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Abstract

I develop a two-country endogenous growth model to show that increasing foreign com-
petition contributes to the recent decline in high-growth firm activities and startup
rates in the U.S. by changing the way how firms allocate their innovative effort. Firms
improve their existing products through internal innovation, while developing new
products through external innovation. A novel friction I consider is that it takes
time to learn others’ technology, which I denote as an imperfect technology spillover.
This friction allows firms to defend themselves from competitors by building techno-
logical barriers through internal innovation. Increasing foreign competition induces
innovation-intensive and thus fast-growing firms to invest more in internal innovation
for defensive reasons. At the same time, foreign competition discourages all firms from
undertaking external innovation. This shift in innovation cuts the employment growth
of innovation-intensive firms, as external innovation generates more quality improve-
ment than internal innovation and requires firms to hire a new set of workers to produce
new products. Entry for potential startups is harder as incumbents build higher tech-
nological barriers. By using firm-level data from the U.S. Census Bureau integrated
with firm-level patent data, I confirm the model’s predictions.
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1 Introduction

The past decades have seen declining business dynamism in the U.S. economy in various

measures, such as startup rates, job creation and destruction rates, and activity among

high-growth firms, a significant portion of which are young firms (Decker et al., 2014). In

the manufacturing sector, for example, the startup rate fell from 8.3% in 1992 to 6.3% in

2007, whereas the employment growth rate of the top decile of firm employment growth

declined from 22.5% in 1992 to 17.0% in 2007.1 Startups and high-growth firms account for

70% of gross job creation in typical years (Decker et al., 2014).2 Furthermore, high-growth

firms also play disproportionately important roles in output growth and productivity growth

(Haltiwanger et al., 2016). Thus, the decline in startup rates and the activity of high-growth

young firms is a large concern.

Simultaneously, the U.S. economy experienced increasing international trade. Exports of

goods and services, for example, rose from 8.0% of GDP in 1992 to 11.5% in 2007, and the

import penetration ratio rose from 9.2% in 1992 to 15.5% in 2007.3 While a significant body

of research has examined the link between international trade and macroeconomic outcomes

such as output growth and unemployment, less attention has been paid to the impact of

international trade on high-growth firm activity.

In this paper, I argue that increasing foreign competition induces high-growth firms, espe-

cially innovation-intensive firms, to focus their innovative effort on improving their existing

products to defend themselves from competitors, as opposed to entering markets outside of

their existing scope and capturing businesses from incumbent firms.4 This shift of innova-

tion activity causes innovation-intensive firms to grow more slowly and makes it difficult for

1The startup rates are Author’s calculation from the Business Dynamics Statistics (BDS). The top-decile
firm is the 90th percentile firm of the employment-weighted distribution of firm employment growth rates.
The two employment growth rates are based on Hodrick-Prescott trend, where data is from Decker et al.
(2016). Economy-wide, the two numbers changed from 32.8% in 1992 to 26.3% in 2007.

2Here, high-growth firms are defined as firms with employment growth rate more than 25% per year.
3Import penetration ratio is defined as the imports of goods and services divided by the total expenditure

on goods and services, measured as the GDP minus the exports of goods and services plus the imports
of goods and services. Both exports of goods and services per GDP, and import penetration ratio is the
author’s calculation from FRED economic data in real terms, then Hodrick-Prescott trends are reported.
Exports of goods and services per total expenditure rose from 7.9% in 1992 to 11.0% in 2007

4Acemoglu et al. (2018) show that among innovative firms, young and small firms have higher innovation
intensity than mature firms as measured by the ratio of R&D spending to sales. Also, Graham et al. (2018)
show that young patenting firms grow faster and shed fewer jobs compared to non-patenting counterparts.
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potential startups to enter into the economy. The key friction that generates these responses

is that it takes time to learn another firm’s technology.

Broadly, innovation comes in two types: internal and external. Firms improve their

product quality and production processes through internal innovation, and use external

innovation to take over other firms’ product markets. If a firm wants to take over another

market through external innovation, it first needs to learn the technology that the existing

incumbent is using and then build on top of it.

Importantly, however, there is friction in learning others’ technology, in that it takes time

to learn. I call this an imperfect technology spillover, and introduce this friction to the

endogenous growth literature. Incumbent firms can use this time lag to improve their tech-

nology further through defensive internal innovation, which makes it harder for competitors

to steal their business. In other words, incumbent firms can build a technological barrier in

their markets. In such an environment, individual firms can use internal innovation not only

to improve the profitability of firms’ products but also to escape competition.

The flip side is that defensive innovation by incumbents makes it difficult to take over

another firm’s market through external innovation, as firms need to overcome the technolog-

ical advantage of incumbent firms. This technology barrier can become higher if competition

increases, because competition incentivizes incumbents to do more internal innovation.

Akcigit and Kerr (2018) empirically show that external innovation generates more forward

citations and is associated with higher employment growth compared to internal innovation.

They also show, through the lens of their structural model, that external innovation brings

higher product quality improvement, and contributes more to economic growth.5 These

findings suggest that higher product market competition, defined as a larger number of firms

trying to enter each product market, can potentially lower an individual firm’s employment

growth. The key mechanism is that the increased competition decreases firms’ incentives to

perform product scope expansion through external innovation, while encouraging firms to

do internal innovation with defensive motives.6

5Akcigit and Kerr (2018) use patenting firms in the Longitudinal Business Database (LBD) from 1982 to
1997 to arrive these conclusions both theoretically, and empirically.

6Bernard et al. (2010) suggest that product switching contributes to a reallocation of resources within
firms toward their most efficient use. Thus, experimentation through external innovation is very important
for firm growth.
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To formalize the mechanism and analyze it in detail, I extend the Akcigit and Kerr (2018)

framework to build a two-country endogenous growth model with international trade and

multi-product firms that perform two types of innovation—internal and external—subject

to imperfect technology spillover. In this model economy, the imperfect technology spillover

exists in the form of lagged learning, in which potential rival firms can only learn the product-

specific technology of incumbent firms with a one-period lag. Imperfect spillovers generate a

local technology gap, defined as the gap between the current period frontier technology for

a given product and the one-period lagged technology that potential rival firms can learn

through R&D. Thus, internal innovation is built on the current frontier technology, while

external innovation is built on lagged technology.

The imperfect technology spillover provides the owner of each product a technological

advantage and allows incumbent firms to use internal innovation to defend their product

markets from competitors. In this sense, imperfect technology spillovers allow me to intro-

duce technological distance and the escape-competition effect defined in Aghion et al. (2001)

to the Klette and Kortum (2004) framework with heterogeneous innovations. This is the key

theoretical contribution of this project to the endogenous growth literature, which helps us

to distinguish the impacts of foreign competition on internal versus external innovation. In

addition, imperfect technology spillovers imply a novel technological-barrier effect, in which

factors that affect defensive internal innovation also affect the success probability of business

takeover through external innovation in the economy. Since potential startups need to do

external innovation to enter, the technological barrier also affects startup rates.

To my best knowledge, this is the first theoretical model of defensive innovation with two

countries that allows individual firms to grow both by improving in their existing markets

and by taking other firms’ markets through two different types of innovation. Allowing for

both internal and external innovation is essential for understanding the impact of foreign

competition on firms’ innovation decisions, as well as firm-level and aggregate economic

growth. Firms have different incentives and purposes for different types of innovation, and

they use these strategically to increase their profits and the probability of survival. Also,

as explained earlier, the two types of innovation have different effects for both individual

firms and the overall economy. Thus, allowing only one type of innovation, while ignoring

4



potential compositional change, could disguise the true effect of foreign competition.

My theoretical framework predicts that when foreign competition increases, incumbent

firms that have done more recent innovation increase their internal innovation more, com-

pared to incumbents that have done less innovation recently. These innovation-intensive

firms, on average, have technological advantage accumulated through past innovation in

their own markets, summarized by the local technology gap, compared to other firms. Thus,

it is easier for them to make potential competitors even harder to catch up by improving their

products further, and this incentivizes the innovation-intensive firms to escape competition

through additional internal innovation. This is the escape-competition effect.

It also predicts that if other firms have done more innovation recently, then individual

firms do less external innovation. For an individual firm, the aggregate innovation inten-

sity and the distribution of the local technology gap across other products determine the

probability of a successful business takeover for a given amount of external innovation ef-

fort. The higher the average local technology gap and the more internal innovation effort of

incumbent firms, the harder it is to take over another firm’s product market. I define this

as the technological-barrier effect. Competition shifts the local technology gap distribution

by changing both individual firm’s internal innovation decisions and the aggregate external

innovation intensity. Thus, competition affects individual firms’ optimal external innovation

intensity through the technological-barrier effect.

To test these model predictions, I construct a unique dataset by combining firm-level

datasets from the U.S. Census Bureau and the United States Patent and Trademark Office

(USPTO) patent data from 1976 to 2016. This comprehensive dataset has information for

the population of U.S. patenting firms, such as employment, international transaction, and

6-digit NAICS industries each firm operates. I use China’s WTO accession as an exogenous

change in foreign competition and self-citation ratio as a measure for internal-ness of innova-

tion and provide regression results consistent with the escape-competition effect. The posi-

tive association between patenting and employment growth for the innovation-intensive firms

falls by one-third after an increase in foreign competition, as they create patents more for

internal innovation purposes. I also find regression results consistent with the technological-

barrier effect by using the changes in foreign patent growth as a measure for an exogenous
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variation in the technological barrier.

Quality differences between the same products sold in different countries also matter

for firms’ internal innovation decisions. When international trade is costly, similar quality

products are not traded but instead are produced and consumed domestically. This creates

a global technology gap—the gap between a U.S. firm’s technology and a foreign firm’s

technology in each product market. Domestic incumbents with lagging technologies invest

more in internal innovation if potential foreign competitors in their markets have technology

high enough that they could overcome the trade cost and start exporting their products

to the domestic market by performing additional internal innovation. On the other hand,

global technological leaders also are motivated to perform internal innovation, which could

enable them to overcome the trade cost and become exporters. I find supporting empirical

evidence for an enhanced internal innovation incentive for global technological leaders.

A counterfactual exercise of reducing tariff rates bilaterally by 4.16 percentage points in

my model shows that firms, on average, shift their innovation activities toward more internal

innovation after they are exposed to higher international trade. This causes high-growth,

innovation-intensive firms to grow more slowly. Also, startup rates fall as the increased

technological advantage incumbent firms accumulate through internal innovation makes it

harder for startups to enter the economy through external innovation. I provide industry-

level regression results consistent with these predictions.

To this end, this paper contributes to an emerging literature on the decline in business

dynamism in the U.S. Decker et al. (2014) and Decker et al. (2016) show that business dy-

namism in the U.S. has been declining in various measures, and these declines accelerated

after around 2000. Previous studies, such as Karahan et al. (2019) and Hopenhayn et al.

(2018), studies the effect of demographic changes, while Akcigit and Ates (2019a,b) focus

on the effect of decline in knowledge diffusion on the observed decline in various business

dynamism measures. To my knowledge, I am the first to propose increasing foreign compe-

tition and U.S. firms’ endogenous innovation allocation decisions as a channel that explains

the decline in high-growth firm activity and startup rates through the lens of a structural

model and provide supporting empirical evidence.

This paper also contributes to the literature that investigates the impact of international
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trade on firm innovation. Existing studies mainly combine internal and external innovation

and estimate the effect of trade on firms’ overall innovation empirically. The results are

mixed. Bloom et al. (2016) show that surviving firms in developed European countries fight

Chinese import competition by increasing their overall innovation. Autor et al. (2019), on

the other hand, show that publicly traded U.S. firms lower their overall innovation when

firms are allowed to exit in the regression sample. Aghion et al. (2017), meanwhile, focuses

on French exporters’ innovation decisions when competition in the export market increases.

They show that more productive exporters do more innovation in response to increasing

competition in the export market while less productive firms do less innovation.

Atkeson and Burstein (2010) theoretically investigate the effect of trade liberalization

on firm innovation when incumbents do internal innovation while startups are born with

new products. In their model, the impact of trade on firm innovation operates through wage

changes, and no heterogeneous response is allowed. This paper is closely related to Akcigit et

al. (2018), who build a two-country endogenous growth model with step-by-step innovation.

Similar to the model developed in this paper, their model distinguishes the competition effect

and the market size effect for firm innovation. The difference is that, in my framework, firms

are also allowed to grow through product scope expansion by taking over others’ markets.

With the two types of innovation, firm growth can slow down even if they increase internal

innovation to escape competition.

This paper contributes to this large strand of literature in three ways. First, I study

the differential effect of international competition on two types of innovation, internal and

external, that make asymmetric contributions to firm employment growth and economic

growth. This helps us understand the reason for the recent decline in business dynamism in

the U.S. economy. Second, I study why firms with different initial characteristics can react

differentially to the same trade shocks while explaining the underlying mechanisms through

a rich theoretical framework that allows us to decompose the firm’s innovation incentives

in detail. And lastly, I empirically study the effect of international trade on different types

of firm innovation using a population of patenting firms by matching the USPTO patent

database to internal Census Bureau datasets. To my own best knowledge, this paper is the

first to accomplish these three objectives.
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The rest of the paper proceeds as follows. Section 2 develops a two-country baseline

general equilibrium model. Section 3 develops a simple three-period model to study the

proposed mechanism in detail and derive empirically testable predictions. Section 4 presents

empirical results for the effect of international competition on firm innovation composition

using the U.S. Census Bureau datasets. Section 5 presents results from quantitative analysis

of the general model. Section 6 concludes.

2 Baseline Two-Country Model

Time is discrete. Two countries, home (H) and foreign (F ), are endowed with LH and

LF units of labor, potentially different. In each country, there is a single final good pro-

ducer operating in perfectly competitive markets, and a continuum of differentiated good

producers operating in monopolistically competitive markets. The mass of differentiated

good producers is determined through endogenous entry and exit. In each period, there is a

fixed mass of potential startups in the differentiated good sector in each country, and those

which successfully take over existing good markets through external innovation enter the

economy. Differentiated goods are tradable but subject to variable trade costs, and their

producers from the two countries compete for technological leadership in a continuum of

measure one goods markets through internal and external innovation. External innovation

requires learning another firm’s technology, but learning takes time. Thus, there is an imper-

fect technology spillover in the form of lagged learning, as firms can only learn other firms’

past-period technologies. Below I describe the economy mainly for the home country H,

and super/subscript H is omitted whenever there is no confusion. Time subscript t is also

omitted whenever there is no confusion.7

2.1 Representative Household

The representative household has a logarithmic utility function and is populated by a con-

tinuum of individuals with total measure L. Each individual supplies one unit of labor each

period inelastically and consumes a portion Ct of a unique final good (consumption bundle)

7I use the term technology and product quality interchangeably.
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in the economy produced by the final good producer. The household’s lifetime utility is

U “
8
ÿ

t“0

βt logpCtq . (2.1)

Homogeneous workers are employed in the final goods (L) and differentiated goods (rL)

sectors. Thus, in each period, the labor market satisfies

L` rL “ L . (2.2)

The household maximizes its lifetime utility (2.1) subject to the period-by-period budget

constraint

Ct ď wtL` Πt ` rΠt `Gt , (2.3)

where wt is wage, Πt is the final good producer’s profits, rΠt is differentiated good producers’

total profits net of R&D expenses, and Gt is a government transfers including tariff revenues.

2.2 Final Good Producer

Both countries produce an identical final good. The final good is used for consumption and

R&D expenditure for differentiated goods. The final good producer uses labor (LH) and a

continuum of differentiated goods indexed by j P r0, 1s to produce a final good, where some

of the differentiated goods can be produced by foreign exporters. Denote JcH as an index

set for differentiated goods sold in the home country that are produced by firms in country

c P tH,F u, and ycHj as the quantity of good j from c to H. Then a constant returns to scale

production technology w.r.t. labor and differentiated goods can be written as

YH “
pLHq

θ

1´ θ

«

ż 1

0

`

qHj
˘θ `

yHHj
˘1´θ ItjPJHHu dj

loooooooooooooooooooomoooooooooooooooooooon

domestic absorbtion

`

ż 1

0

`

qFj
˘θ `

yFHj
˘1´θ ItjPJFHu dj

looooooooooooooooooomooooooooooooooooooon

imports

ff

,

(2.4)
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where qHj is the quality of good j in country H, possibly different from that in country

F , and It¨u are indicator functions. The final good is produced competitively, and input

prices—wH for labor and pHj for good j sold in H—as well as product quality qcj are taken

as given. When there are multiple potential suppliers for the same good from the home

and/or foreign countries, the final good producer chooses a supplier with the combination of

product quality and marginal cost of production (adjusted by the trade costs for imported

goods) that gives the final good supplier the highest profits.

To simplify the model and allow trade imbalances in the differentiated goods sector, I

make the following assumption.

Assumption 1. The final good is traded without friction and it absorbs possible imbalances

in differentiated goods trade.

The free trade in the final good sector, along with identical final good production in both

countries, implies that the final good price in both countries, PH and PF , will be the same.

I normalize that price to one each period for both countries without loss of generality.

