decompositions that appear in the literature are more

difficult to interpret because they do not separate out cross/covariance effects.  For example, some

measure the within effect as the change in productivity weighted by average shares (in t and t-k -- see

method 2 below).  While the latter method yields a seemingly cleaner decomposition, it also allows the

within effect to partially reflect  reallocation effects since it incorporates the share in period t.  Another

problem is in the treatment of net entry.  Virtually all of the decompositions in the literature that consider

net entry measure the contribution of net entry via the simple difference between the weighted average

of entrants and exiting plants productivity.  Even if there are no differences in productivity between

entering and exiting plants, this commonly used method yields the inference that net entry contributes

positively to an increase (decrease) in productivity growth if the share of entrants is greater (less than)

the share of exiting plants.  There are related (and offsetting) problems in the treatment of the

contribution of continuing plants.

While this first method is our preferred decomposition, measurement error considerations

suggest an alternative decomposition closely related to that used by Griliches and Regev (1995). 

Consider, in particular, the following alternative decomposition (denoted method 2 in the remainder of

this paper):
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where a bar over a variable indicates the average of the variable over the base and end year.  In this

decomposition, the first term is interpretable as a  within effect that is measured as the weighted sum of

productivity with the weights equal to the average (across time) shares. The second is interpretable as a

between effect where the changes in the shares are indexed by the deviations of the average plant level

productivity from the overall industry average.  In a like manner, the net entry terms are such that entry

contributes positively as long as entering plants are higher than the overall average and exiting plants are

lower than the overall average.  

This second decomposition method is a modification of the standard within/between

decomposition that is often used for balanced panels.  The disadvantage of this method is that the

measured within effect will now reflect in part cross/covariance effects (as will the measured between

effect).  However, this second method is apt to be less sensitive to measurement error in outputs or

inputs relative to the first method as shown in equation (2).  Suppose, for example, we are considering

labor productivity (e.g., output per manhour) and that there is random measurement error in measured

manhours.  Measurement error of this type will imply that plants in a given period with spuriously high

measured manhours will have spuriously low measured productivity.  Such measurement error will yield

a negative covariance between changes in productivity and changes in shares (measured in terms of

manhours) and a spuriously high within plant effect under method 1.  In a similar manner, consider the

decomposition of multifactor productivity using output weights.  Random measurement error in output

will yield a positive covariance between productivity changes and changes in shares and a spuriously

low within plant effect under method 1.  In contrast, the measured within effect from method 2 will be

less sensitive to random measurement error in output or inputs since the averaging across time of the
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13  This discussion focuses on simple classical measurement error.  There may be other forms of
non-random measurement error that are important in this context. 

(4)

shares will mitigate the influence of measurement error.13

An alternative cross-sectional decomposition methodology utilized by Olley and Pakes (1996)

is of interest as well.  Consider the following cross sectional decomposition of productivity for an

industry in period t (denoted method 3 in what follows):

where in this case a bar over a variable represents the cross-sectional (unweighted) mean across all

plants in the same industry.  The second term in this decomposition provides insights into whether

activity (e.g., output or employment depending on how shares are measured) is disproportionately

located at high productivity plants.  In addition, by examining the time series pattern of each of the terms

in this decomposition we can learn whether the cross-sectional allocation of activity has become more

or less productivity enhancing over time.  One advantage of this cross-sectional approach is that the

cross-sectional differences in productivity are more persistent and less dominated by measurement

error and transitory shocks.   A related advantage is that this cross-sectional decomposition does not

rely on accurately measuring entry and exit.  Both of these problems potentially plague the time series

decompositions using method 1 or method 2 (although method 2 has some advantages in terms of

measurement error).  Of course, examining the time series patterns of the cross-sectional

decomposition does not permit characterizing the role of entry and exit.

Clearly each of these techniques has notable strengths and weaknesses.  Given the
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measurement concerns we have raised and given the independent interest in each of these alternative

methodologies, we present results from each of the three methods in the analysis that follows.

B.  Measurement of Output, Inputs and Productivity Using the Census of Manufactures

In the next section, we present evidence applying the alternative decomposition methodologies

using plant-level data from the Census of Manufactures.  A number of different but related versions of

the decompositions are considered.  First, we consider the decomposition of industry-level multifactor

productivity where the shares (set) are measured using plant-level gross output.  This weighting

methodology is common in the recent literature investigating such multifactor productivity

decompositions  (see, e.g., Baily, Hulten and Campbell (1992), Bartelsman and Dhrymes (1994), Olley

and Pakes (1996), Aw, Chen and Roberts (1997)).  Next, we consider a decomposition of

industry-level labor productivity using both gross output and employment share weights.  For labor

productivity, the seemingly appropriate weight is employment (or manhours) since this will yield a tight

measurement link between most measures of labor productivity using industry-level data and

industry-based measures built up from plant-level data.  Both the Griliches and Regev (1995) and

Baily, Bartelsman, and Haltiwanger (1996) papers use employment weights in this context. However,

as we shall see, using gross output weights as an alternative provides useful insights into the relationship

between multifactor and labor productivity decompositions and, in so doing, on the role of reallocation

in productivity growth.

The index of plant-level multifactor productivity used here is similar to that used by Baily,

Hulten and Campbell (1992).  The index is measured as follows: 
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14  We also performed the labor productivity analysis using value-added per unit of labor.  The
results using this alternative measure in terms of the decompositions and relative productivity are very
similar to those we report in the subsequent sections.  

where Qet is real gross output, Let is labor input (total hours), Ket is real capital (in practice separate

terms are included for structures and equipment), and Met is real materials. Outputs and inputs are

measured in constant (1987) dollars.  Factor elasticities are measured via industry cost shares. The

index of plant-level labor productivity is measured as the difference between log gross output and log

labor input.14  Using this measurement methodology with equation (1) yields industry-level growth rates

in productivity that correspond closely to industry-level growth rates constructed using industry-level

data.

The Census of Manufactures (CM) plant-level data used in the analysis includes  information on

shipments, inventories, book values of equipment and structures, employment of production and

nonproduction workers, total hours of production workers, and cost of materials and energy usage. 

For the most part, the measurement methodology closely follows that of Baily, Hulten, and Campbell

(1992). The details of the measurement of output and inputs are provided in the Data Appendix.  

V.  Results for the U.S. Manufacturing Sector

We begin by characterizing results on the U.S. manufacturing sector over the 1977 to 1987

period.  We focus on this interval since it comes close to reflecting changes on a peak-to-peak basis. 

In the second subsection, we consider various five-year intervals which tend to be dominated more by
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15This methodology entails defining plant-level growth rates as the change divided by the
average of the base and end year variable.  The advantage of this growth rate measure is that it is
symmetric for positive and negative changes and allows for an integrated treatment of entering and
exiting plants. 

cyclical variation in productivity. In the third subsection, we look at net entry in more detail. The last

subsection summarizes the results.

A.  Ten-year changes -- Basic Decompositions 

Table 3 presents estimates of the gross expansion and contraction rates of employment, output

and capital (structures and equipment) over the 1977-87 period.  The rates of output and input

expansion (contraction)  are measured as the weighted average of the growth rates of expanding

(contracting) plants including the contribution of entering (exiting) plants using the methodology of

Davis, Haltiwanger and Schuh (1996). 15  The pace of gross output and input expansion and

contraction is extremely large over the ten-year horizon.  Expanding plants yielded a gross rate of

expansion of more than 40 percent of outputs and inputs and contracting plants yielded a gross rate of

contraction in excess of 30 percent of outputs and inputs.  Net growth rate of output is higher than that

of inputs (especially employment) reflecting the productivity growth over this period.  A large fraction of

the output and input gross creation from expanding plants came from entry and a large fraction of the

output and input gross destruction came from exit.  

Table 3 also includes the fraction of excess reallocation within 4-digit industries in each of these

industries.  Excess reallocation is the sum of gross expansion and contraction rates less the absolute

value of net change for the sector.  Thus, excess reallocation reflects the gross reallocation (expansion

plus contraction) that is in excess of that required to accommodate the net expansion of the sector. 
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16  Changes in aggregate productivity from between industry reallocation is an interesting topic
in its own right but the conceptual and measurement issues are potentially quite different.  Our focus is
on the noisy and complex process of industry growth with individual businesses in the same industry
trying to find the best ways to produce and sell their goods and services given their own potentially
idiosyncratic conditions.  The resulting entry/exit as well as contraction and expansion of businesses in
the same industry reflects the evolution of the idiosyncratic decisions and fortunes across businesses.

Following Davis, Haltiwanger and Schuh (1996) (see pages 52 and 53 for a description of the

methodology) excess reallocation rates at the total manufacturing level can be decomposed into within

and between sector effects.  The far right column of Table 3 indicates that most of the excess

reallocation at the total manufacturing level reflects excess reallocation within 4-digit industries.  Thus,

the implied large shifts in the allocation of employment, output and capital are primarily among

producers in the same 4-digit industry.  

The large within sector reallocation rates motivate our analysis of productivity decompositions

at the 4-digit level. We apply the decompositions in equations (2) and (3) at the 4-digit level.  In most

of our results, we report the results for the average industry.  Following Baily, Hulten, and Campbell

(1992),  the weights used to average across industries are average  nominal gross output, averaged

over the beginning and ending years of the period over which the change is measured. The same

industry weights are used to aggregate the industry results across all of the decompositions.  The

motivation for this is  that the focus here is on within-industry decompositions and thus  the results do

not reflect changing industry composition.16  

Consider first the decomposition of industry-level multifactor productivity reported in Table 4

for the 1977-87 period.   For method 1, the within component accounts for about half of average

industry productivity growth, the between-plant component is negative but relatively small, and the



24

17 We look at method 3 at the end of this subsection.

cross term is positive and large accounting for about a third of the average industry change. Net entry

accounts for 26 percent of the average industry change.  For method 2, the within component accounts

for 65 percent of average industry productivity growth, the between component 10 percent,  and net

entry 25 percent.17  The comparison across methods for multifactor productivity suggests that the

impact of net entry is robust across methods but inferences regarding the contribution of reallocation

among continuing plants vary widely across methods.  We return to considering the reasons for this

below after we consider the labor productivity decompositions.  

The decompositions of labor productivity are reported in Table 4 as well.  For labor

productivity at the establishment level we consider two alternatives: output per manhour and output per

worker.  In general, the results are very similar between these alternatives.   To aggregate across

establishments in the same industry, we consider two alternatives as well: output weights and labor input

weights. When we use output weights, we only report the results for output per manhour since the

results are very similar to those for output per worker. In the discussion that follows we focus on the

distinction between those results that use output weights and those that use labor weights (either

employment or manhours).

Interestingly, whether one uses labor or output shares yields approximately the same overall

average industry growth in labor productivity over this period.  In addition, the contribution of net entry

is quite similar whether labor or output shares are used or whether method 1 or method 2 is used. 

Thus, in either case, reallocation plays an important role (at least in an accounting sense) in labor
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productivity growth via net entry.

