Productivity and Reallocation
Motivation

- Recent studies highlight role of reallocation for productivity growth. Market economies exhibit:
 - Large pace of output and input reallocation with substantial role for entry/exit.
 - Large differences in measured productivity across producers
 - Productivity enhancing market selection and reallocation from less to more productive businesses
 - Magnitude depends upon sector, country, measure (labor vs. TFP) – open questions:
 - Impact on workers vs. Impact on firms
 - Role of institutions/market structure
The challenge of cross-country analysis

- **Macro data**
 - e.g. SNA, PWT
 - Difficult to identify effects (e.g. 2 million growth regressions)

- **Sectoral data**
 - e.g. OECD-STAN; Unido
 - aggregate sectors obscure causal mechanism

- **Meta-analysis of results from micro studies**
 - A challenge to control for data, method, and context
 - Little within-country variation in policy (e.g. before and after)

- **Cross-country longitudinal micro dataset**
 - Generally not possible (disclosure)
 - EUROSTAT attempting to build EU panel, but from existing databases
Distributed micro-data collection

- **OECD sample**
 - Demographics (entry/exit) for 10 countries
 - Productivity decompositions for 7 countries
 - Survival analysis 7 countries

- **World Bank sample**
 - Same variables, 14 Central and Eastern Europe, Latin America and South East Asia

- **EU Sample (10 countries)**, updates and a few new countries
 - Productivity decompositions
 - Sample Stats and correlations by quartile
Data sources

- Business registers for firm demographics
 - Firm level, at least one employee, 2/3-digit industry
- Production Stats, enterprise surveys for productivity analysis
- Countries:
 - 10 OECD
 - 5 Central and Eastern Europe
 - 6 Latin America
 - 3 East Asia
- Data are disaggregated by:
 - industry (2-3 digit);
 - size classes 1-9; 10-19; 20-49; 50-99; 100-249; 250-499; 500+ (for OECD sample the groups between 1 and 20 and the groups between 100 and 500 are combined)
 - Time (late 1980s – late 1990s)
Measurement Error

- Three sources of error potentially affect comparability of indicators built from firm level data:
 - Classical Error of firm-level measure
 \[X = X^* + \varepsilon \]
 - Errors in sample
 \[\Omega = \Omega^* + \Psi \]
 - Method of Aggregation of Indicator
 \[I = A[X_f | f \in \Omega] \]

- Aggregation is harmonized in our approach, but other errors may or may not cancel out in aggregation
Cross-country Comparisons

- Harmonization
 - Sample frames; Variable definitions; Classifications; Aggregation Methods

- Make comparisons that ‘control’ for errors
 - Exploit the different dimensions of the data (size, industry, time)
 - Use difference in difference techniques

- Even in absence of measurement error, interpretation of cross-country indicators requires theory
The different dimensions of producer dynamics

1. Firm size
2. Firm demographics:
 1. Employment and # of firms for entry, exit, continuers: by industry and size class
3. Firm survival:
 1. Employment and # of survivors, by cohort, industry, year
4. Static and dynamic analysis of allocative efficiency:
 1. Decompositions of entry/exit contribution
 2. Higher moments, covariances, means by quartile

- In lecture, focus on 2 and 4
Evidence of firm turnover

- No major differences across OECD countries, especially after controlling for sector and size effects
- But large differences in size at entry
- Large net entry in transition economies: filling the gaps (?)
Interpretation of Gross Turnover

- Theoretical explanations
 - Entry explained by ‘push’ and ‘pull’ factors
 - Exit barriers may affect characteristics of exiting firm more than number of exits

- Measurement errors
 - Conceptual differences in measure (e.g. labor)
 - Differences in underlying data sources
Gross and net firm turnover: how the time dimension sheds light on the evolution of market forces in transition economies.
Entry rate by size: how the **size dimension** may shed light on the nature of firm dynamics

- Monotonic decline in entry rate by size in US
- Less clear link between size and entry rate in other EU countries;
- Any role for entry costs?
Allocative efficiency: static analysis – Olley-Pakes decompositon

\[P_t = \left(\frac{1}{N_t}\right) \sum_i P_{it} + \sum_i \Delta \theta_{it} \Delta P_{it} \]

