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Abstract

We use conditional random assignment of roommates at the University of Maryland to estimate

the causal impact of social connections on political behavior. Using university data on roommate as-

signments matched to voter registration data, we compare counterfactual assignments of roommates

to those that actually occurred. We develop new methods to estimate exact bounds on treatment

effects to account for a partially missing independent variable. We find evidence of homophilic

preference formation as roommates are more likely to both be registered with the same party and

to both vote, in comparison to counterfactual roommate pairs randomly not selected. Keywords:

Preferences, Voting, Registration, Peer Effects.
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1 Introduction

How do political preferences form? Why are some people Democrats and others Republicans?

Why do some people register and turn out to vote whereas others do not? More generally, why do

people adopt their political identities and their levels of political involvement? Prior literature has

emphasized the roles of self-interest (Black [1948])), class interest (Marx [1926, 2005]), ideological hege-

mony (Gramsci [2011]), media (Herman and Chomsky [2010], DellaVigna and Kaplan [2007], Gentzkow

[2006], Martin and Yurukoglu [2017], Prior [2013]), and education (Cantoni et al. [2017], Bowles and

Gintis [2011], Marshall [2019]).

Another potentially important determinant of both political beliefs and political behavior is social

connections. There is ample evidence that friends tend to share similar political views. For example, a

2017 Pew Research poll finds that only 14% of Republicans and 9% of Democrats say that “a lot” of

their close friends are from the opposite party.1 A 2018 PRRI poll finds that 35% of Republicans and

45% of Democrats would be unhappy if their child’s spouse was of the opposite party.2

Recent research has documented that friendships are more politically segregated than news con-

sumption. Gentzkow and Shapiro [2011] compute partisan media segregation and compare it to partisan

segregation in friendships.3 They find that online media segregation “is somewhat higher than that

of a social network where individuals matched randomly within counties (5.9) and lower than that of

a network where individuals matched randomly within ZIP codes (9.4). It is significantly lower than

the segregation of actual networks formed through voluntary associations (14.5), work (16.8), neigh-

borhoods (18.7), or family (24.3). The Internet is also far less segregated than networks of trusted

friends (30.3) and political discussants (39.4).” In fact, some recent commentators have claimed that

political segregation is one of the main reasons for increased partisan animosity and hatred (Bishop

[2009], Mason [2018]).

In this paper, we estimate the causal effect of social connections on partisan orientation and political

participation through voting. Though the correlation in partisan attitudes and voter turnout is quite

strong among friends, it is not clear whether that reflects the impact of politics on friendship formation,

spurious correlation due to other factors such as race, gender, and education which influence both

friendship formation and political attitudes and behaviors, or the causal impact of friendship upon

political attitudes and behaviors.

The objective of this paper, to isolate the causal impact of friendship on politics, is challenging

1https://www.pewresearch.org/politics/2017/10/05/8-partisan-animosity-personal-politics-views-of-trump/

8_02/
2https://www.prri.org/research/american-democracy-in-crisis-the-fate-of-pluralism-in-a-divided-nation/
3Segregation indices measure the difference in interaction across two groups. The segregation index is minimized at

zero in the absence of segregation and is maximized at one hundred in the presence of complete segregation.
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for two reasons. First, friendships rarely form randomly. Social interactions, of course, often have

a strong random component. However, random social interactions are rarely deep enough to lead to

friendships important enough to substantively influence political opinions or behavior. Second, it is

often very difficult to find data on friendship formation. Governments do collect records on voter

behavior including registration, turnout, and partisan affiliation, but largely do not collect data on

friendships.

We are far from the first to write on the impact of social connection on attitudes. In 1954, Allport

et al., discussed how exposure to people from other social groups lowers discrimination. A number of

recent papers consider the long run impact of schooling on political attitudes and political participation.

Bergman [2018] uses a busing lottery to estimate the long run impact of being bused on voter registration

and voter turnout among minorities in California. His estimates are both very small and statistically

indistinguishable from zero. Billings et al. [2020] and Kaplan et al. [2019] estimate the impact of racial

integration on political partisanship, registration, and turnout. They both find large impacts upon

partisanship and no effects on registration and turnout many years later. Similarly, Calderon et al.

[2023] show that the great migration of African-Americans northwards in the U.S. resulted in shifts in

attitudes of their new white neighbors. Of course, racial integration is a composite effect, encompassing

many possible channels of influence. In contrast, our paper isolates one particular potential channel of

influence on political attitudes: peer effects.

Economists have estimated peer effects in other contexts including such diverse areas as academic

performance at school (Carrell et al. [2013], Sacerdote [2001]), major choice at college (Sacerdote [2001]),

productivity at work (Cornelissen et al. [2017], Mas and Moretti [2009]), and managerial practices (Shue

[2013]). We add to this list the important outcomes of political orientation and political action.

Fortuitous for our research design, one of the only common situations in which the formation of deep

friendships is, in part, governed by a random process is also one in which social connections are well

documented. Colleges and universities often randomly assign roommates to each other conditional upon

a small number of observed characteristics such as answers to lifestyle preference questionnaires and

gender. Other papers have used randomness in college roommate assignment to estimate the effects of

peers on a variety of outcomes. Sacerdote’s groundbreaking paper in 2001 used the random component

of roommate assignment at Dartmouth College to estimate the impact of friendship on grade point

average, social group formation, and major choice. More related to our own paper, Boisjoly et al. [2006]

use random assignment in UCLA dormitories to estimate the impact of having an African-American

roommate on White preferences towards affirmative action. They control for answers to questions used

to match roommates and estimate the impact of having an African-American roommates on preferences
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over affirmative action. They find that having an African-American roommate makes White students

more supportive of affirmative action.

Strother et al. [2021] is the paper most similar to ours. They use the randomness in roommate

assignment at two undisclosed universities to estimate the impact of roommates on ideology. Using

survey responses, they find that roommates who differ politically in a pre-freshman baseline survey

converge toward their roommate’s ideology. They do this by regressing an ordinal measure of roommate

2’s ideology in the follow-up survey on roommate 1’s baseline ideology conditional upon controls.

Relative to their paper, we offer a number of advantages. First, their paper focuses on ideology whereas

ours focuses on partisanship (party affiliation) and political participation. As a consequence, their data

comes from voluntary survey responses whereas we use administrative voter registration data. Second,

their sample is subject to substantial, potentially selective, attrition. In contrast, we use administrative

data for our analysis; as a result, do not encounter the same attrition issues. If individuals who had a

better experience with their roommate were more likely to respond to the Strother et al. [2021] survey,

and if those pairs were also more likely to be similar politically, then their paper may find political

convergence simply because the politically divergent roommates left the sample. Because Strother et al.

[2021] require both roommates to respond to the survey in order to be included in the sample, their

sample from their first survey included only 52% of all rooms, and their follow-up survey contained only

63% of those original 52% who both answered the first survey. In the end the final sample comprises

only 34% of the original pool of roommates. The non-response and attrition rates are sufficiently large

as to potentially explain the size of the effects that they estimate even with modest amounts of sample

selection. Third, our paper differs in that we construct treatment and control groups by modelling the

roommate matching process and comparing actual roommate pairings to counterfactual pairings that

were equally likely to have been formed but didn’t for random reasons. In contrast, Strother et al.

[2021] control linearly for variables used in roommate selection. Fourth, Strother et al. [2021] estimate

effects during only the first academic year, while the pairings are usually still roommates, whereas we

explore dynamic effects over time for a period of between one and five years.

Methodologically, we are closer to Sacerdote [2001]. However, we make a number of methodological

innovations, including using a randomization inference design and deriving bounds on the effects due to

partially missing data. Our basic strategy involves matching data on freshman roommate assignments

from the University of Maryland at College Park with voter registration files from the state of Maryland,

nearby states, and the District of Columbia. Roommates at the University of Maryland are assigned to

each other based upon answers to five lifestyle survey questions, gender, and participation in a living-

learning community (a residential academic community, henceforth LLP). We analyze voter turnout,

4



voter registration, and party of registration as outcomes for pairs of individuals matched as roommates,

compared to the potential roommate pairings that could have occurred based upon answers to the

lifestyle questions, gender, and LLP.

We present results from three different estimation strategies. We restrict our analysis to roommate

pairings who have identical answers to all lifestyle questions, are in the same LLP (or are both not in

any LLP), and have the same gender. In this trimmed sample, roommate assignments are random.

In our first econometric specification, we fully saturate an OLS model with lifestyle answer, LLP,

year, and gender fixed effects and regress the outcome of one roommate on the outcome of the other.

Since we do not observe the direction of causation within rooms, interpretation of these estimates is

difficult. Instead, our main estimation strategy employs a randomization inference design.4 Different

from standard randomization inference designs, we do not have variation treatment status in our

data, since treatment (roommate assignment) is at the room level and all rooms are treated. Thus,

our best comparison is between the actual roommates that were paired and counterfactual roommate

pairings that were equally likely to have been created but were, for random reasons, not selected.

We compute the fraction of rooms that have two Democrats, two Republicans, two Independents,

two registered individuals, two roommates who have both voted, two roommates who have the same

party affiliation. We then compute the percentile of double positive outcomes (i.e. double Democrats or

double registered) relative to the distribution of counterfactual double positive or homophilic outcomes5.

By permuting roommate assignment within groups of identically matched individuals, we eliminate the

role of covariates.

Since we have a large number of observations, we cannot compute the full distribution of coun-

terfactual roommates assignments. Instead we limit ourselves to a Monte Carlo simulation of 10,000

replications of roommates pairings in order to produce a distribution of potential outcomes. Ran-

domization inference allows us to compute p-values for the probability of observing as many or more

homophilic outcomes by random chance. However, traditional randomization inference does not pro-

vide us with a notion of a treatment effect. For this, we compute two measures of a treatment effect:

(1.) the actual degree of homophily (fraction of outcomes which are the same) relative to the mean

of the counterfactual distribution and (2.) the actual degree of homophily relative to the median of

the counterfactual distribution. In a third estimation strategy, we combine the actual data and the

counterfactual data in one regression and run a fully saturated OLS model where treatment is the set

4We are the first that we are aware of to use a randomization inference design to estimate peer effects using roommates.
5We use homophily and double positive outcomes synonymously. We could measure homophily as all the instances in

which both roommates, as an example, shared the same partisanship. Instead, we will measure homophily as the number
of double positive outcomes. So when we look at Democrats, our measure of homophily will be the number of rooms where
both roommates are Democrats independent of whether the rooms without two Democrats are all double Republican and
double Independent, all mixed partisan, or somewhere in between these two extremes.
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of roommate pairings that actually occurred and control is the set of pairings that randomly did not

occur. This uses similar variation to our main randomization inference strategy, but puts the estimates

in a more traditional OLS framework.

