Microeconometrics: Alternative Distributions

Ethan Kaplan

1 Poisson, Geometric and Negative Binomial Distributions

- Start with a Bernoulli Distribution: an event happens with probability $(p, 1-p)$
- Mean: $p * 1+(1-p) * 0=p$
- Variance: $p(1-p)^{2}+(1-p)(0-p)^{2}=p(1-p)$;

SD: $S D=\sqrt{p(1-p)}$

- Generalized Binomial:
- Random Variable $=X$
- With n trials: $P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$
- Mean: $n p$
- Variance: $n p(1-p)$; SD: $\sqrt{n p(1-p)}$
- Poisson: Count variable ("law of rare events")

$$
\begin{aligned}
& -\quad \lim _{n \rightarrow \infty}\binom{n}{k} p^{k}(1-p)^{n-k}=\frac{e^{-\mu} \mu^{k}}{k!} \text { with fixed } \\
& \quad n p=\mu(\xlongequal{\Longrightarrow} p \rightarrow 0) \\
& \text { - Mean: } E(N)=\sum_{k=0}^{\infty} k P(N=k)=\sum_{k=1}^{\infty} k e^{-\mu \frac{\mu^{k}}{k!}} \\
& \quad \text { but } \sum_{k=1}^{\infty} k e^{-\mu \frac{\mu^{k}}{k!}}=\mu
\end{aligned}
$$

- Variance: $V(N)=\mu$; SD: $S D(N)=\sqrt{\mu}$
- Geometric Distribution: Waiting Time (First Event)
- Realization Probability: $P(T=n)=(1-p)^{n-1} p$
- Mean: $E(T)=\sum_{n=1}^{\infty} n P(T=n)=\frac{1}{p}$
- Variance: $V(T)=\frac{(1-p)}{p^{2}} ;$ SD: $S D(T)=\frac{\sqrt{1-p}}{p}$
- Negative Binomial: (Generalized Geometric Dist.)
- $P\left(T_{r}=t\right)=$ Joint prob. of $r-1$ successes in first $t-1$ trials and trial t success
- Therefore: $P\left(T_{r}=t\right)=\binom{t-1}{r-1} p^{r-1}(1-p)^{t-r} p$ but $\binom{t-1}{r-1} p^{r-1}(1-p)^{t-r} p=\binom{t-1}{r-1} p^{r}(1-p)^{t-r}$
- Mean: $E\left(T_{r}\right)=\frac{r}{p}$
- Variance: $V\left(T_{r}\right)=\frac{r(1-p)}{p^{2}}$; SD: $S D\left(T_{r}\right)=$ $\frac{\sqrt{r(1-p)}}{p}$

2 Estimation of Poisson and Negative Binomial Distributions

- Why Poisson or Negative Binomial?
- Only positive numbers (but can use lognormal distribution)
- Can Improve on SEs
* In general, binomial distribution has $\lim _{p \rightarrow \infty} V(\hat{p})=$ 0
* Case of $p=0$ or $p=1$, can reject based upon one observation.
* Can improve SEs by using binomial structure for all binomial family derivatives
- Lowers under-estimation of zeros (allows for right skewness)
- Why not Poisson or Negative Binomial
- Overdispersion: SEs too low if not bernoulli and with essentially zero probability
* In Poisson, $V_{\text {Data }}(N)>E(N)=V(N)$
- Still too few zeros?
- Especially true with Poisson

3 Poisson Regression

- What is being estimated?
- The determinants of the expected number of counts
$-\frac{e^{-\mu_{i} \mu_{i}^{k}}}{k!}$ where $\ln \mu_{i}=X_{i}^{\prime} \beta$
$-\frac{e^{-e^{X} X^{\prime} \beta}\left(e^{X_{i}^{\prime} \beta}\right)^{k}}{k!}$
$-E\left(Y_{i} \mid X_{i}\right)=V\left(Y_{i} \mid X_{i}\right)=\mu_{i}$
- Estimation Methods
$-\mathrm{NLS}: \min _{\beta} \sum_{i=1}^{N}\left[y_{i}-\frac{e^{-e^{X_{i}^{\prime} \beta}}\left(e^{X_{i}^{\prime} \beta}\right)^{y_{i}}}{y_{i}!}\right]^{2}$
- Maximum Likelihood:
$* \min _{\beta} \ln L=\min _{\beta} \sum_{i=1}^{N} \ln \frac{e^{-e^{X_{i}^{\prime} \beta}}\left(e^{X_{i}^{\prime} \beta}\right)^{y_{i}}}{y_{i}!}$
$*=\min _{\beta} \sum_{i=1}^{N}\left[y_{i} X_{i}^{\prime} \beta-e^{X_{i}^{\prime} \beta}-\ln y_{i}!\right]$
* Moment Conditions

$$
\cdot \sum_{i=1}^{N}\left[k_{i}-e^{X_{i}^{\prime} \beta}\right] X_{i}^{\prime}=0
$$