2.3 Differentiated Goods Producers

There is a set of measure FH of home firms and a set of measure FFH of foreign exporters with

FH `FFH P p0, 1q, which are determined endogenously in equilibrium. These firms produce

differentiated goods each period and sell their products in the home market. Some of the

home firms (FHF ď FH) export a portion of their products as well, which is also determined

endogenously based on their product quality and marginal cost of production. Each good is

produced in the producer’s own country using local labor. Each operating firm owns at least

one product line, and a single firm owns each product line in each country. Thus, a firm f can

be characterized by using a collection of its product lines J f “ tj : j is owned by firm fu,

where nf ”‖ J f ‖ is the number of products firm f produces.

Because international trade is costly and marginal cost of production can be different

across countries, some domestic firms may have zero demand from the foreign final good

producer, and foreign demand is absorbed by foreign differentiated good firms. In such

cases, the quality of the same product in the home country (qHj ), along with the ownership
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of the good j, can be different from that in a foreign country (qFj ). Then a global technology

gap can be defined as ∆G
j,t ”

qHj,t
qFj,t

. If a firm in country H exports good j, then ∆G
j,t is not

defined as there is no firm in country F producing good j. In this case, I simply define

∆G
j,t “ 8. In the case where a country F firm exports good j, I define ∆G

j,t “ ´8.

Also, because there is imperfect technology spillover, the current period frontier technol-

ogy can be different from the last period technology that another firm can learn. The local

technology gap for each market j in each country c P tH,F u is defined as ∆c
j,t ”

qcj,t
qcj,t´1

. Thus,

each product line can be characterized by its quality and technology gaps—local technology

gaps in home and foreign markets, and the global technology gap—
`

qj,∆
H
j ,∆

F
j ,∆

G
j

˘

.

Denote yHHj as the quantity of good j produced by a home firm and supplied to home

market j. Each good j P r0, 1s is produced using domestic labor `HHj with a linear technology

yHHj “ qH `
HH
j , (2.5)

where qH ”
ş

JHH
qHj dj `

ş

JFH
qFj dj is the average product quality (average production tech-

nology) of differentiated goods traded in home markets. If good j is exported by a home

firm to foreign market j, then it is produced using the same technology

yHFj “ qH `
HF
j

but it is subject to an iceberg cost dHF ą 1 and an ad-valorem tariff rτHF ě 1. Thus, in order

to sell yHFj units of good j in the foreign market, the home firm needs to ship τHF ˆ yHFj

units, where τHF ” rτHF ˆ dHF .

2.4 Innovation by Differentiated Good Producers

The differentiated good producers engage in two types of R&D—internal and external—

to increase their profits from the products they currently produce, to protect their product

markets from competitors, and to expand their businesses, where the R&D output is product

quality (equivalently, production technology) improvement. Innovation outcome is realized

at the beginning of the next period. To allow incumbent firms to protect their own product
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markets from competitors (the escape-competition effect) and to make it more difficult to

take over other firms’ product markets when overall innovation intensity in the economy is

high (the technological-barrier effect), I introduce imperfect technological spillovers, which

are captured by lagged learning: firms that don’t own product line j can only learn the

incumbent’s last period technology, qj,t´1. Thus, external innovation builds on the past-

period technology used in the domestic market. A home firm can learn a foreign firm’s

technology if and only if that foreign firm sells its products in the home country.

In this setup, learning another firm’s technology is costly in a sense that i) outside firms

can only learn last period’s technology, and ii) learning involves R&D—only firms with

strictly positive R&D expenditure can learn another firm’s past technology, where undirected

learning starts after spending a strictly positive amount on R&D.8 Product line-specific

current period technology qj,t, and thus, the local technology gap ∆j,t ”
qj,t
qj,t´1

are observable

only to the firms operating in product line j in that period. However, aggregate variables

and the local technology gap distribution (the share of product lines with a certain level of

local technology gap) are publicly observable. Thus, a stationary equilibrium can be well

defined. When two firms’ technologies are neck and neck in one product line, a coin-toss

tiebreaker rule applies as in Acemoglu et al. (2016) to make sure each product is produced by

only one firm. An unused technology (idea) is assumed to depreciate by an amount sufficient

to ensure that it becomes unprofitable to innovate on top of it next period.9

With the last two assumptions, only the winning firm from the coin toss keeps the product

line until it is taken over by another firm through creative destruction (external innovation),

while the losing firm never tries to enter the same market through internal innovation in the

neck and neck case. Thus, the undirected nature of external innovation is ensured, and only

the firm producing a product in a current period is allowed to do internal innovation on that

product. Finally, each firm can do only one external innovation in each period regardless of

the total number of product lines the firm owns, to maintain the tractability of the model.

8Firms do not know which product line technology they will learn prior to their learning. This assumption
helps the model tractable.

9If you don’t recall your skill or idea frequently, you gradually forget about it. This is in some sense
consistent with the literature discussing displaced workers’ human capital depreciation.
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2.4.1 Internal Innovation

Successful internal innovation improves the current quality qj,t for differentiated good j by

λ ą 1. The probability of internal innovation, zj,t, is determined by the level of R&D

expenditure Rin
j,t in units of the final good:

zj,t “

ˆ

Rin
j,t

pχqj,t

˙

1
pψ

,

where pχ ą 0 and pψ ą 1. Thus incumbent firm’s good j quality realized at the beginning of

t` 1, assuming the firm is not displaced by creative destruction is:10

!

qinj,t`1

)

“

$

’

’

&

’

’

%

!

λqj,t

)

with probability zj,t

!

qj,t

)

with probability 1´ zj,t .

As time is discrete and firms are multi-product firms, internal innovation outcomes follow a

binomial process as in Ates and Saffie (2016).

2.4.2 External Innovation

Incumbents and potential startups attempt to take over other incumbents’ markets through

external innovation. Successful external innovation generates an improvement in product

quality by a factor of η ą 1 relative to the incumbent’s lagged technology, where R&D

results are realized at the beginning of next period. I assume, λ2 ą η ą λ. This assumption

ensures that firms can protect their own product lines from outside firms through internal

innovation, while η ą λ reflects the idea that external innovation introduces a new way of

producing an existing product more efficiently. Thus, external innovation contributes more

to both firm employment and aggregate growth than internal innovation, as found in Akcigit

and Kerr (2018). Both potential startups’ and incumbent firms’ external innovations are

undirected in a sense that they are realized in any other product line with equal probability.

10Hereafter, I write the quality of good j as a point set. This makes it easy to write the case when external
innovation fails and firm does not acquire any product lines, which will be written as product quality set to
be an empty set.
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Existing firms with at least one product line (nf ą 0) decide the probability of external

innovation xt by choosing R&D expenditures Rex
t in units of the final good:

xt “

ˆ

Rex
t

rχ q̄t

˙
1
rψ

,

where rχ ą 0, and rψ ą 1, and q̄t is the average quality in the country the firm is located. Thus,

for prospective external innovators whose takeover is not pre-empted by the incumbent’s

successful defensive innovation, the distribution of quality at the start of the next period is:

!

qexj,t`1

)

“

$

’

’

&

’

’

%

!

ηqj,t´1

)

with probability xt

∅ with probability 1´ xt .

With probability 1´xt, the external innovation fails, which implies there is zero probability

that the firm will take over product line j. In this case, product quality for product line j

for the potential entrant does not exist.

As an outside firm can only learn last period’s technology, the local technology gap is an

important factor determining an incumbent firm’s success/failure at protecting its product

line through internal innovation. With the above setup for innovation there are four possible

technology gaps in this model economy:

Lemma 1. There can be four local technology gaps in this economy, ∆1 “ 1, ∆2 “ λ,

∆3 “ η, and ∆4 “
η
λ

, where states ∆3 and ∆4 can be reached through external innovation.

Proof: See Appendix A.1.1.

To better understand firm’s innovation decisions, and to show how business takeover

through external innovation and escape competition through internal innovation work in

detail, the following section graphically illustrates specific cases in a closed economy.

2.5 Business Takeover and Escape Competition, an Illustration

Figure 1 illustrates how firms’ product quality portfolio and technology gap portfolio evolve

over time. Firm A owns the first three product lines and firm B owns the last four product

14



q q

product j product j

Firm A

Firm B

q
1,t-1

q
1,t

} q
3,t-1

}

}

q
2,t-1

q
2,t

q
1,t

q
1,t+1

}

i) External R&D failed to realize

=

q
3,t

q
6,t-1

}

q
7,t-1

}

q
6,t

q
4,t

q
4,t

q
7,t q

7,t+1

q
7,t

}
q
4,t+1

q
3,t

q
3,t+1

q
2,t

q
5,t-1

q
5,t+1

B

q
5,t

q
5,t-1

q
5,t+1

=

A

}q
6,t+1

e

}
q
2,t+1

q
2,t+1

e

ii) Creative destruction
             by Startup

=

=

=

q
6,t-1

}
q
6,t

}
q
6,t+1

iii) Successful External R&D
iv) Successful escape
      from competition
      via internal R&D 

=

Two Incumbent Firms
(Period t)

Two Incumbent Firms + One Startup
(Period t+1)

 η

  η

 η
  η

  η

  λ

  λ  λ

  λ

  λ

 λ
 λ

›
›

›
›

›
›

›

›
›

›
›

›

›
›

›
›

›

›
›

›
›

›
›

›
›

› ›

›
››

›
›

›
›

›

›
›

›

›
›

›
›

›

+

Figure 1: Firms’ Innovation and Product Quality Evolution Example

lines in period t. Each bar represents a product and the height of the bar represents the log

of product quality for each product, pqj,t ” logpqj,tq for illustration purposes. In case i), firm

B does external innovation in an attempt to take over firm A’s product line 1. Firm A took

this product line over through successful external innovation at t´ 1, but did not internally

innovate at t. So ∆1,t “ η, and qA1,t`1 “ ηq1,t´1 ppq
A
1,t`1 “ pη ` pq1,t´1, where pη ” logpηqq for

firm A. Firm B, on the other hand, learns q1,t´1 in period t and does external innovation

so that in period t ` 1, it realizes qB1,t`1 “ ηq1,t´1, which is the same as qA1,t`1. A coin is

tossed and firm A is the winner. Thus, firm A keeps product line 1. Case ii) illustrates how

a firm can lose its existing product line through creative destruction. Firm A failed to do

internal innovation on product line 2 in periods t´1 and t. Thus, at the beginning of period

t` 1, the quality of product line 2 for firm A is equal to qA2,t`1 “ q2,t´1. A potential startup

learns product line 2’s last period technology (quality) by investing in R&D in period t and

succeeds in externally innovating the product quality. Thus, at the beginning of period t`1,

the product quality of product line 2 for the potential startup is equal to qe2,t`1 “ ηq2,t´1.

Since qe2,t`1 ą qA2,t`1, the startup takes over product line 2. Case iii) illustrates how incumbent

firm A can take over incumbent firm B’s product line through external innovation, despite

internal innovation by incumbent firm B. Since there was no internal innovation between

t ´ 1 and t for product line 5, q5,t “ q5,t´1. Thus, firm A’s quality for product line 5 after

external innovation is qA5,t`1 “ ηq5,t. Firm B internally innovates product line 5. Thus, firm
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B’s quality for product line 5 is qB5,t`1 “ λq5,t´1. Since η ą λ, firm A takes over product

line 5. Case iv) illustrates how firms can escape from competition (creative destruction)

through successful internal innovation. Firm B succeeds in internally innovating its product

line 6 for two consecutive periods. Thus, the quality of product line 6 for firm B in period

t ` 1 is equal to qB6,t`1 “ λ2q6,t´1. Outside firms can increase the quality for product line

6 up to qe6,t`1 “ ηq6,t´1. Since λ2 ą η, firm B successfully protects product line 6 from

competitors. These examples show an important observation that is unique to the economy

with the imperfect technology spillover. Because incumbents can escape competition through

internal innovation, not all firms who succeeded in external innovation can successfully take

over another firm’s business. Thus, the success probability of a business takeover is generally

lower than the probability of external innovation.

2.5.1 Entry and Exit in the Differentiated Good Sector

At the beginning of each period, there is an exogenously determined EH mass of new potential

domestic startups trying to start businesses in the differentiated good sector. To start a

business, a potential startup needs to invest in external R&D and take over one of the

product lines from an incumbent firm. The potential startups, who have no existing product

lines, decide the probability of external innovation xe,t by choosing R&D expenditure Re
t in

units of the final good:

xe,t “

ˆ

Re
t

rχe q̄t

˙
1
rψ e

,

where rχe ą 0, rψe ą 1. For potential startups whose takeover attempt is not thwarted by

defensive innovation by the incumbent, the distribution of quality at t` 1 is

!

qej,t`1

)

“

$

’

’

&

’

’

%

!

ηqj,t´1

)

with probability xe,t

∅ with probability 1´ xe,t .

Incumbent firms in the differentiated good sector are engaged in internal and external
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innovation in each period. Thus, not only do they expand by developing improved versions

of their existing products, they also expand by adding new product lines to their portfo-

lio. However, as there are other firms engaged in external innovation as well, an individual

incumbent firm is always faced with a positive probability of losing some of its own prod-

uct markets to competitors. As there is a continuum of measure one product lines and a

continuum of differentiated good producers, each product line faces the same probability

of encountering a competitor. This is called the aggregate endogenous creative destruction

arrival rate and it is equal to the average probability of external innovation in the economy:

x “ FHxH ` EHxHe
looooooomooooooon

”xH

` FFxF ` EFxFe
looooooomooooooon

”xF

, (2.6)

where Fc is a mass of incumbents, Ec is a mass of potential startups , xc is the probability

of external innovation by incumbents, and xce is the probability of external innovation by

potential startups in country c. Here, I write the probability of external innovation for

each group of firms as equal across all the firms in the same group. I verify this holds in

equilibrium in the later section. Thus, xc is the portion of the aggregate creative destruction

arrival rate due to external innovation by firms in country c. An incumbent firm losing all

of its product lines to competitors exits the economy, and it receives the value equal to the

sum of discounted expected profits from a successful external innovation when it exits. This

compensation for the accumulated knowledge stock ensures the incumbents with no product

lines optimally not to attempt to perform external innovation to re-enter the economy.

2.6 Equilibrium

2.6.1 Production

The standard profit maximization problem of the final good producer in country c P tH,F u

gives us an inverse demand for differentiated good j produced by a firm in country rc P tH,F u:

pcj “ P´1
c Lθc

`

qrcj
˘θ `

yrccj
˘´θ

, (2.7)
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and demand for labor:

Lc “
θ

wc
PcYc , (2.8)

where pcj is the price for differentiated good j sold in country c, and Pc is the final good

price in country c, which is equal to one. In deriving demand for good j I assume that each

good is supplied by a single firm. However, past incumbent firms in domestic markets that

lost technological leadership to the current leader could in principle try to produce and sell

their products through limit pricing, as the marginal cost of production is equal across all

domestic firms. To avoid such cases and simplify the model, I adopt the following two-stage

price-bidding game assumption.

Assumption 2. In a given product line j in a given country, the current incumbents and

any former incumbents in the same line enter a two-stage price-bidding game. In the first

stage, each firm pays a fee of ε ą 0. In the second stage, all firms that paid the fee announce

their prices.

This assumption ensures that only the technological leader enters the first stage and an-

nounces its price in equilibrium. By using (2.7), the profit maximization problem of the

differentiated good producer in country c owning product line j P r0, 1s is then

πcpqcjq “

$

’

’

’

’

&

’

’

’

’

%

max
yccj ě0

#

P´1
c Lθc

`

qcj
˘θ `

yccj
˘1´θ

´
wc
qc
yccj

+

if not exporter

max
yccj ě0

#

rc
ř

pc“c

„

P´1
pc Lθ

pc

`

qcj
˘θ `

ycpcj
˘1´θ

´ τcpc
wc
qc
ycpcj



+

if exporter,

where τcc “ 1. The first order conditions of the above problem (and its foreign firm coun-

terpart) yield the optimal price for differentiated good j in country c market:

pcj “

$

’

’

’

&

’

’

’

%

1

1´ θ

wc
qc

for domestic suppliers

1

1´ θ
τ
rcc
w

rc

q
rc

for imports

(2.9)
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which is an unconstrained monopoly price given that the seller is the technological leader

(taking into account the marginal costs) in each market in each country c. The optimal price

is independent of the individual product quality. Optimal quantities supplied by firms in

country c are equal to

yccj pq
c
jq “ p1´ θq

1
θ pPcq

1
θ Lc

ˆ

wc
qc

˙´ 1
θ

qcj (2.10)

ycrcj pq
c
jq “ p1´ θq

1
θ pP

rcq
1
θ L

rc

ˆ

τcrc
wc
qc

˙´ 1
θ

qcj . (2.11)

Then, profits for a firm in country c with technology qcj selling to market j in its own country

are equal to

πccpqcjq “ θp1´ θq
1´θ
θ Lc

ˆ

wc
qc

˙´ 1´θ
θ

pPcq
1
θ

looooooooooooooooooomooooooooooooooooooon

”πcc

qcj ,

and profits for the same firm from selling to market j in country rc are equal to

πcrcpqcjq “ θp1´ θq
1´θ
θ L

rc

ˆ

τcrc
wc
qc

˙´ 1´θ
θ

pP
rcq

1
θ

looooooooooooooooooooomooooooooooooooooooooon

”πcrc

qcj .

Importantly, both expressions are linear in qcj . Notice that product quality of good j sold

in country rc by a firm in country c is denoted as qcj . This is because product quality is

firm-specific, in that if a firm produces good j in its own country c with quality qcj , then the

quality of good j the firm can sell in country rc is also equal to qcj .