The Gap Between Weighted and Un-Weighted Labor Productivity, 1990s
Five-Year Differencing, Real Gross Output, Manufacturing

Data for Hungary, Indonesia and Romania use Three-Year Differencing. Excluding Brazil and Venezuela.
Allocative efficiency: how the allocative efficiency evolved over time in transition economies

The Evolution of the Gap Between Weighted and Un-Weighted Labor Productivity in Transition Economies over the 1990s

Five-Year Differencing, Real Gross Output, Manufacturing. Data for Hungary and Romania use Three-Year Differencing.
Dynamic allocative efficiency: the role of entry and exit in reallocating resources towards more productive uses

We used the FHK approach, but also compared with Griliches-Regev and Baldwin-Gu

$$\Delta P_t = \sum_{i \in C} \bar{\theta}_i \Delta p_{it} + \sum_{i \in C} \Delta \theta_{it} (p_{i} - \bar{P})$$

$$+ \sum_{i \in N} \theta_{it} (p_{it} - \bar{P}) - \sum_{i \in X} \theta_{i-k} (p_{i-k} - \bar{P})$$
Dynamic allocative efficiency: the importance of “technology factors”

We decompose our data for manufacturing into a low technology group and a medium high tech group

→ Stronger contribution of entry to productivity growth in medium high tech industries

![Graph showing contribution of entry to labor productivity growth, five year differencing, gross output](image)

Legend:
- **Low tech industries**
- **Medium high-tech industries**
Labor Productivity Dispersion

<table>
<thead>
<tr>
<th>Quartile</th>
<th>ICT-producing</th>
<th></th>
<th>ICT-using</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>US</td>
<td>EU</td>
<td>US</td>
<td>EU</td>
</tr>
<tr>
<td>Top</td>
<td>123</td>
<td>118</td>
<td>74</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td>88</td>
<td>87</td>
<td>51</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>61</td>
<td>72</td>
<td>40</td>
<td>46</td>
</tr>
<tr>
<td>Bottom</td>
<td>38</td>
<td>68</td>
<td>26</td>
<td>41</td>
</tr>
</tbody>
</table>

Units: Thousand US$ per worker
Producer Heterogeneity: What are we measuring?

- Limitation of most studies of productivity and reallocation:
 - Plant-level output measured as deflated revenue using industry deflator
 - More than just a measurement problem
 - Differences in measured productivity may be capturing differences in market power so results on productivity and reallocation may be capturing demand factors
 - Market selection should be on profitability but positive/normative aspects of selection depend critically on whether selection is on efficiency or market power
Measurement of Plant-level Productivity

\[tfp_i = y_i - \alpha_l l_i - \alpha_k k_i - \alpha_m m_i - \alpha_e e_t \]

All variables in logs, difficult measurement Issues on outputs and inputs and factor elasticities
Measurement and Conceptual Issues Interact with Policy Implications

- Many reforms in transition/emerging economies aimed at making markets more competitive
 - And obviously plays role in all countries (e.g., antitrust, deregulation, etc. in U.S.)
- Which and how much do product, credit, labor market distortions matter?
- Focus in this lecture – market power
Price/Demand Factors

- Theory: Differentiated product model
 - Prices depend upon both cost/efficiency (-) and demand factors (+)
 - Selection on efficiency (costs/productivity) and demand factors
 - Raises some questions regarding welfare (why demand elasticities vary across producers)