The biggest difference between the results using output and employment weights is associated

with the continuing plants for method 1.   The decomposition of labor productivity using gross output

share weights looks very similar to the multifactor productivity decomposition in that the respective

roles of within, between, and cross effects are quite similar.  When labor shares are used as weights as

opposed to output shares,  the within plant component of labor productivity growth is much larger.  In

addition, with labor weights, there is relatively little contribution from the between and covariance terms.

This finding of a large within-plant contribution for labor productivity using labor weights is similar to the

findings in Griliches and Regev (1995) and Baily, Bartelsman, and Haltiwanger (1996). The implication

from the labor weighted results is that, for continuing plants, much of the increase in labor productivity

would have occurred even if labor shares had been held constant at their initial levels. 

For method 2, the differences between the results using labor or output weights are substantially

diminished.  Indeed, under method 2, the results using alternative productivity measures (multifactor or

labor) or alternative weights (output, manhours or employment) are very similar.  These results suggest

that more than 60 percent of average industry productivity growth can be accounted for by within plant

effects, less than 10 percent by between plant effects and more than 25 percent by net entry.

An obvious question is what underlies the differences between method 1 and method 2? To

shed light on the differences in results across methods, Table 5 presents simple correlations of the

plant-level growth rates in multifactor productivity, labor productivity, output, employment,  equipment

and structures.  These correlations are based upon the 1977-87 changes for continuing plants. 

Multifactor productivity and labor productivity growth are strongly positively correlated.  Not
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surprisingly, output growth and input growth are highly positively correlated (especially output and

employment growth).  Nevertheless, while output growth is strongly positively correlated with both

multifactor and labor productivity growth, employment and capital growth are virtually uncorrelated

with multifactor productivity growth. There is a positive correlation between capital growth and labor

productivity growth and an even stronger positive correlation between capital intensity growth (the

growth in capital per unit of labor) and labor productivity growth.  The negative correlation between

labor productivity growth and labor input growth underlie the negative cross terms in the

decompositions of labor productivity using employment or manhours weights.  In an analogous manner,

the positive correlations between productivity (multifactor or labor) growth and output growth  underlie

the positive cross terms in the decompositions using output weights.  

A number of factors are at work in generating these patterns; analyzing these factors will help us

disentangle the differences in the results between methods 1 and 2.  The first potential factor is

measurement error, the second factor concerns changes in factor intensities.  As discussed in section

IV,  measurement error will generate a downward bias in the correlation between productivity growth

and employment growth and an upward bias in the correlation between productivity growth and output

growth.  Likewise, measurement error will yield a spuriously low (high) within plant share for multifactor

(labor) productivity growth using method 1.  The patterns in Table 4 and 5 are consistent with such

influences of measurement error.  Moreover, the seemingly consistent results across productivity

measures using method 2 suggests that method 2 is effective in mitigating these measurement error

problems.  Recall that method 2 uses averages across time to generate the appropriate aggregation

“weights” for the changes in productivity and changes in activity shares and this averaging will tend to
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mitigate problems from measurement error.

While it is tempting to conclude that measurement error is driving the differences between

methods 1 and 2 and thus method 2 should be preferred, there are alternative explanations of the

observed patterns.  First, the differences between methods 1 and 2 are systematic for alternative

measures of productivity.  In particular, the results for labor productivity per hour are very similar to

those using labor productivity per worker.  Since employment and shipments are measured relatively

well (in comparison to, say, hours), the latter productivity measure should be the least affected by

measurement error but we do not see a different pattern for this measure.  In addition, and perhaps

more importantly, there are a number of reasons that the patterns of labor productivity and multifactor

productivity should be different.  We now consider these issues briefly.

Recall that Table 5 shows a strong positive correlation between labor productivity growth and

capital intensity growth.  Moreover, there is a positive correlation between plants with initially high labor

shares and growth in capital intensity (their correlation is 0.14).  These patterns suggest that changes in

capital intensity may be associated with the large within plant contribution for labor productivity under

method 1.  That is, plants with large changes in capital intensity also exhibited large changes in labor

productivity and also had large initial labor shares. These factors together contribute to a large within

plant share under method 1 for labor productivity.  Note as well that changes in capital intensity need

not be tightly linked to changes in multifactor productivity which is indeed the case as seen in Table 5.

Viewed from this perspective, method 2 may be masking some important differences in the patterns of

labor and multifactor productivity.  Recall that the conceptual problem with method 2 is that the within

term confounds changes in plant level productivity with changes in shares of activity.  The within plant
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component for labor productivity is lessened because the change in labor productivity is aggregated

using average instead of initial labor shares and thus mitigates the relationship between changes in

capital intensity and labor productivity (and initial shares).   

To help differentiate between the measurement error and productivity-enhancing changes in

factor intensities, it is useful to consider evidence for some individual industries.  Consider, for example,

the steel industry (SIC 3312).  As documented in Davis, Haltiwanger and Schuh (1996), the steel

industry underwent tremendous restructuring over the 1970s and the 1980s.   A large part of this

restructuring involved the shifting from integrated mills to mini mills.  While substantial entry and exit

played a major role, the restructuring of the industry also involved the retooling of many continuing

plants.   Baily, Bartelsman, and Haltiwanger (1996) present evidence that continuing plants in the steel

industry downsized significantly over this period of time and exhibited substantial productivity gains (i.e.,

there is a large negative covariance between employment changes and labor productivity changes

among the continuing plants in the steel industry).  As reported in Davis, Haltiwanger and Schuh, the

average worker employed at a steel mill worked at a plant with 7000 workers in 1980 and only 4000

workers by 1985.  Moreover, this downsizing was associated with large subsequent productivity gains

in the steel industry (see, e.g., Figure 5.8 in Davis, Haltiwanger and Schuh (1996)).  These patterns are

reflected in the decompositions we have generated underlying Table 4.  For SIC 3312, for example,

we find that growth in  labor productivity per hour is 29.7 for the 1977-87 period and the within

component using method 1 accounts for 93 percent.    Consistent with the view that the downsizing was

productivity enhancing in this industry we find a negative cross term of 23 percent.  In addition, capital

intensity growth in the steel industry is positively correlated with changes in labor productivity at the
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18  It is worth noting, as well, that the within component using method 1 accounts for 87 percent
of the growth in multifactor productivity in this industry. 

plant level with a correlation of 0.26.  Taken together, these patterns paint a picture of many plants

changing their factor intensities in dramatic ways and this in turn being reflected in the growth in labor

productivity.18 

As the discussion of the steel industry illustrates, the patterns we observe in the cross terms in

the decompositions for method 1 using alternative weights are potentially driven by part of a within plant

restructuring process that yields substantial productivity gains.  More generally, these results suggest

that the connection between measured reallocation of inputs, outputs and productivity growth is quite

complex.  Plants are often changing the mix of inputs at the same time they change the scale of

production.  Some technological innovations (e.g., minimills) may lead to substantial downsizing by

plants that adopt the new technology.  Alternatively, technological innovations may take the form of

cost savings or product quality enhancements  that enable successfully adopting plants to increase their

market share with accompanying expansion.

Results using the cross-sectional decomposition (method 3) are reported in Table 6.  We

conducted this decomposition separately for every 4-digit industry using multifactor productivity with

output weights, labor productivity per hour using manhour weights and labor productivity per worker

using employment weights.  The reported results are the average industry results where the weighted

average across industries uses the same industry weights as those used in Table 4.  There is a positive

second term for all productivity measures for all years indicating that plants with higher productivity

have higher output and labor shares in their industry.   For each of the measures, the overall productivity



30

increases between 1977 and 1987.  The decomposition reveals that this reflects both an increase in the

unweighted mean productivity across plants and an increase in the cross term for the average industry. 

This latter finding indicates that the reallocation of both outputs and labor inputs between 1977 and

1987 has been productivity enhancing.

B.  Five-year Changes: 1977-82, 1982-87 and 1987-92

For the five year changes in industry-level productivity, we consider a subset of the exercises

considered in the prior section.  In particular, we consider the time series decompositions using

methods 1 and 2 for the five-year changes measured from 1977-82, 1982-87 and 1987-92.  The

productivity measures we consider are multifactor productivity using gross output weights in the

decompositions and labor productivity per hour using manhour weights in the decompositions.

The results of these decompositions are reported in Table 7.  Cyclical variation in productivity

growth plays a dominant role in the overall patterns.  Productivity growth is especially modest in the

1977-82 period and very strong in the 1982-87 period.  Using method 1, the multifactor productivity

and labor productivity decompositions yield quite different stories, especially for the periods that are

roughly coincident with cyclical downturns.  For example, for the 1977-82 period, the within share is

actually negative for the multifactor productivity decomposition while the within share is above one for

the labor productivity decomposition.  Associated with these dramatically different within plant

contributions are very different cross terms.  For the multifactor productivity decomposition, the cross

term is positive and relatively large (above one) and for the labor productivity decomposition, the cross

term is negative and relatively large (above one in absolute magnitude). 

In contrast, method 2 yields results that are much less erratic across multifactor and labor
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19  It is useful to note that the large contribution of net entry to productivity growth in 1977-82
and 1987-92 is not due to an especially large share of activity accounted for by entering and exiting
plants but rather by a large gap in productivity between entering and exiting plants relative to the overall
growth in productivity.  For example, for the 1987-92 period, the share of output of exiting plants in
1987 is only 0.13 and the share of output of entering plants in 1992 is only 0.12.  However, the
difference in productivity between entering and exiting plants is about 7 percent which is substantially
greater than the 3.3 percent overall growth in productivity over this time period.

productivity and across the alternative subperiods.  Even here, however, the contribution of within plant

changes to multifactor productivity ranges from about 50 percent in cyclical downturns to about 80

percent in cyclical upturns.  

What underlies these very different patterns?  Table 8 sheds light on this issue by characterizing

the simple correlations for continuing establishments.  The correlation between productivity growth

(either multifactor or labor) and output growth is large and positive while the correlation between labor

productivity and manhours growth is large and negative.  These correlations and the implied patterns in

the decompositions likely reflect a variety of cyclical phenomena and associated measurement

problems.  For example, cyclical changes in factor utilization will yield spurious changes in measured

productivity to the extent that the changes in utilization are poorly measured.

In short, the high frequency results are difficult to characterize since the contribution of various

components is sensitive to decomposition methodology, the measurement of multifactor versus labor

productivity, and to time period.  However, a couple of patterns are robust.  First, the contribution of

net entry is robust to the alternative measurement methods.  Second, while the contribution of net entry

is sensitive to time period, the pattern is regular in the sense that the contribution of net entry is greater

in cyclical downturns.19  Third, using the method more robust to measurement error problems (method
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2), the contribution of reallocation amongst continuing plants is also greater in cyclical downturns. 

Putting these pieces together yields the interesting inference that the contribution of reallocation to

productivity growth tends to be greater during cyclical downturns.     