We encounter one additional difficulty in our estimation which is the source of the largest econo-

metric contribution of the paper. We have all of the data from the Residential Life department used in

matching roommates, except for gender. The gender variable was owned by the registrar, who would

not provide us with the data. However, in 84% of cases, we can recover gender from the voter registra-

tion file that matches the individual or from the voter registration file of the individual’s roommate.

We then derive exact p-value bounds for our randomization inference p-value estimates by filling in

the remaining missing genders. Different from papers such as Lee [2009], our missing variable is an

independent variable and is discrete, meaning for each individual we only have to consider two possible

values that the variable could take. Nonetheless, it is computationally infeasible to compute all the

counterfactual assignments to gender which could have occurred. We thus derive the formula for the

probability of a certain number of double outcome rooms, given a fraction of roommates with a given

outcome, and we use that to compute the distribution of the number of counterfactual rooms with a

double positive outcome. We then use this distribution to compute the treatment effect minimizing and

treatment effect maximizing assignment of gender for each room with unknown gender6. As a result of

this, we can compute a sharp lower-bound effectand a sharp upper-bound effect.

Our main findings are that there are between 4% and 15% higher pairings of Republicans com-

pared to the median counterfactual, 5-13% higher pairings of Democrats, 2-10% higher pairings of

Independents, a 3-7% higher rate of both roommates voting, a -0.8-3.8% higher rate of both room-

mates being registered and a 6-11% probability of both roommates being from the same party. We

thus provide causal evidence that friends influence each others’ partisanship and political participation

to a significant degree.

In Section 2, we discuss roommate assignment at the University of Maryland; in Section 3, we

discuss the data that we use for our analysis; in Sections 4 and 5, we discuss our methods for estimating

treatment effects and present our initial empirical results; in Sections 6 and 7, we discuss our method

for bounding the treatment effects based on the partially missing data and present the corresponding

empirical results; in Section 8, we conclude.

2 Institutional Background

Our paper uses data from freshmen roommate assignment at the University of Maryland at College

Park from the years 2011-2015. In this section, we discuss the University of Maryland, its on-campus

6Where the definition of treatment effect is the actual outcome relative to the mean counterfactual outcome
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housing, and the assignment process of roommates. The assignment process is important as our research

design is based on the fact that aside from a small number of demographic variables and answers to

lifestyle questions, assignment to roommates is mostly random.

The University of Maryland at College Park is a large, selective public research university.7 Un-

dergraduate enrollment over this five year period averaged 26,900 students per year. The university

size of the Freshman class was 3,991, and most students live on campus during their first year. 92%

of freshmen students live in dormitories, another 5% live in suites, and 3% live in apartments. We

focus on those living in dorms as freshmen living in apartments are likely to have been selected by

their roommates. Out of dormitories, singles do not allow for the estimation of roommate effects and

thus are excluded. In triples and quadruples, conceptualizing roommate effects is substantially more

complex, so we also exclude those. Our estimation sample uses only students living in doubles, which

makes up 68% of freshmen. Appendix Figure AF1 shows the size distribution of living situations for

dormitories, apartments, and suites.

Forty-five percent of freshmen are in a Living-Learning Program (LLP). An LLP is a section of

the dormitories, ranging from a hallway to an entire building, in which students belonging to the same

academic program or interested in the same academic course of study live together. The number of

LLPs increases over the time period of our analysis, starting with 23 in 2011 and ending with 29 in 2015.

The median LLP has around 70 freshmen members, but LLPs range in size from 2 to 526 freshmen in

any given year.

A total of 2,111 out of our sample of 21,396 Freshmen are in a program called Freshmen Connection,

which delays formal admissions until the Spring semester and requires students to take a fixed set of

courses for their first semester. Some members of Freshmen Connection live on campus in the Fall

before the Spring of their formal admittance, and those students are often matched with each other

because they receive low priority in the housing process. We are able to identify these individuals in the

data and treat them as members of another LLP for the purposes of defining the level of randomization.

During this period, students enrolling in the university received a housing questionnaire which asked

two questions about smoking status and one each about neatness, study habits, and sleep schedule.

After students returned the questionnaire, the university assigned them to rooms based on eight factors:

(1.) membership in an LLP, (2.) participation in Freshmen Connection, (3.) gender, and (4.)-(8.) the

five questionnaire answers. Students were assigned first to double rooms with one roommate. Once

double rooms were filled, remaining students (i.e. the students who were the last to return their housing

questionnaire) were assigned to triple and quadruple rooms.8 Rooms are already pre-designated as

7The university’s average acceptance rate over the 2011-2015 time period of our data was 46%.
8Everyone not in Freshmen Connection who applies before the housing lottery application deadline is treated symmet-
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triples and quadruples before the housing assignment begins, which means that the entire triple or

quadruple room is filled with students who applied for on-campus housing late.

Since our research design relies upon conditional random assignment, we briefly discuss other possi-

ble non-random elements of roommate assignment. A small number of roommates come from requests

by people who knew each other before coming to the University of Maryland. A very small second

group of freshmen are reassigned by request before the end of the semester (the time at which the data

we observe on freshmen pairings is recorded). Roommate separations in the first semester are very

rare; the Office of Residential Life rarely approves of within-semester transfers. However, when this

does happen, the roommates usually end up living alone for the remainder of the semester and thus

will be dropped from our sample. Freshmen are supposed to apply for on-campus housing in May of

the year in which they are admitted for entrance in the fall and roommate announcements are made a

few weeks prior to the beginning of the semester. There is little time to change roommates before the

semester begins and mid-semester changes are exceedingly rare.

In our main specifications we restrict our sample of roommate pairings to those with identical data

(demographics, lifestyle questions, LLP, and Freshmen Connection participation). It is very rare that

roommate requests or roommate reassignments would have identical answers to the questionnaires,

choices of LLPs, and Freshmen Connection participation. We compute, in Table 3, the probability of

being exactly matched under different assumptions. Conditioning upon year of entry and gender, the

probability of being exactly matched by random chance is 3.7%. In addition, those who did not make

the official application deadline are unlikely to be in doubles and extremely unlikely to be in perfectly

matched doubles. Thus, in combination, these three sources of non-random selection should reflect a

trivial fraction of our sample.

3 Data

Our study necessitates matching confidential data on roommate assignment to voter registration

data. In this section, we describe each of the two data sources as well as the matching process between

the two. We also discuss how we narrow the sample after matching to the sample that we select for

our main estimation.

3.1 Voter Registration Data

We collected data on voter registration and election participation from five states (New York, New

Jersey, Pennsylvania, Maryland, and Delaware) as well as the District of Columbia. Together, these

states represented the states of application for 90% of the students that attended the university in Fall

rically. Historically, there has been enough space to accommodate all who made the application deadline in doubles.
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2020.910 Post-graduation surveys also show these to be the main locations to which students move

after graduating from the University of Maryland. One additional state, Virginia, declined to provide

data to researchers.11

For each state, we collected data on voter registration status, gender, date of registration, party of

registration, and voter participation history. From this information, we separate political parties into

Democrat, Republican, and Independent. We characterize unaligned voters as Independents.12 The

voter participation data is a set of binary indicators for participation in federal presidential and federal

midterm election (both primary and general). In presidential election years, we collect participation for

both the earlier presidential primary and the later state primary (for cases in which such primaries are

held separately) in addition to participation in the general election. The data cover all such elections

from 2008 to 2015. From this data, we construct a binary variable which takes on a value of one if the

individual has ever voted in a federal general election and zero otherwise.13

3.2 Residential Life Data

The Residential Life data contain all the information used to match roommates except for gender,

which is owned by the Office of the Registrar. The data include five lifestyle questions: (1.) whether

the individual wakes up early, (2.) whether the individual likes maintaining a neat room, (3.) whether

the individual smokes, (4.) whether the individual is tolerant of others smoking, and (5.) whether

the individual studies in the room. The data include three additional variables: the year in which the

individual was a freshman, whether the individual is in Freshmen Connection, and any Living Learning

Program (LLP) participation.14

As mentioned, the Residential Life Data does not include gender. In 86% of cases, we are able

to recover gender from a match of the individual or their roommate to voter registration data which

always contains gender for the six states in our sample. However, in 14% of cases, we do not know

gender. This presents a non-trivial data challenge for the empirical analysis. To address the partially

missing data we developed novel econometric methods which will be discussed at great length in the

9Note that we are using and will continue to use the word state loosely to include Washington, D.C. which is not
technically a state.

10https://www.irpa.umd.edu/CampusCounts/Enrollments/map_us.pdf
11Virginia only provides data to political campaigns and interest groups
12There are also a small number of voters registered for third parties such as the Green party or the Libertarian party.

There are a sufficiently small number of third party voters that we do not have the precision to estimate the impact
of roommate pairings on third party affiliation. We code these voters as “Other” (i.e. not Democrats, Republicans or
Independents). Thus our partisan categories are mutually exclusive but not exhaustive.

13Note that we do not see when people re-register in another state. Thus, it is possible that our measure of voter
turnout is a lower bound of true voter turnout even for those who are registered, to the extent that they then move to
another state.

1450 pairs of individuals are in more than one LLP, 49 of these are in different LLPs; we drop all 50 of them from the
sample.
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methodology section.

3.3 Matching

According to FERPA (the Family Educational Rights and Privacy Act), we are not allowed to

see the identified data from Residential Life. Instead, we provided the voter registration data to the

university officials, who carried out the matching according to an agreed-upon procedure. They then

anonymized the data and provided the resulting deidentified dataset to the researchers. The matching

procedure used an exact match on birth year and last name followed by a fuzzy match using Soundex on

first name. In the event of multiple matches, the record matching the zip code of initial application was

preferred if available. Overall, there were only three multiple matches in which the party information

differed. We drop these three individuals.