Denote total product quality of goods produced by firms in country rc P tH,F u that are

sold in country c P tH,F u as

Q
rcc ”

ż 1

0

qcj ItjPJ
rccu
dj .
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Then, the wage expressed in units of total quality in country c satisfies the following equation:

wc
qc
“ θp1´ θq

1´2θ
θ

«

ˆ

wc
qc

˙´ 1´θ
θ Qcc

qc
`

ˆ

τ
rcc
w

rc

q
rc

˙´ 1´θ
θ Q

rcc

qc

ff

pPcq
1
θ . (2.12)

Total labor hired by differentiated good producers in country c is equal to

rLc “ p1´ θq
1
θ

ˆ

wc
qc

˙´ 1
θ
„

Lc pPcq
1
θ
Qcc
qc
` L

rc pPrcq
1
θ pτcrcq

´ 1
θ
Qcrc
qc



, (2.13)

and total labor hired by the final good producer is equal to Lc “ Lc ´ rLc. The last three

equations for the two countries can be solved for wc, rLc, and Lc as functions of aggregate

qualities, price indices, and trade costs.

Total final good output expressed in units of total quality in country c is

Yc
qc
“ p1´ θq

1´2θ
θ pPcq

1´θ
θ Lc

«

ˆ

wc
qc

˙´ 1´θ
θ Qcc

qc
`

ˆ

τ
rcc
w

rc

q
rc

˙´ 1´θ
θ Q

rcc

qc

ff

. (2.14)

Other equations are described in Technical Appendix TA5.

2.6.2 International Trade of Differentiated goods

Denote MCH ”
wH
qH

as the marginal cost of production for domestic differentiated good firms,

and MCF ”
wF
qF

as the foreign counterpart. Recall that τFH is the trade cost to foreign firms

exporting to domestic markets, and τHF is the trade cost to domestic firms exporting to the

foreign country. Proposition 1 shows how these values define ranges of global technology gap

∆G corresponding to the direction of trade between home and foreign countries, which come

from a profit maximizing final good producer that values product quality.

Proposition 1. Denote threshold home firm to foreign firm marginal cost of production

ratios in home and foreign markets as

Ω ”

ˆ

1

τFH

˙
1´θ
θ
ˆ

MCH

MCF

˙

1´θ
θ

, Ω ” pτHF q
1´θ
θ

ˆ

MCH

MCF

˙

1´θ
θ

, (2.15)
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and the global technology gap for product j as

∆G
j ”

qj
qFj

.

Then, the home firm exports good j to the foreign country iff

∆G
j ą Ω ,

while the home final good firm imports j from the foreign country iff

∆G
j ă Ω .

There is no trade of good j between the two countries iff ∆G
j P

“

Ω,Ω
‰

.

Proof: See Technical Appendix TA3.1.

Proposition 1 shows that depending on the relative size of (trade cost-adjusted) marginal

costs, which are equivalent to quality-adjusted wages, foreign products with low quality

(technology) can be sold in domestic markets. The global technology gap can also be defined

by using 2-tuple integers. Denote m as the number internal innovations, and n as the

number of external innovations in which home firms advance compared to foreign firms.

Assuming that quality of good j in both countries when the economy started were the same,

∆G
j “

qHj
qFj
“ λm ˆ ηn and this can be written as Ă∆G

j “ pm,nq.

As briefly explained earlier, there is free trade in the final good sector, in which all of the

trade imbalance in the differentiated good sector is absorbed. Thus,

PcXc “

ż

jPJ
rcc

pcjy
rcc
j dj ´

Pc
P
rc

ż

jPJcrc
prcjy

crc
j dj ,

which implies

Xc “ p1´ θq
1´θ
θ

«

pPcq
1´θ
θ Lc

ˆ

τ
rcc
w

rc

q
rc

˙1´ 1
θ

Q
rcc ´ pPrcq

1´θ
θ L

rc

ˆ

τcrc
wc
qc

˙1´ 1
θ

Qcrc

ff

(2.16)

where Xc is the net quantity of final goods exported by country c. Xc ą 0 means country
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c exports final goods to country rc, and Xc ă 0 means country c imports final goods from

country rc. The first term in the RHS is the total value of differentiated goods imported from

country rc, and the second term is the total value of differentiated goods exported to rc.

2.6.3 Firm Values and Optimal Innovation Decision

The value of a firm in country c with a production technology portfolio

Φf
”

!

`

qcj , ∆H
j , ∆F

j , ∆G
j

˘

)

jPJ f

is equal to

V c
`

Φf
˘

“ max
tzcjujPJ f , x

c

#

ÿ

jPJ f

πcpqcjq ´

¨

˝

ÿ

jPJ f

pχ
`

zcj
˘
pψ
qcj ` rχ pxcq

rψ qc

˛

‚

` rβ E
”

V c
´

Φf 1
ˇ

ˇ Φf ,
 

zcj
(

jPJ f , x
c
¯ ı

+

,

where

πcpqcjq “

$

&

%

pπccq qcj if firm is not an exporter
`

πcc ` πcrc
˘

qcj if firm is an exporter

are profits from production net of labor costs and tariffs, defined in the previous section, and

where the second and third terms in parenthesis are R&D expenses for internal and external

innovation. Since all firms are owned by the household, they discount their future profits

using households’ stochastic discount factor, rβ ”
P 1HC

1
H

βPHCH
. The last conditional expectation

term for future values, E
”

V c
´

Φf 1
ˇ

ˇ Φf ,
 

zcj
(

jPJ f , x
c
¯ ı

is defined in Appendix A.2.1.

Proposition 2. For a given joint distribution over local technology gaps for home and foreign

markets and global technology gaps, the value function of a firm in country c with product

quality and technology gap portfolio Φf ”
 `

qcj , ∆H
j , ∆F

j , ∆G
j

˘(

jPJ f is of the form:

V c
`

Φf
˘

“
ÿ

jPJ f

Ac
`

∆H
j , ∆F

j , ∆G
j

˘

qcj ` Bcqc ,
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where the coefficient for values from existing products, Ac
`

∆H
j , ∆F

j , ∆G
j

˘

, are independent

of product quality qcj . The values from external innovation is equal to Bcqc, which is also

equal to the exit value of an incumbent firm, V cp∅q “ Bcqc. Furthermore, optimal internal

innovation intensity zcj also depends only on the technology gap
`

∆H
j , ∆F

j , ∆G
j

˘

. Finally,

optimal external innovation intensity xc is independent of firm characteristics and equal

across all incumbent firms.

Proof: See Technical Appendix TA4.2.

Analytic expressions for Ac
`

∆H
j , ∆F

j , ∆G
j

˘

, zc
`

∆H
j , ∆F

j , ∆G
j

˘

, Bc, and xc are pro-

vided in Technical Appendix TA4.2.

2.6.4 Potential Startups

Let V c
` 

qj ∆H
j ∆F

j ∆G
j

(˘

denote the value of a firm in country c that has only one product

line j, with product quality qcj , local technology gaps in home and foreign markets ∆H
j and

∆F
j , and global technology gap ∆G

j . Then a potential startup’s expected profits from entering

through R&D are

Πe
c “ xce

rβc E
”

V c
` 

qc 1j ∆H1
j ∆F 1

j ∆G1
j

(˘

ı

´ rχe pxceq
rψe qc .

An analytic expression for optimal external innovation decision rule for the potential

startups is derived in Technical Appendix TA4.3.

2.6.5 Evolution of the Technology-Gap Distribution and Aggregate Growth

As shown in the previous section, product j can be completely described by its technology

gaps
`

∆H
j ∆F

j ∆G
j

˘

and its quality qj. Thus, the index for each product, j, is redundant. Fur-

thermore, what matters for firms’ optimal decisions are the technology gaps, and firms need

to know the distribution of technology gaps across market—local technology gaps in home

and foreign markets, ∆H and ∆F , and global technology gaps, ∆G. Denote the technology

gap distribution as µ
`

∆H , ∆F , ∆G
˘

. Appendix TA1 shows how technology gaps evolve

over time according to firms’ innovation decisions for each possible set of local and global

technology gaps,
`

∆H , ∆F , ∆G
˘

. In a stationary equilibrium, inflow should be equal to
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outflow for each technology gap state µ
`

∆H , ∆F , ∆G
˘

, where inflows and outflows for

each technology gap state are described in Technical Appendix TA1.4.

2.7 Aggregate Quality Evolution

Proposition 3. Define ∆ ”
`

∆H , ∆F , ∆G
˘

and ∆1 ”
`

∆H1, ∆F 1, ∆G1
˘

. Then for c , rc P

tH,F u with c ‰ rc, and for pc P tc,rcu, aggregate quality along a balanced growth path evolves

according to

Q1
pcc “

«

ÿ

∆

ÿ

∆1

∆H1 I 1
pcc

`

∆G1
˘

Icc
`

∆G
˘

P p∆1
|∆q µ p∆q

ff

Qcc

`

«

ÿ

∆

ÿ

∆1

∆H1 I 1
pcc

`

∆G1
˘

I
rcc

`

∆G
˘

P p∆1
|∆q µ p∆q

ff

Q
rcc , (2.17)

where P p∆1|∆q is the probability of ∆ becoming ∆1, which is described in Technical Ap-

pendix TA1. I
qcc

`

∆G
˘

is an index function equal to one if ∆G falls into the range for which

a firm from country qc produces and sells its product in country c for qc P tc,rcu. I 1
qcc

`

∆G1
˘

is

the next period counterpart.

Proof: See Appendix A.2.2.1

A complete description of P p∆1|∆q is provided in Technical Appendix TA1. and a complete

description for the evolution of Qcrc is provided in Technical Appendix TA3.

Equation (2.14) shows that aggregate output growth is determined by the growth of the

total technology, qc. The following lemma characterizes the aggregate growth rate.

Lemma 2. The aggregate growth rate gc along the balanced growth path is determined by

gc “
ÿ

∆

ÿ

∆1

∆c 1 P p∆1
|∆q µp∆q ´ 1 . (2.18)

Proof: This follows from the proof of Proposition 3.
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2.7.1 Aggregate Variables and Balanced Growth Path (BGP) Equilibrium

Total R&D expenses in country c, Rc, are

Rc “
ÿ

p∆H ,∆F ,∆G q

pχ
`

zcj
`

∆H , ∆F , ∆G
˘˘

pψ
µ
`

∆H , ∆F , ∆G
˘

Qcc

` rχ pxcq
rψ Fc qc ` rχe pxceq

rψe Ec qc , (2.19)

where the first term is the sum of all internal R&D expenses by incumbent firms, the second

term is the sum of all external R&D expenses by incumbent firms, and the last term is the

sum of all external R&D expenses by potential startups. Note that zHj
`

∆H , ∆F , ´8
˘

“ 0

and zFj
`

∆H , ∆F , 8
˘

“ 0, @∆H , ∆F P
 

1, η
λ
, λ, η

(

.

Total profits by incumbent firms net of R&D expenses are then

rΠc “ πcc Qcc ` πcrc Qcrc ´ PcRc . (2.20)

Since the final good producer is perfectly competitive, its profit is zero, Πc “ 0.

The government transfer, Gc for c ‰ rc is equal to total tariff revenue

Gc “ rτ
rcc p1´ θq

1´θ
θ pPcq

1
θ Lc

ˆ

τ
rcc
w

rc

q
rc

˙1´ 1
θ

Q
rcc .

Finally, consumption is determined by the resource constraint

PcCc “ PcYc ´ PcXc ´Rc `Gc , (2.21)

which is equal to the households’ total income defined by the households’ budget constraint

(2.3) with equality. I now close this section by defining the equilibrium.

Definition 1 (Balanced Growth Path Equilibrium). Let the world economy consist of two

countries c P tH,F u. A balanced growth path equilibrium of this economy consists of the

following tuple for every t, c,rc P tH,F u, j P r0, 1s, qcj and qc:

!

ycrc˚j , pc˚j , w˚c , L
˚
c ,

rL˚c , x
c˚,

 

zc˚j p∆q
(

∆
, xc˚e , xc˚, x˚, F˚c , R˚c , X˚c , Y ˚c , C˚c , g

˚
c , Qcrc, Ω, Ω, tµ˚ p∆qu∆

)
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such that (i) ycrc˚j and pc˚j satisfy (2.9)-(2.11); (ii) w˚c , L˚c , and rL˚c satisfy (2.12), (2.13), and

Lc “ Lc ´ rLc; (iii) xc˚ is equal to (TA4.66); (iv)
 

zc˚j p∆q
(

∆
is equal to (TA4.73)-(TA4.78)

and (TA4.67)-(TA4.72) according to the value of ∆; (v) xc˚e is equal to (TA4.79); (vi) xc˚ is

as defined in (2.6); (vii) x˚ is equal to (2.6); (viii) F˚c is consistent with optimal innovation

decisions; (ix) R˚c satisfies (2.19); (x) X˚
c satisfies (2.16); (xi) Y ˚c satisfies (2.14); (xii) C˚c

satisfies (2.21); (xiii) g˚c is given by (2.18); (xiv) Qcrc evolves according to the evolution of the

technology gaps (2.17); (xv) Ω and Ω satisfy (2.15); and (xvi) tµ˚ p∆qu∆ evolves according

to the laws of motion (TA1.18)-(TA1.41) according to the value of ∆.

3 Simple Three-Period Heterogeneous Innovation Model

To understand firms’ incentives for internal and external innovation, and to derive empiri-

cally testable model predictions, we will consider a three-period economy with two product

markets and three firms. In period 0, the economy starts with two product markets, market

1 and 2, with initial market-specific technologies q1,0, and q2,0, and two firms, firm A and

B. Product market 1 is given to firm A and is ready for production. Firm A is also given

an initial probability of internally innovating product 1, z1,0. Firm B, on the other hand, is

given only a probability of externally innovating product 2 x2,0. Thus, firm B can start op-

erating and producing in period 1 but not in period 0. If external innovation fails, then firm

B still keeps market 2 but produces with initial product quality q2,0. Thus, at the beginning

of period 1, product qualities in the two markets are equal to:

q1,1 “

$

&

%

λ q1,0 with probability z1,0

q1,0 with probability 1´ z1,0 ,

and

q2,1 “

$

&

%

η q2,0 with probability x2,0

q2,0 with probability 1´ x2,0 .

where λ2 ą η ą λ ą 1 are innovation step sizes.

In period 1, the main period of interest, there is an outside firm (potentially from a
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foreign country) that does external innovation hoping to take over the two product markets

in period 2. The outside firm succeeds in doing external innovation with probability xe1 in

each product market. Also, there is a news shock about period 2 profit (potentially including

an increase in foreign demand) announced in period 1. Afterwards, the two incumbent

firms produce using the given technologies, invest in internal innovation to improve the

quality of their own products, and invest in external innovation to take over the other firm’s

product market. At the beginning of period 2, all innovation outcomes are realized. Then,

technological competition in each product market takes place, and only the firm with the

highest technology in each product market produces. The economy ends after period 2.

In period 1, incumbent firm i P tA,Bu invests Rin
j,1 on internal innovation, j P t1, 2u (e.g.,

for i “ A, j “ 1), implying a success probability zj,1 using the R&D production function

zj,1 “

ˆ

Rin
j,1

pχqj,1

˙

1
2

.

Successful internal innovation increases the next-period product quality by λ ą 1. Thus, the

period 2 product quality for firm i becomes

qij,2 “

$

&

%

λ qj,1 with probability zj,1

qj,1 with probability 1´ zj,1 .

Similarly, firm i invests Rex
´j,1 to learn the period 0 technology used by firm ´i ‰ i, implying

a success probability of external innovation x´j,1 using the R&D production function

x´j,1 “

ˆ

Rex
´j,1

rχq´j,0

˙
1
2

,

where ´j is owned by ´i. Successful external innovation increases product quality relative to

the past-period quality by η ą 1. Thus, product ´j’s quality in period 2 for firm i becomes

qi´j,2 “

$

&

%

η q´j,0 with probability x´j,1

∅ with probability 1´ x´j,1 ,

where ∅ means firm i failed to acquire a production technology for product ´j.
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3.1 Optimal Innovation Decisions and Theoretical Predictions

Assume that in each product market j in each period t, firms receive instantaneous profit of

πj,t qj,t where qj,t is the product quality and πj,t is a market-period-specific constant known

to firms before each period begins. Because there are only two products, incumbents and the

outside firm can perform external innovation on the same product. To keep the model simple,

further assume that the outside firm can do external innovation only if an incumbent fails to

do external innovation, following Garcia-Macia et al. (2019). Then the profit maximization

problem of firm i that has product market j with quality qj,1 in period 1 can be written as

V pqj,1q “ max
tzj,1, x´j,1u

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

πqj,1 ´ pχpzj,1q
2qj,1 ´ rχpx´j,1q

2q´j,0

`p1´ xj,1qp1´ x
e
1q

„

p1´ zj,1qπj,2qj,1 ` zj,1πj,2λqj,1



`
“

xj,1 ` p1´ xj,1q x
e
1

‰

„

zj,1πj,2 λ qj,1 Itλqj,1 ą ηqj,0u

`1
2
p1´ zj,1qπj,2qj,1 Itqj,1 “ ηqj,0u



`x´j,1

„

p1´ z´j,1q π´j,2 η q´j,0 Itηq´j,0 ą q´j,1u

`z´j,1 π´j,2 η q´j,0 Itηq´j,0 ąλq´j,1u
`1

2
p1´ z´j,1qπ´j,2ηq´j,0 Itηq´j,0 “ q´j,1u

`1
2
z´j,1π´j,2ηq´j,0 Itηq´j,0 “ λq´j,1u



,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/
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.