C.  The Role of Entry and Exit 

As noted in the previous subsections, a robust result is the contribution of net entry.  Whether

we examine ten-year or five-year changes, net entry plays an important role in accounting for aggregate

productivity growth.  We begin our detailed examination of the role of entry and exit by returning to the

ten-year changes for 1977-87.  Panel A of Table 9 provides information about some of the underlying

determinants of the role of net entry by reporting output and labor shares of entering and exiting plants

and the weighted average of productivity levels for continuing, entering and exiting plants.  The reported

productivity indexes are relative to the weighted average for continuing plants in 1977.  Entering plants

tend to be smaller than exiting plants, as reflected in the generally smaller output and employment shares

of entrants (relative to exiting plants).  Entering plants in period t (here 1987) tend to have higher

productivity than the level of productivity in period t-k (here 1977) for exiting and continuing plants, but

entrants exhibit slightly lower productivity than continuing plants in period t.   Exiting plants from period

t-k tend to have lower productivity than continuing plants in period t-k.  

One insight that emerges from comparing  panel A of Table 9 to the results of Table 4 is that the

contribution of entering plants displacing exiting plants to productivity growth is disproportionate relative

to the respective contribution of entry and exit in accounting for activity.  For example, the contribution

of net entry to multifactor productivity is 25 percent while the share of output accounted for by exiting

plants is 22 percent and the share of activity accounted for by entering plants is 21 percent.  Similar
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patterns of disproportionality are observed for labor productivity.  The disproportionate contribution of

net entry reflects the fact that the gap in productivity between entering and exiting plants is larger than

the gap across time among continuing plants.  This finding is important because it indicates that the

contribution of net entry is not simply an accounting result.  That is, if entry and exit were just random

and uncorrelated with productivity, then the contribution of net entry would simply reflect the share of

activity accounted for by entering and exiting plants.    

It is, of course, limiting to simply compare the relative productivity of entering plants in 1987

with exiting plants in 1977.  The differences reflect many factors including overall productivity growth,

selection and learning effects.  To begin shedding light on these issues, the lower panel of Table 9

considers the relative productivity of the entering plants in 1987 based upon a cross classification of the

year of entry.  Given the availability of economic census data in 1982, entry age can be measured for all

entering establishments in terms of census cohorts (i.e., 1978-82 or 1983-87).  For multifactor

productivity, we find that in 1987 the relative productivity of the older cohort is higher (1.10) than the

younger cohort (1.07).  For labor productivity using manhours or employment a similar pattern is

observed.  These findings are consistent with the predicted impact of selection and learning effects but

still are inadequate for understanding the underpinnings of the contribution of net entry.  Following

methodology used by Aw, Chen and Roberts (1997),  we can make a bit more progress in

distinguishing between alternative factors using some simple regression analysis to which we now turn.

Table 10 presents regression results using the pooled 1977-87 data.  The upper panel

considers a simple regression of the (log) of productivity on a set of dummies indicating whether the

plant exited in 1977, entered in 1987, a year effect to control for average differences in productivity
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20  By pooling the data across industries, we are pursuing a slightly different approach than in
prior decomposition exercises where we calculated the decomposition for each industry and then took
the weighted average of the 4-digit results.  However, by controlling for 4-digit effects and using
analogous weights to those used in the decomposition exercises, these results are close to being the
regression analogues of earlier tables.  The results using unweighted regressions are qualitatively similar
to those reported here with similar significance levels for the various tests on coefficients.  Moreover,
for multifactor productivity, the magnitudes of the coefficients are very similar using unweighted
regressions.  For the labor productivity results, the magnitudes are smaller for the unweighted results. 
We suspect that this is because the typical entering and exiting plant is smaller and less capital intensive
than the typical continuing plant.  Since there is a positive relationship between size, capital intensity and
labor productivity, this will yield larger differences in average productivity levels between continuing,
entering and exiting plants using weighted as opposed to unweighted regressions.

across the two years, and 4-digit industry dummies (not reported).20   The omitted group is continuing

plants in 1977 so the coefficients can be interpreted accordingly.  This first set of results simply confirm

earlier results but help in quantifying statistical significance: exiting plants have significantly lower

productivity (multifactor and labor) than continuing plants, plants in 1987 have significantly higher

productivity (multifactor and labor) than plants in 1977, and entering plants in 1987 have lower labor

productivity than the continuing plants in 1987.  Note, however, that according to these regressions

there is no statistical difference between continuing plants and entering plants in terms of multifactor

productivity in 1987.  Also reported in the upper panel is the F-test on the difference between entering

and exiting plants which is highly significant for all measures, even after having controlled for year

effects.    

The lower panel of Table 10 is the regression analogue of the lower panel of Table 9. 

Essentially the same specification as in the upper panel is used except that here we classify entering

plants based on whether they entered between 1977-82 or 1982-87. The results indicate that there are

significant differences between the cohorts of plants.  The plants that entered earlier have significantly
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21  This specification is quite similar to various specifications considered in Aw, Chen and
Roberts (1997).  Our results are qualitatively consistent with theirs in the sense that we find that both
learning and selection effects contribute significantly to the observed plant-level productivity
differentials.

higher productivity (multifactor or labor) than plants that entered later.  

The lower panel of Table 10 still does not permit disentangling selection and learning effects.  In

Table 11, we report results that shed some light on these different effects.21  In Table 11, we use a

similar pooled specification with year effects, entry dummy, exit dummy and 4-digit effects.  However,

in this case we consider additional information about plants that entered between 1972-77.  By dividing

this entering cohort into exiters and survivors, we can characterize selection and learning effects.  In

particular, we make three comparisons using this information. First, for exits, we distinguish among exits

those who entered between 1972-77 and those who did not (comparing " and (). Second, we

distinguish among the entering cohort those that exit and those that survive to 1987 (comparing " and

2). Finally, for the surviving 1972-77 cohort, we also examine productivity in 1977 (the entering year)

and productivity ten years later (comparing 2 and 8).    

Plants that entered between 1972-77 and then exited are significantly less productive in 1977

than continuing incumbents in 1977 (who are not from that entering cohort) whether productivity is

measured in terms of multifactor or labor productivity ("<0).   Of exiting plants, those that entered

between 1972-77 are less productive in 1977 than other exiting plants ("<(), although the results are

not statistically significant for multifactor productivity . The exiting plants from this entering cohort are

also less productive in 1977 than the surviving members of this cohort ("<2), although the differences

are not statistically significant for the multifactor productivity measure even at the 10 percent level.   The
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22  All specifications include 4-digit industry effects, year effects, and entry and exit dummies. 
Table 13 is analogous to Table 11; we decompose some of these effects allowing for potentially
different behavior of the most recent entering cohort.

23  That is, for the 1977-82 changes we consider the 72-77 entering cohort, for the 1982-87
changes we consider the 77-82 entering cohort, and for the 87-92 changes we consider the 82-87
entering cohort.

latter findings are broadly consistent with selection effects since it is the less productive plants from the

entering cohort that exit (although again not always highly significant).  

Even the surviving members of the entering 1972-77 cohort are less productive than

incumbents (2<0).  However, for the entering cohort, we observe significant increases in productivity

over the ten years (2<8), even though we are controlling for overall year effects.   This pattern is

consistent with learning effects playing an important role.

To conclude this section, we consider similar regression exercises for the five-year changes

from 1977-82, 1982-87 and 1987-92.22  Tables 12 and 13 report regression results for these five-year

intervals.  Interestingly, the patterns for the five-year changes regarding the differences between entering

and exiting plants and the role of selection and learning effects mimic those for the ten-year changes.  In

Table 12, we observe that entering plants have higher productivity than exiting plants even while

controlling for year effects.  In Table 13, we examine the behavior of the entering cohorts for each of

the five-year changes.23  With one exception, for plants that exit the plants that are in the entering cohort

have lower productivity than other plants ("<(). For the entering cohort, the productivity level in the

year of entry is lower for those that immediately exit than those that survive ("<2).  For those that

survive in the entering cohort, we observe significant increases in productivity even after controlling for

average increases in productivity amongst all plants via year effects (2<8).  One interesting feature of
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these results is that the differences reflecting both selection and learning effects are highly significant for

both multifactor and labor productivity measures.

In sum, we find that net entry contributes disproportionately to productivity growth.  The

disproportionate contribution is associated with less productive exiting plants being displaced by more

productive entering plants.  New entrants tend to be less productive than surviving incumbents but

exhibit substantial productivity growth.  The latter reflects both selection effects (the less productive

amongst the entrants exit) and learning effects.

  D.  Summing Up the Results for Manufacturing

To sum up the results from this sensitivity analysis, our results suggest that reallocation plays a

significant role in the changes in productivity growth at the industry level.  While measurement error

problems cloud the results somewhat, two aspects of the results point clearly in this direction.  First, our

time series decompositions show a large contribution from the replacement of less productive exiting

plants with more productive entering plants when productivity changes are measured over five or ten

year horizons.  A key feature of these findings is that the contribution of net entry is disproportionate --

that is, the contribution of net entry to productivity growth exceeds that which would be predicted by

simply examining the share of activity accounted for entering and exiting plants.  Second, the  cross-

sectional decompositions, which are less subject to measurement error problems, uniformly show that

the reallocation of both output and labor inputs has been productivity enhancing over this same period.  

Nevertheless, an important conclusion of this sensitivity analysis is that the quantitative

contribution of reallocation to the aggregate change in productivity is sensitive to the decomposition

methodology that is employed.  Using a method that characterizes the within plant contribution in terms
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of the weighted average of changes in plant multifactor (labor, when using labor weights) productivity

using fixed initial weights yields a substantially lower (higher) within plant contribution than an alternative

method  that uses the average time series share of activity as weights.  The former method (method 1)

arguably yields cleaner conceptual interpretations but is also more subject to measurement error.  The

latter method (method 2) yields results that are more consistent across multifactor and labor

productivity measures.  Examining the detailed components of the decompositions across multifactor

and labor productivity measures yields results consistent with measurement error interpretations and, on

this basis, favor method 2 that mitigates measurement error problems.  However, some aspects of the

patterns (in particular, the strong correlation between within plant changes in labor productivity and

capital intensity) suggest that there are likely important and systematic differences in the contribution of

reallocation to labor and multifactor productivity.

VI.  Productivity and Reallocation in the Service Sector

A.  Overview and Measurement Issues

All of the studies we have reviewed, as well as our analysis of the sensitivity of the results to

alternative methodologies, have been based on productivity decompositions using manufacturing data. 

In this section, we consider the same issues in the context of changes in productivity in a service sector

industry.  We restrict our attention here to a small number of 4-digit industries that account for the 3-

digit industry automotive repair shops (SIC 753).  Our focus on this 3-digit industry is motivated by

several factors.  First, since this is one of the first studies to exploit the Census of Services

establishment-level data at the Bureau of the Census, we wanted to conduct a study on a relatively
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24 Given that these data have not been widely used, the results reported here should be viewed
as exploratory and interpreted with appropriate caution.  

25  See the paper by Dean and Kunze (1992) on service sector productivity measurement.

small number of 4-digit industries to permit careful attention to measurement issues.24  Second, for this

specific 3-digit industry, we can apply procedures for measuring plant level labor productivity (here

measured as gross output per worker) in a manner that is directly comparable to official BLS methods. 

