Microeconometrics: Clustering

Ethan Kaplan
1 Gauss Markov Assumptions

- OLS is minimum variance unbiased (MVUE) if
 - Linear Model: $Y_i = X_i\beta + \epsilon_i$
 - $E(\epsilon_i|X_i) = 0$
 - $V(\epsilon_i|X_i) = \sigma^2 < \infty$
 - $cov(\epsilon_i, \epsilon_j) = 0$
 - Normally distributed errors.

- What happens if we relax homoskedasticity? Uncorrelated errors?
 - Bias of $\hat{\beta}$? No!
 - Bias of $SE(\hat{\beta})$?
 * Yes, distorted test size: OLS formula for standard errors not valid: $\sigma^2(X'X)^{-1}$
* Up or down? Could be either (In general, positive correlation \implies OLS standard errors are too low, negative correlation \implies OLS standard errors are too high).

– OLS not MVUE anymore

• This lecture will be about what to do when the homoskedasticity and uncorrelated errors assumptions are relaxed
2 Non-Spherical Disturbances: Examples

2.1 Classical OLS

\[
\begin{pmatrix}
\sigma^2 & 0 & 0 & 0 & 0 \\
0 & \sigma^2 & 0 & 0 & 0 \\
0 & 0 & \sigma^2 & 0 & 0 \\
0 & 0 & 0 & \sigma^2 & 0 \\
0 & 0 & 0 & 0 & \sigma^2
\end{pmatrix}
\]

2.2 Heteroskedasticity

\[
\begin{pmatrix}
\sigma_1^2 & 0 & 0 & 0 & 0 & 0 \\
0 & \sigma_2^2 & 0 & 0 & 0 & 0 \\
0 & 0 & \sigma_3^2 & 0 & 0 & 0 \\
0 & 0 & 0 & \sigma_4^2 & 0 & 0 \\
0 & 0 & 0 & 0 & \sigma_5^2 & 0
\end{pmatrix}
\]
2.3 General

\[
\begin{pmatrix}
\sigma_1^2 & \sigma_{12} & \sigma_{13} & \sigma_{14} & \sigma_{15} \\
\sigma_{12} & \sigma_2^2 & \sigma_{23} & \sigma_{24} & \sigma_{25} \\
\sigma_{13} & \sigma_{23} & \sigma_3^2 & \sigma_{34} & \sigma_{35} \\
\sigma_{14} & \sigma_{24} & \sigma_{34} & \sigma_4^2 & \sigma_{45} \\
\sigma_{15} & \sigma_{25} & \sigma_{35} & \sigma_{45} & \sigma_5^2
\end{pmatrix}
\]

2.4 General Clustered (with G clusters)

\[
\begin{pmatrix}
\sigma_1^2 & \sigma_{12} & \sigma_{13} & \ldots & 0 & 0 & 0 \\
\sigma_{12} & \sigma_2^2 & \sigma_{23} & \ldots & 0 & 0 & 0 \\
\sigma_{13} & \sigma_{23} & \sigma_3^2 & \ldots & 0 & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & \sigma_1^2 & \sigma_{12} & \sigma_{13} \\
0 & 0 & 0 & \ldots & \sigma_{12} & \sigma_2^2 & \sigma_{23} \\
0 & 0 & 0 & \ldots & \sigma_{13} & \sigma_{23} & \sigma_3^2
\end{pmatrix}
\]
2.5 Random Effects Model

- Each cluster is structured as

\[
\begin{pmatrix}
\sigma^2 + \sigma_G^2 & \sigma_G^2 & \sigma_G^2 \\
\sigma_G^2 & \sigma^2 + \sigma_G^2 & \sigma_G^2 \\
\sigma_G^2 & \sigma_G^2 & \sigma^2 + \sigma_G^2
\end{pmatrix}
\]

2.6 Clustered AR(1) Model

\[
\begin{pmatrix}
\sigma^2 & \rho\sigma^2 & \rho^2\sigma^2 & \cdots & 0 & 0 & 0 \\
\rho\sigma^2 & \sigma^2 & \rho\sigma^2 & \cdots & 0 & 0 & 0 \\
\rho^2\sigma^2 & \rho\sigma^2 & \sigma^2 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \sigma^2 & \rho\sigma^2 & \rho^2\sigma^2 \\
0 & 0 & 0 & \cdots & \rho\sigma^2 & \sigma^2 & \rho\sigma^2 \\
0 & 0 & 0 & \cdots & \rho^2\sigma^2 & \rho\sigma^2 & \sigma^2
\end{pmatrix}
\]
3 Bias in Standard Errors with Non-Spherical Disturbances