/
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/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

,

where It¨u is an indicator function that captures the possible relationships between the two

technologies among the three firms in period 2 in a given market. The first line shows

the period 1 profit net of the total R&D cost. The second line represents the incumbent’s

period 2 expected profit from market j when the other incumbent and the outside firm fail

to externally innovate the market j technology. The third and the fourth line represent

the period 2 expected profit from market j when one of the two other firms succeeds in

externally innovating the market j technology. The fifth to eighth lines represent the period

2 expected profit from market ´j when firm i succeeds in externally innovating the market

´j technology. The terms following 1
2

are for the cases in which two firms can produce the
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same quality product, so that a coin-toss tiebreaker rule applies.

The interior solutions to this problem are

z˚j,1 “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

πj,2
2 pχ

pλ´ 1qp1´ x˚j,1qp1´ x
e
1q , when qj,1 “ qj,0

πj,2
2 pχ

“

λ´ p1´ x˚j,1qp1´ x
e
1q
‰

, when qj,1 “ λ qj,0

πj,2
2 pχ

„

λ´
1

2
´

1

2
p1´ x˚j,1qp1´ x

e
1q



, when qj,1 “ η qj,0

and

x˚´j,1 “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

η π´j,2
2 rχ

, when q´j,1 “ q´j,0

η π´j,2
2 rχ

p1´ z˚´j,1q , when q´j,1 “ λ q´j,0

η π´j,2
2 rχ

1

2
p1´ z˚´j,1q , when q´j,1 “ η q´j,0 .

The above results show that the firm’s optimal innovation decisions depend on the (expected)

future profit, the technology gap in both its own market and the other firm’s market, and

other firms’ internal and external innovation decisions. From these interior solutions, I draw

the following results.

Proposition 4. For each qj,1 and for λ2 ą η ą λ ą 1, we can order internal innovation

intensities as

z˚j,1
ˇ

ˇ

qj,1“λqj,0
ą z˚1,1

ˇ

ˇ

qj,1“ηqj,0
ą z˚j,1

ˇ

ˇ

qj,1“qj,0
.

Furthermore,

Bz˚j,1
Bxe1

ˇ

ˇ

ˇ

ˇ

qj,1“λqj,0

ą
Bz˚j,1
Bxe1

ˇ

ˇ

ˇ

ˇ

qj,1“ηqj,0

ą 0 ą
Bz˚j,1
Bxe1

ˇ

ˇ

ˇ

ˇ

qj,1“qj,0

.

Proof: See Appendix A.2.3

The second part of proposition 4 implies that firms with no local technology gap lower

their internal innovation investment when they are faced with a higher probability of cre-
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ative destruction in their own markets, as they cannot increase the probability of escaping

competition by improving their products through internal innovation. On the other hand,

if a firm has very high technological advantage, then the firm doesn’t increase its internal

innovation investment much in response to outsiders’ investment in external innovation, be-

cause the probability of losing its own product market is small. In the intermediate case,

firms increase their internal innovation investment more strongly in response to outsiders’

external innovation, as they can lower the probability of losing their market by doing so.

Higher innovation in period 0 increases the probability of having a high local technol-

ogy gap in period 1 and this helps firms to escape competition. To understand how past

innovation intensity affects the firm’s current internal innovation decision when the firm is

faced with a higher probability of encountering a competitor, xe1, define the expected value

of internal innovation intensity in period 1 as

z˚1 “ z˚1,1
ˇ

ˇ

q1,1“q1,0

1

2
p1´ z1,0q ` z˚2,1

ˇ

ˇ

q2,1“q2,0

1

2
p1´ x2,0q ` z˚1,1

ˇ

ˇ

q1,1“λq1,0

1

2
z1,0 ` z˚2,1

ˇ

ˇ

q2,1“ηq2,0

1

2
x2,0 ,

where 1
2

comes from the fact that there are two products. Then, proposition 4 gives us:

Corollary 1 (Escape Competition Effect). The impact of period 0 innovation intensities,

z1,0 and x2,0 on expected internal innovation in period 1 satisfies:

Bz˚1
Bxe1Bz1,0

ą 0 , and
Bz˚1

Bxe1Bx2,0

ą 0 .

Proof: See Appendix A.2.4

Corollary 1 implies that intensive innovation in the previous period induces firms to

increase the response of their internal innovation to higher product market competition. As

the optimal decision rule shows, firms’ external innovation decision also depends on past

innovation decisions of other firms:

Proposition 5. For each qj,1 and for λ2 ą η ą λ ą 1, we can order external innovation

intensities as

x˚j,1
ˇ

ˇ

qj,1“qj,0
ą x˚j,1

ˇ

ˇ

qj,1“λqj,0
ą x˚j,1

ˇ

ˇ

qj,1“ηqj,0
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Furthermore,

Bx˚j,1
Bxe1

ˇ

ˇ

ˇ

ˇ

qj,1“qj,0

“ 0 ,
Bx˚j,1
Bxe1

ˇ

ˇ

ˇ

ˇ

qj,1“λqj,0

ă 0 , and
Bx˚j,1
Bxe1

ˇ

ˇ

ˇ

ˇ

qj,1“ηqj,0

ă 0 .

Proof: See Appendix A.2.3

Proposition 5 implies that firms do less external innovation if other firms have a higher

technology advantage, as it becomes more difficult to take over their markets through external

innovation. For product markets with a technological barrier (local technology gap ą 1),

firms also lower their external innovation if the outside firm does more external innovation, as

incumbents in these markets will respond by doing more internal innovation with defensive

motive (proposition 4). To understand how the past innovation intensity of other firms

affects a firm’s current external innovation decision, define the expected value of external

innovation intensity in period 1 as

x˚1 “ x˚1,1
ˇ

ˇ

q1,1“q1,0

1

2
p1´ z1,0q ` x˚2,1

ˇ

ˇ

q2,1“q2,0

1

2
p1´ x2,0q ` x˚1,1

ˇ

ˇ

q1,1“λq1,0

1

2
z1,0 ` x˚2,1

ˇ

ˇ

q2,1“ηq2,0

1

2
x2,0 .

Then, the first part of proposition 5 implies the following:

Corollary 2 (Technological Barrier Effect). For a given technology qj,1 and period 0

innovation intensities, z1,0 and x2,0, we have

Bx˚1
Bz1,0

ă 0 , and
Bx˚1
Bx2,0

ă 0 .

Proof: See Appendix A.2.5

Corollary 2 implies that higher technology levels in other markets, which are due to previous

innovation, serve as an effective technological barrier that makes it difficult for outside firms

to take over another firm’s product market. This reduces firms’ incentive for external inno-

vation. Because innovation is forward looking, changes in future profit π1 are an important

factor affecting current period innovation intensity. Proposition 6 summarizes this:
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Proposition 6 (Ex-post Schumpeterian Effect). Given expected period 2 profit πj,2, we have

Bz˚j,1
Bπj,2

ą 0 , @ qj,1 , and
Bx˚j,1
Bπj,2

ą 0 , for qj,1 “ qj,0 .

Signs for
Bx˚j,1
Bπj,2

for other local technology gaps are ambiguous.

Proof: See Appendix A.2.6

Proposition 6 implies that any factor that affects future profits may affect firms’ internal

and external innovation. These include market size changes (such as an opportunity to

access foreign markets), changes in input costs, and the future survival probability. More

specifically, an increase in the expected profit from one’s own market induces firms to increase

their internal innovation. However, the effect of increasing expected profit in other markets

on firms’ external innovation is ambiguous for cases with local technology gap ą 1. This

is because incumbents in these markets increase their internal innovation in response to

increasing expected profit, and this helps them escape competition. For the case with local

technology gap “ 1, incumbents cannot escape competition through internal innovation.

Thus, an increase in expected future profit unambiguously increases external innovation for

this case. The above results outline various factors affecting internal, external, and total

innovation. The next section tests these predictions empirically.

4 Empirics

In this section, I examine the relationships among firm innovation, firm growth, and inter-

national trade for firms with different characteristics empirically. To this end, I identify

the causal effect of international trade on the composition of firm innovation (internal vs.

external) and test the model predictions. The analysis focuses on the early 1990s to mid-

2000s, especially the years after 2000, as this period witnesses changes in the trends for many

important economic variables, especially the employment growth rate of high-growth firms

and the number of patent applications filed by U.S. firms. The rise of China in the U.S.

markets after China’s WTO accession, and increased Chinese demand for U.S. products, will

be treated as a quasi-experiment.
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4.1 Data and Measurement

To construct a comprehensive firm-level dataset with innovation and international trade-

related measures, I combine the following seven datasets: the USPTO PatentsView database,

the Longitudinal Business Database (LBD), the Longitudinal Firm Trade Transactions Database

(LFTTD), the Census of Manufactures (CMF), the UN Comtrade Database, the NBER-CES

database, and the data compiled by Feenstra et al. (2002).

The LBD tracks the universe of establishments and firms in the U.S. non-farm private

sector with at least one paid employee annually from 1976 onward.11 An establishment cor-

responds to the physical location where business activity occurs. Establishments that are

operated by the same entity, identified through the Economic Census and the Company Orga-

nization Survey, are grouped under a common firm identifier. I aggregate establishment-level

information into firm-level observations using these firm identifiers. Firm size is measured

by either total employment or total payroll. Firm age is based on the age of the oldest estab-

lishment of the firm when the firm is first observed in the data. The firm’s main industry of

operation is based on the six-digit North American Industry Classification System (NAICS)

code associated with the highest level of employment. Time-consistent NAICS codes for

the LBD establishments are constructed by Fort and Klimek (2018), and the 2012 NAICS

codes are used throughout the entire analysis. The LFTTD tracks all U.S. international

trade transactions starting from 1992 onward at the firm-level.12 The LFTTD provides the

U.S. dollar value of shipments, and the origin and destination country for each transaction,

as well as a related-party flag, which indicates whether the U.S. importer and the foreign

exporter are related by ownership of at least 6 percent.

The USPTO PatentsView database tracks all patents ultimately granted by the USPTO

from 1976 onward.13 This database contains detailed information for granted patents in-

cluding application and grant dates, technology class, other patents cited, and the name and

address of patent assignees. It also provides the list of inventors responsible for each patent

with their locations. In the following analyses, I use the citation-adjusted number of utility

11Details for the LBD and its construction can be found in Jarmin and Miranda (2002)
12Bernard et al. (2009) describe the LFTTD in greater detail.
13See http://www.patentsview.org/download/.
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patent applications as the main measure of firm innovation.14 By using detailed information

for each patent, I distinguish domestic innovation from foreign innovation, and measure the

extent to which each patent represents internal innovation. The year in which a patent ap-

plication is filed is used as a proxy for the innovation year. The citation-adjusted average of

the internal innovation measure for the flow of patent applications in each firm-year is used

as a proxy for the overall extent of internal innovation at each firm in each year. I discuss

the measure of internal innovation in detail shortly.

I match the USPTO patent database to the LBD to assign detailed firm-level information

and assign firm-industry-level changes in trade flows to each patent. In the following analyses,

I compare firms’ patenting behavior across different years. Thus, match quality is important

– failing to match a firm in the USPTO patent database in a particular year to its LBD

counterpart will result in mismeasuring innovation. This problem arises because the USPTO

doesn’t track a consistent unique firm ID. The USPTO assign patent applications to self-

reported firm names. Thus, it is vulnerable to misspelling of firm names. To overcome this

match quality issue, I adopt the Autor et al. (2019) methodology that utilizes the machine-

learning capacities of the internet search engine. I use all patents granted up to December

26, 2017 during the matching procedure, and use patent applications up to 2007 in the

subsequent analyses. Thus, the following analyses are virtually free from the right censoring

issue (mismeasuring firms’ innovation activities due to the patents applied for but not yet

granted). Table A4 in the Appendix reports summary statistics for patenting firms in 1992.

The quinquennial CMF provides detailed information for activities by establishments in

the manufacturing sector. It also provides detailed product codes and breaks down the

value of shipments for all products each establishment sells. I used five-digit SIC codes for

observations up to 1997, and the seven-digit NAICS codes for observations from 2002 onward

to measure firms’ product choices.

The UN Comtrade Database provides information for world trade flows at the six-digit

HS product-level from 1991 to 2016.15 The six-digit HS codes are concorded to the six-digit

2012 NAICS industries using the Pierce and Schott (2009) and Pierce and Schott (2012)

14See Cohen (2010) for a comprehensive review of the literature on the determination of firms’ and indus-
tries’ innovative activity and performance and how patent-related measures are used.

15https://comtrade.un.org/db/default.aspx.
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crosswalks. I construct the industry-level export shock measure using the UN Comtrade

Database. I obtain U.S. tariff schedules from Feenstra et al. (2002) to measure the industry-

level Trade Policy Uncertainty (TPU), which is used for foreign competition shock. The

construction of the two trade shocks are discussed in detail in the following section.

The NBER CES Manufacturing Industry Database, assembled by Becker et al. (2013),

is used to obtain the industry-level deflator for the value of shipments for manufacturing

industries from 1976 to 2011.16 All nominal values are inflated to 1997 U.S. dollars using

this industry-level deflator for the value of shipments for manufacturing industries, and the

BEA’s Consumer Price Index for other industries. In the following analyses, I use subsets of

a sample of USPTO patents matched U.S. firms in the LBD and industry-level trade data

from 1982 to 2007 for each regression specification.

4.1.1 Measure of Internal of Innovation

In this study, I use the self-citation ratio as a measure of whether the patent is used for

internal innovation. Each granted patent is required to cite all prior patents on which it

builds. When a cited patent belongs to the owner of the citing patent, these citations are

called self-citations. Akcigit and Kerr (2018) use the self-citation ratio—defined as the ratio

of self-citations to total citations—as a measure of internal innovation. The idea is that the

more an idea is based on the firm’s internal knowledge stock (self-citation), the more likely

the innovation is used for improving the firm’s existing products (internal innovation). A

higher self-citation ratio means that a patent is more likely to reflect internal innovation.

4.1.2 Measures for Trade Shocks

As it is shown by Handley and Limão (2017), over one-third of the growth of imports from

China to the U.S. in the first half of the 2000s is explained by the U.S. granting perma-

nent normal trade relations (PNTR) to China upon China’s 2001 accession to the WTO.

Nonmarket economies such as China are subject to relatively high tariff rates originally set

under the Smoot-Hawley Tariff Act of 1930, when they export to the U.S. These rates are

known as non-Normal Trade Relations (non-NTR) or column 2 tariffs. On the other hand,

16http://www.nber.org/nberces/.
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the U.S. offers WTO member countries NTR or column 1 tariffs which is substantially lower

than non-NTR tariffs. The Trade Act of 1974 allows the President of the United States to

grant temporary NTR status to nonmarket countries on an annually renewable basis after

approval by Congress. Starting from 1980, U.S. Presidents granted such waivers to China.

While China never lost these waivers and the tariff rates applied to Chinese products were

kept low, the process of annual approval by Congress created uncertainty about whether the

low tariffs would revert to non-NTR rates. After the Tiananmen Square protests in 1989,

Congress voted on a bill to revoke China’s temporary NTR status every year from 1990 to

2001. Following the bilateral agreement on China’s entry into the WTO between the U.S.

and China in 1999, Congress passed a bill granting China PNTR status in October 2000.

Upon China’s accession to the WTO in December 2001, PNTR became effective and was

implemented on January 1, 2002. PNTR removed the uncertainty about U.S. trade policy

toward China by permanently setting tariff rates on Chinese products at the NTR levels.

This lowered the expected U.S. import tariffs on Chinese products, and eliminated any option

value of waiting for firms to incur large fixed costs associated with exporting products from

China to the U.S. Thus, PNTR reduced TPU, the more so for industries with a large gap

between tariff rates under NTR and non-NTR regimes.

I use the industry-level gap between NTR tariff rates reserved for WTO members and

non-NTR tariff rates for non-market economies in the year 1999 as a proxy for the industry-

level competition shocks from China occurring in 2001.17 Thus, for industry j,

NTRGapj “ Non NTR Ratej ´ NTR Ratej .

Also, following Aghion et al. (2017), I use log differences in advanced countries’ (excluding

the U.S.) exports to China as a proxy for the exogenous change in Chinese demand for the

U.S. products (export shock).18 Thus,

∆ExportShockjτ “ logpEXjτ1q ´ logpEXjτ0q ,

17We can consider the NTR gap as a first-order Taylor approx. of model-based TPU measures, such as
Handley and Limão (2017), that is positively related to non-NTR rate and negatively related to NTR rate.

18These advanced countries are Australia, Denmark, Finland, Germany, Japan, New Zealand, Spain, and
Switzerland. These are the advanced countries for which we can obtain disaggregated bilateral HS trade
data back to 1991, as explained in Autor et al. (2019)

36



where EXjt represents total exports by eight advanced countries to China in industry j in

year t, τ P t1992 ´ 1999 , 2000 ´ 2007u are the two periods of interest, τ0 is a start-year

for each period, and τ1 is an end-year for each period. If a firm operates in multiple 6-digit

NAICS industries, I use the employment-weighed average NTRGapj and ∆ExportShockjτ .