Since we do not know how matching is carried out between observed roommate pairs who have

differences in lifestyle questions, LLP, Freshmen Connection participation, or gender, we restrict our

sample to an exactly-matched sample of individuals who are identical in all the data we observe. We

make the assumption that all individuals for whom we do not observe gender are matched on gender.

Mismatch when we observe gender happens less than 3% of the time. Because the group missing gender

makes up 14% of the overall sample, we believe that at most about 0.4% of individuals (9 rooms) in

the missing-gender sample would have been mismatched on gender.

4 Methods

We aim to compare outcomes for actual roommate pairs relative to those for roommate pairs

that were equally likely to have formed but did not due to random chance. We use two methods

for estimation, OLS regression and randomization inference. Whereas OLS is more standard in the

economics literature, randomization inference is better suited to our needs for two reasons. First: OLS

in this setting uses variation across rooms, whereas our notion of causation derives from the comparison

of outcomes in the roommate pairs that were selected relative to the ones that were not selected due to

random chance. That comparison is exactly what randomization inference allows us to carry out. The

second benefit of randomization inference is that we can empirically estimate p-values without having

to invoke the central limit theorem and make asymptotic approximations. In addition to these two

estimation methods, we present a novel hybrid method in which we estimate treatment effects using

OLS but on the pooled actual and counterfactual data derived from the randomization inference. To

our knowledge we are the first paper to combine these two methods.
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4.1 Fixed Effects

We begin with OLS estimation, for which we follow the original paper in the economics literature

that estimates peer effects using random assignment of roommates (Sacerdote [2001]). In particular

we collapse the data to the room level and regress the outcome of one individual on the outcome of

the other. However, this is complicated by the lack of a natural ordering of roommates. As a result,

estimates may depend upon the way in which the roommates are ordered in the data set. In our main

results we randomly categorize one roommate within the pair as the dependent variable roommate and

the other roommate as the independent variable roommate. Of course, roommate order is then a source

of randomness in our estimates. To take account of this randomness, we bootstrap our standard errors

with 10,000 replications for this estimation strategy, simultaneously selecting a bootstrapped sample

and a roommate ordering. The standard errors thus simultaneously account for randomness coming

from both sampling and from roommate order.

In addition, a simple regression of one outcome on the other without covariates ignores the way

in which roommates are randomly assigned conditional on their individual characteristics. The actual

data are sorted on covariates over which people may be politically more similar. For example, women

tend to register more for the Democratic party whereas men tend to register more for the Republican

party. Thus roommates who are sorted on gender, due to the conditional assignment within groups

defined in part by gender, will have correlated partisan registration even if there is no social influence

on politics. For this reason, in our OLS estimation we additionally control for the covariates used to

sort roommates.

We incorporate controls in two ways. We first control for all individual covariates simultaneously.

The covariates include fixed effects for answers to each of the lifestyle questions, a fixed effect for

participation in Freshmen Connection, a separate fixed effect for each of the living-learning programs

(LLPs), and a year of entry fixed effect. In most, though not all, specifications we also control for

a gender fixed effect. Second, we fully saturate the model by including a fixed effect for every set of

covariate outcomes where we observe at least two rooms full of identical individuals.15 We call the set of

individuals with a certain list of identical covariates a group. In almost all of our regressions, we restrict

to the fully-matched sample in which roommates do not differ in covariates used for selection and thus

are in the same group. In this case, each room will belong to one and only one group. However, in the

few specifications where we expand our sample to include imperfectly matched roommates, rooms will

sometimes belong to more than one group and thus be subject to more than one group fixed effect.

15If there is only one room of identical individuals, the observation will be effectively removed by the fixed effect and
thus will not impact the estimate. As a result, we drop singleton groups.
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We interpret our estimates as the conditional correlation in political beliefs of roommates, controlling

for determinants of roommate assignment. We could interpret them as the causal effect of the roommate

assignment, but we do not interpret it as the causal effect of one roommate’s views or actions on

the other’s since we cannot disentangle whether the first roommate influenced the second roommate,

whether the second roommate influenced the first roommate, or whether they influenced each other.

Our estimation strategy is given by Equation 1:

Oi,g,c = α+ βRoomOuti,g,c + γg,c + εi,g,c (1)

where Oi,g,c is the outcome variable for the second roommate, i indexes individuals, g is the room-

mate assignment group and c is the cohort. The variable RoomOuti,g,c is the outcome of the first

roommate. This could be either a partisanship indicator or a measure of voter turnout. Finally, γg,c is

a roommate group-by-cohort fixed effect.

We present results without fixed effects, with fixed effects, and with fully saturated fixed effects.

We also show the model estimated both on the full sample as well as a restricted sample of roommate

pairs who are perfectly matched on roommate selection questions. Since gender is missing in 14% of

observations, we (1.) show estimates where we condition upon gender and thus drop those rooms where

gender is unknown and (2.) show estimates where we do not condition on gender at all. Later in the

paper, we develop a method to assign gender to those missing cases in a way that either maximizes or

minimizes the size of the treatment effect. We also present OLS results using these two samples (the

sample with gender imputed such as to minimize the effect size, and the sample with gender imputed

such as to maximize the effect size), which provides lower and upper bounds on our treatment effects.

4.2 Randomization Inference

Our second main approach uses randomization inference. Here we reassign roommate pairings

within groups as defined previously. Our goal is to compute what outcomes would have looked like if

a different roommate pairing had occurred. If roommates display a systematically greater degree of

political similarity in the actual pairings we observe than in the counterfactual pairings that did not

occur, then we can reject the hypothesis that there is no social influence on politics among roommates.

In most randomization inference designs, some units are treated and others are not and the design

reassigns treatment across units. However, in our context all units (rooms) are treated. We instead

use randomization inference to create those counterfactual pairings and compute the degree of agree-

ment (homophily) among all rooms that could have been paired in alternative draws of the roommate

randomization process.
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Our outcome measure is the fraction of time individuals have the same outcome of interest: they

are both Democrats, they are both Republicans, they have the same party affiliation, they are both

Independents, they both voted, or they both registered to vote. We compute this in our sample of actual

roommate pairings. Then we permute roommate pairings within groups (where group is defined by

individuals who are freshmen in the same year and match on all characteristics used for assignment of

roommates) to form a counterfactual data set. In that data set, we compute the fraction of roommates

in which we see agreement for each outcome measure. We then repeat the permutation 10,000 times,

each time computing the fraction of roommates in which we see agreemnt on those outcome measures.

Finally, we compare the actual to counterfactual outcomes by computing the fraction of time the

counterfactual roommate pairings yield a higher degree of agreement than in the actual observed

roommate pairing. In this sense, we compute a one-sided p-value. Comparing that p-value to standard

levels of statistical significance tells us how confident we can be that the agreement among roommates

on political outcomes is not just due to random chance.

We face one insurmountable computational problem: the number of counterfactual assignments is

much larger than is computationally feasible. To give a sense of the magnitude: our largest group has

180 individuals, corresponding to 90 rooms. Even with only one group of just 100 people (50 rooms),

there are 100!
50!250

possible ways to pair the roommates, which is a number with 141 digits.16 Thus, we

use Monte Carlo methods and limit ourselves to 10,000 randomly selected alternative partitions of the

data.

4.3 Randomization OLS

We now discuss our third estimation method. Here we combine randomization inference with OLS

and call the approach “randomization” OLS. As we noted above, our identification really comes from the

actual assignment of roommates relative to those roommates assignments that could have happened

but were not realized. Randomization inference is useful for helping us think about design-based

identification. In particular, as we noted, all of our roommate pairings are treated and the control

roommate pairings are ones that we don’t directly observe but that we can construct under a null

hypothesis that treatment does not influence outcomes. We thus take all the counterfactual roommate

pairings from the randomization inference and pool them with the actual roommate pairing data. We

define all the counterfactual allocations as the control observations and all the actual allocations as the

16If there are 100 individuals, we can think of ordering them, and then partitioning each successive group of two to
form a room. In that case, there are 100! orderings. However, only the assignment of individuals to rooms matter. Any
ordering which differs only by the ordering of the rooms should be considered as the same assignment. Thus, for any
ordering, there are 50! redundant orderings which have the same assignment to roommates but differ in the orderings of
the rooms. In addition, any reordering of roommates within rooms should also be redundant and there are 250 of those
reorderings.
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treated observations. When we do this, we multiply our sample size by a factor of 10,001. We then run

our OLS-type regressions but where we define the treatment variable as whether the room is a control

or treatment observation. The outcome variable of interest is whether both roommates in the room

have the relevant political outcome. We estimate Equation 2:

Og,c = α+ βActualg,c + γg,c + εg,c (2)

where Og,c takes on a value of 1 if the political variable (such as a dummy variable for Democrat)

is equal to 1 for both individuals and 0 otherwise and Actualg,c is the variable identifying whether the

room is a treatment or control (counterfactual) room. The interpretation of the β coefficient is the

average excess fraction of times where both individuals have a positive political outcome (i.e. both voted

or both are Democrat or both are Republican) in the actual relative to in the mean counterfactual.

Again, this represents how much more agreement we see in our actual data than we would expect to

see by random chance.

5 Results Without Formal Bounds

We now present our first results. We begin by discussing in detail how we select our estimation

sample. Then we turn to our OLS analysis in which we consider specifications conditioning on gender

(and thus excluding rooms without gender from the sample) as well as not conditioning on gender (and

thus keeping rooms which do not have gender in the sample).

5.1 Sample Restrictions

We start with a discussion of the sample selection process. Our initial sample includes 21,396

Freshmen who lived in University of Maryland dorms between 2011 and 2015. Our final sample will

be restricted to groups of individuals living in doubles in dorms who are identical according to the

information seen by the Office of Residential Life when they carried out roommate assignments. Within

each of these groups, we argue that assignment was, with minor exception, random.

From our initial sample of freshmen living on campus, We first consolidate multiple matches by

dropping individuals who have multiple voter registration observations matched to the same student

ID. These cases occur when multiple voter registration records have the same birthday, an exact match

to the last name, and a Soundex match to the first name. Some of those reflect individuals who

registered in their home state and then re-registered in Maryland. For most of these multiple matches,

we merge them into one individual’s record. 17 In the case where two voting records are matched to

17We could, in principle, have preferred individuals with an exact first name match when we had multiple Soundex
matches but only one exact name match; however, we opted for a conservative approach at the expense of power.
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the same individual but the records differ on political party, we drop the student from the sample. If

they differ in voting history but not party, we assume it is the same person. The consolidations and

eliminations of multiple matches decrease our sample by 1.8%, almost exclusively due to consolidation.