That is, for this specific industry, BLS generates 4-digit output per worker measures by using gross

revenue from the Census of Service industries and then deflating the 4-digit revenue using an

appropriate 4-digit deflator derived from the Consumer Price Index.25  By obtaining the appropriate

deflators, we can mimic BLS procedures here which is especially important given our concerns about

measurement issues.

A third reason that we selected this specific 3-digit industry is that this industry has been subject

to rapid technological change.  Over the last decade or so, the automotive repair industry has

experienced significant changes in the nature and complexity in both the automobiles that are being

serviced and in the equipment used to do the servicing.  According to Automotive Body Repair News

(ABRN), “...vehicles are becoming more electronic and require more expensive diagnostic tools for

successful troubleshooting.”  For example, ABRN reports that the percentage of automobiles with

electronic transmissions has increased from 20% in 1990 to 80% in 1995 and is expected to increase

to 95% by the year 2000.  According to ABRN, “this growth in automotive electronics has not only

changed the vehicle, it has altered significantly the technical requirements of the individuals who service”

the automobiles.



40

Recent improvements in automobiles and in the manner in which they are repaired may interfere

with our measurement of changes in output per worker.  It is possible that we may not accurately

characterize productivity changes in the industry because of changes in the quality of both the outputs

and the inputs.  While we recognize that this pervasive concern may be especially problematic in the

service sector, we believe that these problems will be somewhat mitigated by several factors unique to

this context.  First, our (admittedly limited) research on changes in this industry indicate that process

innovations dominate product innovations.  That is, while both the parts and processes to repair

automobiles have undergone substantial improvement, we believe that the improvements in repair

technology are more important for our purposes.  For example, some of the largest changes have taken

place in the field of troubleshooting and have provided mechanics with the ability to more accurately

and more quickly diagnose repair problems.  Such improvements in diagnostics are appropriately

reflected in our (and the official BLS) output per worker measures since establishments that are better

at diagnosis will exhibit higher measured output per worker.  Second, our focus is on the decomposition

of productivity changes rather than the overall change itself.   Mismeasured quality change will

undoubtedly imply that the overall change in mismeasured,  but it is less clear how it will distort the

inferences about the contribution of reallocation to the overall change. 

We conduct our analysis by exploiting the Census of Service establishment-level data from

1987 and 1992.  The Census of Service data contain information on gross revenue and employment as

well as a host of establishment-level identifiers.  The data on gross revenue are deflated with an

appropriate 4-digit deflator to generate a measure of real gross output (in 1987 dollars).  Combining

the data on real gross output with the employment data allows us to generate measures of labor
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productivity that are fully comparable to those presented in section V. A discussion of the method used

to link establishments in the Census of Services can be found in the Data Appendix. 

Before proceeding to our analysis of the micro data, it is useful to consider the official BLS

productivity series for SIC 753.  Figure 1 plots the index for output per worker produced by BLS.  As

is evident from the figure, this industry exhibits substantial cyclicality in labor productivity.  This

cyclicality likely influences our analysis since we focus on the Census of Services micro data from 1987

to 1992.  Figure 1 indicates that while recovery had begun in 1992 and 1992 labor productivity

exceeds 1987 labor productivity, labor productivity was below the cyclical peak it had reached in

1989.  Recall from the discussion in sections III and IV that  the role of reallocation for productivity

growth appears to be cyclically sensitive for studies using manufacturing data.  We need to keep the

impact of cyclicality in mind therefore, when considering the determinants of industry-wide productivity

growth. 

B.  Decompositions of Industry Productivity Changes

We now turn our attention to an analysis of the decomposition of aggregate productivity growth

for the automobile repair industry.  To begin, Table 14 presents gross expansion and contraction rates

for employment and output for the overall 3-digit industry and the underlying 4-digit industries.  The

gross flows of employment and output are quite large in this industry with five-year gross expansion and

contraction rates of approximately 50 percent.  The implied five-year excess reallocation rates for each

industry are often above 80 percent.  These rates are quite large relative to the ten-year gross rates for

manufacturing reported in Table 3.  Indeed for manufacturing, five-year gross employment expansion

and contraction rates are typically less than 30 percent (see, e.g., Dunne, Roberts and Samuelson
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26Given the magnitude of establishment births and deaths on employment flows and
productivity, and the newness of these data, we considered it prudent to try to find benchmarks for
business failure from sources outside the Census Bureau.  We contacted BABCOX Publications,
publishers of several automobile service periodicals.  BABCOX provides its publications free of charge
to all companies in, among others, SIC 7532 (Top, Body, and Upholstery Repair Shops and Paint
Shops) and they believe that they have a mailing list that includes almost all of the individual
establishments in the industry.  They find that about 10% of the businesses on their mailing list disappear
each year.  Over a five year period therefore, their attrition rate is similar to what we find.

(1989) and Baldwin, Dunne, and Haltiwanger (1995)).  Thus, taken at face value, these rates suggest

tremendous churning among automotive repair shops.26

In a related manner, the share of expansion accounted for by entrants and the share of

contraction accounted for by exits are both extremely large.   The entry and exit shares exceed 50

percent for all industries and in some cases exceed 80 percent.  To provide some perspective, Baldwin,

Dunne, and Haltiwanger (1995) report that roughly 40 percent of five-year gross job flows in U.S.

manufacturing are accounted for by entrants and exits.  

Table 15 presents the gross contraction and expansion rates by establishment size class along

with information regarding the distribution of establishments by size class.  The vast majority of

automotive repair shops are very small with less than 10 employees.   This helps account for the rapid

pace of output and employment reallocation and the dominant role of entrants and exits.  Many studies

(see the survey in Davis and Haltiwanger (1997)) have shown that the pace of reallocation as well as

entry/exit rates are sharply decreasing functions of employer size.

Table 16 presents the decomposition of labor productivity (per worker) growth using method 1

(panel A) and method 2 (panel B) described in section IV.  The components in these tables are

reported directly (essentially the terms in equations (2) and (3)) rather than as shares of the total as in
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27 There is a joint BEA, BLS, and Bureau of the Census project currently underway that is
comparing the establishment data gathered by BLS and Census.  One of its goals is to examine how
mixing employment and revenue data from the two agencies may affect statistics such as industry
productivity measurements.

prior tables.  We present them in this form to avoid confusion.  The components exhibit considerable

variation in both sign and magnitude so the shares of the total often exceed one.  

For the overall 3-digit industry, we find that the gain in productivity across the five-year period

is approximately 2.4%.  This is lower than the BLS estimate in Figure 1 of approximately 4.9%.  There

are several possible explanations for this difference.  First, our data on revenue and employment come

exclusively from the economic censuses.  While, according to Dean and Kunze (1993), BLS gets their

employment data from a variety of sources including BLS’ Establishment Survey, IRS’ Statistics of

Income, and the Census Bureau’s Current Population Survey.27  Furthermore, BLS attempts to adjust

their industry output to account for businesses without payroll (e.g., sole proprietorships).  By contrast,

the economic census data we use cover only establishments with paid employees.

Next, note from Table 16 that net entry plays a very large role regardless of the method is used. 

Indeed, productivity growth from net entry actually exceeds the overall industry growth.  Thus, the

overall contribution of continuing establishments is negative.  On the other hand, the decomposition of

the effects of continuing establishments differs substantially across methods 1 and 2.  The reason for this

is that there is an extremely large negative cross effect with method 1.  With method 1, the within and

between effects using method 1 are typically positive.  In contrast, under method 2, the within effect is

uniformly negative and the between effect is typically positive.  Correlations for continuing

establishments are reported in Table 17.  Underlying the cross terms in Table 16 are the large positive
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correlation between labor productivity growth and output growth and the large negative correlation

between labor productivity growth and employment growth  

Since the time series decompositions are sensitive to measurement error problems and

longitudinal linkage problems, it is useful to also examine the Olley-Pakes style cross sectional

decompositions.  Table 18 reports these cross sectional decompositions for 1987 and 1992.  The cross

term for all industries is positive indicating that the share of employment is greater at establishments with

larger productivity.  The relative importance of the cross term is especially large for the overall 3-digit

industry and also its biggest single 4-digit industry, general automotive repair shops (SIC 7538).  In

addition, for the overall 3-digit industry as well as for general automotive repair shops, there is an

increase in the cross term reflecting the fact that the reallocation of employment over this time has been

productivity enhancing.

C.  The Role of Entry and Exit

The results in the prior section indicate that in an accounting sense essentially all (indeed more

than all) of the productivity growth in these industries comes from net entry.  Table 19 illustrates the

underlying determinants of the contribution of net entry.  Several features of Table 19 stand out.  First,

the shares of employment accounted for by exiting plants in 1987 and by entering plants in 1992 are

very large.  Second, continuing plants exhibit little overall change  in productivity.  Third, entering plants

in 1992 actually have somewhat lower productivity than the incumbents had in 1987 but they have

much larger productivity than the exiting plants had in 1987.  Thus, the biggest impact comes from the

large exodus of low productivity plants.

In an analogous manner to the regression exercises in section IV, Table 20 characterizes the
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differences between entering and exiting plants more formally.  The specification includes year effects,

4-digit industry effects (not shown), entry and exit dummies.  Even after controlling for year effects (and

thus overall trends in productivity growth in the industry), exiting plants have significantly lower

productivity than continuing plants, entering plants have significantly lower productivity than continuing

plants, and entering plants have significantly higher productivity than exiting plants.  

D.  Summary of Service Sector Results

Since the Census of Services micro data have not been widely used, this analysis and the

findings should be viewed as exploratory.   Nevertheless, taken at face value the results are quite

interesting and clearly call for further analysis.  First, there is tremendous reallocation of activity across

these service establishments with much of this reallocation generated by entry and exit.   Second, the

productivity growth in the industry is dominated by entry and exit effects.  The primary source of

productivity growth between 1987 and 1992 for the automobile repair shop industry is accounted for

by the exit of very low productivity plants.  

VII.  Concluding Remarks

In this study we have focused on the contribution of the reallocation of activity across individual

producers in accounting for aggregate productivity growth.  A growing body of empirical analysis

reveals striking patterns in the behavior of establishment-level reallocation and productivity.  First, there

is a large ongoing pace of reallocation of outputs and inputs across establishments.  Second, the pace of

reallocation varies secularly, cyclically and by industry.  Third, there are large and persistent

productivity differentials across establishments in the same industry.  Fourth, entering plants tend to

have higher productivity than exiting plants.  Large productivity differentials and substantial reallocation
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are the necessary ingredients for an important role for reallocation in aggregate productivity growth. 

Nevertheless, a review of existing studies yields a wide range of findings regarding the contribution of

reallocation to aggregate productivity growth.