- Empirical analysis:
 - Rich data on businesses with measures of physical quantities and prices (Direct approach as opposed to indirect approach of Melitz, Tybout, etc.)
 - Productivity, prices and reallocation with “corrected” measure of productivity
\[U = y + \alpha \int_{i \in I} q_i \, di - \frac{1}{2} \left(\eta + \frac{\gamma}{N} \right) \left(\int_{i \in I} q_i \, di \right)^2 + \int_{i \in I} \delta_i q_i \, di - \frac{1}{2} \gamma \int_{i \in I} (q_i - \bar{q})^2 \, di \]

\[q_i = \frac{\alpha}{\eta N + \gamma} + \frac{\eta N}{\eta N + \gamma} \frac{1}{\bar{p}} + \frac{1}{\gamma} \delta_i - \frac{1}{\gamma} p_i \]

\[q_i = \omega_i x_i \]

\[\pi_i = \left(\frac{\alpha}{\eta N + \gamma} + \frac{\eta N}{\eta N + \gamma} \frac{1}{\bar{p}} + \frac{1}{\gamma} \delta_i - \frac{1}{\gamma} p_i \right) \left(p_i - \frac{w_i}{\omega_i} \right) \]
\[p_i = \frac{1}{2} \frac{\gamma \alpha}{\eta N + \gamma} + \frac{1}{2} \frac{\eta N}{\eta N + \gamma} - \bar{p} + \frac{1}{2} \frac{\delta_i}{\omega_i} + \frac{1}{2} \frac{w_i}{\omega_i} \]

\[\phi_i \equiv \delta_i - \frac{w_i}{\omega_i} \]

\[\phi^* = -\frac{\gamma \alpha}{\eta N + \gamma} - \frac{\eta N}{\eta N + \gamma} \bar{p} \]

\[\phi_i < \phi^* \text{ will not find operations profitable} \]

\[V^e = \int \int \int \int \frac{1}{4\gamma} (\phi_i - \phi^*)^2 f(\delta, \omega, w)d\delta d\omega dw - s = 0 \]
\[
\frac{d \phi^*}{d \gamma} = -\frac{\partial V^e}{\partial \gamma} \frac{\partial V^e}{\partial \phi^*}
\]

\[
\frac{\partial V^e}{\partial \gamma} = \int \int \int_{\omega_i, \omega, \omega} \int \int \int_{\phi^*, \omega} \frac{1}{4 \gamma^2} \left(\delta - \frac{w}{\omega} - \phi^* \right)^2 f(\delta, \omega, w) d\delta d\omega dw < 0
\]

\[
\frac{\partial V^e}{\partial \gamma} = \int \int \int_{\omega_i, \omega, \omega} \int \int \int_{\phi^*, \omega} \frac{1}{4 \gamma^2} \left(\phi^* + \frac{w}{\omega} - \frac{w}{\omega} - \phi^* \right)^2 f(\phi^* + \frac{w}{\omega}, \omega, w) d\omega dw
\]

\[
- \int \int \int_{\omega_i, \omega, \omega} \int \int \int_{\phi^*, \omega} \frac{1}{2 \gamma^2} \left(\delta - \frac{w}{\omega} - \phi^* \right)^2 f(\delta, \omega, w) d\delta d\omega dw < 0
\]

Key predictions:

\[
d\phi^*/d\gamma < 0 \quad \quad \quad \quad d\phi^*/ds < 0
\]
Data and Measurement

- Physical quantity/price data available for selected sectors:
 - 11 very detailed sectors
- TFPQ (physical) and TFPR (revenue) measured using std. index number approach (output less cost-share weighted inputs)
- Materials measured as cost of materials with industry materials deflator
 - Implications for interpretation of TFPQ:
Estimation and Conceptual Issues

- TFP measured using cost shares
- Demand equations estimated using TFP as an instrument
 - Elasticities vary by product but not within product
- All exercises control for complete set of product/year interactions
Basic Facts

- Heterogeneity and persistence in prices, TFPQ, TFPR
- Prices and TFPQ inversely related
 - Makes sense – more efficient/low cost producers have lower prices
- \(\text{Var}(\text{TFPQ}) > \text{Var}(\text{TFPR}) \)
- High rates of entry/exit
<table>
<thead>
<tr>
<th>Variables</th>
<th>Traditional Output</th>
<th>Revenue Output</th>
<th>Physical Output</th>
<th>Price</th>
<th>Traditional TFP</th>
<th>Revenue TFP</th>
<th>Physical TFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional Output</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revenue Output</td>
<td>0.99</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Output</td>
<td>0.98</td>
<td>0.99</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price</td>
<td>-0.03</td>
<td>-0.03</td>
<td>-0.19</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traditional TFP</td>
<td>0.19</td>
<td>0.18</td>
<td>0.15</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revenue TFP</td>
<td>0.17</td>
<td>0.21</td>
<td>0.18</td>
<td>0.16</td>
<td>0.86</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Physical TFP</td>
<td>0.17</td>
<td>0.20</td>
<td>0.28</td>
<td>-0.54</td>
<td>0.64</td>
<td>0.75</td>
<td>1.00</td>
</tr>
</tbody>
</table>