We additionally drop the 0.01% of observations who did not answer all the lifestyle questions. Though

the student records we received from the Office of Residential Life are exclusively of freshmen, 6.40%

of the sample had a roommate who was not a freshman. We drop those individuals from our sample as

they reflect either non-random selection, imperfect matching, or both. We drop another 2.2% who were

assigned to live in apartments rather than dorms because we expect more self-selection into apartments.

Roommates are assigned to LLPs based upon academic performance, interests, and admission

to certain limited-enrollment majors such as engineering and computer science. In 18.20% of cases,

individuals are paired with someone admitted to a different LLP, and we drop all those cases. We also

drop the 4.72% of observations for which one roommate participated in Freshmen Connection and the

other did not. We then restrict our sample to individuals who were assigned to a double, which reduces

our sample by an additional 28.01%. Finally, we exclude 2.91% of the sample where the roommates

differed on gender followed by an additional 2.9% of the sample with additional data quality issues.18

Overall, these sample restrictions leave us with 47.55% of our original sample: 10,174 students in 5,087

rooms. We use this sample, which we call the “full” sample, in some analysis. However, our preferred

analysis sample is further restricted to individuals who are identical to their roommate in terms of

their responses to lifestyle questions, LLP membership, and Freshman Connection participation. This

restriction to what we call the “exact match” or “fully matched” sample represents an additional 59.21%

decrease in the sample size, leaving us with 4,150 students in 2,075 rooms. If we additionally restrict

our sample to those with known gender we lose another 14.3% leaving us with 3,558 individuals. Table

1 below shows how we go from the full sample to our estimation sample.

Sample means for the fully matched sample are shown in Table 2 below. In the Appendix, we

also show summary statistics for the full sample (Appendix Table AT2). While a substantial majority

of college attendees nationally are women, the University of Maryland has an unusually high fraction

male. Out of the fully matched sample with known gender, 56.4% are male and 43.7% female. In

the fully matched sample not restricting on gender, 29.1% (31.3% of men, 37.5% of women) are reg-

istered Democrat.19 Registered Republicans represent less than half the sample relative to registered

Democrats, at 12.8% (16.3% men, 13% women) of the overall sample. A substantially higher fraction of

18This final group of drop observations include those where at least one roommate’s listed matriculation term as the
previous fall, the previous summer, or the following spring; where the listed matriculation term was blank; or where the
individual was listed as being a first-time student living in on-campus housing twice in the data.

19The fraction of the overall sample that is registered Democrats is lower than the minimum of the fraction of men and
the fraction of women registered Democrat because those without a gender in our sample are not registered to vote and
none of them therefore are registered Democrat.
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Table 1: Sample Restrictions

Observations % Dropped
% Remaining

of Original

Start 21396 . .
Drop duplicate students 21011 1.80 98.20
Drop if missing survey answers 21009 0.01 98.19
Drop if non-freshman roommate 19665 6.40 91.91
Drop if apartment 19233 2.20 89.89
Drop if in different LLPs 15733 18.20 73.53
Drop if different Fresh Connect 14991 4.72 70.06
Drop non-doubles 10792 28.01 50.44
Drop if opposite-gender roommate 10478 2.91 48.97
Drop if flag on data 10174 2.90 47.55
Drop if not exact match 10174 0.00 47.55

the sample is registered Independent, at 23.9% (28.7% men, 26.7% women). Two thirds of the sample

is registered to vote, though only 27.1% had voted by 2015 when we collected our data.20 This is

because the one presidential election that individuals starting college between 2011 and 2015 had the

chance to vote in by the time of our data collection was the 2012 election and most of our sample was

too young to vote at that time. In terms of the lifestyle questions, there isn’t as much variation. The

vast majority of students are non-smokers, with 98% of the sample object to smoking and less than

0.01% claim that they smoke. 90% study in the room, 82.8% say that they are neat and 76.3% say

that they get up early. Only 8% are in freshman connection. The largest components of the variation

are gender and membership in an LLP. 56.8% of the sample belong to an LLP and these individuals

are further split among 29 total LLPs.21

Most of the variables used to carry out roommate matching are not particularly correlated with

each other. We show these correlations in Appendix Table AT3. The main exceptions are (1.) being a

smoker is negatively correlated with objecting to smoking; this correlation isn’t perfect because some

non-smokers do tolerate smoking, (2.) being in Freshmen Connection is negatively correlated with

being in an LLP, since the former is negatively and the latter positively correlated with prior academic

performance, (3.) objecting to smoking is positively correlated with both getting up early and being

neat, and (4.) getting up early is positively correlated with being neat.

20We compare these numbers to numbers from the 2016 Cooperative Election Survey (CES). CES does not ask if
someone is in college. Instead, we use all individuals between 18 and 23 who report having some college as our population.
The survey reports that 59% of college attendees are female. This is close to the national average at the time: 58%. The
fraction Democrat are slightly higher in the CES than in our sample: 43.7% for women and 34.9% for men. The fraction
Republican are also slightly higher: 20.1% for men and 17.4% for women. The fraction of Independents is lower at the
University of Maryland. We do note that we are comparing the party ID variable in the CES to actual voter registration
in our data. In terms of registration rates, we find 81% for women and 80% for men in the CES. This CES registration
rate is higher than in our sample but is self reported and was collected after the beginning of a presidential election year.

21There are only 27 LLPs in the exactly matched sample. This is because two small LLPs have no exactly matched
roommate pairs.
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Table 2: Sample Descriptive Statistics

Total Male Female Gender Unknown

Democrat 0.291 0.313 0.375 .
(0.454) (0.464) (0.484) (.)

Republican 0.128 0.163 0.130 .
(0.334) (0.370) (0.337) (.)

Independent 0.239 0.287 0.267 .
(0.426) (0.453) (0.443) (.)

Voted 0.271 0.301 0.336 .
(0.445) (0.459) (0.473) (.)

Registered 0.664 0.770 0.781 .
(0.472) (0.421) (0.414) (.)

Smoker 0.001 0.001 0.001 0.000
(0.031) (0.032) (0.036) (0.000)

Objects to Smoking 0.979 0.973 0.986 0.980
(0.144) (0.162) (0.118) (0.141)

Neat 0.828 0.799 0.850 0.868
(0.377) (0.401) (0.357) (0.339)

Wakes up Early 0.763 0.769 0.743 0.794
(0.425) (0.422) (0.437) (0.405)

Studies in the Room 0.900 0.907 0.903 0.868
(0.300) (0.290) (0.296) (0.339)

Freshman Connection 0.081 0.080 0.057 0.149
(0.273) (0.271) (0.231) (0.356)

In an LLP 0.568 0.580 0.627 0.372
(0.495) (0.494) (0.484) (0.484)

N 4150 2008 1550 592
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In Appendix Table AT4, we show correlations between political variables and the variables used to

assign roommates. For the purposes of this table, we assign a zero rather than a missing to all political

variables for those who do not appear in the voter registration data since, being unregistered, they

also have not voted and are not registered with a party.22. The correlations of political outcomes with

lifestyle questions, LLP participation, and gender are primarily small, ranging from about -0.09 to 0.15.

Students who are early risers are slightly less likely to be Democrats, while students who prefer a clean

dorm are slightly less likely to be registered and are less likely to vote. Being in an LLP is positively

correlated with both being registered to vote and with turning out to vote, while being in Freshmen

Connection is negatively correlated with both. This implies that academic performance is positively

associated with both registration and turnout. Furthermore, LLP membership is positively correlated

with being a Democrat and Freshmen Connection participation is negatively correlated with being a

Republican. Women for whom gender is known are more likely to be Democrats and less likely to be

Republicans, as is the case nationally. This table also presents correlations of political outcomes with

upper and lower bound gender variables. Those rows refer to the samples we will construct in which

we fill in missing gender based on the coefficient-minimizing and coefficient-maximizing assignment of

gender. We will return to those correlations after we discuss in more detail how we assign gender in

Section 6.

5.2 Roommate-Level Regression Analysis

The correlations discussed above are at the individual level. However, though treatment (having

a roommate with a certain political outcome) occurs at the individual-level, random-assignment is at

the room level. The individual-level correlations presented in the prior section are difficult to interpret

as casual effects on three grounds:

1. Full Saturation: Assignment is not guaranteed to be random except within fully-matched

groups

2. Manski Reflection Problem: The direction of causality across individuals within the room is

not observed; worse yet, influence likely runs in both directions within a roommate pair.

3. Counterfactual Analysis: At the room level, at which random assignment occurs, there is

no variation in treatment across the data as all rooms are treated. The ’controls’ are room

assignments that did not occur and are therefore unobserved.

22There is a possibility that they are registered but in a state not in our sample. However, the vast majority of US
citizens at the University of Maryland come from states for which we have voter registration data.
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In Appendix Table AT5, we present our first regression results. In the first two columns, we estimate

on the fully matched sample without missing gender. This sample has at least one individual in each

room who is registered to vote. In the latter two columns, we show results where we include those

without known gender in the sample. In the second and column, we add fixed effects for all grouping

variables involved in roommate assignment. In the fourth column, we do the same except we exclude

gender from the set of grouping variables. There are 1.779 fully matched rooms with known gender and

2,075 fully matched rooms if we drop gender as a grouping variable. This means that these samples

are based upon 3,558 and 4,150 roommates respectively. The sample with 2,075 individuals will be our

main sample for most of the paper. We find that coefficients are uniformly much more positive when

we include rooms with unknown gender than when we drop such rooms. The estimates for registration

are particularly extreme. For example, in the specification without control variables, estimates increase

from −0.304 to +0.137 from adding rooms without known gender and both estimates are significant

at well below a 1% level of confidence. Though adding in controls does change some estimates, the

changes are small in comparison with the changes due to adding rooms without known gender.