In both our review of existing studies and our own sensitivity analysis, we find that the  variation

across studies reflects a number of factors.  First, the contribution of reallocation varies over time (i.e.,

is cyclically sensitive) and across industries.  Second, the details of the decomposition methodology

matter.  Our findings suggest that measurement error interacts with the alternative decomposition

methodologies in ways that affect the final results.  Third, the contribution of net entry depends critically

on the horizon over which the changes are measured.  Small shares of the role of entrants and exits in

high frequency data (e.g., annual) make for a relatively small role of entrants and exits using high

frequency changes.  However, intermediate and longer run (e.g., five and ten year) changes yield a large

role for net entry.  Part of this is virtually by construction since the share of activity accounted for by

entry and exit will inherently increase the longer the horizon over which changes are measured. 

Nevertheless, a robust finding is that the impact of net entry is disproportionate since entering plants

tend to displace less productive exiting plants, even after controlling for overall average growth in

productivity.  The gap between the productivity of entering and exiting plants also increases in the

horizon over which the changes are measured since a longer horizon yields greater differentials from

selection and learning effects.  Our findings confirm and extend others in the literature that indicate that

both learning and selection effects are important in this context.

A novel aspect of our analysis is that we have extended the analysis of the role of reallocation

for aggregate productivity growth to a selected set of service sector industries.  Our analysis considers
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the 4-digit industries that form the 3-digit automobile repair shop sector.  This sector has been

experiencing dramatic changes over the last decade because of the greater technological sophistication

of new automobiles and the accompanying advances in the equipment used to service them.  We found

tremendous churning in this industry with extremely high rates of entry and exit.  Moreover, we found

that productivity growth in the industry is dominated by entry and exit.  In an accounting sense, the

primary source of productivity growth in this industry over the 1987 to 1992 period is the exit of very

low productivity plants.  While these results should be viewed as exploratory given the limited use to

date of the non-manufacturing establishment data at Census, the results are quite striking and clearly call

for further analysis.

While the precise quantitative contribution of reallocation varies along a number of systematic

dimensions and is sensitive to measurement methodology, a reading of the literature and our own

analysis of manufacturing and service sector industries clearly yields the conclusion that an

understanding of the dynamics of aggregate productivity growth requires tracking the dynamics of

microeconomic productivity growth.  Indeed, the fact that the contribution of reallocation varies across

sectors and time makes it that much more important to relate aggregate and microeconomic

productivity dynamics.  

Given this conclusion, a natural question is what are the implications for the existing official

productivity measures from the Bureau of Labor Statistics.  Our findings of the importance of

reallocation effects have implications for the interpretation of  aggregate productivity measures rather

than suggesting another potential source of measurement problems in the official aggregate productivity

statistics per se.   There are a number of well recognized measurement challenges confronting the
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28 As examples of this extensive literature, see the following previous NBER Studies in Income
and Wealth conference volumes: Griliches (1992), Berndt and Triplett (1990), Kendrick and Vaccara
(1980).

developers of the official statistics and there have been a number of associated proposals for

improvements in the measurement of these statistics.  These challenges include accounting for changes

in quality in inputs and output, important technical issues on the ideal choice of an index, and the difficult

conceptual and measurement problems in measuring output in the service sector.  While there is a

substantial literature on these topics, addressing these challenges requires further research as well as

enhanced resources for data collection.28   A related literature, of which our paper is a part, takes a

different tack by focusing on the relationship between microeconomic productivity dynamics and

aggregate productivity growth while taking the measurement methodology of  aggregate productivity as

given.  Our results suggest that interpreting and understanding changes in the official aggregate

productivity measures across time and across sectors would be significantly enhanced by relating the

aggregate measures to the underlying microeconomic evidence.  

Rather than a call for additional data,  the implied recommendation of our work is a change in

the collection and processing of data that would readily permit relating the aggregate and the micro

statistics.  Put differently, our results suggest that a comprehensive and integrated approach to the

collection and processing of data on establishments is important.  Ideally, we would like to measure

outputs, inputs and associated prices of outputs and inputs at the establishment-level in a manner that

permits the analysis of  aggregate productivity growth in the manner discussed in this paper.  Current

practices at statistical agencies are far from this ideal with many of the components collected by
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different surveys with different units of observation (e.g., establishments vs. companies) and indeed by

different statistical agencies.  Pursuing the approach advocated in this paper requires overcoming the

legal data sharing limitations that are currently part of the U.S. statistical system. 

There are a large number of open conceptual and measurement issues that deserve further

attention in pursuing the connection between aggregate and micro productivity dynamics.  One issue

that we, and most of the literature, neglect is the role of within sector price dispersion and related issues

of product differentiation.  Following the literature, we use 4-digit deflators for shipments and materials

in the construction of our productivity measures.  However, a limited number of studies (e.g., Roberts

and Supina (1997)) find considerable price dispersion across establishments even within narrow 7-digit

product classes.  If the price dispersion reflects quality differences across the products produced by

different establishments, then the common procedures in the literature are such that measured

productivity differences across establishments will reflect such quality differences.  A related and more

serious problem is the extent to which price dispersion reflects product differentiation implying that we

need both a richer characterization of market structure and the information on this market structure to

proceed appropriately.

Another problem is that much that we have discussed in this paper is simply accounting.  To

understand the role of reallocation for productivity growth, we need to provide better connections

between the theoretical underpinnings in section II and the variety of empirical results summarized in the

succeeding sections.  For one, we need to come to grips with the determinants of  heterogeneity across

producers.  There is no shortage of candidate hypotheses but currently this heterogeneity is mostly a

residual with several claimants.  For another, we need to develop the theoretical structure and



50

accompanying empirical analysis to understand the connection between output and input reallocation. 

The results to date suggest that this connection is quite complex with restructuring and technological

change yielding changes in the scale and mix of factors that are not well understood.  A related problem

is that there is accumulating evidence that the adjustment process of many of these factors is quite

lumpy so the dynamics are quite complicated.  Developing the conceptual models of heterogeneity in

behavior, reallocation and lumpy adjustment at the micro level and, in turn, considering the aggregate

implications should be a high priority.
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Data Appendix

A.  Measuring Output and Inputs in the Manufacturing Sector

The Census of Manufactures (CM) plant-level data includes value of shipments, inventories,
book values of equipment and structures, employment of production and nonproduction workers, total
hours of production workers, and cost of materials and energy usage. Real gross output is measured as
shipments adjusted for inventories, deflated by the four-digit output deflator for the industry in which the
plant is classified.  All output and materials deflators used are from the four-digit NBER Productivity
Database (Bartelsman and Gray, 1996, recently updated by Bartelsman, Becker and Gray).  Labor
input is measured by total hours for production workers plus an imputed value for the total hours for
nonproduction workers.  The latter imputation is obtained by multiplying the number of nonproduction
workers at the plant (a collected data item)  times the average annual hours per worker for a
nonproduction worker from the Current Population Survey.  We construct the latter at the 2-digit
industry level for each year and match this information to the CM by year and industry. The
methodology for constructing this hours variable is discussed at length in Davis and Haltiwanger (1991). 

We have also used an alternative estimate of total hours, like that in Baily, Hulten and Campbell
(1992), which is total hours for production hours multiplied by the ratio of total payroll for all workers
plus payments for contract work to payroll for production workers.  The multiplication factor acts as a
means for accounting for both hours of nonproduction and contract workers.  The correlation between
these alternative hours measures is 0.95 at the plant level.  Moreover, the results for the aggregate
decompositions and other exercises are very similar using the alternative measures.  However, we did
find that the use of this ratio adjusted hours measure yielded somewhat more erratic results in
comparing results using only Annual Survey of Manufactures (ASM) cases to all Census of
Manufactures (CM) cases.  In particular, we found substantial differences in results between those
generated from the full CM and the ASM when considering decompositions of  labor productivity per
hour.  We did not have this type of deviation for any of the other measures (e.g., multifactor
productivity and labor productivity per worker) including the CPS-based hours method.  

Materials input is measured as the cost of materials deflated by the 4-digit materials deflator. 
Capital stocks for equipment and structures are measured from the book values deflated by capital
stock deflators (where the latter is measured as the ratio of the current dollar book value to the constant
dollar value for the two-digit industry from Bureau of Economic Analysis data).  Energy input is
measured as the cost of energy usage, deflated by the Gray-Bartelsman energy-price deflator.  The
factor elasticities are measured as the  industry average cost shares, averaged over the beginning and
ending year of the period of growth.  Industry cost shares are generated by combining industry-level
data from the NBER Productivity Database with the Bureau of Labor Statistics (BLS) capital rental
prices.  

The CM does not include data on purchased services (other than that measured through
contract work) on a systematic basis (there is increased information on purchased services over time). 
Baily, Hulten, and Campbell used a crude estimate of purchased services based on the two-digit ratio
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29  Siegel and Griliches (1991) also find a relatively modest role for purchased services in their
study of manufacturing productivity growth.

of purchased services-to-materials usage available from the Bureau of Labor Statistics KLEMS data. 
They applied the two-digit ratio from the aggregate KLEMS data to the plant level data on materials. 
Because they reported that this adjustment did not matter much and it is at best a crude adjustment that
will not provide much help in decomposing productivity growth within four-digit industries, this
adjustment was not incorporated in the analysis.29 

The data used are from the mail universe of  the CM for 1977 and 1987.  In the CM, very
small plants (typically fewer than five employees)  are excluded from the mail universe and denoted
administrative record cases.   Payroll and employment information on such very small establishments
are available from administrative records (i.e., the Standard Statistical Establishment List) but the
remainder of their data are imputed.  Such administrative record cases are excluded from the analysis. 
In addition to the usual problems in using book-value data, for plants that were not in the Annual
Survey of Manufactures (about 50,000-70,000 plants) but in the mail universe of the CM,  book-value
data are imputed in years other than 1987.   We investigated this issue (and like Baily, Hulten, and
Campbell) found little sensitivity on this dimension.  This partly reflects the relatively small capital shares
in total factor costs when materials are included.  Nevertheless, for the exercises presented in section
V, we considered results using both the full CM (less administrative records) and results generated from
the ASM plants.  Note that to do this properly, we used the CM files to identify entering, exiting and
continuing plants and then considered the ASM subsample of each of those files and applied
appropriate ASM sample weights. We only report the results for the full CM since the results are quite
similar using the full CM and the ASM only cases.  Part of the preference for the full CM in this context
is that net entry plays an important role and the measure of the aggregate contribution of entry and exit
is likely to be more reliable using the full CM.

B.  Linking Establishments Over Time for the Services Sector
Our first step in using the Census of Services establishment-level data is to employ a flag used

by the Census Bureau in their tabulation of the non-manufacturing censuses to identify observations
containing inappropriate data (for example, out-of-scope establishments).  These observations are
excluded from tabulations for official Census publications and we eliminated them from our analysis as
well.  In addition, we excluded a small number of observations with duplicate permanent plant numbers
(PPN) in each year that could not be matched with alternative matching routines.  Our initial files closely
approximated both the number of establishments and total employment contained in official Census
Bureau publications.

