Microeconometrics: Alternative Distributions

Ethan Kaplan

1 Poisson, Geometric and Negative Binomial Distributions

- Start with a Bernoulli Distribution: an event happens with probability (p, 1 - p)
 - Mean: p * 1 + (1 p) * 0 = p
 - Variance: $p(1-p)^2 + (1-p)(0-p)^2 = p(1-p);$ SD: $SD = \sqrt{p(1-p)}$
- Generalized Binomial:
 - Random Variable = X
 - With n trials: $P(X = k) = {n \choose k} p^k (1-p)^{n-k}$
 - Mean: np
 - Variance: np(1-p); SD: $\sqrt{np(1-p)}$

• Poisson: Count variable ("law of rare events")

-
$$\lim_{n\to\infty} {n \choose k} p^k (1-p)^{n-k} = \frac{e^{-\mu}\mu^k}{k!}$$
 with fixed $np = \mu \ (\implies p \to 0)$

- Mean:
$$E(N) = \sum_{k=0}^{\infty} kP(N=k) = \sum_{k=1}^{\infty} ke^{-\mu}\frac{\mu^k}{k!}$$

but $\sum_{k=1}^{\infty} ke^{-\mu}\frac{\mu^k}{k!} = \mu$

- Variance: $V(N) = \mu$; SD: $SD(N) = \sqrt{\mu}$

• Geometric Distribution: Waiting Time (First Event)

- Realization Probability: $P(T = n) = (1 - p)^{n-1} p$

- Mean:
$$E(T) = \sum_{n=1}^{\infty} nP(T=n) = \frac{1}{p}$$

– Variance:
$$V(T) = \frac{(1-p)}{p^2}$$
; SD: $SD(T) = \frac{\sqrt{1-p}}{p}$

• Negative Binomial: (Generalized Geometric Dist.)

- $P(T_r = t)$ = Joint prob. of r 1 successes in first t 1 trials and trial t success
- Therefore: $P(T_r = t) = {\binom{t-1}{r-1}} p^{r-1} (1-p)^{t-r} p$ but ${\binom{t-1}{r-1}} p^{r-1} (1-p)^{t-r} p = {\binom{t-1}{r-1}} p^r (1-p)^{t-r}$

– Mean: $E(T_r) = \frac{r}{p}$

- Variance:
$$V(T_r) = \frac{r(1-p)}{p^2}$$
; SD: $SD(T_r) = \frac{\sqrt{r(1-p)}}{p}$

2 Estimation of Poisson and Negative Binomial Distributions

- Why Poisson or Negative Binomial?
 - Only positive numbers (but can use lognormal distribution)
 - Can Improve on SEs
 - * In general, binomial distribution has $\lim_{p\to\infty} V(\hat{p}) = 0$
 - * Case of p = 0 or p = 1, can reject based upon one observation.
 - * Can improve SEs by using binomial structure for all binomial family derivatives
 - Lowers under-estimation of zeros (allows for right skewness)

- Why not Poisson or Negative Binomial
 - Overdispersion: SEs too low if not bernoulli and with essentially zero probability
 - * In Poisson, $V_{Data}(N) > E(N) = V(N)$
 - Still too few zeros?
 - Especially true with Poisson

3 Poisson Regression

- What is being estimated?
 - The determinants of the expected number of counts

$$- \frac{e^{-\mu_i \mu_i^k}}{k!} \text{ where } \ln \mu_i = X'_i \beta$$
$$- \frac{e^{-e^{X'_i \beta}} \left(e^{X'_i \beta}\right)^k}{k!}$$

$$- E(Y_i|X_i) = V(Y_i|X_i) = \mu_i$$

• Estimation Methods

- NLS:
$$\min_{\beta} \sum_{i=1}^{N} \left[y_i - \frac{e^{-e^{X_i^{\prime}\beta}} \left(e^{X_i^{\prime}\beta}\right)^{y_i}}{y_i!} \right]^2$$

~

- Maximum Likelihood:

*
$$\min_{\beta} \ln L = \min_{\beta} \sum_{i=1}^{N} \ln \frac{e^{-e^{X_i^{\prime}\beta} \left(e^{X_i^{\prime}\beta}\right)^{y_i}}}{y_i!}$$

$$* = \min_{\beta} \sum_{i=1}^{N} \left[y_i X'_i \beta - e^{X'_i \beta} - \ln y_i! \right]$$