- Model Outline: Assume

- \(Y = X \beta + \epsilon \)
- \(V (X) = \sigma_X^2 \)
- \(V (\epsilon) = \sigma_\epsilon^2 \)
- \(\text{Cov} (X_{itg}, X_{isg}) = \rho_x \)
- \(\text{Cov} (X_{itg}, X_{itg}') = 0 \)
- \(\text{Cov} (\epsilon_{itg}, \epsilon_{isg}) = \rho_\epsilon \)
- \(\text{Cov} (\epsilon_{itg}, \epsilon_{itg}') = 0 \)

- OLS
- $\hat{\beta}_{OLS} = (X'X)^{-1} X'Y$

- $SE(\hat{\beta}_{OLS}) = (X'X)^{-1} (X'\Omega X) (X'X)^{-1}$

- Note that

 - $X'tX = \sum_{i=1}^{N} \sum_{t=1}^{T} x_{it}^2$

 - $X'\epsilon = \sum_{i=1}^{N} \sum_{t=1}^{T} x_{it}\epsilon_{it}$

 - Since X is one dimensional vector, we get

 $SE(\hat{\beta}_{OLS}) = (X'X)^{-1} (X'\Omega X) (X'X)^{-1}$

 $= (X'X)^{-2} X'\Omega X$

 *

 $\implies p \lim SE(\hat{\beta}_{OLS}) =$

 $\left(\sum_{i=1}^{N} \sum_{t=1}^{T} x_{it}^2\right)^{-2} \left(\sum_{i=1}^{N} \sum_{t=1}^{T} x_{it}\epsilon_{it}\right)^2$
\[
NT\sigma_X^2\sigma_\epsilon^2 + NT(T - 1)\rho_X\rho_\epsilon \left(\frac{NT\sigma_X^2}{\sigma_X^2}\right)^2
\]

\[
= \sigma_\epsilon^2 + (T - 1)\frac{\rho_X\rho_\epsilon}{\sigma_X^2}
\]

\[
= \frac{\sigma_\epsilon^2 + (T - 1)\frac{\rho_X\rho_\epsilon}{\sigma_X^2}}{NT\sigma_X^2}
\]

- **Implications:**

 * \(\rho_x > 0, \rho_\epsilon > 0 \implies\) OLS standard errors downward biased: interpretation - some of the lack of variation is not independent

 * \(\rho_x > 0, \rho_\epsilon < 0 \implies\) OLS standard errors upward biased: interpretation - some of the variation is not independent
4 Three Types of Fixes

- Keep $\hat{\beta}$ estimate and adjust standard errors.
 - Eicker-White heteroskedasticity robust standard errors
 - Cluster-Robust standard errors (called "clustering the standard errors")
 - Use complete variance-covariance matrix for inference

- Alter the estimator of $\hat{\beta}$ in addition to using non-OLS standard errors
 - GLS - Generalized Least Squares
 - FGLS - Feasible Generalized Least Squares
 - MLE - Maximum Likelihood

- Collapse data
5 General Tradeoff

- By imposing structure you get greater efficiency
 - Less parameters to estimate
 - More observations per parameter

- But you could be wrong about the structure in which case you could have the wrong standard errors

6 Eicker-White Heteroskedasticity Robust Standard Errors

- Heteroskedasticity robust standard errors keeps the OLS estimator but changes the standard errors by using the formula

\[V(\hat{\beta}_{OLS}) = (X'X)^{-1}X'\hat{\Omega}X(X'X)^{-1} \]
where $\hat{\Omega} =$

$$
= \begin{pmatrix}
\hat{\varepsilon}_1^2 & 0 & 0 & 0 & 0 \\
0 & \hat{\varepsilon}_2^2 & 0 & 0 & 0 \\
0 & 0 & \hat{\varepsilon}_3^2 & 0 & 0 \\
0 & 0 & 0 & \hat{\varepsilon}_4^2 & 0 \\
0 & 0 & 0 & 0 & \hat{\varepsilon}_5^2 \\
\end{pmatrix}
$$

• In other words:

$$
V (\hat{\beta}_{OLS}) = \left(\sum_{i=1}^{N} x_i x_i' \right)^{-1} \left(\sum_{i=1}^{N} \hat{\varepsilon}_i^2 x_i x_i' \right) \left(\sum_{i=1}^{N} x_i x_i' \right)^{-1}
$$

• Note that the sample size for estimating σ_i^2 is one so that we do not have a consistent estimate of σ_i^2.