The biggest challenge that we face in using the Census of Service data for this effort is linking
the establishment data over time and measuring the contribution of entry and exit to employment
changes and productivity growth.  To accomplish this, we match the micro data files using PPNs that
the Bureau of the Census assigns to establishments.  In principle, PPNs are supposed to remain fixed
even during changes in organization or ownership.  However, the actual assignment of PPNs is far from
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30 Two types of errors are unavoidable in this process.  First, some ‘true’ matches will not be
made and some ‘false’ matches will be.  Our review of the individual records indicates that  the overall
error rate is, nevertheless, substantially diminished.

perfect.  During the construction of the Longitudinal Research Database (LRD) which encompasses the
CM and ASM, many PPN linkage problems were detected through analyses of the data by many
different individuals (see the appendix of Davis, Haltiwanger and Schuh (1996) for more discussion on
PPN linkage problems in the LRD).

Since the service sector data have not previously been linked together over time or analyzed in
this manner, it is undoubtedly the case that initial attempts at linking the data that rely only on PPNs will
leave a greater number of longitudinal linkage problems than remain in the LRD.  Therefore, we took an
additional step to improve the matches and used additional identifiers on the files (i.e., Census File
Numbers and Employer Identification Numbers).  Unfortunately, even after this step, an exploratory
analysis of births and deaths for a specific zip code shows that a small but important fraction of the
births and deaths reflected changes in ownership for an establishment that continued to operate at the
same location in the same industry.

To overcome the remaining linkage problems, we use the name and address information in the
files and a sophisticated matching software (Automatch) to improve the matches.  Most data processing
software takes a very literal approach to this sort of information, thus limiting its value for matching
purposes.  For example, if an establishment’s name is ‘K Auto Mart Inc.’ in one file and has the exact
same name in the other, the two records will match.  However, if in the second year the establishment’s
name is ‘K Auto Mart Incorporated’ it will not match the previous record if linked using conventional
software because the two entries are not exactly the same.  Clearly, abbreviations, misspellings, and
accidental concatenations can substantially reduce the usefulness of these fields for matching purposes if
literal matches are required. However, the software we used is designed to recognize many alternative
specifications for the same name and address.  That is, it can recognize that abbreviations such as “St”
that frequently appear in addresses may stand for “Saint” as in “St James Street” or “Street” as in
“Saint James St.”  The software assigns probability-based weights to the set of potential matches and
the user determines the cut-off value of the weights that gives him the best set of ‘valid’ matches.30

Panel A of Table A.1 shows that by using this technique we are able to reduce the number of
unmatched establishments in the 1987 file by about 17.6% and the number of unmatched establishments
in the 1992 file by about 13.3%.  Notice also that the mean size (employment) of the additional
matched establishments is much closer to that of the original matched cases than it is to the remaining
unmatched establishments. Panel B of Table A.1 shows the effects of the additional matches on the
five-year gross employment flows statistics.  Both the positive and negative flows are about 10% lower
after using Automatch than when the only plant identifier numbers are used.  This percentage decrease
is less than the percent decrease in the number of unmatched establishments since matched
establishments often generate positive or negative job flows, though obviously of a lesser magnitude
than those generated by spurious entrants and exits.  Overall, we consider the application of the
matching software to be successful and this bodes well for future longitudinal database development
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using the non-manufacturing establishment data at Census.
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Table 1.  A Comparison of Decompositions of Aggregate Productivity Growth

A.  Multifactor Productivity Decompositions

Country Frequency Sample
Period

Sectoral
Coverage

Weight
Used to
Calculate
Within
Plant
Changes1

Average
Fraction
from
Within
Plant
Changes

Fraction of
Activity2

from
Entrants (t)

Fraction of
Activity
from Exits 
(t-k)

Relative
Productivity
of Births (t)
to Deaths (t-
k)

Study

U.S. 5-year 1972-87 Selected
Mfg
Industries
(23)

Output 
(t-k)

0.37    N/A N/A N/A Baily, Hulten
and
Campbell
(1992)

U.S. 5-year 1977-87 All Mfg
Industries

Output 
(t-k)

0.23 0.08 0.10 1.05 Haltiwanger 
(1997)

U.S. 10-year 1977-87 All Mfg
Industries

Output 
(t-k)

0.54 0.16 0.21 1.11 Haltiwanger 
(1997)

Taiwan3 5-year 1981-91 Selected
Mfg
Industries
(9)

Output
(avg. of (t-
k) and t)

0.94
(Median =
0.63)

N/A N/A N/A Aw, Chen
and Roberts
(1997)

Columbia Annual 1978-86 Selected
Mfg
Industries
(5) 

Input
Index4

(avg of (t-
k) and t)

1.00 N/A 0.05 1.05 Liu and
Tybout
(1996)



Table 1 (continued) 
B.  Labor Productivity Growth Decompositions

Country Frequency Sample
Period

Sectoral
Coverage

Weight
Used to
Calculate
Within
Plant
Changes

Average
Fraction
from
Within
Plant
Changes

Fraction of
Activity
from
Entrants (t)

Fraction of
Activity
from Exits 
(t-k)

Relative
Productivity
of Births (t)
to Deaths (t-
k)

Study

U.S. 10-year 1977-87 All Mfg
Industries

Employ-
ment (t-k)

0.79 0.26 0.28 1.42 Baily,
Bartelsman
and
Haltiwanger
(1996)

U.S. Annual 1972-88 All Mfg
Industries

Manhours
(t-k)

1.20 0.01 0.02 1.03 Baily,
Bartelsman
and
Haltiwanger
(1997)

Israel 3-year 1979-88 All Mfg
Industries

Employ-
ment (avg
of (t-k)
and t)

0.83 0.08 0.06 1.20 Griliches and
Regev
(1995)

Notes: 1.  Within contribution is measured as the weighted sum of plant-level productivity growth as a fraction of aggregate index of
productivity growth.  In all cases, output above refers to gross output.   2.  Activity is measured in the same units as weight (e.g., employment
or output).  3.  Simple average (and simple median) of industry-based results reported. 4.  The input index is a geometric mean of inputs using
estimated factor elasticities.



Table 2: Sensitivity of Decomposition Results to Business Cycle and Sector   
Five-year Frequency

1977-1982 1982-1987

Sectoral
Coverage

Multifactor
Productivity
Growth

Fraction from
Within Plant
Changes

Multifactor
Productivity
Growth

Fraction from
Within Plant
Changes

Study

All Mfg
Industries

 2.43 -0.12  8.26  0.58 Haltiwanger
(1997)

Selected Mfg
Industries (23)

 2.39    -0.46    15.63  0.87 Baily, Hulten
and
Campbell
(1992)

Blast Furnaces
(SIC 3312)

-3.66  2.15 18.30  1.06 Baily, Hulten
and
Campbell
(1992)

Telephone and
Telegraph
Equipment
(SIC 3661)

14.58  0.78 13.19  0.86 Baily, Hulten
and
Campbell
(1992)

Notes: Weight for within calculation from both studies is initial gross output share for the plant in each
industry.  Results aggregated across industries are based upon weighted average with weight for this
purpose equal to the average of nominal gross output for the industry.



Table 3.  Gross Reallocation of Employment, Output, Equipment and Structures
Ten-year Changes from 1977-87

Measure Creation
(Expansion)
Rate

Share of
Creation
(Expansion)D
ue to Entrants

Destruction
(Contraction)
Rate

Share of
Destruction
(Contraction)
Due to Exits

Fraction of
Excess
Reallocation
Within 4-digit
Industry

Real Gross
Output

49.4 0.44 34.4 0.61 0.80

Employment 39.4 0.58 45.8 0.62 0.75

Capital
Equipment

46.1 0.42 37.1 0.51 0.71

Capital
Structures

44.9 0.44 48.4 0.42 0.69

Notes: See text for details of construction of output, equipment and structures measures.
Source: Tabulations from the CM.                                               



Table 4:  Decomposition of Multifactor and Labor Productivity Growth, 1977-87

Panel A: Method 1

Measure Weight Overall
Growth

Within
Share

Between
Share

Cross
Share

Net Entry
Share

Multifactor
Productivity

Gross Output 10.24 0.48 -0.08 0.34 0.26

Labor
Productivity
(per hour)

Gross Output 25.56 0.45 -0.13 0.37 0.31

Labor
Productivity
(per hour)

Manhours 21.32 0.77 0.08 -0.14 0.29

Labor
Productivity
(per worker)

Employment 23.02 0.74 0.08 -0.11 0.29

Panel B: Method 2

Measure Weight Overall
Growth

Within
Share

Between
Share

Cross
Share

Net Entry
Share

Multifactor
Productivity

Gross Output 10.24 0.65 0.10 -- 0.25

Labor
Productivity
(per hour)

Gross Output 25.56 0.64 0.06 -- 0.31

Labor
Productivity
(per hour)

Manhours 21.32 0.70 0.00 -- 0.30

Labor
Productivity
(per worker)

Employment 23.02 0.69 0.01 -- 0.30

Source: Tabulations from the CM.                                               



Table 5: Correlation Between Plant-Level Productivity, Output, and Input Growth, 1977-87 (Continuing Plants)

Multifactor
Productivity

Labor
Productivity
(per hour)

Labor
Productivity
(per worker)

Output Employment Manhours Capital
Equipment

Capital
Structures

Multifactor
Productivity

1.00

Labor
Productivity
(per hour)

0.41 1.00

Labor
Productivity
(per worker)

0.38 0.93 1.00

Output 0.24 0.47 0.52 1.00

Employment -0.03 -0.17 -0.17 0.76 1.00

Manhours -0.04 -0.22 -0.12 0.75 0.96 1.00

Capital
Equipment

-0.06 0.16 0.18 0.55 0.49 0.49 1.00

Capital
Structures

-0.07 0.15 0.17 0.52 0.46 0.46 0.76 1.00

Capital
Intensity

-0.03 0.34 0.30 0.06 -0.16 -0.19 0.71 0.63

Source: Tabulations from the CM.



Table 6: Cross-Sectional Decompositions of Productivity By Year

1977 1987

Measure Weight Overall     p2 Cross Overall     p2 Cross

Multifactor
Productivity

Gross Output 1.62 1.57 0.05 1.73 1.67 0.06

Labor
Productivity
(per hour)

Manhours 4.12 4.01 0.11 4.37 4.21 0.15

Labor
Productivity
(per worker)

Employment 4.80 4.67 0.13 5.06 4.90 0.16

Source: Tabulations from the CM.