I use unweighted average trade shocks and shocks to firms’ main industry as robustness

checks. Table A1 and Table A2 in the Appendix report summary statistics for each trade

shock measure.

4.2 Empirical Strategies and Main Results

The theory developed above provides three empirically testable predictions: i) the escape-

competition effect, ii) the technological-barrier effect, and iii) the expected profit effect. I

now test these three model predictions.

4.2.1 Corollary 1: Escape-Competition Effect

The first prediction of my model is that firms who have innovated intensively in recent periods

increase internal innovation more when they are faced with higher competition, compared

to their low innovation counterparts. This is because innovation-intensive firms can escape

competition more easily through additional internal innovation, by leveraging their higher-

than-average production technologies (technological advantages, or technological barriers)

that they built in their own markets through recent intensive innovation.

Following Handley and Limão (2017) and Pierce and Schott (2016), I use a Difference-in-

Difference (DD) specification to identify the effect of the China competition shock on U.S.

firm innovation for two periods, p P t1992´ 1999 , 2000´ 2007u, for firm i in industry j:

∆yijp “ β1Postp ˆNTRGapijp0 ˆ InnovIntensijp0 (4.22)

` β2Postp ˆNTRGapijp0 ` β3Postp ˆ InnovIntensijp0

` β4NTRGapijp0 ˆ InnovIntensijp0 ` β5NTRGapijp0

` Xijp0 γ1 ` Xjp0 γ2 ` δj ` δp ` α ` εijp .
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In these specifications, firms in low TPU industries are the control group, whereas firms in

high TPU industries are the treatment group. I use a 2000 cohort of firms to measure firm

innovation before the policy change, which occurred in December 2001. In this way, the

composition of firms in terms of their innovation is minimally affected by the policy change.

Postp is a dummy variable equal to one for the period 2000-2007 and zero otherwise. It

captures changes in firm innovation after China’s WTO accession. Xijp0 is a vector of firm

controls, and Xjp0 is a vector of industry controls, both measured at the start-year for each

period.19 δj is an industry fixed effect (six-digit NAICS), and δp is a period fixed effect. All

models are unweighted, and standard errors are clustered on the 6-digit NAICS industries.

∆yijp is the DHS (Davis et al., 1996) growth rate of either i) the total citation-adjusted

number of patents, or ii) the citation-weighted average self-citation ratio between the start-

year and end-year for each period p P t1992 ´ 1999 , 2000 ´ 2007u. An increase in the

self-citation ratio means that the firm’s innovations became more internal.

To maximize the sample size, I include firms that applied for at least one patent in the

start-year and at least one patent in or before the end-year for each period, and compute

the DHS growth rates for the longest span of years available. I also require firms to have at

least one patent before the start-year of each period, or to have age ą 0 to avoid the effect

coming from the firm entry. The sample includes all LBD firms matched to the USPTO

patent database that meet these three criteria, except for the firms in FIRE industries.

InnovIntensijp0 is a continuous variable equal to the past five-year average of the ratio

of the number of firms i’s patent applications to total employment, measured in the start

year for each period p0. I control for industry-fixed effects for this measure by dividing it

by its time-average at the 2-digit NAICS level. Thus, I am examining the impact of hetero-

geneity within industries rather than differences across industries. The escape-competition

hypothesis predicts β1 to be positive when changes in the self-citation ratio are used as ∆yijp .

Table 1 shows the estimates of β1.20 As indicated in column (4) of Table 1, the estimate

for β1 is positive and statistically significant for the growth of the self-citation ratio as

19Firm controls include: firm employment, firm age, past 5-year growth of U.S. patents in the CPC tech-
nology classes in which firm operates, and dummy variables for publicly traded firms, exporters, importers,
and offshoring firms. Industry control includes NTR rates measured at the start of each period.

20To conserve space, Table 1 reports coefficients estimates for triple interaction terms only. Results in-
cluding coefficients for all the interaction terms are reported in Table A8 in the Appendix.

38



Table 1: Escape-competition effect

∆Patents ∆Patents ∆Self-cite ∆Self-cite
(1) (2) (3) (4)

NTR gap ˆ Post ˆ Innovation-intensity 0.077 -0.017 0.732** 0.784***
(0.231) (0.233) (0.299) (0.268)

Observations 6,500 6,500 6,500 6,500
Fixed effects j, p j, p j, p j, p
Controls no full no full

Notes: Full controls include past 5-year U.S. patent growth in firms’ own technology fields, log employment,
firm age, NTR rate, dummy for publicly traded firms, dummy for firms with total imports ą 0, dummy
for firms with total exports ą 0, and dummy for firms with imports from relative parties ą 0. Estimates
for industry (j) and the period (p) fixed effects as well as the constant are suppressed. Robust standard
errors adjusted for clustering at the level of the firms’ major industries are displayed below each coefficient.
Observations are unweighted. Observation counts are rounded due to Census Bureau disclosure avoidance
procedures. * p ă 0.1, ** p ă 0.05, *** p ă 0.01.

a dependent variable, consistent with Corollary 1. The estimated effect is economically

important as well. Table A11 in Appendix B.4 shows that for an average firm, creating

4 more patents is associated with a 3.4 percentage points increase in employment growth,

but the association becomes smaller in magnitude if the average self-citation ratio of the

new patents is high. The estimates in Table 1, combined with Table A11 suggest that the

association between patenting and employment growth is decreased by 1.13 percentage points

for firms with average innovation intensity following the competition shock from China.

4.2.1.1 Discussion: PNTR as a Competitive Pressure Measure

As discussed extensively in Pierce and Schott (2016) and Facchini et al. (2019), the

main channel the removal of trade policy uncertainty affects trade between the U.S. and

China is by persuading Chinese firms to export their products to the U.S. The two papers

verify this channel by estimating the effect of the removal of TPU on changes in Chinese

exports to the U.S. using the LFTTD at the product level, and Chinese Custom Data at

the firm level. Table A9 in the Appendix shows OLS estimates of the effect of PNTR on

changes in U.S. imports from China from 2000 to 2007 at the 8-digit HS level and the 6-digit

NAICS level separately. As indicated in the table, the NTR gap is positively associated

with changes in U.S. imports from China regardless of the level of aggregation. However,

statistical significance falls from the 1% to the 5% level as we move from the 8-digit HS level
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to the 6-digit NAICS level, where the latter is the level of aggregation used in this paper.

As is clear from the simple three-period model introduced in Section 3, one critical factor

firms consider when they decide how much to invest in innovation is competitive pressure—

the probability of encountering competitors in a firm’s own market in the near future. In

the real world, pressure can come from both realized competition (an increase in the number

of competitors) and from possible future competition (an increase in the number of poten-

tial entrants) in each product market. Table A10 shows OLS results from regressing the

two dependent variables of interest on the realized changes in U.S. imports from China, to

estimate the effect of realized competition on firm innovation composition. Here I use the

same two seven-year periods used in the previous analysis, 1992-1999 and 2000-2007. As

the table indicates, changes in U.S. imports from China from 1992 to 2007 do not have any

statistically significant effect on U.S. firms’ innovation composition after I control for firm

characteristics. This analysis, however, has two concerns: i) changes in U.S. imports from

China are endogenous, and ii) successful escape competition by U.S. firms can make realized

competition low even competitive pressure is substantial.

The concern i) can be addressed by using the imposition of PNTR as an instrument for

changes in imports. However, as Table A9 shows, the NTR gap has low statistical power

for predicting U.S. imports from China at the 6-digit NAICS level. Indeed, the F-test from

the first stage of the 2SLS estimation exercise shows that NTR gap is a weak instrument.

Nonetheless, the 2SLS estimate of β1 is positive and large.21

My model suggests that the second concern is important, and measures for realized com-

petition cannot capture this. The removal of trade policy uncertainty, however, can be an

excellent proxy for increased competitive pressure, as it is associated with an increase in Chi-

nese firms’ opportunity to enter the U.S. market. For example, Handley and Limão (2017),

through the lens of their structural model, show that a reduction in TPU provides greater

incentive for incumbents to incur irreversible investments to enter foreign markets. Erten

and Leight (2019) further show that the imposition of PNTR induces Chinese manufacturing

firms to increase their investment and their value-added per worker. These findings suggest a

21The 2SLS regression results are not reviewed by the Census Bureau for disclosure avoidance yet. Thus,
they are not released from the Maryland RDC at this moment.
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tight relationship between the imposition of PNTR and an increase in potential future com-

petition. Thus, finding direct evidence for this relationship, such as a link between PNTR

and the number of Chinese startups or the number of Chinese firms with the ability to export

their products to the U.S., is a priority for future research.

4.2.1.2 Validity of the Identification Strategy and Robustness Tests

Previous studies using PNTR with China as a trade shock, such as Pierce and Schott

(2016) and Handley and Limão (2017), provide rich evidence for the exogeneity of PNTR for

the U.S. firms’ decisions in the 1990s and 2000s. Thus, I focus on testing the parallel pre-

trends assumption, the key identifying assumption for the DD model. To test the assumption

for the dependent variables of interest, I estimate (4.22) for two seven-year periods before

the policy change, 1984-1991 and 1992-1999. Table A12 in the Appendix shows the results,

which support the validity of the parallel pre-trends assumption.

To further confirm the validity of my results, I perform several robustness checks, with

results reported in the Appendix. I find that my results are robust to a variety of differ-

ent specifications. First I include upstream and downstream trade shocks as covariates in

model (4.22). By using the 1992 BEA input-output table, I construct upstream and down-

stream trade shocks as weighted averages of industry-level trade shocks. The upstream effect

of trade is the effect of trade shocks propagating upstream from an industry’s buyers, and

the downstream effect of trade is the effect of trade shocks propagating downstream from its

suppliers.22 Table A13 in the Appendix shows that including controls for I-O linkages does

not change the main results.

The second test uses different weights for constructing firm-level NTR gaps. Because

patenting firms are multi-industry firms, I use employment in the start year of each period

as weights and construct a weighted average of industry-level NTR gaps for all industries in

which each firm operates as the firm-level NTR gap. I also use an unweighted average of

this measure, and use industry-level NTR gaps for firms’ main industry (the industry with

22Following Pierce and Schott (2016), for each 6-digit NAICS industry, I set the I-O weights to zero for
both up and downstream industries belonging to the same 3-digit NAICS broad industries while computing
the indirect effects to take into account the findings from Bernard et al. (2010) that U.S. manufacturing
establishments often produce clusters of products within the same 3-digit NAICS sector.
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the most employment) as alternative measures for TPU in model (4.22). Table A15 in the

Appendix shows that using these alternative measures do not change the main results.

The third test addresses possible selection bias resulting from including only firms with

a positive number of patents granted in the start year and in any of the last four years of

each period in the regression analysis. This selection is inevitable as I need to compute

the self-citation ratio for two years for each period. I correct for this bias by re-weighting

the regression sample using the inverse of the propensity scores from a logit model with an

indicator for the analysis sample as the dependent variable as weights. Table A16 in the

Appendix shows that this reweighting does not change the results. The fourth test adds the

cumulative number of patents as a firm-level control variable in the model (4.22). The self-

citation ratio can mechanically increase because the firm’s patent stock increases as the firm

becomes older. Adding the cumulative number of patents as a firm-level covariate addresses

this issue, and Table A17 in the Appendix shows that this does not change the results.

The fifth test clusters standard errors on firms. The second test indicates that most

variation in the firm-level NTR gap is at the industry-level. Thus, I cluster standard errors

at the six-digit NAICS level in the main analysis. As a robustness check, I cluster standard

errors on firms, and Table A18 in the Appendix shows this does not change our inference on

the main results. Finally, I test the robustness of my results by using the number of products

added as a dependent variable—an alternative measure for external innovation (inverse of

internal innovation). Table A19 in the Appendix shows results that support Corollary 1,

with the number of products added as an alternative measure of external innovation.

4.2.2 Corollary 2: Technological-Barrier Effect

Another prediction from my model is that firms do less external innovation if other firms

have innovated more intensively in the past period. Intensive innovation by other firms

raises the technology barrier in other markets on average, which implies that business take

over through external innovation becomes more difficult. Thus, firms optimally reduce their

external innovation. To test this theoretical prediction, I use the recent increase in the

number of foreign patent applications as a proxy for increasing innovation intensity in other

markets. Since I don’t have product-market information for foreign firms, I use patent
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technology class (CPC) as a proxy for product in this exercise. Foreign patents are defined

as patents filed by foreign firms whose first listed inventor is a foreigner. I use the pre-shock

years from period 1989 to 2000 and construct non-overlapping five-year first differences (DHS

growth for 1989-1994, and 1995-2000) to estimate the following fixed-effect model:

∆Yijt`5 “ β1∆S
Own

ijt´5 ` β2∆S
Outside

ijt´5 `Xijt γ1 ` δjt`5 ` εijt`5

∆Yijt`5 is either the 5-year DHS growth rate of the citation-adjusted number of patents or

the average self-citation ratio between t and t ` 5, and ∆S
tech

ijt´5 for tech P tOwn, Outsideu

is the lagged average 5-year DHS growth rate of foreign patents in each technology class for

firm i’s own technology space (Own) and outside of firm i’s technology space (Outside).

To be more specific, for each technology class c in CPC, denote the total number of foreign

patents filed in year t as Sc,t. Then the DHS growth rate of foreign patents belonging to c

between year t´ 5 and t can be written as

∆Sc,t´5 ”
Sc,t ´ Sc,t´5

0.5ˆ pSc,t ` Sc,t´5q
.

Denote Qt as the set of all the patent technology classes available until year t, and Qijt as

the portfolio of patent technology classes firm i accumulated through year t. This defines the

technology space in which firm i operates. Furthermore, denote ωc,i,j,t the share of patent

technology class c in firm i’s technology portfolio through year t. Then the lagged growth

in innovation intensity in firm i’s own space, ∆S
Own

ijt´5, is defined as

∆S
Own

ijt´5 ”
ÿ

cPQijt

ωi,j,c,t∆Sc,t´5 ,

and outside of own space counterpart, ∆S
Outside

ijt´5 , is defined as

∆S
Outside

ijt´5 ”
1

}Qc
ijt}

ÿ

cPQcijt

∆Sc,t´5 ,

where Qc
ijt ” QtzQijt is the complement of the set Qijt, and }Qc

ijt} is the number of technology
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Table 2: Technological-barrier effect

∆Patents ∆Self-cite
(1) (2)

Past 5 year ∆foreign patent, outside of firm’s own technology fields -5.984** 9.076***
(2.756) (2.711)

Observation 7,600 7,600
Fixed effects jp jp

Notes: Controls include past 5-year U.S. patent growth in firms’ own technology fields, log payroll, firm
age, dummy for publicly traded firms, dummy for firms with total imports ą 0, dummy for firms with total
exports ą 0, and dummy for firms with imports from relative parties ą 0. Estimates for industry-period
(jp) fixed effects as well as the constant are suppressed.Robust standard errors adjusted for clustering at
the firm-level are displayed below each coefficient. Observations are unweighted. Observation counts are
rounded due to Census Bureau disclosure avoidance procedures. * p ă 0.1, ** p ă 0.05, *** p ă 0.01.

classes in Qc
ijt. Table A3 in the Appendix reports summary statistics for the technology shock

measures. The regression is unweighted and standard errors are clustered by firm. I include

industry-period fixed effects to control for industry-level shocks. The theory predicts β2 to

be positive when changes in the self-citation ratio is the dependent variable, and insignificant

or negative for changes in the total number of patents.

Table 2 shows estimates of β2.23 As the table indicates, U.S. firms create fewer patent

applications when recent outside innovation by foreign firms is high, and firms’ innovation

is more internal in nature. This suggests that U.S. firms perform less external innovation

when the technological barrier is high in product markets outside of their own.

4.2.3 Proposition 6: Ex-post Schumpeterian Effect

The final prediction of my model that I test is that firms do more internal innovation if they

expect to get higher profits from their current product markets in the near future. To test

this prediction, I use the export shock explained previously as a proxy for changes in future

profits. Thus, for firm i in industry j in period p P t1992 ´ 1999, 2000 ´ 2007u, I estimate

the following regression model:

∆yijp “ β2∆ExportShockjp ` Xijp0 γ1 ` δj ` δp ` α ` εijp , (4.23)

23Table A20 in the Appendix shows the estimation results for own technology field shock, as well as the
results including the interaction with firms’ innovation intensities. I also run the same regression specification
using concurrent technology shock, and Table A21 in the Appendix shows the results. The results are widely
consistent with that of the lagged technology shock.
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Table 3: Effect of export shocks on firm innovation composition

∆Patents ∆Patents ∆Self-cite ∆Self-cite
(1) (2) (3) (4)

Export shock 0.046 0.047 -0.013 -0.014
(0.032) (0.032) (0.035) (0.035)

X Innovation intensity 0.003 0.014*
(0.008) (0.008)

Observations 6,500 6,500 6,500 6,500
Fixed effects j, p j, p j, p j, p

Notes: Controls include past 5-year U.S. patent growth in firms’ own technology fields, log employment,
firm age, dummy for publicly traded firms, dummy for firms with total imports ą 0, dummy for firms with
total exports ą 0, and dummy for firms with imports from relative parties ą 0. Estimates for industry (j)
and the period (p) fixed effects as well as the constant are suppressed. Robust standard errors adjusted for
clustering at the level of the firms’ major industries are displayed below each coefficient. Observations are
unweighted. Observation counts are rounded due to Census Bureau disclosure avoidance procedures. * p ă
0.1, ** p ă 0.05, *** p ă 0.01.

where the descriptions for each variable are the same as described in model (4.22).