• Tradeoff with GLS

 – Negative: Less efficient if truly heteroskedastic

 – Positive: Doesn’t require knowledge of the variance-covariance matrix
7 Clustered Standard Errors

- When error terms are correlated within groups but not across groups and when the division of observations into groups is known, standard errors can be "clustered" or adjusted for within-group correlation.

- Clustered standard errors allow for arbitrary patterns of correlation within clusters (groups). Many clusters are needed to invoke asymptotic approximations (Donald and Lang, 2007).

7.1 Single Dimensional Clustering

Cluster-robust standard errors formula:

\[
(X'X)^{-1} X'\hat{\Omega}X (X'X)^{-1}
\]
where $\hat{\Sigma} =$

$$
\begin{pmatrix}
\sigma_1^2 & \sigma_{12} & \sigma_{13} & \ldots & 0 & 0 & 0 \\
\sigma_{12} & \sigma_2^2 & \sigma_{23} & \ldots & 0 & 0 & 0 \\
\sigma_{13} & \sigma_{23} & \sigma_3^2 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & \sigma_1^2 & \sigma_{12} & \sigma_{13} \\
0 & 0 & 0 & \ldots & \sigma_{12} & \sigma_2^2 & \sigma_{23} \\
0 & 0 & 0 & \ldots & \sigma_{13} & \sigma_{23} & \sigma_3^2 \\
\end{pmatrix}
$$

In other words:

$$
V (\hat{\beta}_{OLS}) = \left(\sum_{c=1}^{C} X'_c X_c \right)^{-1} \left(\sum_{c=1}^{C} X'_c \hat{\epsilon}_c \hat{\epsilon}'_c X_c \right) \left(\sum_{c=1}^{C} X'_c X_c \right)^{-1}
$$

7.2 Multi-Dimensional Clustering

- Suppose correlation exists in multiple dimensions within two dimensions of groups over time (i.e. within workers over time and across workers within a certain block of time)
• Two options:
 – Choose one dimension relevant to the parameter of interest and cluster only on one dimension
 – Cluster on two dimensions

• Assumptions
 – \(Y_{ijt} = X_{ijt}\beta + \epsilon_{ijt} \)
 – \(\text{cov}(\epsilon_{ijt}, \epsilon_{kjt}) \neq 0 \)
 – \(\text{cov}(\epsilon_{ijt}, \epsilon_{imt}) \neq 0 \)
 – \(\text{cov}(\epsilon_{ijt}, \epsilon_{ijt}) = 0 \)

• So:
 \[
 V\left(\hat{\beta}_{2D}\right) = (X'X)^{-1} \hat{Q} (X'X)^{-1}
 \]
 where \(\hat{Q} = X' (\hat{\Omega}S^{IJ}) X \)
• $S^{IJ} = S^I + S^J - S^{I\cap J}$ where S^K is the cluster matrix for dimension K

$$
\hat{Q} = X' \left(\hat{\epsilon}' S^{IJ} \right) X =
X' \left(\hat{\epsilon}' S^I \right) X + X' \left(\hat{\epsilon}' S^J \right) X -
X' \left(\hat{\epsilon}' S^{I\cap J} \right) X
$$

– A cluster matrix is a matrix of zeros and ones where a zero is entered if the entry in the variance-covariance matrix is assumed to be zero and a one is entered if the entry in the variance-covariance matrix is estimated. Example: Let S^I be given by (consecutive groupings):

$$
\begin{pmatrix}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{pmatrix}
$$
– and S^J be given by (odd and even groupings):

\[
\begin{pmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{pmatrix}
\]

– Then, the intersection matrix enters a one if entries from both cluster matrices (S^I and S^J) are one and zero otherwise:

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

• So $V(\widehat{\beta}_{2D}) =$

\[
(X'X)^{-1} X' (\hat{c}\hat{c}' S^I) X (X'X)^{-1} + \\
(X'X)^{-1} X' (\hat{c}\hat{c}' S^J) X (X'X)^{-1} - \\
(X'X)^{-1} X' (\hat{c}\hat{c}' S^{I\cap J}) X (X'X)^{-1}
\]
Thus, estimate 3 separate OLS regressions: one clustered by S^I, the next by S^J, and the third by $S^{I \cap J}$ and then compute the above formula.

8 Weighted Least Squares

- We now introduce estimators where we alter the estimation of β in addition to the standard errors. Why would we do this? Efficiency!