Table 7:  Decomposition of Multifactor and Labor Productivity Growth Over Subperiods

Panel A: Method 1

Years Measure Weight Overall
Growth

Within
Share

Between
Share

Cross
Share

Net Entry
Share

1977-82 Multifactor
Productivity

Gross
Output

2.70 -0.09 -0.33 1.16 0.25

1977-82 Labor
Productivity 

Manhours 2.54 1.22 0.85 -1.27 0.20

1982-87 Multifactor
Productivity

Gross
Output

7.32 0.52 -0.18 0.51 0.14

1982-87 Labor
Productivity 

Manhours 18.67 0.83 0.13 -0.15 0.19

1987-92 Multifactor
Productivity

Gross
Output

3.30 -0.06 -0.39 1.10 0.35

1987-92 Labor
Productivity 

Manhours 7.17 0.94 0.33 -0.49 0.21

Panel B: Method 2

Years Measure Weight Overall
Growth

Within
Share

Between
Share

Cross
Share

Net Entry
Share

1977-82 Multifactor
Productivity

Gross
Output

2.70 0.49 0.26 -- 0.25

1977-82 Labor
Productivity 

Manhours 2.54 0.59 0.21 -- 0.20

1982-87 Multifactor
Productivity

Gross
Output

7.32 0.78 0.08 -- 0.14

1982-87 Labor
Productivity 

Manhours 18.67 0.75 0.03 -- 0.21

1987-92 Multifactor
Productivity

Gross
Output

3.30 0.49 0.17 -- 0.34

1987-92 Labor
Productivity 

Manhours 7.17 0.70 0.08 -- 0.22

Note: Labor Productivity is per hour.
Source: Tabulations from the CM.                                               



Table 8: Correlation Between Plant-Level Productivity, Output, and Input Growth 
for Subperiods (Continuing Plants)

                                                 Panel A:  Multifactor Productivity 

1977-82 1982-87 1987-92

Output  0.29  0.23  0.24

Manhours -0.07 -0.08 -0.07

Capital Intensity  0.07 -0.00 -0.08

Labor Productivity
(per hour)

 0.45  0.41  0.40

                                                 Panel B: Labor Productivity (per hour)

1977-82 1982-87 1987-92

Output  0.52  0.50  0.53

Manhours -0.25 -0.26 -0.27

Capital Intensity  0.38  0.39  0.29

Source: Tabulations from the CM.



Table 9: Relative Productivity for Continuers, Exiters and Entrants, 1977-87

Panel A: Output Shares and Relative Productivity

Shares Relative Productivity

Measure Weight Exiting
Plants 
(t-k)

Entering
Plants (t)

Exiting
Plants
 (t-k)

Entering
Plants (t)

Continuing
Plants (t-k)

Continuing 
Plants (t)

Multifactor
Productivity

Gross
Output

0.22 0.21 0.96 1.09 1.00 1.10

Labor
Productivity
(per hour)

Manhours 0.25 0.21 0.83 1.11 1.00 1.20

Labor
Productivity
(per worker)

Employ-
ment

0.25 0.21 0.82 1.11 1.00 1.21

Panel B: Relative Productivity of Plants in 1987 for Entrants by Entry Cohort

Plants that entered 
between:

Measure Weight 1978-82 1983-87

Multifactor
Productivity 

Gross
Output

1.10 1.07

Labor
Productivity
(per hour) 

Manhours 1.16 1.04

Labor
Productivity
(per worker) 

Employ-
ment

1.16 1.05

Source: Tabulations from the CM.



Table 10: Regression Results Concerning Net Entry, 1977-87 

Panel A: Differences Between Continuing, Entering and Exiting Plants

Measure Exit Dummy in 1977 ($) Entry Dummy in 1987 (*) 1987 Year Effect F-test on $=* (p-value)

Multifactor Productivity -0.019
(0.002)

0.003
(0.002)

0.098
(0.001)

0.0001

Labor Productivity 
(per hour)

-0.150
(0.003)

-0.075
(0.003)

0.191
(0.002)

0.0001

Labor Productivity 
(per worker)

-0.162
(0.003)

-0.086
(0.003)

0.208
(0.002)

0.0001

Panel B: Regression Results Distinguishing Between Entering Cohorts

Measure Entry Dummy in 1987
interacted with Dummy for
1977-82 Cohort (0)

Entry Dummy in 1987 
interacted with Dummy for
1982-87 Cohort (:)

F-test on 
0 = :
(p-value)

Multifactor Productivity 0.016
(0.002)

-0.010
(0.002)

0.0001

Labor Productivity 
(per hour)

-0.020
(0.004)

-0.123
(0.004)

0.0001

Labor Productivity 
(per worker)

-0.032
(0.004)

-0.132
(0.004)

0.0001

Notes: Results in panel A are based upon regression of pooled 1977 and 1987 data with dependent variable the measure of productivity (in
logs) and the explanatory variables including 4-digit industry effects, year effects,  an exit dummy in 1977 and an entry dummy in 1987.  The
results in panel B use the same specification but interact the entry dummy with entering cohort dummies.  In panel B, the exit dummy and
year effect dummy are not shown as they are the same as in panel A.   All results are weighted regressions with gross output weights in
regressions using multifactor productivity, hours weights in labor productivity per hour regressions, and employment weights in labor
productivity per worker regressions.  Standard errors in parentheses.



Table 11:  Regression Results Distinguishing Between Selection and Learning Effects using 1972-77 Entering Cohort

Measure Exit Dummy
in 1977 for
Entering
Cohort (")

Exit Dummy
in 1977 for
Other Exiting
Plants (()

Survival
Dummy in 1977
for Entering
Cohort (2)

Survival
Dummy in 1987
for Entering
Cohort (8)

F-test on 
" = (
(p-value)

 F-test on 
" = 2
(p-value)

F-test on
2 = 8
(p-value)

Multifactor Productivity -0.024
(0.004)

-0.019
(0.002)

-0.017
(0.003)

0.018
(0.003)

0.238 0.184 0.0001

Labor Productivity 
(per hour)

-0.182
(0.007)

-0.149
(0.003)

-0.058
(0.006)

-0.016
(0.005)

0.0001 0.0001 0.0001

Labor Productivity 
(per worker)

-0.215
(0.007)

-0.158
(0.003)

-0.072
(0.006)

-0.017
(0.005)

0.0001 0.0001 0.0001

Notes: Results are based upon regression of pooled 1977 and 1987 data with dependent variable the measure of productivity and the
explanatory variables including 4-digit industry effects, year effects,  an entry dummy in 1987, the exit dummy interacted with whether the
plant is in the 72-77 entering cohort and a surviving dummy for the 72-77 entering cohort interacted with the year effects.  All results are
weighted regressions with gross output weights in regressions using multifactor productivity, hours weights in labor productivity per hour
regressions, and employment weights in labor productivity per worker regressions.  Standard errors in parentheses.
Source: Tabulations from the CM.                                               



Table 12: Regression Results on Differences Between Continuing, Entering and Exiting Plants

Measure Exit Dummy in 
Beginning Year ($)

Entry Dummy in 
Ending Year (*)

End Year
Effect

F- test on $ = *
(p-value)

                                                                           Panel A: 1977-82

Multifactor Productivity -0.047
(0.002)

0.005
(0.002)

0.021
(0.001)

0.0001

Labor Productivity 
(per hour)

-0.164
(0.004)

-0.140
(0.004)

0.022
(0.002)

0.0001

Labor Productivity 
(per worker)

-0.187
(0.004)

-0.131
(0.004)

-0.009
(0.002)

0.0001

                                                                           Panel B: 1982-87

Multifactor Productivity -0.017
(0.002)

-0.005
(0.002)

0.071
(0.001)

0.0002

Labor Productivity 
(per hour)

-0.193
(0.004)

-0.121
(0.004)

0.169
(0.002)

0.0001

Labor Productivity 
(per worker)

-0.204
(0.004)

-0.130
(0.004)

0.211
(0.002)

0.0001

                                                                           Panel C: 1987-92

Multifactor Productivity -0.056
(0.002)

0.009
(0.002)

0.025
(0.001)

0.0001

Labor Productivity 
(per hour)

-0.179
(0.004)

-0.140
(0.004)

0.064
(0.002)

0.0001

Labor Productivity 
(per worker)

-0.192
(0.004)

-0.126
(0.004)

0.083
(0.002)

0.0001



Table 13:  Regression Results Distinguishing Between Selection and Learning Effects using Entering Cohort

Measure Exit Dummy in
Start for
Entering (")

Exit Dummy in
Start for Other
Exiting  (()

Survival Dummy in
Start for Entering 
(2)

Survival Dummy
in End for
Entering  (8)

F-test on 
" = (
(p-value)

F-test on 
 " = 2
(p-value)

F-test on
2 = 8
(p-value)

                                                                              Panel A: 1977-82   (Start=1977, End=1982)

Multifactor 
Productivity

-0.050
(0.005)

-0.047
(0.003)

-0.011
(0.003)

0.023
(0.003)

0.662 0.0001 0.0001

Labor Productivity 
(per hour)

-0.190
(0.008)

-0.164
(0.005)

-0.069
(0.005)

-0.035
(0.005)

0.005 0.0001 0.0001

Labor Productivity 
(per worker)

-0.231
(0.008)

-0.184
(0.005)

-0.089
(0.005)

-0.032
(0.005)

0.0001 0.0001 0.0001

                                                                              Panel B: 1982-87   (Start=1982, End=1987)

Multifactor 
Productivity

-0.039
(0.005)

-0.014
(0.002)

-0.017
(0.003)

0.001
(0.003)

0.0001 0.0001 0.0001

Labor Productivity 
(per hour)

-0.306
(0.008)

-0.175
(0.004)

-0.063
(0.006)

-0.045
(0.005)

0.0001 0.0001 0.019

Labor Productivity 
(per worker)

-0.313
(0.008)

-0.186
(0.004)

-0.061
(0.006)

-0.052
(0.005)

0.0001 0.0001 0.216

                                                                              Panel C: 1987-92   (Start=1987, End=1992)

Multifactor 
Productivity

-0.049
(0.005)

-0.060
(0.003)

-0.017
(0.003)

0.043
(0.003)

0.048 0.0001 0.0001

Labor Productivity 
(per hour)

-0.254
(0.008)

-0.170
(0.004)

-0.097
(0.005)

-0.057
(0.005)

0.0001 0.0001 0.0001

Labor Productivity 
(per worker)

-0.274
(0.007)

-0.183
(0.004)

-0.101
(0.005)

-0.050
(0.005)

0.0001 0.0001 0.0001



Table 14: Gross Reallocation of Employment and Output for Automobile Repair Shops
 Panel A: Five-year Changes from 1987-92, Employment

Industry Creation
(Expansion)
Rate

Share of
Creation
(Expansion)
Due to Entrants

Destruction
(Contraction)
Rate

Share of
Destruction
(Contraction)
Due to Exits

Excess
Reallocation
Within Industry

Automobile
Repair Shops
(SIC=753)

50.9 75.8 44.2 63.5 88.4

Top, Body, and
Upholstery
Repair Shops
and Paint Shops
(SIC=7532)

44.2 69.3 42.9 59.1 85.8

Auto Exhaust
System Repair
Shops
(SIC=7533)

46.0 69.5 37.1 55.3 74.2

Tire Retreading
and Repair
Shops
(SIC=7534)

53.2 79.0 57.5 82.1 106.4

Automotive
Glass
Replacement
Shops
(SIC=7536)

60.3 79.6 38.9 51.7 77.8

Automotive
Transmission
Repair Shops
(SIC=7537)