Table 3 reports the results. As the table indicates, there is no statistically significant

effect of the export shock on the average firm’s innovation composition. These weak results

might be because few U.S. firms were exporting to China even in 2007, and the share of the

total value of shipments accounted for by the value of exports to China is quite small, as

Table A5 and A6 in the Appendix show. The interaction term with firm-level innovation

intensity, however, is statistically significant and positive when changes in the self-citation

ratio is the dependent variable. We will see in the quantitative analysis below that this result

is consistent with the prediction from the baseline two-country model.

5 Quantitative Analysis

5.1 Calibration

There are nineteen structural parameters (assuming symmetry across the two countries for

innovation and production) that I need to calibrate, seven of which I are calibrate internally.

Table 4 shows the list of parameters and their values used for counterfactual exercise. I map

my two-country model to the U.S. and China. As all the products in my model economy are

tradable, I calibrate the model to the U.S. manufacturing sector in 2000.

45



Table 4: Structural Parameters

Parameter Description Value Identification
1. β Time discount factor 0.9615 Annual interest rate of 4%
2. rτHF Tariff rates for exports from H to F 1.0816 External calibration
3. rτFH Tariff rates for exports from F to H 1.0816 External calibration
4. µ0

`

∆G
˘

Initial global technology gap distribution Matrix External calibration

5. pψ Curvature of internal R&D 2 (Akcigit and Kerr, 2018)

6. rψ Curvature of external R&D 2 (Akcigit and Kerr, 2018)

7. rψe Curvature of external R&D, startup 2 (Akcigit and Kerr, 2018)
8. θ Quality share in final good production 0.109 (Akcigit and Kerr, 2018)

9. LH Mass of labor in country H 1 External calibration

10. LF Mass of labor in country F 1 External calibration
11. EH Mass of potential startups in H 0.5 External calibration
12. EF Mass of potential startups in F 0.5 External calibration
13. λ Quality multiplier of internal innovation 1.044 Indirect inference
14. η Quality multiplier of external innovation 1.067 Indirect inference
15. pχ Scale of internal R&D 0.119 Indirect inference
16. rχ Scale of external R&D 0.714 Indirect inference
17. rχe Scale of external R&D, startup 11.696 Indirect inference
18. dHF Iceberg trade cost for exports from H to F 1.01 Indirect inference
19. dFH Iceberg trade cost for exports from F to H 1.01 Indirect inference

One complication with this setup is that tariff rates imposed by the U.S. government to

Chinese products in 2000 were virtually unchanged after China’s WTO accession. However,

because there was a possibility of tariff rate increases, the effective tariff rates Chinese firms

perceived with before 2001 were higher than the actual values, as discussed in the previous

section. To capture this and to run a counterfactual exercise to analyze the effect of trade

liberalization on the composition of firm innovation that mimics what happened after China’s

WTO accession in the U.S., I estimate the effective tariff rate facing Chinese firms in 2000.

Specifically, I assume a 13% probability of the tariff rate increasing to the non-NTR rate, as

estimated by Handley and Limão (2017), an average non-NTR rate of 36%, and an average

NTR rate of 4%, to get an effective tariff rate of 8.16%.

As one period in my model is one year, I set the time discount factor to 0.9615, implying

a real interest rate of 4%. I set the mass of labor to 1 and the mass of potential startups to

0.5 in both countries, as the counterfactual exercise will compare the two balanced growth

path equilibria before and after China’s WTO accession, and this requires the two countries

to be symmetric. I set the initial global technology gap distribution to be a symmetric

random matrix. This is innocuous as the effect from the initial values of this matrix will

be washed away during the simulation. I set the curvature of the R&D cost functions to 2,

which is a standard value in the firm innovation literature. I set the quality share in final

good production to 0.109, the value estimated by Akcigit and Kerr (2018).
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Table 5: Model Fit

Moment Data Model Source
1. p90 emp. growth, emp. weighted (%) 19.86 18.46 Decker et al. (2016)
2. Startup rates (%) 6.68 5.64 BDS
3. Agg. domestic sales growth (%) 2.14 1.70 NBER-CES
4. Avg. # of products firms produce 2.27 1.88 CMF
5. Success prob. of adding a product (%) 29.20 22.68 CMF
6. Share of US firms exporting to CN (%) 2.30 1.12 LFTTD

5.2 Indirect Inference

There are seven remaining parameters to be estimated: λ, η, pχ, rχ, rχe, dHF , and dFH .

However, as the two countries are symmetric, dHF “ dFH . Thus, I have six remaining

parameters and these are estimated using an indirect inference approach: for each set of

six parameter values, I compute six model-generated moments, compare them to the data

moments, and find a set of parameter values that minimizes the objective function

min
6
ÿ

i“1

| model momentsi ´ data momentsi |
1
2
| model momentsi | `

1
2
| data momentsi |

where the six moments are listed in Table 5.

The six moments are chosen in consideration of both their importance in answering the

central question of this paper, and the relationships among the moments and the parameters

coming from the choice of functional forms in the model. Although all the parameter values

contribute substantially in determining the value for each model-generated moment, the

tight relationship between specific sub-groups of parameters and moments can be noted.

Firms perform internal and external R&D to adjust the number of product lines they

operate. Since R&D cost is one of the crucial factors determining the level of R&D intensity,

and hence the number of product lines the firm owns, I discipline the scale parameter of

internal R&D (pχ) and external R&D (rχ) using the average number of products firms own.

Potential startups learn and improve existing technologies to enter the market, and the

success probability of entry is tightly related to the level of R&D expenditure they spend.

Thus I discipline the scale of external R&D for startups (rχe) using the startup rate.

Firms grow in terms of both sales and the number of employees by improving the qualities

of their existing products and/or adding new product lines to their product portfolios. How
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Figure 2: Internal Innovation Decision Rule

quickly they grow depends on how much product quality improvement they can achieve.

Thus I discipline the quality multipliers of internal innovation (λ) and external innovation

(η) using the average sales growth rate and the employment growth rate at the 90th percentile

of the employment-weighted firm employment growth distribution.

How fast firms add a new product to their portfolio depends on the level of external R&D

investment. Thus, I discipline the scale of external R&D (rχ) using the success probability

of adding a product (average number of products added by firms). Finally, I discipline the

iceberg trade costs dcc1 using the share of U.S. firms exporting to China. Table 5 reports the

model generated moments and their empirical counterparts.

5.3 Solution Algorithm

Since I don’t have an analytic expression for firm distribution, I pin down values for the mass

of firms, FH and FF , through simulation during the numerical solution method. I simulate

200,000 products over 600 years, then take an average across outcomes from the last 200

years to capture the model-implied moments. I solve the model as a fixed point over a vector

of growth rates pgH , gF q. Appendix A.2.7 describes the solution algorithm in detail.
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Table 6: Reduction in bilateral tariff rates from 8.16% to 4%

Description Before After % change
Avg. internal innov. intensity zH (%) 19.28 20.99 8.83
Firm level external innov. intensity xH (%) 26.63 24.81 -6.84
Success prob. of adding a product (%) 22.68 20.63 -9.04
Technological barrier (%) 14.82 16.83 13.56
p90 emp. growth (%) 18.46 15.15 -17.94
p10 emp. growth (%) -41.77 -37.89 -9.28
Startup rate (%) 5.64 5.06 -10.26
Aggregate domestic sales growth (%) 1.70 1.69 -0.55
R&D to sales ratio (%) 4.54 4.16 -8.51
Internal R&D expense share 21.84 31.96 46.35
Share of firms exporting (%) 1.12 3.44 206.45
Share of export sales in total sales (%) 0.46 1.64 256.37

5.4 Characteristics of Optimal Innovation Decision Rules

The blue lines in Figure 2 show two cross-sections from the internal innovation decision

rule for the baseline parameter values, which is four-dimensional. The left panel shows the

average internal innovation decision rule as a function of the local-technology-gap in the

home county (∆H). As we can see, innovation intensity (success probability of innovation)

increases with ∆H at first, then drops when ∆H “ η. In the latter case, incumbents have

such a high technological advantage that no competitors can take over their businesses even

when incumbents fail at internal innovation. The right panel shows the internal innovation

decision rule as a function of the global-technology-gap (∆G), which is similar to Akcigit et al.

(2018). Internal innovation intensity peaks near two thresholds. Firms have higher incentives

to do internal innovation near the export-threshold (right), as additional internal innovation

makes firms exporters, which leads to higher profits. Firms also have higher incentives to

do internal innovation near the import-threshold (left), as the failure of internal innovation

leads to losing the product market to foreign firms.

5.5 Counterfactual Exercise

I run a counterfactual exercise using a 4.16 percentage point drop in the bilateral tariff rate

(from 8.16% to 4%) as a trade shock, and compare the two BGP equilibria. Figure 2 shows

changes in the optimal internal innovation decision rule, and Table 6 shows the changes in

firm and aggregate-level moments. Increasing international competition leads firms to shift
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their innovation from external to internal, which leads to lower employment growth rates for

high-growth firms (firms at the 90th percentile of the firm employment growth distribution).

Employment growth of low-growth firms (firms at the 10th percentile of the firm employment

growth distribution), however, increases, and this leads to a decline in the skewness of the

firm employment growth distribution measured as the p90-p10 differential. Firms become

better at protecting their own product market through defensive internal innovation but lose

their power of creative destruction. The economy becomes a place where incumbent firms

have high technological advantages in their own markets on average. This is reflected as an

increased technological barrier (measured as one minus the ratio of the success probability

of adding a product divided by the firm-level external innovation intensity). Thus, startup

rate also declines as external innovation becomes harder. These results are consistent with

industry-level regression results using the imposition of PNTR as a foreign competition

shock, as shown in Table A22 in the Appendix.

6 Concluding Remarks

In this paper, I investigate how foreign competition affects firm innovation, high-growth firm

activity and firm entry by developing a two-country endogenous growth model with two

types of innovation and imperfect technology spillovers, and then testing model predictions

empirically. Having different types of innovation and imperfect technology spillovers in the

model is crucial in analyzing the relationship between increasing foreign competition and

the decline of high-growth firms and firm entry. This is because changes in the composition

of firms’ innovation in response to increasing foreign competition is the key mechanism

affecting firms’ growth. An increase in foreign competition lowers firms’ incentive to invest in

external innovation while it encourages investment in internal innovation for products with

high technological advantage. Since innovation-intensive firms have the strongest escape

competition, foreign competition affects the growth rate of innovation-intensive high-growth

firms more severely. Quantitative analysis using my theoretical framework confirms this

mechanism.

A 4.16 percentage point reduction in bilateral tariff rates in my model causes firms to shift
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their innovation activities toward more internal innovation due to higher foreign competition.

Consequently, high-growth firms grow more slowly, as they are less willing to experiment and

add new products. Also, the startup rate falls as the heightened technological advantage

accumulated by incumbent firms through internal innovation makes it harder to enter the

economy through external innovation.

To the best of my knowledge, this is the first attempt to develop a two-country endogenous

growth model with an escape-competition effect, in which firms are allowed to grow both

through product scope expansion à la Klette and Kortum (2004) and own product quality

improvement as in Aghion et al. (2001), and including firm entry and exit. Also, this

paper is the first to identify increasing foreign competition as a reason for declining business

dynamism in the U.S. economy, and provides supporting empirical evidence.
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A Theory Appendix

A.1 Technology-Gaps Evolution

I show that local technology gap ∆t can assume only four values, ∆1 “ 1, ∆2 “ λ, ∆3 “ η, and ∆4 “
η
λ .

A.1.1 Proof of Lemma 1

Proof. To make argument clearer, let’s consider the cases where 1) there is no ownership change between t´ 1 and

t, and 2) there is ownership change between t´ 1 and t.

1) No ownership change between t ´ 1 and t: In this case, qj,t “ ∆j,tqj,t´1 should hold, where only ∆j,t P

t∆1 “ 1,∆2 “ λu are possible due to the fact that ∆j,t is an outcome of internal innovation.

2) Ownership change between t´ 1 and t: In this case, qj,t “ ηqj,t´2 should hold. Let’s consider all potentially

possible cases where i. ∆j,t “ 1, ii. ∆j,t “ λ, iii. ∆j,t “ η, iv. ∆j,t “
η
λ , v. ∆j,t “

ηn

λm with n ě m ą 0, and vi.

∆j,t “
λn

ηm with n ą m ą 0. These are the only potentially possible values ∆ can assume, as there are only three

step sizes (1, λ, and η) product quality can change between two periods and there cannot be a technology regression

(qt ă qt´1). In the end, we will see that only the first four cases are possible.

case 2)-i. ∆j,t “ 1

For this to be true, qj,t “ qj,t´1 should hold. Since qj,t “ ηqj,t´2, this implies qj,t´1 “ ηqj,t´2.

This is possible if there was external innovation between t´2 and t´1, and no internal innovation

between t ´ 3 and t ´ 1, thus qj,t´2 “ qj,t´3. Thus ∆j,t “ 1 is possible with ownership change

between t´ 1 and t.

case 2)-ii. ∆j,t “ λ

For this to be true, ∆j,t´1 “
η
λ should hold, as ∆j,t “

qj,t
qj,t´1

“
pηqqj,t´2

∆j,t´1qj,t´2
. This can be possible

if there is internal innovation between t´ 3 and t´ 2, and external innovation between t´ 2 and

t ´ 1, but no internal innovation between t ´ 2 and t ´ 1. In this case, qj,t´2 “ λqj,t´3, and

qj,t´1 “ ηqj,t´3. Thus ∆j,t´1 “
qj,t´1

qj,t´2
“

ηqj,t´3

λqj,t´3
“

η
λ . So I proved both ∆j,t “ λ and ∆j,t “

η
λ are

possible and ∆j,t “
η
λ can be realized only through external innovation between t´ 1 and t.

case 2)-iii. ∆j,t “ η

For this to be true, qj,t´1 “ qj,t´2 should hold. This is possible if there is no ownership change

and no internal innovation between t´ 1 and t´ 2. Thus ∆j,t “ η is possible.

case 2)-iv. ∆j,t “
η
λ
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The possibility of this case is shown in case 2)-ii.

case 2)-v. ∆j,t “
ηn

λm with n ě m ą 0

Let’s suppose this is the case. Since ∆j,t R t∆
1 “ 1,∆2 “ λu there should be an ownership

change between t´ 1 and t. Thus qj,t “ ηqj,t´2 should hold, and this implies qj,t´1 “
λm

ηn´1 qj,t´2.

m ď n ´ 1 is not possible as this implies technology regression. Let’s suppose m ą n ´ 1. Since

n ě m ą 0, this implies m “ n should hold. Suppose this is the case, thus gj,t´2 “
λm

ηm´1 qj.t´1. If

the values for λ, η, and m are such that λm

ηm´1 ă 1, then this means technology regression, which is

not possible. Let’s suppose λm

ηm´1 ą 1 is true. If m “ 1, we are back in the case 2)-ii and case 2)-iv.

Let’s suppose m ą 1. Since λm

ηm´1 ‰ 1 or 1`λ, there should be an ownership change between t´ 2

and t´ 1. Thus qj,t´1 “ ηqj,t´3, and this implies qj,t´2 “
ηm

λm qj,t´3.

Thus if ∆j,t “
ηn

λm is possible, then

qj,t´s “

$

’

’

&

’

’

%

ηm

λm qj,t´s´1 , s: even number

λm

ηm´1 qj,t´s´1 , s: odd number .

Thus in this case, either qj,1 “
ηm

λm qj,0 or qj,1 “
λm

ηm´1 qj,0 should hold, which is not possible (or I

assume this case out). Thus ∆j,t “
ηn

λm with n ě m ą 0 is not possible.

case 2)-vi. ∆j,t “
λn

ηm with n ą m ą 0

With a similar argument, this case is not possible.

Therefore ∆j,t can assume only four values,
 

1, λ, η, ηλ
(

. �
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A.2 Value Function

A.2.1 Conditional Expectation

For

Φf ”
!

`

qj , ∆H
j , ∆F

j , ∆G
j

˘

)

jPJ f
,

conditional expectation term, E
”

V
´

Φf 1
ˇ

ˇ Φf , tzjujPJ f , x
¯ ı

is equal to

ż

Φ´j

1
ÿ

Ix “ 0

1
ÿ

IZH
´j “ 0

1
ÿ

IZF
´j “ 0

lose
ÿ

c´t´j “ win

1
ÿ

IZi , ... , IZ
nf
“ 0

1
ÿ

IZFi , ... , IZF
nf

“ 0

2
ÿ

Ixi , ... , Ixnf “ 0

lose
ÿ

c´t1 , ... , c´tnf “ win

µ pΦ´jq x
Ixp1´ xq1´I

x `

zH
˘IZH´j `

1´ zH
˘1´IZH´j `

zF
˘IZF´j `

1´ zF
˘1´IZF´j 1

2

ˆ

nf
ź

i“1

„

pzjiq
IZi p1´ zjiq

1´IZi
`

zFji
˘IZFi `

1´ zFji
˘1´IZFi

p1´ xq
Ix0i

`

xH
˘Ix1i `

xF
˘Ix2i

 ˆ

1

2

˙nf

ˆ V

˜«

nf
ď

i“1

”!