In Appendix Table AT6, we fully saturate our models on all grouping variables used for roommate

assignment. We see this as an improvement in identification over the prior estimation strategies used in

papers which utilize conditional random assignment of roommates. Again, in the first two columns, we

estimate on the fully matched sample without missing gender and in the last two columns, we estimate

on the fully matched sample including rooms with unknown gender. In the second and fourth columns,

we estimate effects by group and then aggregate using sample frequency weights. We do this because, as

shown in (Solon et al. [2015]), in the presence of both heterogeneous effects by groups and heterogeneity

in the variance of the main independent variable, OLS will not correctly produce the average treatment

effect. We again find that dropping rooms without known gender leads to substantially more negative

effects. Full saturation does alter some of the coefficients though not in a systematic manner. Weighting

also changes individual coefficients and some times to a significant degree. However, weighted estimates

are not systematically more negative or more positive than unweighted estimates. We will discuss the

reasons for the stark differences between estimates dropping rooms with missing gender and estimates

including rooms with missing gender below.

To address two of the threeconcerns mentioned above, we now turn to our randomization inference

results. These estimates are at the room level, based upon reassignment of roommates within fully-

matched groups, and involve creating counterfactual control pairings to compare to the treated factual

roommate pairings. The results are presented in Appendix Figures AF3 and AF4. Appendix Figure

AF3 includes gender as a variable used in the formation of the groups and thus excludes the rooms
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with no gender. This is comparable to the “conditioning on gender” columns in the OLS regression

tables. Appendix Figure AF4 does not include gender as a variable used in the formation of groups

and is comparable to the “not conditioning on gender” columns. The figures show each of the six

outcome variables, including same party defined by roommates being both registered Democrats or

both registered Republicans. Each of the six figures presents a non-parametric distribution of how

many times both roommates share the outcome (both are Democrats, both are Republicans, both

are Independents, both are from the same party, both are registered, and both voted). The mean

counterfactual is shown in the purple dashed line and the actual is shown in a red dashed line. The

figures also show the p-value for the actual (i.e. the fraction of counterfactual assignments that produce

an outcome greater than the actual) and the median treatment effect, which we define as the difference

between the actual fraction of agreement and the median counterfactual fraction of agreement.

Similar to the OLS results, in the figures based on the sample conditioning on gender, the actual

fraction of agreement for a given outcome is very close to the median counterfactual - with the exception

of registration, in which the actual fraction of agreement is a large negative outlier. On the other hand,

in the figures which do not condition on gender, the actual fraction of agreement for both roommates

is uniformly above the meancounterfactual fraction. In fact, in four of the six outcomes, the actual

shares are within the top 1%. In other words, the one-sided p-values are below a 0.01 significance level.

What is the intuition behind these results? It is essentially the same as the intuition for the OLS

results. When we condition upon gender in order to define the groups within which randomization

occurs, we exclude all those missing gender from the counterfactual pairings. And the students missing

gender are specifically those who have a zero for all political outcomes since they are not registered.

This exclusion falsely increases the fraction of two positive outcomes in the counterfactual distribution

and thus lowers the relative position of the actual in the distribution of the counterfactuals. On the

other hand, when we don’t condition upon gender when defining the groups within which randomization

occurs, then many of our counterfactual room assignments are pairing individuals with different genders

which, as we have shown in Table AT4, have different associations with political outcomes (for example,

female students are more likely to be Democrats). This falsely decreases the fraction of two positive

outcomes in the counterfactual distribution, making it seem like the amount of agreement we see in

the actual sample is very unlikely to happen by random chance. As a result, when we condition on

gender the estimated mean treatment effects are too low, and when we do not condition on gender, the

estimated median treatment effects are too high. The impact of missing gender is particularly stark

when we look at registration as an outcome because being registered is the most correlated with missing
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gender.23 Appendix Figure AF5 highlights those dramatic differences in the estimates for registration

to show how important including versus excluding gender is for our analysis.

In summary, the randomization inference results are broadly consistent with the OLS results. We

now address the main challenge with our estimation thus far: how to incorporate the potential bias

introduced by the missing gender variable. We do this by constructing strict bounds on our estimates

as is popular in the partial identification literature (Manski [1990, 2003], Tamer [2010]). We describe

our approach in the next section.

6 Methods II: Bounding the Missing Gender Variable’s Impact

The discussion in the previous section reveals the consequences of two simple ways to approach

the partially missing gender variable. We can either drop all the gender variable from the analysis

or restrict our analysis to observations for whom gender is known, but each of those methods brings

a bias to the estimates because missing gender is mechanically related to the political outcomes due

to the data construction. Dropping observations without gender raises the fraction of double positive

outcome rooms in the counterfactuals, since all the rooms being dropped are not double positive rooms.

This results in a negative bias. On the other hand, not including the gender variable when defining

the randomization groups artificially decreases the fraction of double positive outcome rooms in the

counterfactuals by allowing matches across gender to form. Cross-gender matches have lower homophily,

which results in a positive bias.

In this portion of the paper, we develop a novel methodology to provide sharp bounds for computing

coefficients in a randomization inference design given a missing binary independent variable.

6.1 Univariate Distribution of Roommate Double Positive Outcomes

With K individuals missing gender, there are 2K different ways to fill in that missing value. One

approach to addressing the missing gender would be to run regressions or use randomization inference to

compute p-values for all 2K potential assignments of missing gender and then present both the highest

and lowest estimates from among that distribution. This approach would yield sharp bounds on our

treatment effects. However, the solution has an exponential asymptotic and thus quickly becomes

computationally infeasible. Instead, our method to compute bounds relies upon the fact that we only

need to run regressions or randomization inference among the samples that will yield the maximum

and minimum treatment effects.

23In fact, there would be a one to one relationship between registration and missing gender except that we use the
roommate’s gender to impute missing gender in cases where one roommate is registered (and therefore has gender data)
and the other does not). Therefore, in our analysis sample some people with a gender are not registered, which breaks
the perfect correlation between the two variables.
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We begin by introducing some terminology. Remember that by a group, we mean a set of individuals

with identical characteristics from the perspective of the housing authority. This means a set of students

with the same answers to the lifestyle questions, in the same LLP or all not in any LLP, with the same

Freshmen Connection status, the same gender, and who enter the dorms as a freshman in the same

academic year. As noted, we see all these characteristics that the housing authority uses for assignment

except, in less than 15% of cases, we do not have information on gender. Rooms in which students are

missing gender are mechanically always going to be double negative outcome rooms since we obtain

gender from the voter registration files. Thus missing-gender rooms contain students who both are not

registered, both have not voted, and both have not registered with any party.

We define a metagroup as the set of individuals who share identical responses to the lifestyle ques-

tions, identical LLPs, and identical Freshmen Connection status, but may differ on gender. Then by

definition each metagroup contains two true groups, one group in which the roommates are male and

one group in which the roommates are female.24 Our objective is to assign a gender to the set of

“ungendered” individuals within a given metagroup so that we can place them in one of the two groups

within the metagroup. Assigning these ungendered individuals to a given group will not change the

actual number of double positive outcomes for that group because all ungendered individuals mechan-

ically do not have a positive outcome for any of our measures. It will, however, reduce the number

of counterfactual double positive outcomes within a group, by injecting potential roommate matches

in which one of the roommates does not have a positive outcome. That would lower the probability

of the counterfactual having more double-positive outcomes than the actual, which would increase the

expected treatment effect. The question then becomes in which of the two groups within each meta-

group would assigning ungendered students reduce the expected counterfactual matches more (less, for

the lower bound). The answer will depend upon the number of male and female individuals in the

metagroup (Ngm, Ngf ) and the number of males and females with a positive outcome (kgm, kgf ) in each

metagroup.

Our objective is to maximize (or minimize) the expected number of counterfactual double positive

outcomes by assigning individuals to one of the two groups in each metagroup. Note that, the expec-

tation operator is linear and the number of counterfactual double positive outcomes in one metagroup

does not depend on information from other metagroups. As a result, our allocation will be indepen-

dent across metagroups. This allows us to allocate gender metagroup by metagroup without needing

to consider the ordering of the metagroups. Thus if there are ug individuals to be allocated genders

in metagroup g, computationally, we can consider the impact of allocating ugf to the female group

24Note that one of the groups within each metagroup could in theory be empty if there are no male or female students
who fit the category defined by the lifestyle answers, LLP, Freshman Connection, and year of matriculation.
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within metagroup g and ug−ugf to the male group, where ugf ranges from 0 to ug. For each potential

allocation ugf , we compute the expected number of double-positive-outcome rooms in metagroup g. As

shown in Equation 3, this is equivalent to the sum of the expected number of double-positive-outcome

rooms in the male group and in the female group. We denote the number of double-positive-outcome

rooms as X. This produces a distribution of expected counterfactual double-positive-outcome rooms for

each potential allocation ugf of ungendered students.25 We then compare the expected number of coun-

terfactual double-positive-outcome rooms in order to choose the ugf allocation that either maximizes

or minimizes that expectation.

maxugf
XgfP [Xgf |kgf , ugf , Ngf ] +XgmP [Xgm|kgm, ug − ugf , Ngm] (3)

In order to compute the expectation given by Equation 3, we need a formula for the probability

function. Dropping the metagroup (g) and group (f or m) subscripts for simplicity, we define N as

the number of individuals in a particular group and thus N
2 as the number of rooms, k as the number

of individuals with a positive outcome (which we will interchangeably refer to as a “success”), and x

as the number of double-positive-outcome rooms. In order to describe the derivation of the probability

formula, consider different ways of putting individuals in an order, where rooms are given by adjacent

individuals so that individuals 1 and 2 belong to the first room, 3 and 4 belong to the second room,

etc. The set of all orderings of N people is N !. Then we can compute the number of ways to arrange

k individuals with positive outcomes into those rooms, given by Equation 4.

AkN =
k!(N − k)!

N !︸ ︷︷ ︸
Ways to arrange k individuals among N

(4)

Now we need to place the double-success rooms within the ordering, as given by Equation 5. Note

that any rearrangement of the x double success rooms among the N
2 total rooms will add to the number

of potential orderings but leave the number of double-success rooms intact.

ANx =
x!(N2 − x)!