8.1 GLS

- Estimation
 - Variance-covariance matrix known: Ω
- Regress $\Omega^{-\frac{1}{2}}Y = \Omega^{-\frac{1}{2}}X\beta + \Omega^{-\frac{1}{2}}\mu$

- $\hat{\beta} = (X'\Omega X)^{-1} X'\Omega Y$

- Downweights high variance observations, upweights low variance observations

- Takes into account cross-observation correlation patterns

- Positive
 - Can handle arbitrary correlation structures
 - Efficient if you know the correlation structure

- Negative
 - Relies on knowing the variance-covariance matrix Ω
Weights efficiently so doesn’t estimate average treatment effect in the presence of treatment effect heterogeneity

8.2 FGLS

- Estimation
 - Stage 1: Run OLS \(Y = X\beta + \mu \)
 - Stage 2: extract variance-covariance matrix from stage 1 - \(\hat{\Sigma} \) and run GLS with estimated matrix: Regress \(\hat{\Sigma}^{-\frac{1}{2}}Y = \hat{\Sigma}^{-\frac{1}{2}}X\beta + \hat{\Sigma}^{-\frac{1}{2}}\mu \)

 \[\hat{\beta} = \left(X'\hat{\Sigma}X \right)^{-1} X'\hat{\Sigma}Y \]

- Positive
 - Can handle arbitrary correlation structures
- Doesn’t rely on knowing the variance-covariance matrix Ω

- Negative

- Biased in small samples: $E \left(X'\hat{\Omega}X \right)^{-1} X'\hat{\Omega}Y \neq \beta$

- Variance-covariance matrix noisy. Note that $\hat{\beta}_{FGLS}$ is consistent for β but $\hat{\Omega}$ is not consistent for Ω. To estimate, $\hat{\Omega}$, we need to estimate $\frac{N(N+1)}{2}$ entries of the variance-covariance matrix for a sample size of N

- Weights efficiently so doesn’t estimate average treatment effect in the presence of treatment effect heterogeneity
9 Maximum Likelihood

- Can structurally model error terms - easy to allow for non-spherical disturbances
 - Note: not all distributions have an independent variance parameter - some like poisson, negative binomial, exponential have only one parameter. Others like the normal, lognormal have independent mean and variances.

- Benefits of MLE
 - Can have better small sample properties if you know the error term
 - Easier to model error structure
 - Reaches Cramer-Rao lower bound - efficient!

- Costs
- You need to know the distribution
- Not consistent if the distribution is wrong
- Can be biased in small samples even if the distribution is correct
- Doesn’t generally have closed form computational formulas - have to solve simultaneously for set of first order conditions. Additional problems of knowing whether a solution to the set of first order conditions is a local/global maximum/minimum.

10 Structured FGLS:

10.1 Example - Cochrane-Orcutt

- Assume $Y_{it} = X_{it}\beta + \epsilon_{it}$ where $\epsilon_{it} = \rho \epsilon_{it-1} + \mu_{it}$
Then follow these steps:

1. Estimate $Y_{it} = X_{it}\beta + \epsilon_{it}$

2. Regress $\epsilon_{it} = \rho \epsilon_{it-1} + \mu_{it}$ and obtain ρ

3. Then transform data to

$$Y_{it} - \rho Y_{it-1} = (X_{it} - \rho X_{it-1}) \beta + \epsilon_{it}$$

4. $\hat{\beta}$ is now correct and so are the OLS standard errors
10.2 Example: Newey-West

- Variance covariance matrix with each cluster assumed to equal:

\[
\begin{pmatrix}
\sigma^2 & \left(1 - \frac{1}{M}\right) \sigma^2 & \cdots & \left(1 - \frac{K}{M}\right) \sigma^2 \\
\left(1 - \frac{1}{M}\right) \sigma^2 & \sigma^2 & \cdots & \left(1 - \frac{K-1}{M}\right) \sigma^2 \\
\left(1 - \frac{2}{M}\right) \sigma^2 & \left(1 - \frac{1}{M}\right) \sigma^2 & \cdots & \left(1 - \frac{K-2}{M}\right) \sigma^2 \\
\vdots & \vdots & \ddots & \vdots \\
\left(1 - \frac{K}{M}\right) \sigma^2 & \left(1 - \frac{K-1}{M}\right) \sigma^2 & \cdots & \sigma^2
\end{pmatrix}
\]

- The above formulation, called the Newey-West estimator, allows for linear fall off in correlation of error terms within clusters

- Can be estimated using GLS or MLE
11 Collapsing

- Suppose that X variables are the same within cluster so that

$$Y_{ig} = \alpha + \beta X_g + C_g + \epsilon_{ig}$$

- Then there is no loss in collapsing the data because there is no within cluster variation used to identify β

- Otherwise you trade off:
 - Not using variation from a correlation structure you do not know
 - Throwing away useful correlation within clusters from covariates X