`

∆H1
ji qji , ∆H1

ji , ∆F 1
ji , ∆G1

ji

˘

ˇ

ˇ

ˇ

`

qji , ∆H
ji , ∆F

ji , ∆G
ji

˘

, IZi , IZFi , Ixi , c´ ti
)

H  

0
(

ı

ff

ď

”!

`

∆H1
´j q´j , ∆H1

´j , ∆F 1
´j , ∆G1

´j

˘

ˇ

ˇ

ˇ

`

q´j , ∆H
´j , ∆F

´j , ∆G
´j

˘

, Ix , IZH´j , IZF´j , c´ t´j
)

H  

0
(

ı

¸

d pΦ´jq ,

where Ixki is an indicator function equal to 1 if Ixi “ k for k P t0, 1, u. Note that ∆H1
´j “

1`η
∆H
´j

for the case when

business takeover is successful.
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A.2.2 Aggregate Quality Evolution

A.2.2.1 Proof for Q and q Evolution

Proof. Here, I prove Proposition 3 for a general case. Application of proper index functions provides equation (2.17).

Pick any product line j with product quality qHj and technology gaps ∆ ”
`

∆H ∆F ∆G
˘

, ∆G P rΩ,Ωs Y t8u. Then

with P p∆1|∆q: probability of ∆ becoming ∆1, which is described in Appendix TA1, the conditional expected value

of qHj conditioning on ∆ next period is equal to

E∆1

“

qH1j
ˇ

ˇ ∆, qHj
‰

“ E∆1

“

∆H1qHj
ˇ

ˇ ∆, qHj
‰

“ E∆1

“

∆H1
ˇ

ˇ ∆
‰

qHj

“

«

ÿ

∆1

∆H1 P
`

∆1|∆
˘

ff

qHj

where the second equality follows from ∆ K qHj , thus, ∆1 K qHj for any j. Then,

E
“

qH1j
ˇ

ˇ qHj
‰

“ E∆

”

E∆1

“

qH1j
ˇ

ˇ ∆, qHj
‰

ı

“

«

ÿ

∆

ÿ

∆1

∆H1 P
`

∆1|∆
˘

µp∆q

ff

qHj . (A.24)

Summation of (A.24) over a proper subset provides law of motion for Q
rcH and qH . For instance, since E

“

qH1j
‰

“ qH

in equilibrium, by summing up (A.24) over possible qHj , we have

q1H “

«

ÿ

∆

ÿ

∆1

∆H1 P
`

∆1|∆
˘

µp∆q

ff

qH ,

which gives us

qH “
ÿ

∆

ÿ

∆1

∆H1 P
`

∆1|∆
˘

µp∆q ´ 1 .

The law of motion for country F can be defined symmetrically. �

A.2.3 Proof for Proposition 4

Proof. The first part of proposition 4 follows from simple algebra. I prove the second part here. For qj,1 “ qj,0, we

have

Bzj,1
xe1

“ ´
πj,2
2pχ
pλ´ 1q

„

p1´ xj,1q ` p1´ x
e
1q
Bxj,1
Bxe1



,
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and

Bxj,1
Bxe1

“ 0 .

Thus, we have

Bzj,1
Bxe1

“ ´
πj,2
2pχ
pλ´ 1qp1´ xj,1q ă 0 .

For qj,1 “ λqj,0, we have

Bzj,1
Bxe1

“
πj,2
2pχ

„

1´ xj,1 ` p1´ x
e
1q
Bxj,1
Bxe1



,

and

Bxj,1
Bxe1

“ ´
ηπj,2
2rχ

Bzj,1
Bxe1

.

Thus, we have

Bzj,1
Bxe1

“ p1´ xj,1q

„

2pχ

πj,2
`
ηπj,2
2rχ

p1´ xe1q

´1

ą 0 ,

hence

Bxj,1
Bxe1

“ ´
ηπj,2
2rχ

Bzj,1
Bxe1

ă 0 .

For qj,1 “ ηqj,0, we have

Bzj,1
Bxe1

“
πj,2
2pχ

1

2

„

1´ xj,1 ` p1´ x
e
1q
Bxj,1
Bxe1



,

and

Bxj,1
Bxe1

“ ´
ηπj,2
2rχ

1

2

Bzj,1
Bxe1

.

Thus, we have

Bzj,1
Bxe1

“ p1´ xj,1q

„

4pχ

πj,2
`
ηπj,2
4rχ

p1´ xe1q

´1

ą 0 ,
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hence

Bxj,1
Bxe1

“ ´
1

2

ηπj,2
2rχ

Bzj,1
Bxe1

ă 0 .

From x˚j,1, we see that
ηπj,2

2rχ P p0, 1q. Then, under a parameter restriction 4pχ ą πj,2,

4pχ

πj,2
`
ηπj,2
4rχ

p1´ xe1q ą
2pχ

πj,2
`
ηπj,2
2rχ

p1´ xe1q .

Thus,
Bz˚j,1
Bxe1

ˇ

ˇ

ˇ

ˇ

qj,1“λqj,0

ą
Bz˚j,1
Bxe1

ˇ

ˇ

ˇ

ˇ

qj,1“ηqj,0

�

A.2.4 Proof of Corollary 1

Proof. From z˚1 , we know that

Bz˚1
Bz1,0

“
1

2

´

z˚1,1
ˇ

ˇ

q1,1“λq1,0
´ z˚1,1

ˇ

ˇ

q1,1“q1,0

¯

ą 0 ,

and

Bz˚1
Bx2,0

“
1

2

´

z˚2,1
ˇ

ˇ

q2,1“ηq2,0
´ z˚2,1

ˇ

ˇ

q2,1“q2,0

¯

ą 0 ,

where the signs of the two derivatives follow from proposition 4. Then, the results follow from proposition 4 �

A.2.5 Proof of Corollary 2

Proof. From x˚1 , we have

Bx˚1
Bz1,0

“
1

2

´

x˚1,1
ˇ

ˇ

q1,1“λq1,0
´ x˚1,1

ˇ

ˇ

q1,1“q1,0

¯

ă 0 ,

and

Bx˚1
Bx2,0

“
1

2

´

x˚2,1
ˇ

ˇ

q2,1“ηq2,0
´ x˚2,1

ˇ

ˇ

q2,1“q2,0

¯

ă 0 ,

where the signs for the two derivatives follow from proposition 5 �
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A.2.6 Proof of Proposition 6

Proof. For qj,1 “ qj,0,

Bzj,1
Bπj,2

“
1

2pχ
pλ´ 1qp1´ xj,1qp1´ x

e
1q ´

πj,2
2pχ
pλ´ 1qp1´ xe1q

Bxj,1
Bπj,2

,

and

Bxj,1
Bπj,2

“
η

2rχ

Thus,

Bzj,1
Bπj,2

“
1

2pχ
pλ´ 1qp1´ 2xj,1qp1´ x

e
1q ,

and this is positive iff xj,1 ă
1
2 .

Bxj,1
Bπj,2

ą 0 unambiguously.

For qj,1 “ λqj,0,

Bzj,1
Bπj,2

“
1

2pχ

“

λ´ p1´ xj,1qp1´ x
e
1q
‰

`
πj,2
2pχ
p1´ xe1q

Bxj,1
Bπj,2

,

and

Bxj,1
Bπj,2

“
xj,1
πj,2

´
ηπj,2
2rχ

Bzj,1
Bπj.2

.

Thus,

Bzj,1
Bπj,2

“
“

λ´ p1´ 2xj,1qp1´ x
e
1q
‰

„

2pχ`
ηpπj,2q

2

2rχ
p1´ xe1q

´1

,

and this is positive unambiguously. The sign for
Bxj,1
Bπj,2

is ambiguous.

For qj,1 “ ηqj,0,

Bzj,1
Bπj,2

“
1

2pχ

„

λ´
1

2
´

1

2
p1´ xj,1qp1´ x

e
1q



`
πj,2
2pχ

1

2
p1´ xe1q

Bxj,1
Bπj,2

,

and

Bxj,1
Bπj,2

“
η

2rχ

1

2
p1´ zj,1q ´

ηπj,2
2rχ

1

2

Bzj,1
Bπj,2

.
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Thus,

Bzj,1
Bπj,2

“
“

λ´
1

2
´

1

2
p1´ 2xj,1qp1´ x

e
1q
‰

„

2pχ`
ηpπj,2q

2

2rχ

1

4
p1´ xe1q

´1

,

and this is positive unambiguously. The sign for
Bxj,1
Bπj,2

is ambiguous. �

A.2.7 Solution Algorithm

Solution Algorithm

1. Guess product line stationary distribution µ
`

∆H ∆F ∆G
˘

, BGP growth rates gc, total external innovation

rates xc, and total quality ratios Qccqc
for c P tH,F u with Qrcc

qc
“ 1´ Qccqc

.

2. Using Qccqc
and Qrcc

qc
for c P tH,F u,

(a) Compute wc
qc

, Lc, and rLc.

(b) Then, compute πcrc for c,rc P tH,F u.

(c) Compute the two thresholds Ω, and Ω, and identify the range of ∆G P
“

Ω,Ω
‰

.

3. Using xc and gc,

(a) Compute Ac
`

∆H ∆F ∆G
˘

, zc
`

∆H ∆F ∆G
˘

, xc and xce for c P tH,F u .

(b) Compute Fc “ xc´xceEc
xc . If Fc R p0, 1q, adjust xc and redo 3a.

4. Simulate to get updates for gc, Qccqc
, and Fc for c P tH,F u:

(a) Draw sample of Np product lines from a guessed stationary distribution µ
`

∆H ∆F ∆G
˘

.

(b) Assign N c
f number of firms implied by Fc computed in 3b to the sample product lines randomly.

(c) Simulate the model while allowing for firm entry and exit until ‖ gct`1 ´ g
c
t ‖ă ε

(d) Compute Qccqc
, Fc “ total nb of firmsc

total nb of productsc
, and xc “ xcFc ` xceEc.

5. Compute a stationary distribution µ8
`

∆H ∆F ∆G
˘

by using the law of motion and innovation rates (use zc

and xce from 3a, and xc from 4d).

6. Compare the initial growth rates in 1 with the values from 4. If the values are sufficiently different, update 1

with 5 and 4d, and redo the process 2 through 4. Iterate until the two growth rates converge.
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B Data Appendix

B.1 Summary Statistics

Table A1: Trade-shock related measures

NTR gap Dnstream NTR gap Upstream NTR gap NTR rate Non-NTR rate Export shock

Mean 0.291 0.138 0.203 0.027 0.303 1.127

(Std. dev.) (0.127) (0.060) (0.073) (0.022) (0.134) (0.970)

cov( , NTR gap) 0.485 0.434 0.412 0.969 0.214

cov( , Up. NTR gap) 0.204

Table A2: Firm-level NTR gap constructed using different weights

NTR gap, unweighted NTR gap, main industry

Mean 0.333 0.336

(Std. dev.) (0.107) (0.116)

cov( , NTR gap) 0.78 0.86

cov( , NTR gap, main industry) 0.906

Table A3: Technology shocks

Past 5 years 5 years onward

own US shock own foreign shock outside f. shock own f. shock outside f. shock

Mean 0.388 0.342 0.188 0.344 0.257

(Std. dev.) (0.306) (0.299) (0.064) (0.304) (0.161)

cov( , past own f.) 0.593 -0.059

cov( , past out f.) -0.191 0.151 -0.991

cov( , onward out f.) 0.541
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Table A4: All patenting firms vs. regression sample patenting firms in 1992

All patenting firms Regression sample

Average number of patents 6.15 8.86

(19.46) (24.10)

Average self-citation rate 0.0434 0.0540

(0.0899) (0.0941)

Innovation intensity 0.055 0.093

(0.25) (0.33)

Number of industries operating 2.34 5.43

(3.67) (6.94)

Employment 511.7 1988.0

(1869.0) (3835.0)

Patent stock 6.45 35.22

(26.61) (64.37)

Employment growth 0.07 0.06

(0.60) (0.40)

Firm age 12.33 15.65

(6.76) (9.42)

7yr patent growth -0.854

(1.312)

7yr self-citation ratio growth 0.356

(1.322)

Number of firms 26,500 3,100

Table A5: Export Share of Total Value of Shipments (CMF exporters)

1992 2002 2007

Avg. of firm-level exp/vship 4.99% 5.27% 6.41%

Avg. of firm-level CN exp/vship 0.70% 0.89% 1.17%

Aggregate-level exp/vship 7.76% 9.29% 10.46%

Aggregate-level CN exp/vship 0.19% 0.38% 0.64%

Table A6: Share of Exporters (LBD firms)

Year 1992 2002 2007

Share of exporters 15.90% 22.10% 24.00%

Share of firms exporting to CN 0.60% 2.30% 4.00%
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B.2 Overall and Escape-Competition Effect

Table A7: Overall Effect

∆Patents ∆Patents ∆Self-cite ∆Self-cite

(1) (2) (3) (4)

NTR gap ˆ Post 0.226 0.049 0.025 0.052

(0.230) (0.279) (0.260) (0.291)

NTR gap -2.222*** 0.569 1.104*** -0.117

(0.372) (0.405) (0.317) (0.393)

Post -0.276*** -0.198** -0.092 -0.021

(0.077) (0.082) (0.080) (0.084)

Past 5yr ∆pat in own tech. 0.170* 0.282***

(0.087) (0.091)

Log employment 0.134*** 0.014

(0.013) (0.014)

Firm age -0.005** -0.009***

(0.002) (0.002)

NTR rate -2.273 1.222

(1.690) (2.267)

Observations 6,500 6,500 6,500 6,500

Fixed effects j, p j, p j, p j, p

Controls no full no full

Notes: Full controls include past 5-year U.S. patent growth in firms’ own technol-

ogy fields, log employment, firm age, NTR rate, dummy for publicly traded firms,

dummy for firms with total imports ą 0, dummy for firms with total exports ą 0,

and dummy for firms with imports from relative parties ą 0. Estimates for industry

(j) and the period (p) fixed effects as well as the constant are suppressed. Robust

standard errors adjusted for clustering at the level of the firms’ major industries are

displayed below each coefficient. Observations are unweighted. Observation counts

are rounded due to Census Bureau disclosure avoidance procedures. * p ă 0.1, **

p ă 0.05, *** p ă 0.01.
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Table A8: Escape-competition effect

∆Patents ∆Patents ∆Self-cite ∆Self-cite

(1) (2) (3) (4)

NTR gap ˆ Post 0.238 0.054 -0.075 -0.051

(0.237) (0.287) (0.257) (0.295)

ˆ Innovation-intensity 0.077 -0.017 0.732** 0.784***

(0.231) (0.233) (0.299) (0.268)

NTR gap -2.206*** 0.593 1.101*** -0.067

(0.375) (0.409) (0.315) (0.397)

ˆ Innovation intensity -0.226 -0.213 -0.198 -0.379

(0.158) (0.175) (0.231) (0.231)

Post -0.277*** -0.202** -0.071 -0.002

(0.078) (0.083) (0.080) (0.083)

ˆ Innovation-intensity -0.053 0.017 -0.179* -0.198**

(0.070) (0.075) (0.095) (0.085)

Innovation-intensity 0.080* 0.057 0.059 0.086

(0.048) (0.046) (0.070) (0.066)

NTR rate -2.403 1.021

(1.703) (2.272)

ˆ Innovation-intensity 0.593 0.539

(0.507) (0.484)

Observations 6,500 6,500 6,500 6,500

Fixed effects j, p j, p j, p j, p

Controls no full no full

Notes: Full controls include past 5-year U.S. patent growth in firms’ own

technology fields, log employment, firm age, NTR rate, dummy for publicly

traded firms, dummy for firms with total imports ą 0, dummy for firms with

total exports ą 0, and dummy for firms with imports from relative parties ą

0. Estimates for industry (j) and the period (p) fixed effects as well as the

constant are suppressed. Robust standard errors adjusted for clustering at

the level of the firms’ major industries are displayed below each coefficient.

Observations are unweighted. Observation counts are rounded due to Census

Bureau disclosure avoidance procedures. * p ă 0.1, ** p ă 0.05, *** p ă 0.01.
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B.3 Import Competition

Table A9: Effect of PNTR on US imports from China

∆CN imp ∆CN imp

HS8-level NAICS6-level

(1) (2)

NTR gap 0.209*** 0.594**

(0.059) (0.243)

∆NTR rate -0.043*** -0.204**

(0.015) (0.080)

∆Transport cost -0.791*** -0.491

(0.194) (0.766)

Obsevations 10,089 490

Notes: Table reports results of OLS regressions of US im-

ports from China on NTR gap at the 8-digit HS level, and

6-digit NAICS level. * p ă 0.1, ** p ă 0.05, *** p ă 0.01.