N
2 !︸ ︷︷ ︸

Ways to arrange x double success rooms among N/2 total rooms

(5)

After placing the double success rooms within the ordering of all rooms, we need to consider

the placement of the rooms which have only one individual with a success. Again, note that any

25Note that ugf , the number of ungendered students assigned to the female group within metagroup g, is a sufficient
statistic to characterize the allocation because all ungendered students not allocated to the female group will be allocated
to the male group.

23



rearrangement of single-success rooms among the remaining rooms will add to the number of potential

orderings but leave the number of double-success rooms unchanged. Since there are N
2 − x rooms left

after accounting for the double-success rooms and there are k− 2x single-success rooms, the number of

permutations of single-success rooms which leave the total number of double-success rooms unaltered

is given by Equation 6:

ANxk =
(N2 − k + x)!(k − 2x)!

(N2 − x)!︸ ︷︷ ︸
Ways to arrange N/2-x rooms among k-2x individuals

(6)

Finally, we need to address the ordering of roommates within a mixed-success room (i.e. in which

a pairing of roommate 1 with roommate 2 is a different ordering than a pairing of roommate 2 with

roommate 1). Changing the ordering of the roommates does not alter the number of double success

rooms, but does add to the potential permutations. This matters when roommate 1 and roommate 2

are mixed, that is, one has a positive outcome and the other does not. Since there are k − 2x success

individuals paired with a non-success roommates, there are 2k−2x rearrangements of those roommate

pairs which do not alter the number of double success rooms. Equation 7 presents that number of ways

to arrange roommate order among mixed roommates:

Akx = 2k−2x︸ ︷︷ ︸
Ways to arrange roommate orders among mixed roommates

(7)

We now combine those four components to construct the probability mass function for the number

of double success rooms x, given the number of individual successes k and the number of individuals

N :

P [X = x|k,N ] =
AkN ∗Akx ∗ANx

AkNx
=

(
N
2

)
!k! (N − k)!2k−2x

N !x!
(
N
2 − k + x

)
! (k − 2x)!

(8)

6.2 Bivariate Distribution of Roommate Double Positive Outcomes

The previous section described the derivation of the probability of a certain number of double-

positive outcomes for use in forming the expected degree of agreement among counterfactual pairings.

That formula fits the case where a double-positive success can only happen one way. For example,

individuals are either registered as Democrat or not, and a double-positive outcome occurs when both

roommates are registered Democrats. However, when our outcome of interest is whether roommates

are more generally registered with the same party, there is more than one way for a double-positive

success to occur. Specifically, roommates can either both be registered Democrats or both be registered

Republicans in order for the same party outcome to be a double-success. In this case, we will need to
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characterize individuals by three outcomes: Democrat, Republican, or other and where we have two

types of double success outcomes: double Democrat outcomes and double Republican outcomes. In

this section we generalize our previous univariate distribution to a bivariate distribution.

We now differentiate between the number of positive outcomes separately for Republicans and

Democrats. Let kD be the number of individuals with the Democrat outcome equal to one and let

kR be the number of individuals with the Republican outcome equal to one. We also differentiate the

number of double-success rooms. Let XD be the number of double Democrat successes and let XR be

the number of double Republican successes.

6.2.1 Conditional Probabilities

First, note that we want to compute the expected number of double-successes summed across

Democrat and Republican successes:

∑
XD

∑
XR

(XD +XR)P(XD, XR) (9)

which we can write as:

∑
XD

∑
XR

(XD +XR)P(XD)P(XR|XD) (10)

We break that third term down further by conditioning on the number of mixed Democrat-

Republican rooms XDR.

∑
XD

∑
XR

(XD +XR)P(XD)
∑
XDR

P(XR|XD, XDR)P(XDR|XD) (11)

Note that we would not need to do this except that there are a third group of individuals who are

neither Democrat nor Republican. If there were not a third group of individuals, conditional upon

the number of double Democrat and double Republican rooms, the number of mixed Democrat and

Republican rooms would be mechanically determined. However, in our case there are both mixed

Democrat and Republican rooms as well as neither Democrat nor Republican rooms left over after

conditioning on the number of double successes, and we need to consider the ways both of those types

of rooms can be permuted.

We know how to compute P(XD) from the univariate distribution derived above. Here we turn to

deriving P(XDR|XD) and P(XR|XD, XDR).
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6.2.2 Computing P(XDR|XD)

We begin with N
2 rooms and XD double Democrat rooms, so we must have N

2 −XD rooms left to

fill. This corresponds to N − 2XD individuals. In addition, there is a constraint that the kD − 2XD

Democrats cannot be in a room together, otherwise there would be more than XD double Democrat

rooms. Thus the kD
2 − 2XD rooms are already allocated. As a result, the number of permutations

becomes the number of ways to order the XDR Democrats matched to Republicans multiplied by

the number of ways to order the kD − 2XD − XDR Democrats who get matched to non-Republicans

multiplied by the allocation of the other N −2XD−2XDR individuals who are not allocated to double-

Democrat or mixed-Democrat-Republican rooms. Note that XDR must satisfy the feasibility constraint

XDR ≤ min (kD − 2XD, XR) - that is, there cannot be more mixed-Democrat-Republican rooms than

there are Republicans or leftover Democrats.

The total number of possible orderings is the number of non-Democrats, (N − kD)!, since we are

conditioning on the allocation of Democrats. Since there are XDR Republicans allocated to mixed

rooms, the number of ways to allocate the Republicans who get matched to Democrats is given by

(kR)!
(kR−XDR)! . The number of ways to allocate the others to Democrats given that there are N − kD −

kR others is: (N−kD−kR)!
(N−kD−kR−(kD−2XD−XDR)! . Finally, there are (N − 2XD − 2 (kD − 2XD))! remaining

Republicans and others to be paired together.

Putting together these four components (allocations of Republicans to mixed-Democrat rooms,

allocations of others to mixed-Democrat rooms, allocations of the remaining, and the total number of

orderings), we get:

P(XDR|XD) =

(kR)!
(kR−XDR)!

(N−kD−kR)!
(N−kD−kR−(kD−2XD−XDR)! (N − 2XD − 2 (kD − 2XD))!

(N − kD)!
(12)

6.2.3 Computing P(XR|XD, XDR)

Finally, we compute the probability of having XR double-Republican rooms given that we have XD

double-Democrat rooms and XDR mixed rooms. Since there are now only Republicans and others who

have not been allocated and there are no additional restrictions on room allocations, this conditional

probability is the same as our univariate distribution, where the number of rooms is N − 2XD − 2XDR

and the number of remaining Republicans is kR −XDR. Thus, the probability of getting XR double-

Republican rooms conditional upon the allocation of double-Democrat and mixed rooms is given by:

Punivariate (N − 2XD − 2XDR, kR −XDR, XR) (13)
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6.2.4 Final Equation

Putting these two components together, we arrive at our final equation for P(XD = xD, XR =

xR|kD, kR, N). Recall that P(XD = xD, XR = xR|kD, kR, N) = P(XD)P(XR|XD). We have shown that

the first term P(XD) = Punivariate (N, kD, XD), and the second term P(XR|XD) is given by:

∑
XDR

(kR)!
(kR−XDR)!

(N−kD−kR)!
(N−kD−kR−(kD−2XD−XDR)!

(N − 2XD − 2 (kD − 2XD))!

(N − kD)!︸ ︷︷ ︸
P (XDR|XD)

Punivariate (N − 2XD − 2XDR, kR −XDR, XR)︸ ︷︷ ︸
P (XR|XD, XDR)

(14)

7 Results with Formal Bounds

We now present our results using the samples in which gender has been assigned in order to achieve

the lower and upper bounds of the treatment effects. For each outcome we create a separate sample

allocating gender for all individuals missing gender information. We allocate in a way that achieves

the lower bound on the expected treatment effect and in a way that achieves the upper bound on

the expected treatment effect, as detailed in Section 6. This involves creating twelve different data

sets: a lower bound and upper bound version for each of our 6 outcomes. We first walk through a

simple computational method for approximating our treatment effects. We then turn to our random-

ization inference results, and finally discuss the randomization OLS results which are based on the

counterfactuals created via randomization inference.

7.1 Back-of-the-Envelope Estimates

In Table 3, we carry out a simple back of the envelope calculation of our likely treatment effects. The

rows list our outcomes. The first column shows the fraction of individuals with a positive outcome. The

second column shows that fraction squared. If we were randomly pulling one room out of an infinite

population, the first column gives the probability of an individual in that room having a positive

outcome and the second column would give the probability of a double positive outcome in the room.

It would also give the mathematical expectation of the fraction of randomly selecting a room with

a double positive outcome from our sample. The third column uses our actual derived probability

distribution to compute the expected fraction of rooms with a double positive outcome. In the final

column, we show the actual fraction of double positive outcome rooms in our sample. Comparing the

fraction of double positive outcome rooms to the expected number should give us a back-of-the-envelope

calculation for a treatment effect. However, there is assortative matching in roommate allocation due

to the random assignment of roommates within groups, which likely accounts for some of the gap

between the expected and the actual fraction of double positive outcome rooms. In order to account
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for this, we use our derived probability distribution from Section 6 to compute the expected fraction

of double-success rooms, as in column 3, except we do that computation within groups defined by the

level at which roommates were randomly assigned. We then average the predicted fraction of double-

success rooms, weighting by group size. Because the groups are in part defined by gender, we do these

calculations in our lower bound (Column 4) and upper bound (Column 5) gender assigned samples.

Thus we can interpret the gap between the unconditional expected and the lower bound expected

(Column 3 - Column 4) to capture the number of extra double positive outcomes due to assortative

allocation and the gap between the actual and the lower bound expected (Column 6 - Column 4) to

capture the treatment effect. The same can be said for the upper bound, replacing Column 4 with

Column 5.

Table 3: Approximating Treatment Effects

Probability(%)
Drop unknown genders 0.379
Unconditional 2.249
Conditional on year 1.875
Conditional on gender 0.748
Conditional on gender and year 3.686

We highlight several takeaways from Table 3. First, Column 2 is identical to Column 3. This

is because in the case where there is only one group (i.e. the entire sample), our formula for the

expected number of double-success outcomes should reduce to the Bernoulli distribution with Bernoulli

probability p2. Second, the lower bound expected fraction of double-positive-outcome rooms (Column 4)

is uniformly higher than the unconditional expected number of double-positive-outcome rooms (Column

3). This means there is positive selection (assortative matching of roommates) for all the outcomes

we consider. Third, the upper bound expected fraction of double-positive-outcome rooms (Column

5) is always larger than the lower bound (Column 4), as expected since the upper bound was chosen

to minimize the treatment effect. Fourth, the actual fraction of double-positive rooms (Column 6)

is always higher than both the lower and upper bound expected fractions (Columns 4 and 5) with

the exception of the upper bound for registration, suggesting that our treatment effects are almost

uniformly positive. Finally, echoing our earlier OLS results, the largest treatment effects calculated by

comparing the last two columns are for being registered Democrat and for voting.