* Moment Conditions

$$\cdot \sum_{i=1}^{N} \left[k_i - e^{X'_i \beta} \right] X'_i = \mathbf{0}$$

* Variance of Estimate:
$$V\left(\hat{\beta}_{P}\right) = \left(\sum_{i=1}^{N} \mu_{i} x_{i} x_{i}'\right)^{-1}$$

- Test for overdispersion:
 - Model variance: $V(y_i|X_i) = \mu_i + \alpha g(\mu_i)$

–
$$g\left(\mu_{i}
ight)$$
 usually $=\mu_{i}$ or μ_{i}^{2}

- Run OLS

$$\frac{(y_i - \hat{\mu}_i)^2 - y_i}{\hat{\mu}_i} = \alpha \frac{g(\hat{\mu}_i)}{\hat{\mu}_i} + u_i$$

– Test $\alpha = \mathbf{0}$

• Robust Standard Errors (overdispersion correction)

- Define
$$\hat{\alpha} = (n-k)^{-1} \sum_{i=1}^{N} \frac{(y_i - \hat{\mu}_i)^2}{\hat{\mu}_i}$$

– Then
$$V\left(y_{i}|X_{i}
ight)=\hat{lpha}E\left(y_{i}|X_{i}
ight)=\hat{lpha}e^{x_{i}^{\prime}eta}$$

• Compute marginal effects: $\frac{\partial E(y_i|X_i)}{\partial X_i} = \beta_i e^{x_i'\beta}$

– Note that marginal effects depend upon X_i

4 Negative Binomial Regression

• Now suppose that μ_i is random as in specification error

$$- \ln \mu = x'_i \beta + \epsilon_i = \ln \lambda_i + \ln u_i$$

• The conditional distribution of f then is:

$$- f(y_i|x_i, \lambda_i) = \frac{e^{-\mu_i \lambda_i} (\lambda_i \mu_i)^{y_i}}{y_i!}$$

• Integrating, we get:

$$- f(y_i|x_i) = \int_0^\infty \frac{e^{-\mu_i \lambda_i} (\lambda_i \mu_i)^{y_i}}{y_i!} g(u_i) du_i$$

• We now assume a distribution for g :

$$- g(\lambda_i) = \frac{\theta^{\theta}}{\Gamma(\theta)} e^{-\theta \mu_i \mu_i^{\theta-1}}$$

• We can now solve for f :

$$- f(y_i|x_i) = \frac{\Gamma(\theta+y_i)}{\Gamma(y_i+1)\Gamma(\theta)} r_i^{y_i} (1-r_i)^{\theta}$$
$$- \text{ where } r_i = \frac{\lambda_i}{\lambda_i+\theta}$$

- This can be estimated with MLE or NLLS
- The mean is $E(y_i|x_i) = \lambda_i$
- The variance is $V(y_i|x_i) = \lambda_i \left(1 + \left(\frac{1}{\theta}\right)\lambda_i\right)$
 - Remember that θ is estimated so this decouples the mean and variance
 - The Poisson Model is the restriction of $\frac{1}{\theta} = 0$
 - This can be tested using a Wald or LRT Test

- Regression (OLS, Poisson, Negative Binomial) of numbers of donors to presidential, senate and house of representative campaigns during 2000 electoral cycle on population and presence of Fox News in 2000:
 - Spec. A includes just a constant, log population, and a dummy for Fox News
 - Spec. B adds number of donors in 1996:

	Population	Fox News
	124.5	24.8
$OLS \ A$	(68.8)	(1.26)
	2.2	40.2
$Poisson \ A$	(1092.1)	(180.7)
	30.9	16.9
Neg Bin. A	(29.9)	(6.8)
	-3.7	1.1
OLS B	(8.36)	(0.27)
	1.9	20.9
$Poisson \ B$	(776.0)	(100.9)
	8.8	5.7
Neg. Bin. B	(19.5)	(4.6)

- Regression of numbers of donors to presidential, senate and house of representative campaigns during 2000 electoral cycle on population and presence of Fox News in 2000 (robust standard errors):
 - Spec. A includes just a constant, log population, and a dummy for Fox News
 - Spec. B adds number of donors in 1996:

	$Population \ R$	$Fox \ News \ R$
	124.5	24.8
$OLS \ A$	(1.9)	(2.0)
	2.2	40.2
$Poisson \ A$	(6.8)	(2.1)
	30.9	16.9
Neg Bin. A	(13.5)	(4.5)
	-3.7	1.1
$OLS \ B$	(1.0)	(0.2)
	1.9	20.9
$Poisson \ B$	(6.4)	(1.6)
	8.8	5.7
Neg. Bin. B	(10.1)	(4.6)