* Variance of Estimate: $V\left(\hat{\beta}_{P}\right)=\left(\sum_{i=1}^{N} \mu_{i} x_{i} x_{i}^{\prime}\right)^{-1}$
- Test for overdispersion:

$$
\text { - Model variance: } V\left(y_{i} \mid X_{i}\right)=\mu_{i}+\alpha g\left(\mu_{i}\right)
$$

$$
-g\left(\mu_{i}\right) \text { usually }=\mu_{i} \text { or } \mu_{i}^{2}
$$

- Run OLS

$$
\frac{\left(y_{i}-\hat{\mu}_{i}\right)^{2}-y_{i}}{\hat{\mu}_{i}}=\alpha \frac{g\left(\hat{\mu}_{i}\right)}{\hat{\mu}_{i}}+u_{i}
$$

- Test $\alpha=0$
- Robust Standard Errors (overdispersion correction)
- Define $\hat{\alpha}=(n-k)^{-1} \sum_{i=1}^{N} \frac{\left(y_{i}-\hat{\mu}_{i}\right)^{2}}{\hat{\mu}_{i}}$
- Then $V\left(y_{i} \mid X_{i}\right)=\hat{\alpha} E\left(y_{i} \mid X_{i}\right)=\hat{\alpha} e^{x_{i}^{\prime} \beta}$
- Compute marginal effects: $\frac{\partial E\left(y_{i} \mid X_{i}\right)}{\partial X_{i}}=\beta_{i} e^{x_{i}^{\prime} \beta}$
- Note that marginal effects depend upon X_{i}

4 Negative Binomial Regression

- Now suppose that μ_{i} is random as in specification error

$$
-\ln \mu=x_{i}^{\prime} \beta+\epsilon_{i}=\ln \lambda_{i}+\ln u_{i}
$$

- The conditional distribution of f then is:

$$
-f\left(y_{i} \mid x_{i}, \lambda_{i}\right)=\frac{e^{-\mu_{i} \lambda_{i}\left(\lambda_{i} \mu_{i}\right)^{y_{i}}}}{y_{i}!}
$$

- Integrating, we get:

$$
-f\left(y_{i} \mid x_{i}\right)=\int_{0}^{\infty} \frac{e^{-\mu_{i} \lambda_{i}\left(\lambda_{i} \mu_{i}\right)^{y_{i}}}}{y_{i}!} g\left(u_{i}\right) d u_{i}
$$

- We now assume a distribution for g :

$$
-g\left(\lambda_{i}\right)=\frac{\theta^{\theta}}{\Gamma(\theta)} e^{-\theta \mu_{i} \mu_{i}^{\theta-1}}
$$

- We can now solve for f :

$$
\begin{aligned}
-f\left(y_{i} \mid x_{i}\right) & =\frac{\Gamma\left(\theta+y_{i}\right)}{\Gamma\left(y_{i}+1\right) \Gamma(\theta)} r_{i}^{y_{i}}\left(1-r_{i}\right)^{\theta} \\
\text { - where } r_{i} & =\frac{\lambda_{i}}{\lambda_{i}+\theta}
\end{aligned}
$$

- This can be estimated with MLE or NLLS
- The mean is $E\left(y_{i} \mid x_{i}\right)=\lambda_{i}$
- The variance is $V\left(y_{i} \mid x_{i}\right)=\lambda_{i}\left(1+\left(\frac{1}{\theta}\right) \lambda_{i}\right)$
- Remember that θ is estimated so this decouples the mean and variance
- The Poisson Model is the restriction of $\frac{1}{\theta}=0$
- This can be tested using a Wald or LRT Test
- Regression (OLS, Poisson, Negative Binomial) of numbers of donors to presidential, senate and house of representative campaigns during 2000 electoral cycle on population and presence of Fox News in 2000:
- Spec. A includes just a constant, log population, and a dummy for Fox News
- Spec. B adds number of donors in 1996:

	Population	Fox News
	124.5	24.8
OLS A	(68.8)	(1.26)
	2.2	40.2
Poisson A	(1092.1)	(180.7)
	30.9	16.9
Neg Bin. A	(29.9)	(6.8)
	-3.7	1.1
OLS B	(8.36)	(0.27)
	1.9	20.9
Poisson B	(776.0)	(100.9)
	8.8	5.7
Neg. Bin. B	(19.5)	(4.6)

- Regression of numbers of donors to presidential, senate and house of representative campaigns during 2000 electoral cycle on population and presence of Fox News in 2000 (robust standard errors):
- Spec. A includes just a constant, log population, and a dummy for Fox News
- Spec. B adds number of donors in 1996:

	Population R	Fox News R
	124.5	24.8
OLS A	(1.9)	(2.0)
	2.2	40.2
Poisson A	(6.8)	(2.1)
	30.9	16.9
Neg Bin. A	(13.5)	(4.5)
	-3.7	1.1
OLS B	(1.0)	(0.2)
	1.9	20.9
Poisson B	(6.4)	(1.6)
	8.8	5.7
Neg. Bin. B	(10.1)	(4.6)