7.2 Randomization Inference at the Lower and Upper Bounds

Next, we formalize the estimation of the treatment effects using randomization inference, allowing

us also to perform statistical inference. We describe the details of randomization inference in Section 4,

but now we run the procedure using our lower and upper bound samples for each outcome. In Figure
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1 we present histograms of counterfactual fractions of double-positive-outcome rooms where the lower

bound counterfactuals are shown in blue and the upper bound counterfactuals are shown in green. The

median of each counterfactual distribution is shown by a vertical dashed line in the relevant color. The

vertical dashed red line shows the actual fraction of double-positive-outcome rooms in each sample. For

each outcome we report the mean of the treatment effect at the lower bound and at the upper bound.

These are given the difference between the actual and the mean of the lower bound (or upper bound)

counterfactual distribution. We also report the p-value associated with the lower bound and the upper

bound respectively.

Figure 1: Randomization Inference: Gender Bounds

Note: This figure shows the randomization inference results for 10,000 iterations.

Figure 1 shows that the bounding exercise is important. Though the outcomes differ in terms of

how far apart their lower bound and upper bound counterfactual distributions are, in all cases the

distributions are clearly far from identical. The difference is particularly striking for registration, in

which the two distributions only overlap in the tails. The counterfactual lower bound distributions are

always first order stochastically dominated by their upper bound counterparts, and the mean treatment

effects for the lower bound distributions are always higher than for the upper bound. We expect this
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since the lower bound minimizes the expected counterfactual, and a smaller counterfactual fraction of

double-positive-outcome rooms corresponds to a larger treatment effect.

All of the p-values at the lower bound are below 0.1 and in most cases below 0.05. The largest

p-value, for the Republican treatment effect, is 0.096; the next largest is that for Independents at 0.032.

However, most p-values are above 0.05 at the upper bound and half are above 0.1. The only outcomes

with p-values below a 10% significance level at the upper bound are for both roommates voting (0.098),

for both roommates registering as Democrats (0.09) and for both roommates registering as the same

party (0.048).

We find that the upper bound treatment effect for Democrats is 1.3; this means that at most there

are 1.3 percentage point rooms with two Democrats in them relative to the mean of the counterfactual

room assignments. At eh lower bound, that number falls to 0.5 percentage points and the p-value

increases from 0.001 to 0.094. For Republicans, effects are 0.003 and 0.001 at the upper and lower

bounds respectively. The lower bound p-value is 0.369. The smaller effects for Republicans, however,

are largely due to the fact that there are far fewer Republicans on campus. As we shall show later

in the paper, these small percentage point effects are similar in magnitude when evaluated in percent

rather than percentage point terms. Overall, three variables are significant at below the 10% level even

at the lower bound: Democrat, voted and same party. There is a lower bound of 0.4 percentage points

greater rooms with two individuals who have voted relative to the mean counterfactual room. Our

most significant results are on belonging to the same party. Even at the lower bound, roommates are

0.8 percentage points more likely to be of the same party. These results are significant at slightly below

a 5% level of confidence. Interestingly, despite the fact that there are almost as many independents as

there are Democrats, estimates for Independents are more similar to those for Republicans than those

for Democrats. This potentially suggests that social influence is greater for membership in a political

party than for non-membership in any political party.

7.3 OLS Regressions at the Lower Bound and the Upper Bound

We now turn to our OLS regressions based on Equation 1. We consider two samples for each

outcome, one sample with missing gender assigned to minimize the treatment effect (Table 5) and one

with missing gender assigned to maximize the treatment effect (6). one based on lower bound gender

assignment (odd columns) and the other based on upper bound gender assignment (even columns). We

show estimates without control variables in the first two columns and estimates with fully saturated

controls in Columns 3 and 4. The estimates are presented in Tables 4.

These specifications, while properly correcting for unknown gender, still rely on correlations between

roommates rather than differences between roommates pairs that were actually allocated to live together
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Table 4: OLS Regressions at the Lower and Upper Bound

Effect upper bound Effect lower bound

Unweighted Freqeuncy weighted Unweighted Freqeuncy weighted

Democrat 0.0859 0.0529 0.0501 0.0435
(0.0293) (0.0186) (0.0311) (0.0202)

Republican 0.0380 0.0190 0.0163 0.00315
(0.0290) (0.0168) (0.0305) (0.0137)

Independent 0.0435 0.0268 0.00406 0.00609
(0.0303) (0.0189) (0.0301) (0.0176)

Voted 0.0741 0.0297 0.0392 0.0201
(0.0335) (0.0160) (0.0325) (0.0166)

Registered 0.108 0.0584 -0.0148 -0.0209
(0.0280) (0.0173) (0.0276) (0.0156)

Same party 0.171 0.106 0.173 0.102
(0.0385) (0.0253) (0.0389) (0.0242)

Standard errors in parentheses

in contrast to pairs that were not chosen.

We instead turn to a novel method combining the estimation technique of OLS with the research

design of randomization inference. In particular, we pool the actual data with the 10,000 counterfactual

data sets created via randomization inference into one regression, where the outcome is an indicator

for both individuals having a positive outcome and the treatment variable is an indicator for the data

coming from the actual roommate pairings. This new data set dramatically increases the sample size

to 8.3 million. It is analogous to what we do in our randomization inference specifications in which

we compare the mean counterfactual outcomes with the actual outcomes. However, we implement

the comparison between actual and mean counterfactual using OLS. As a result, the standard errors

are also analytical errors based upon asymptotic approximation. We present the results for the lower

bound in Table 5 and for the upper bound in Table 6.

Table 5: Randomization OLS including Counterfactuals - Lower Bound

Both Democrats Both Republicans Both Independent Both Voted Both Registered Same Party

Treatment Effect 0.013∗∗∗ 0.003 0.006∗ 0.010∗ 0.018∗∗ 0.014∗∗∗

(0.004) (0.002) (0.004) (0.005) (0.008) (0.005)
Counterfactual 0.088∗∗∗ 0.019∗∗∗ 0.060∗∗∗ 0.119∗∗∗ 0.453∗∗∗ 0.109∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

N 8304150 8304150 8304150 8304150 8304150 8304150

The treatment effects are identical to the randomization inference results (up to rounding error)

except that the standard errors are OLS standard errors. The standard errors incorporate two differ-

ences. First, the randomization inference standard errors are exact and do not rely upon asymptotic

approximation based upon the Central Limit Theorem, and second, with randomization inference we
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Table 6: Randomization OLS including Counterfactuals - Upper Bound

Both Democrats Both Republicans Both Independent Both Voted Both Registered Same Party

Treatment Effect 0.005 0.001 0.001 0.004 -0.004 0.008
(0.005) (0.002) (0.004) (0.005) (0.008) (0.005)

Counterfactual 0.096∗∗∗ 0.021∗∗∗ 0.065∗∗∗ 0.124∗∗∗ 0.475∗∗∗ 0.116∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

N 8304150 8304150 8304150 8304150 8304150 8304150

can use the non-parametric distribution of the errors in lieu of standardizing them.

In Table 7, we express the treatment effects as a fraction of the control mean. For example, there

are substantially fewer Republicans than Democrats at the University of Maryland at College Park. As

it turns out, while the effect size at the upper bound is approximately 4 times larger for Democrats than

for Republicans, the effects in percent terms are substantially closer in size. In fact, the Republican

percent effect is slightly higher in percent terms.

Table 7: OLS Treatment Effects Using Counterfactuals as Controls: Conversion to Percent Effects

Upper Bound Lower Bound

Percentage Point Percent Percentage Point Percent

Democrat 0.013 0.129 0.005 0.052
Republican 0.003 0.152 0.001 0.043
Independent 0.006 0.095 0.001 0.015
Registered 0.018 0.038 -0.004 -0.008
Voted 0.010 0.075 0.004 0.034
Same Party (R, D) 0.014 0.113 0.008 0.063

7.4 Effects Over Time

Finally, we examine how the treatment effects change over time. Our sample is comprised of five

cohorts of freshmen, the first entering college in 2011 and the last in 2015, the same year in which we

collected the data. This means that individuals in our first cohort were treated (by being roommates)

five years prior to our collection of the voter registration data, whereas for individuals in the most

recent cohort were still living with each other and had only been roommates for one semester at the

time of data collection. Exploring the effect of treatment for these different cohorts may give us some

information about how the treatment effect evolves over time, though we cannot distinguish between

cohort-specific effects and dynamic time effects. In Figure 2 we present the randomization inference

treatment effects estimated separately by the amount of time since the individuals were roommates

in their freshman year. The solid lines show the median treatment effect (the difference between the

actual and the median counterfactual fraction of double-outcome rooms) which is analogous to the

main treatment effect presented in our other randomization inference figures. In addition, we plot with
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dotted lines the treatment effects associated with the 2.5th and 97.5th percentiles of the counterfactual

distribution. We include estimated treatment effects from both the lower bound and upper bound

samples.

We take our results as suggestive in part due to the inability to distinguish between cohort and

dynamic effects and in part due to the wide confidence bands resulting from small sample sizes. We

see somewhat higher estimated treatment effects among the oldest cohorts for both roommates being

registered as Independent and both roommates voting. However, particularly for voting, the likelihood

that these estimates reflect a cohort rather than dynamic effect is high. The older cohorts are the

only ones who had the opportunity to vote in a presidential election and thus it is possible that

those cohorts were differentially impacted by their roommate’s political activity. It is also possible

that marginal registrants for a presidential election come from individuals with weak attachment to

parties. Thus, cohort effects related to the timing of the presidential election could explain the limited

heterogeneity we do see across cohorts. Interestingly, we do not see any evidence of a decline in effects

as more time elapses since the individuals were treated, which provides suggestive evidence that social

effects are long-lasting.