| Standard Deviations | 1.03 | 1.03 | 1.05 | 0.18 | 0.21 | 0.22 | 0.26 |
Three main exercises

- Selection equation:
 - Exit = f(TFPQ, prices)
 - TFPQ is, in principle, a good index of cost/efficiency
 - Controlling for TFPQ implies controlling for cost/efficiency so can isolate demand factors

- Evolution of TFPR, TFPQ, prices (continuers, entry, exit)

- Productivity and reallocation decompositions using TFPQ and TFPR
Differences Between Continuing, Entering and Exiting

<table>
<thead>
<tr>
<th>Variable</th>
<th>Unweighted Regression</th>
<th>Weighted Regression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exit Dummy</td>
<td>Entry Dummy</td>
</tr>
<tr>
<td>Traditional TFP</td>
<td>-0.0202</td>
<td>0.0014</td>
</tr>
<tr>
<td></td>
<td>0.0045</td>
<td>0.0043</td>
</tr>
<tr>
<td>Revenue TFP</td>
<td>-0.0224</td>
<td>0.0124</td>
</tr>
<tr>
<td></td>
<td>0.0048</td>
<td>0.0046</td>
</tr>
<tr>
<td>Physical TFP</td>
<td>-0.0207</td>
<td>0.0166</td>
</tr>
<tr>
<td></td>
<td>0.0054</td>
<td>0.0052</td>
</tr>
<tr>
<td>Price</td>
<td>-0.0018</td>
<td>-0.0042</td>
</tr>
<tr>
<td></td>
<td>0.0036</td>
<td>0.0035</td>
</tr>
<tr>
<td>Demand Shock</td>
<td>-0.3540</td>
<td>-0.3656</td>
</tr>
<tr>
<td></td>
<td>0.0251</td>
<td>0.0243</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Unweighted Regressions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traditional TFP</td>
<td>-0.073</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revenue TFP</td>
<td></td>
<td>-0.063</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical TFP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prices</td>
<td>-0.021</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand Shock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weighted Regressions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traditional TFP</td>
<td>-0.055</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revenue TFP</td>
<td></td>
<td>-0.062</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical TFP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prices</td>
<td>-0.034</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand Shock</td>
<td>-0.038</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Productivity Decompositions

Productivity Measure	Total Growth								Components of Decomposition		
		Within	Between	Cross	Entry	Exit	Net Entry				
Traditional	2.31	39.35	-16.62	47.72	23.22	6.34	29.55				
Revenue	5.09	66.43	-10.08	25.95	13.99	3.71	17.70				
Physical	5.09	67.78	-7.91	13.81	23.97	2.35	26.32				
Main Findings

- Exiting businesses have lower prices and lower productivity (either TFPQ or TFPR) than incumbents or entrants.
- Entering businesses have lower prices than incumbents.
- Entering businesses have higher TFPQ but not higher TFPR than incumbents.
- Decompositions of aggregate TFPQ vs. TFPR suggests that the results in the existing literature may have understated the contribution of entry (entrants have low prices).
Demand vs. Efficiency in Selection?

- Lower productivity establishments and lower price establishments are more likely to exit.
- Controlling for both price and productivity effects simultaneously shows that both factors are important for survival as implied by the theory.
Where do we go from here?

- **Theory:**
 - Nature of product differentiation/market structure:
 - Welfare consequences?

- **Evidence:**
 - More sectors and countries
 - How to estimate differences in elasticities across businesses producing same product?

- **The World?**
 - Distortions in product, credit, labor markets all are relevant for productivity and reallocation.
 - See Eslava et. al. (2005)