38.9 70.4 46.1 61.4 77.8

General
Automotive
Repair Shops
(SIC=7538)

58.3 80.0 45.3 67.4 90.6

Automotive
Repair Shops
Not Elsewhere
Classified
(SIC=7539)

43.6 76.2 43.9 61.8 87.2

Source: Tabulations from Censuses of Service Industries



Table 14 (continued)
Panel B: Five-year Changes from 1987-92, Output

Industry Creation
(Expansion)
Rate

Share of
Creation
(Expansion)
Due to Entrants

Destruction
(Contraction)
Rate

Share of
Destruction
(Contraction)
Due to Exits

Excess
Reallocation
Within Industry

Automobile
Repair Shops
(SIC=753)

51.8 75.8 40.3 61.3 80.6

Top, Body, and
Upholstery
Repair Shops
and Paint Shops
(SIC=7532)

44.7 68.8 38.5 57.1 77.0

Auto Exhaust
System Repair
Shops
(SIC=7533)

45.2 71.2 31.9 55.7 63.8

Tire Retreading
and Repair
Shops
(SIC=7534)

53.6 79.7 51.2 80.3 102.4

Automotive
Glass
Replacement
Shops
(SIC=7536)

59.9 79.8 38.7 45.3 77.4

Automotive
Transmission
Repair Shops
(SIC=7537)

37.9 74.5 42.7 57.5 75.8

General
Automotive
Repair Shops
(SIC=7538)

59.9 79.3 41.2 65.4 82.4

Automotive
Repair Shops
Not Elsewhere
Classified
(SIC=7539)

42.8 78.3 43.4 59.3 85.6

Source: Tabulations from Censuses of Service Industries



Table 15:  Gross Reallocation of Employment and Output by Size Class for Automobile Repair Shops
Panel A: Five-year Changes from 1987-92, Employment

Average
Employ-
ment

Number
of
Establish-
ments.

Average
number of
Employees

Creation
(Expansion)
Rate

Share of
Creation
(Expansion)
Due to
Entrants

Destruction
(Contraction)
Rate

Share of
Destruction
(Contraction)
Due to Exits

Net Job
Flow Rate
of Size
Class

1 - 4 123,378 224,309 71.7 85.2 53.3 77.1 18.4

5 - 9  22,163 145,528 36.5 63.1 36.5 51.3 0.0

10 - 19    6,683   86,647 28.0 52.0 33.1 40.2 -5.1

20 - 49    1,236   33,230 32.6 56.0 39.9 40.5 -7.3

50 +         88     7,624 54.6 65.3 66.6 61.9 -12.0

Panel B: Five-year Changes from 1987-92, Output

Average
Employ-
ment

Number
of
Establish-
ments.

Average
number of
Employees

Creation
(Expansion)
Rate

Share of
Creation
(Expansion)
Due to
Entrants

Destruction
(Contraction)
Rate

Share of
Destruction
(Contraction)
Due to Exits

Net
Output
Flow Rate
of Size
Class

1 - 4 123,378 224,309 73.9 84.5 47.0 75.5 26.9

5 - 9  22,163 145,528 35.3 64.1 35.2 48.7 0.1

10 - 19    6,683   86,647 27.5 52.4 32.4 38.9 -4.9

20 - 49    1,236   33,230 34.3 52.1 34.9 40.5 -0.6

50 +         88     7,624 44.1 58.8 50.8 54.5 -6.7

Source: Tabulations from Censuses of Service Industries



Table 16:  Decomposition of Labor Productivity Growth, 1987-92

Panel A: Method 1

Industry Average 
number of 
Employees

Overall
Growth

Within
Effect

Between
Effect

Cross
Effect

Total
Continuer
Effect

Net Entry
Effect

Auto Repair
Shops
(SIC=753)

497,336 2.43 2.41 4.58 -7.29 -0.30 2.73

Top, Body,
and
Upholstery
Repair Shops
and Paint
Shops
(SIC=7532)

163,302 4.16 3.24 5.81 -8.13 0.92 3.24

Auto Exhaust
System
Repair Shops 
(SIC=7533)

  22,112 3.47 5.72 4.02 -9.80 -0.06 3.54

Tire
Retreading
and Repair
Shops
(SIC=7534)

  12,874 -1.34 -2.99 5.23 -2.78 -0.54 -0.81

Automotive
Glass
Replacement
Shops
(SIC=7536)

  19,816 -3.55 -0.43 1.50 -4.57 -3.50 -0.05

Automotive
Transmission
Repair Shops
(SIC=7537)

  24,507 0.79 1.26 4.93 -8.35 -2.16 2.96

General
Automotive
Repair Shops
(SIC=7538)

213,768 2.36 2.38 3.90 -6.79 -0.51 2.87

Automotive
Repair Shops
Not
Elsewhere
Classified
(SIC=7539)

40,956 -1.22 1.36 4.85 -7.67 -1.46 0.24



Table 16, Panel B: Method 2

Industry Average 
number of
Employees

Overall
Growth

Within
Effect

Between
Effect

Cross
Effect 

Total
Continuer
Effect

Net Entry
Effect 

Automobile
Repair Shops
(SIC=753)

497,336 2.43 -1.24 1.01    -- -0.23 2.66

Top, Body,
and
Upholstery
Repair Shops
and Paint
Shops
(SIC=7532)

163,302 4.16 -0.82 1.84    -- 1.02 3.15

Auto Exhaust
System
Repair Shops
(SIC=7533)

  22,112 3.47 0.81 -0.73    -- 0.08 3.39

Tire
Retreading
and Repair
Shops
(SIC=7534)

  12,874 -1.34 -4.37 3.85     -- -0.52 -0.81

Automotive
Glass
Replacement
Shops
(SIC=7536)

  19,816 -3.55 -2.72 -1.16     -- -3.88 0.33

Automotive
Transmission
Repair Shops
(SIC=7537)

  24,507 0.79 -2.92 0.76    -- -2.16 2.95

General
Automotive
Repair Shops
(SIC=7538)

213,768 2.36 -1.02 0.59    -- -0.43 2.79

Automotive
Repair Shops
Not
Elsewhere
Classified
(SIC=7539)

40,956 -1.22 -2.48 0.99    -- -1.49 0.28

Source: Tabulations from the Censuses of Service Industries.                                               



Table 17: Correlation Between Plant-Level Productivity, Output, and Input Growth, 1987-92
(Continuing Plants; SIC 753)

Change in
Labor
Productivity
(per worker)

Change in
Output

Change in
Employment

Employment   in
1987

Employment   in
1992

Change in
Labor
Productivity
(per worker) 

1

Change in
Output

0.51 1

Change in
Employment

-0.39 0.60 1

Employment  in
1987

0.06 -0.18 -0.24 1

Employment  in
1992

-0.10 0.11 0.21 0.72 1

Source: Tabulations from Census of Service Industries



Table 18: Cross-Sectional Decompositions of Productivity by Year

Industry Year Overall P-Bar Cross

Automobile Repair
Shops (SIC=753)

1987 3.92 3.69 0.23

1992 3.95 3.69 0.25

Top, Body, and
Upholstery Repair
Shops and Paint
Shops (SIC=7532)

1987 3.75 3.68 0.07

1992 3.77 3.69 0.08

Auto Exhaust System
Repair Shops
(SIC=7533)

1987 3.96 3.95 0.01

1992 4.02 4.02 0.00

Tire Retreading and
Repair Shops
(SIC=7534)

1987 3.96 3.95 0.01

1992 3.91 3.90 0.01

Automotive Glass
Replacement Shops
(SIC=7536)

1987 3.95 3.95 0.01

1992 3.96 3.95 0.01

Automotive
Transmission Repair
Shops (SIC=7537)

1987 3.67 3.66 0.01

1992 3.70 3.70 0.01

General Automotive
Repair Shops
(SIC=7538)

1987 3.76 3.65 0.11

1992 3.77 3.63 0.13

Automotive Repair
Shops Not Elsewhere
Classified (SIC=7539)

1987 3.71 3.69 0.02

1992 3.75 3.74 0.01

Source: Tabulations from Censuses of Service Industries



Table 19: Employment Shares and Relative Labor Productivity, 1987-92

Industry Shares Relative Productivity

Exiting Plants 
(t-k)

Entering
Plants (t)

Exiting
Plants
 (t-k)

Entering
Plants (t)

Continuing
Plants (t-k)

Continuing 
Plants (t)

Automobile
Repair Shops
(SIC=753)

0.39 0.32 0.84 0.93 1.00 1.00

Top, Body,
and
Upholstery
Repair Shops
and Paint
Shops
(SIC=7532)

0.27 0.32 0.80 0.92 1.00 1.02

Auto Exhaust
System Repair
Shops
(SIC=7533)

0.22 0.31 0.81 0.96 1.00 1.00

Tire
Retreading
and Repair
Shops
(SIC=7534)

0.49 0.48 0.86 0.85 1.00 0.99

Automotive
Glass
Replacement
Shops
(SIC=7536)

0.23 0.44 0.78 0.86 1.00 0.96

Automotive
Transmission
Repair Shops
(SIC=7537)

0.28 0.30 0.80 0.90 1.00 0.97

General
Automotive
Repair Shops
(SIC=7538)

0.38 0.45 0.86 0.94 1.00 1.00

Automotive
Repair Shops
Not Elsewhere
Classified
(SIC=7539)

0.30 0.35 0.90 0.92 1.00 0.98

Source: Tabulations from the Censuses of Service Industries.



Table 20: Regression Results on Differences Between Continuing, Entering and Exiting Plants

Measure Exit Dummy in 
Beginning Year ($)

Entry Dummy in 
Ending Year (*)

End Year
Effect

F- test on $ = *
(p-value)

                                                                1987-92 for SIC 753

Labor Productivity
(Weighted by
Employment)

-0.153 
(0.004)

-0.068
 (0.003)

0.001 (0.003) 0.0001

Source: Tabulations from Censuses of Service Industries



Table A.1:  Results of Using Automatch to Improve Longitudinal Linkages

Panel A: Summary Statistics

Continuers Based on
Original Linkages

Additional
Continuers After
Improved
Linkages

Exits After
Improved
Linkages 

Entrants
After
Improved
Linkages

Number of Establishments 59,011 9,447 44,281 61,649

Employment Mean: 1987 5.2 5.1 3.7

Employment Mean: 1992 5.0 4.8 3.4

Panel B: Impact on Gross Employment Flows

Original Matched File File After
Matching
Name/Address

Change Percentage
Change

Employment at Births 231,094 192,016 -39,078 -16.9

Employment at Deaths 179,111 139,408 -39,703 -22.2

Job Creation Rate 56.2 50.9 -5.3 -9.4

Job Destruction  Rate 49.3 44.2 -5.1 -10.3

Percent of Creation 
From Entry

82.6 75.8 -6.8 -8.2

Percent of Destruction 
From Exits

73 63.5 -9.5 -13.0

Net Employment Growth Rate 6.9 6.7 -0.2 -2.9

Source: Tabulations from Censuses of Service Industries