Table A10: Regression using 7-year changes in the U.S. imports from China

(a) 7-year changes in the US imports from China

∆Patents ∆Patents ∆Patents ∆Patents ∆Self-cite ∆Self-cite ∆Self-cite ∆Self-cite

(1) (2) (3) (4) (5) (6) (7) (8)

7yr ∆US imports from CN -0.273*** -0.041 -0.277*** -0.043 0.082 -0.030 0.081 -0.030

(0.047) (0.041) (0.047) (0.041) (0.061) (0.058) (0.061) (0.058)

ˆ Innovation intensity 0.037** 0.017 0.001 -0.001

(0.017) (0.015) (0.020) (0.015)

Observations 6,500 6,500 6,500 6,500 6,500 6,500 6,500 6,500

Fixed effects j, p j, p j, p j, p j, p j, p j, p j, p

Controls no full no full no full no full

Notes: Table reports results of OLS regression results estimating the relationship between the U.S. firms’ innovation and realized changes

in the U.S. imports from China. Full controls include past 5-year U.S. patent growth in firms’ own technology fields, log employment,

firm age, dummy for publicly traded firms, dummy for firms with total imports ą 0, dummy for firms with total exports ą 0, and dummy

for firms with imports from relative parties ą 0. Estimates for industry (j) and the period (p) fixed effects as well as the constant are

suppressed. Robust standard errors adjusted for clustering at the level of the firms’ major industries are displayed below each coefficient.

Observations are unweighted. Observation counts are rounded due to Census Bureau disclosure avoidance procedures. * p ă 0.1, ** p ă

0.05, *** p ă 0.01.
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B.4 Firm Growth and Two Types of Innovation

Akcigit and Kerr (2018) show that internal innovation contributes less to firm employment growth by using the

LBD. Here, I replicate their result while including firm controls for the Census years: 1982, and 1992 and construct

non-overlapping five-year first differences (DHS growth) by using the LBD matched USPTO patent database. I

estimate the following fixed-effect regression model:

∆Yijt`5 “ β1Patijt ` β2Internalijt `Xijt γ1 ` δjt`5 ` εijt`5

For firm i in industry j, ∆Yijt`5 is a 5-year DHS growth rate of i) firm employment growth from year t to t ` 5,

and ii) number of six-digit NAICS industries added. Patijt is a log of citation adjusted number of patents in year t,

and Internalijt is an citation-adjusted average self-citation ratio in year t. Firm and industry controls include firm

age, and log of payroll. The regression is unweighted and standard errors are clustered on firm. Based on Akcigit

and Kerr (2018) we expect β1 to be positive while β2 to be negative, as internal innovation contributes less to firm

employment growth. I run the same regression model with the number of products (seven-digit NAICS product

codes) added by using the CMF firms.

Table A11: Real effect of innovation: employment growth, industry add, and product add

LBD firms CMF firms

∆Employment Log nb. of industries added Log nb. of products added

(1) (2) (3)

Log nb. of patents 0.031*** 0.098*** 0.078***

(0.010) (0.011) (0.013)

Avg. self-citation -0.269** -0.154** -0.343***

(0.106) (0.078) (0.102)

Log payroll -0.025*** 0.083*** 0.154***

(0.009) (0.006) (0.008)

Firm age -0.004** -0.004** -0.007***

(0.002) (0.002) (0.002)

Innovation intensity 0.032 0.009 0.076’***

(0.029) (0.015) (0.017)

Observations 5,400 5,400 5,700

Fixed effects jp jp jp

Notes: Estimates for industry-period (jp) fixed effects as well as the constant are suppressed. Robust standard

errors adjusted for clustering at the firm-level are displayed below each coefficient. Observations are unweighted.

Observation counts are rounded due to Census Bureau disclosure avoidance procedures. * p ă 0.1, ** p ă 0.05, ***

p ă 0.01.
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B.5 Pre-trend and Robustness

Table A12: Parallel pre-trend test

∆Patents ∆Patents ∆Self-cite ∆Self-cite

(1) (2) (3) (4)

NTR gap -0.393 -0.379 -0.559 -0.551

(0.487) (0.488) (0.403) (0.403)

ˆ Innovation intensity -0.193 -0.0057

(0.162) (0.394)

NTR gap ˆ It1992u 0.520 0.498 0.254 0.261

(0.355) (0.361) (0.294) (0.290)

ˆ Innovation intensity 0.092 -0.114

(0.243) (0.490)

Observations 5,000 5,000 5,000 5,000

Fixed effects j, p j, p j, p j, p

Notes: Full controls include past 5-year U.S. patent growth in firms’ own

technology fields, log employment, firm age, and dummy for publicly traded

firms. Estimates for industry (j) and the period (p) fixed effects as well as

the constant are suppressed. Robust standard errors adjusted for clustering

at the level of the firms’ major industries are displayed below each coefficient.

Observations are unweighted. Observation counts are rounded due to Census

Bureau disclosure avoidance procedures. * p ă 0.1, ** p ă 0.05, *** p ă 0.01.
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Table A13: Foreign competition shock with I-O

∆Patents ∆Patents ∆Self-cite ∆Self-cite

(1) (2) (3) (4)

NTR gap ˆ Post -0.111 -0.111 -0.290 -0.415

(0.332) (0.343) (0.355) (0.354)

ˆ Innovation intensity 0.054 0.825***

(0.319) (0.282)

NTR gap 0.580 0.613 -0.096 -0.038

(0.406) (0.411) (0.382) (0.387)

ˆ Innovation intensity -0.275 -0.407

(0.203) (0.262)

Post -0.254** -0.264** -0.145 -0.137

(0.110) (0.111) (0.122) (0.123)

ˆ Innovation intensity 0.158 -0.098

(0.142) (0.139)

Innovation intensity 0.057 0.089

(0.047) (0.068)

NTR rate -2.314 -2.512 1.129 0.900

(1.670) (1.704) (2.237) (2.240)

ˆ Innovation intensity 1.027 0.666

(0.874) (0.765)

Downstream X Post 0.501 0.492 0.965 0.979

(0.597) (0.602) (0.707) (0.715)

ˆ Innovation intensity -0.241 -0.019

(0.525) (0.348)

Upstream X Post 0.161 0.196 0.430 0.491

(0.443) (0.447) (0.480) (0.482)

ˆ Innovation intensity -0.497 -0.382

(0.381) (0.418)

Observations 6,500 6,500 6,500 6,500

Fixed effects j, p j, p j, p j, p

Notes: Controls include past 5-year U.S. patent growth in firms’ own technology fields, log employment, firm age,

NTR rate, dummy for publicly traded firms, dummy for firms with total imports ą 0, dummy for firms with total

exports ą 0, and dummy for firms with imports from relative parties ą 0. Estimates for industry (j) and the period

(p) fixed effects as well as the constant are suppressed. Robust standard errors adjusted for clustering at the level of

the firms’ major industries are displayed below each coefficient. Observations are unweighted. Observation counts

are rounded due to Census Bureau disclosure avoidance procedures. * p ă 0.1, ** p ă 0.05, *** p ă 0.01.
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Table A14: Overall response: different weights for firm-level tariff measures

∆Patents ∆Patents ∆Self-cite ∆Self-cite

(1) (2) (3) (4)

NTR gap ˆ Post -0.139 -0.017 0.133 0.091

(0.331) (0.247) (0.311) (0.260)

NTR gap 0.943** omitted -0.240 omited

(0.374) (0.349)

Post -0.146 -0.194*** -0.024 -0.036

(0.107) (0.074) (0.106) (0.076)

NTR rate -1.763 -2.360 1.614 0.368

(1.533) (1.871) (1.792) (2.373)

Observations 6,500 6,500 6,500 6,500

Fixed effects j, p j, p j, p j, p

Weights for tariffs unweighted major indust. unweighted major indust.

Notes: Table reports results of OLS generalized difference-in-differences regressions in which firm-level tariff measures

are constructed with different weights. Controls include past 5-year U.S. patent growth in firms’ own technology

fields, log employment, firm age, NTR rate, dummy for publicly traded firms, dummy for firms with total imports

ą 0, dummy for firms with total exports ą 0, and dummy for firms with imports from relative parties ą 0 (full

controls). Estimates for industry (j) and the period (p) fixed effects as well as the constant are suppressed. Robust

standard errors adjusted for clustering at the level of the firms’ major industries are displayed below each coefficient.

Observations are unweighted. Observation counts are rounded due to Census Bureau disclosure avoidance procedures.

* p ă 0.1, ** p ă 0.05, *** p ă 0.01.
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Table A15: Escape-competition effect: different weights for firm-level tariff measures

∆Patents ∆Patents ∆Self-cite ∆Self-cite

(1) (2) (3) (4)

NTR gap ˆ Post -0.131 -0.015 0.017 0.021

(0.339) (0.251) (0.310) (0.260)

ˆ Innovation intensity 0.038 0.017 0.754*** 0.745***

(0.218) (0.218) (0.261) (0.263)

NTR gap 0.962** omitted -0.189 omitted

(0.376) (0.350)

ˆ Innovation intensity -0.268 -0.235 -0.380* -0.395*

(0.168) (0.173) (0.228) (0.229)

Post -0.150 -0.197*** 0.004 -0.024

(0.109) (0.074) (0.105) (0.075)

ˆ Innovation intensity 0.002 0.008 -0.191** -0.185**

(0.071) (0.071) (0.082) (0.083)

Innovation intensity 0.065 0.056 0.085 0.085

(0.045) (0.046) (0.066) (0.066)

NTR rate -1.839 -2.482 1.468 0.256

(1.541) (1.874) (1.795) (2.372)

ˆ Innovation intensity 0.583 0.584 0.576 0.666

(0.517) (0.525) (0.489) (0.477)

Observations 6,500 6,500 6,500 6,500

Fixed effects j, p j, p j, p j, p

Weights for tariffs unweighted major indust. unweighted major indust.

Notes: Table reports results of OLS generalized difference-in-differences regressions in which firm-level tariff measures

are constructed with different weights. Full controls are included. Estimates for industry (j) and the period (p) fixed

effects as well as the constant are suppressed. Robust standard errors adjusted for clustering at the level of the firms’

major industries are displayed below each coefficient. Observations are unweighted. Observation counts are rounded

due to Census Bureau disclosure avoidance procedures. * p ă 0.1, ** p ă 0.05, *** p ă 0.01.
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Table A16: Use inverse of the propensity scores to re-weight observations

∆Patents ∆Patents ∆Self-cite ∆Self-cite

(1) (2) (3) (4)

NTR gap ˆ Post -0.085 -0.058 -0.065 -0.294

(0.417) (0.420) (0.362) (0.351)

ˆ Innovation intensity -0.033 0.794***

(0.271) (0.269)

Observations 6,500 6,500 6,500 6,500

Fixed effects j, p j, p j, p j, p

Regression weights inv. propens. inv. propens. inv. propens. inv. propens.

Notes: Table reports results of OLS generalized difference-in-differences regressions in which observations are weighted

by the inverse of the propensity scores from logit model (y = indicator for analysis sample). Full controls are

included. Estimates for industry (j) and the period (p) fixed effects as well as the constant are suppressed. Robust

standard errors adjusted for clustering at the level of the firms’ major industries are displayed below each coefficient.

Observation counts are rounded due to Census Bureau disclosure avoidance procedures. * p ă 0.1, ** p ă 0.05, ***

p ă 0.01.

Table A17: Add the cumulative number of patents as a firm-level control variable

∆Patents ∆Patents ∆Self-cite ∆Self-cite

(1) (2) (3) (4)

NTR gap ˆ Post -0.000 0.004 0.088 -0.015

(0.279) (0.287) (0.290) (0.289)

ˆ Innovation intensity -0.011 0.786***

(0.231) (0.268)

Observations 6,500 6,500 6,500 6,500

Fixed effects j, p j, p j, p j, p

Notes: Table reports results of OLS generalized difference-in-differences regressions in which firm-level cumulative

number of patents are included as a control. Full controls are included. Estimates for industry (j) and the period

(p) fixed effects as well as the constant are suppressed. Robust standard errors adjusted for clustering at the level of

the firms’ major industries are displayed below each coefficient. Observations are unweighted. Observation counts

are rounded due to Census Bureau disclosure avoidance procedures. * p ă 0.1, ** p ă 0.05, *** p ă 0.01.
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Table A18: Cluster standard errors on firms

∆Patents ∆Patents ∆Self-cite ∆Self-cite

(1) (2) (3) (4)

NTR gap ˆ Post 0.004 0.010 0.103 -0.000

(0.287) (0.290) (0.308) (0.311)

ˆ Innovation intensity -0.012 0.784***

(0.235) (0.274)

Observations 6,500 6,500 6,500 6,500

Fixed effects j, p j, p j, p j, p

se. cluster firmid firmid firmid firmid

Notes: Table reports results of OLS generalized difference-in-differences regressions in which robust standard errors

are adjusted for clustering at the firm-level. Full controls are included. Estimates for industry (j) and the period (p)

fixed effects as well as the constant are suppressed. Observations are unweighted. Observation counts are rounded

due to Census Bureau disclosure avoidance procedures. * p ă 0.1, ** p ă 0.05, *** p ă 0.01.

Table A19: Effect of foreign competition on product add

Log number of products added Log number of products added

(1) (2)

NTR gap ˆ Post -0.209*** -0.208***

(0.067) (0.068)

ˆ Innovation intensity -0.554***

(0.196)

Post ˆ Innovation intensity 0.024

(0.088)

Innovation intensity 0.227***

(0.042)

Observations 497,000 497,000

Fixed effects j, p j, p

Notes: Controls include past 5-year U.S. patent growth in firms’ own technology fields, log payroll, firm age, NTR

rate and its interaction with innovation intensity, dummy for publicly traded firms, dummy for firms with total

imports ą 0, dummy for firms with total exports ą 0, and dummy for firms with imports from relative parties ą

0. Estimates for industry-period (jp) fixed effects as well as the constant are suppressed. Robust standard errors

adjusted for clustering at the level of the firms’ major industries are displayed below each coefficient. Observations

are unweighted. Observation counts are rounded due to Census Bureau disclosure avoidance procedures. * p ă 0.1,

** p ă 0.05, *** p ă 0.01.
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B.6 Technological Barrier Effect

Table A20: Technological-barrier effect

∆Patents ∆Patents ∆Self-cite ∆Self-cite

(1) (2) (3) (4)

Past 5yr ∆foreign patent, -5.984** -5.209* 9.076*** 8.712***

outside of own technology field (2.756) (2.733) (2.711) (2.740)

ˆ Innovation intensity 0.161 -0.365

(0.240) (0.264)

Past 5yr ∆foreign patent, 0.005 -0.006 0.033 0.021

inside of own technology field (0.079) (0.081) (0.081) (0.082)

ˆ Innovation intensity 0.048 0.047

(0.055) (0.059)

Observation 7,600 7,600 7,600 7,600

Fixed effects jp jp jp jp

Notes: Full controls except for the NTR rate are included. Estimates for industry-period (jp) fixed effects as well

as the constant are suppressed. Robust standard errors adjusted for clustering at the firm-level are displayed below

each coefficient. Observations are unweighted. Observation counts are rounded due to Census Bureau disclosure

avoidance procedures. * p ă 0.1, ** p ă 0.05, *** p ă 0.01.

Table A21: Effect of concurrent technological shocks

∆Patents ∆Patents ∆Self-cite ∆Self-cite

(1) (2) (3) (4)

5yr ∆foreign patent, -8.680** -7.637** 14.15*** 13.56***

outside of own technology field (3.546) (3.521) (3.540) (3.565)

ˆ Innovation intensity -0.063 0.081

(0.114) (0.122)

5yr ∆foreign patent, 0.212*** 0.228*** 0.133* 0.118

inside of own technology field (0.075) (0.077) (0.075) (0.076)

ˆ Innovation intensity -0.069 0.067

(0.062) (0.074)

Observation 7,600 7,600 7,600 7,600

Fixed effects jp jp jp jp

Notes: Description the same as Table A20.
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B.7 Industry-Level Regression

To estimate the effect of Chinese competition shock on the industry-level business dynamism statistics, I run the

following regression model for the years from 1992 to 2007

Yjt “ β1PostPNTRˆNTRGapj ` Xjt γ1 ` Xj0 γ2 ` δj ` δt ` α ` εjt , (B.25)

where Yjt is i) log of employment, ii) young firm share iii) startup rates, iv) exit rates, v) 90th percentile of firm

employment growth rates, and vi) 10th percentile of firm employment growth rates.

Table A22: Industry-level effect

log(Emp) log(Emp) by Share of Startup rate Exit rate P90 ∆Emp P10 ∆Emp

young firms young firms

(1) (2) (3) (4) (5) (6) (7)

NTR gap ˆ Post -0.632*** -0.809** -0.102** -0.036*** 0.014 -0.718*** -0.014

(0.231) (0.364) (0.047) (0.012) (0.010) (0.195) (0.134)

Obervations 6,200 6,200 6,200 6,200 6,200 6,200 6,200

Fixed effects j, t j, t j, t j, t j, t j, t j, t

Reg. Weights 1992 emp. 1992 emp. 1992 emp. 1992 emp. 1992 emp. 1992 emp. 1992 emp.

implied impact -20.19% -26.54% -3.01pp -1.05pp -23.24pp

Notes: Controls include NTR rate. Robust standard errors adjusted for clustering at the industry (j) level are displayed below each

coefficient. Estimates for industry and the year (t) fixed effects as well as the constant are suppressed. Observations are weighted by 1992

industry employment. Final row reports the predicted change in the dependent variable implied by the regression coefficient. Observation

counts are rounded due to Census Bureau disclosure avoidance procedures. * p ă 0.1, ** p ă 0.05, *** p ă 0.01.
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