Since the annual estimates are statistically weak due to sample size, we additionally estimate a linear

time trend. We then perform 10,000 iterations of randomization inference where, for each sample, we

estimate a linear time trend. Appendix Figure AF7 presents the randomization inference results for

the linear time trend estimates. We denote the time trends based upon actual roommate assignments

by a red dashed line. For all six outcomes, these estimates are negative. This is unsurprising as cohorts

who started in later years are younger and thus less likely to be registered to vote, less likely to have

voted, and less likely to be affiliated with any particular party (or to be unaffiliated yet registered).

Nonetheless, we see that for all outcomes except for registration, p-values are well above 0.5 for both

the upper and lower bound estimates. Even for registration, the lower bound p-value is close to 0.2 and

the upper bound close to 0.95. In sum, we see little statistical evidence for the time trend in homophily

being different for the treated relative to the counterfactuals who were not treated. As a result, our

results are consistent with a persistent effect over the span of five years.

8 Conclusion

In this paper, we have presented causal evidence that social connections influence both political

partisanship and political participation. We do this by introducing a randomization inference approach

to an empirical design that leverages conditionally random roommate assignment. We also introduce

new methods for estimating sharp lower and upper bounds on treatment effects in the presence of a

discrete missing variable. In addition, we introduce another methodological innovation by implementing
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Figure 2: Roommate Effect By Years Since Enrollment

Note: This figure shows the randomization inference results for 10,000 iterations.

a randomization inference type design using OLS.

Substantively, we find evidence that people allocated to the same room are more likely to both be

registered as Democrats and more likely to both have voted. Even the lower bound of these effects,

incorporating uncertainty in gender in 14% of observations, are statistically significant at below a 10%

level. We find highly an increase in probability of being registered for the same party of between 6.3%

and 11.3%. These results are statistically significant at below a 5% level even at the lower bound. We

see no evidence that effects fade over time though our results over time are statistically weak. Future

research should confirm the importance of social connections for a broader swathe of the population

than those in college. In addition, the results of this paper bring up questions about whether social

effects play a role in ideology formation in addition to partisanship, and how important this shaping of

political preferences by peers is for affective polarization. As the United States becomes more polarized

along partisan lines and as concern over the determinants of polarization increases (Levy [2021]), the

questions raised by this paper can only become more important.
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9 Appendix

Table AT1: Matching Versions

Probability(%)
Drop unknown genders 0.379
Unconditional 2.249
Conditional on year 1.875
Conditional on gender 0.748
Conditional on gender and year 3.686

Table AT2: Summary Statistics in Full Sample

Total Male Female Gender Unknown

Democrat 0.286 0.291 0.383 .
(0.452) (0.454) (0.486) (.)

Republican 0.120 0.156 0.121 .
(0.325) (0.363) (0.326) (.)

Independent 0.237 0.291 0.247 .
(0.425) (0.454) (0.431) (.)

Voted 0.253 0.265 0.329 .
(0.435) (0.441) (0.470) (.)

Registered 0.650 0.747 0.757 .
(0.477) (0.435) (0.429) (.)

Smoker 0.007 0.008 0.004 0.009
(0.081) (0.087) (0.064) (0.097)

Objects to Smoking 0.909 0.895 0.932 0.899
(0.288) (0.307) (0.252) (0.302)

Neat 0.770 0.737 0.800 0.795
(0.421) (0.440) (0.400) (0.403)

Wakes up Early 0.652 0.646 0.651 0.666
(0.476) (0.478) (0.477) (0.472)

Studies in the Room 0.753 0.755 0.760 0.737
(0.431) (0.430) (0.427) (0.441)

Freshman Connection 0.100 0.084 0.099 0.148
(0.301) (0.277) (0.299) (0.355)

In an LLP 0.496 0.514 0.533 0.374
(0.500) (0.500) (0.499) (0.484)

N 21011 9689 7602 3720
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Table AT3: Correlations Between Grouping Variables

Smoker
Objects to
Smoking Neat

Wakes up
Early

Studies in
the Room

Freshman
Connection

In an
LLP Female

Gender
Known

Smoker 1.000 -0.227 0.016 -0.059 0.011 -0.009 -0.041 0.004 0.013
Objects to Smoking -0.227 1.000 0.063 0.207 0.125 0.040 0.118 0.044 -0.003
Neat 0.016 0.063 1.000 0.212 0.090 0.082 -0.045 0.067 -0.044
Wakes up Early -0.059 0.207 0.212 1.000 0.176 0.083 -0.025 -0.030 -0.030
Studies in the Room 0.011 0.125 0.090 0.176 1.000 0.066 -0.016 -0.007 0.044
Freshman Connection -0.009 0.040 0.082 0.083 0.066 1.000 -0.335 -0.045 -0.101
In an LLP -0.041 0.118 -0.045 -0.025 -0.016 -0.335 1.000 0.048 0.161
Female 0.004 0.044 0.067 -0.030 -0.007 -0.045 0.048 1.000 .
Gender Known 0.013 -0.003 -0.044 -0.030 0.044 -0.101 0.161 . 1.000

Sample is exactly matched on all grouping variables except for gender. N = 4150 for all variables except
Female, for which N = 3558.

Table AT4: Correlations of Outcomes with Grouping Variables

Democrat Republican Independent Registered Voted

Smoker 0.014 -0.012 -0.017 -0.011 -0.001
Object to smoking 0.002 0.001 0.000 0.005 -0.016
Neat -0.031 0.023 -0.046 -0.055 -0.101
Wakes up early -0.065 0.061 0.004 -0.017 -0.047
Studies in the room -0.025 0.029 0.017 0.007 -0.012
Freshman connection -0.060 0.003 -0.038 -0.088 -0.143
In an LLP 0.080 -0.010 0.068 0.131 0.083
Female 0.065 -0.046 -0.022 0.013 0.037
Female(LB) 0.028 -0.062 -0.043 -0.026 -0.002
Female(UB) 0.003 -0.091 -0.094 -0.152 -0.035
Gender known 0.262 0.156 0.228 0.574 0.249

Sample is exactly matched on all grouping variables except for gender. The definition of Female (LB) and
Female (UB) varies by column. For each outcome, gender is imputed such that the RI p-value is minimized
(LB) or maximized (UB). N = 4150 for all variables except Female, for which N = 3558.
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Table AT5: OLS Estimates of Roommate Correlations with Linear Fixed Effects

Conditioning on gender Not conditioning on gender

No controls With controls No controls With controls

Democrat 0.012 -0.004 0.078∗∗∗ 0.055∗∗

(0.024) (0.025) (0.024) (0.024)
Republican 0.029 0.006 0.052∗∗ 0.032

(0.024) (0.024) (0.022) (0.020)
Independent -0.003 -0.006 0.049∗ 0.041

(0.027) (0.028) (0.025) (0.025)
Voted 0.227∗∗∗ -0.003 0.275∗∗∗ 0.057∗∗∗

(0.025) (0.025) (0.025) (0.022)
Registered -0.304∗∗∗ -0.335∗∗∗ 0.137∗∗∗ 0.078∗∗∗

(0.014) (0.016) (0.023) (0.024)

Observations 1779 1779 2075 2075

Regressions are of the outcome variable for one roommate on the outcome variable of the other roommate.
Sample is exactly matched on all grouping variables in Columns 1 and 2; those without known gender are
dropped from estimation. Sample is exactly matched on all grouping variables excluding gender in Columns
3 and 4; those without known gender are including in estimation. The first and third columns do not contain
any controls. The second column controls linearly for all grouping variables including gender. The fourth
column control linearly for all grouping variables except for gender. Standard errors are bootstrapped at the
room level. Errors incorporate both randomness from sample composition and from roommate order within
pair.

Table AT6: OLS Estimates of Roommate Correlations with Fully Saturated Fixed Effects

Conditioning on gender Not conditioning on gender

Matching Matching, weighted Matching Matching, weighted

Democrat 0.004 0.004 0.058∗ 0.088∗∗

(0.039) (0.043) (0.033) (0.042)
Republican 0.001 -0.002 0.031 0.029

(0.037) (0.040) (0.027) (0.030)
Independent -0.020 -0.057 0.034 0.006

(0.042) (0.058) (0.031) (0.036)
Voted 0.001 -0.006 0.082∗∗∗ 0.069∗∗

(0.038) (0.048) (0.028) (0.031)
Registered -0.293∗∗∗ -0.304∗∗∗ 0.093∗∗∗ 0.102∗∗

(0.025) (0.032) (0.029) (0.048)

Observations 1779 1779 2075 2075

Regressions are of the outcome variable for one roommate on the outcome variable of the other roommate.
Sample is exactly matched on all grouping variables in Columns 1 and 2; those without known gender are
dropped from estimation. Sample is exactly matched on all grouping variables excluding gender in Columns 3
and 4; those without known gender are including in estimation. In the second and fourth columns, estimates
are computed at the group level and then aggregated according to sample frequency weights to account for
aggregation bias in the presence of heterogeneity in treatment variance across groups.Standard errors are
bootstrapped at the room level. Errors incorporate both randomness from sample composition and from
roommate order within pair.
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Figure AF1: Distribution of Room Sizes and Types

Figure AF2: Number of Votes Vary by Election
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Figure AF3: Randomization Inference: Gender Groups

Note: This figure shows the randomization inference results for 10,000 iterations. The sample includes grouping by all
LLPs and gender, in addition to year and answers to the lifestyle questions. There are 3688 individuals in this sample.
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Figure AF4: Randomization Inference: No Gender Groups

Note: This figure shows the randomization inference results for 10,000 iterations. The sample includes grouping by all
LLPs in addition to year and answers to the lifestyle questions. This sample does not group by gender. There are 4286
individuals in this sample.
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Figure AF5: Registration Status with and without Grouping on Gender

Note: This figure shows the randomization inference results for 10,000 iterations.
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Figure AF6: Bootstrapped OLS Estimates

Note: This figure shows the randomization inference results for 10,000 iterations. The bootstrap both randomly draws a
sample with replacement and randomly assigns a roommate order within the room.
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Figure AF7: Randomization Inference: Linear Time Trend

Note: This figure shows the randomization inference results for 10,000 iterations.
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