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1 Gauss Markov Assumptions

� OLS is minimum variance unbiased (MVUE) if

� Linear Model: Yi = Xi� + �i

� E (�ijXi) = 0

� V (�ijXi) = �2 <1

� cov
�
�i; �j

�
= 0

� Normally distributed errors.

� What happens if we relax homoskedasticity? Uncor-
related errors?

� Bias of �̂? No!

� Bias of SE
�
�̂
�
?

� Yes, distorted test size: OLS formula for stan-
dard errors not valid: �2

�
X 0X

��1



� Up or down? Could be either (In general, pos-
itive correlation =) OLS standard errors are
too low, negative correlation =) OLS stan-
dard errors are too high).

� OLS not MVUE anymore

� This lecture will be about what to do when the ho-
moskedasticity and uncorrelated errors assumptions
are relaxed



2 Non-Spherical Disturbances: Ex-
amples

2.1 Classical OLS

0BBBBBB@
�2 0 0 0 0
0 �2 0 0 0
0 0 �2 0 0
0 0 0 �2 0
0 0 0 0 �2

1CCCCCCA

2.2 Heteroskedasticity

0BBBBBB@
�21 0 0 0 0
0 �22 0 0 0
0 0 �23 0 0
0 0 0 �24 0
0 0 0 0 �25

1CCCCCCA



2.3 General

0BBBBBB@
�21 �12 �13 �14 �15
�12 �22 �23 �24 �25
�13 �23 �23 �34 �35
�14 �24 �34 �24 �45
�15 �25 �35 �45 �25

1CCCCCCA

2.4 General Clustered (with G clusters)

0BBBBBBBBBBBBB@

�21 �12 �13 : : 0 0 0
�12 �22 �23 : : 0 0 0
�13 �23 �23 : : 0 0 0
: : : : : : : :
: : : : : : : :

0 0 0 : : �21 �12 �13
0 0 0 : : �12 �22 �23
0 0 0 : : �13 �23 �23

1CCCCCCCCCCCCCA



2.5 Random E¤ects Model

� Each cluster is structured as

0B@ �2 + �2G �2G �2G
�2G �2 + �2G �2G
�2G �2G �2 + �2G

1CA

2.6 Clustered AR(1) Model

0BBBBBBBBBBBBB@

�2 ��2 �2�2 : : 0 0 0
��2 �2 ��2 : : 0 0 0
�2�2 ��2 �2 : : 0 0 0
: : : : : : : :
: : : : : : : :

0 0 0 : : �2 ��2 �2�2

0 0 0 : : ��2 �2 ��2

0 0 0 : : �2�2 ��2 �2

1CCCCCCCCCCCCCA



3 Bias in Standard Errors with Non-

Spherical Disturbances

� Model Outline: Assume

� Y = X� + �

� V (X) = �2X

� V (�) = �2�

� Cov
�
Xitg; Xisg

�
= �x

� Cov
�
Xitg; Xitg0

�
= 0

� Cov
�
�itg; �isg

�
= ��

� Cov
�
�itg; �itg0

�
= 0

� OLS



� �̂OLS =
�
X 0X

��1X 0Y
� SE

�
�̂OLS

�
=
�
X 0X

��1 �X 0
X� �X 0X��1
� Note that

� X0X =
NX
i=1

TX
t=1

x2it

� X 0� =
NX
i=1

TX
t=1

xit�it

� Since X is one dimensional vector, we get

SE
�
�̂OLS

�
=

�
X 0X

��1 �
X 0
X

� �
X 0X

��1
=

�
X 0X

��2
X 0
X

�

=) p limSE
�
�̂OLS

�
=0@ NX

i=1

TX
t=1

x2it

1A�20@ NX
i=1

TX
t=1

xit�it

1A2



=
NT�2X�

2
� +NT (T � 1) �X���
NT�2X

�2

=
�2� + (T � 1)

�X��
�2X

NT�2X

� Implications:

� �x > 0; �� > 0 =) OLS standard errors
downward biased: interpretation - some of the
lack of variation is not independent

� �x > 0; �� < 0 =) OLS standard errors
upward biased: interpretation - some of the
variation is not independent



4 Three Types of Fixes

� Keep �̂ estimate and adjust standard errors.

� Eicker-White heteroskedasticity robust standard
errors

� Cluster-Robust standard errors (called "cluster-
ing the standard errors")

� Use complete variance-covariance matrix for in-
ference

� Alter the estimator of �̂ in addition to using non-OLS
standard errors

� GLS - Generalized Least Squares

� FGLS - Feasible Generalized Least Squares

� MLE - Maximum Likelihood

� Collapse data



5 General Tradeo¤

� By imposing structure you get greater e¢ ciency

� Less parameters to estimate

� More observations per parameter

� But you could be wrong about the structure in which
case you could have the wrong standard errrors

6 Eicker-White Heteroskedasticity
Robust Standard Errors

� Heteroskedasticity robust standard errors keeps the
OLS estimator but changes the standard errors by
using the formula

V
�
�̂OLS

�
=
�
X 0X

��1
X 0
̂X

�
X 0X

��1



where 
̂ = 0BBBBBB@
�̂21 0 0 0 0
0 �̂22 0 0 0
0 0 �̂23 0 0
0 0 0 �̂24 0
0 0 0 0 �̂25

1CCCCCCA

� In other words:

V
�
�̂OLS

�
=

0@ NX
i=1

xix
0
i

1A�10@ NX
i=1

�̂2ixix
0
i

1A0@ NX
i=1

xix
0
i

1A�1

� Note that the sample size for estimating �2i is one
so that we do not have a consistent estimate of �2i :

� Tradeo¤ with GLS

� Negative: Less e¢ cient if truly heteroskedastic

� Positive: Doesn�t require knowledge of the variance-
covariance matrix



7 Clustered Standard Errors

� When error terms are correlated within groups but
not across groups and when the division of observa-
tions into groups is known, standard errors can be
"clustered" or adjusted for within-group correlation.

� Clustered standard errors allow for arbitrary patterns
of correlation within clusters (groups). Many clus-
ters are needed to invoke assymptotic approxima-
tions (Donald and Lang, 2007).

7.1 Single Dimensional Clustering

Cluster-robust standard errors formula:�
X 0X

��1
X 0
̂X

�
X 0X

��1



where 
̂ =0BBBBBBBBBBBBB@

�21 �12 �13 : : 0 0 0
�12 �22 �23 : : 0 0 0
�13 �23 �23 : : 0 0 0
: : : : : : : :
: : : : : : : :

0 0 0 : : �21 �12 �13
0 0 0 : : �12 �22 �23
0 0 0 : : �13 �23 �23

1CCCCCCCCCCCCCA

In other words:

V
�
�̂OLS

�
=

0@ CX
c=1

X 0cXc

1A�1 CX
c=1

X 0c�̂c�̂
0
cXc

0@ CX
c=1

X 0cXc

1A�1

7.2 Multi-Dimensional Clustering

� Suppose correlation exists in multiple dimensions within
two dimensions of groups over time (i.e. within work-
ers over time and across workers within a certain
block of time)



� Two options:

� Choose one dimension relevant to the parameter
of interest and cluster only on one dimension

� Cluster on two dimensions

� Assumptions

� Yijt = Xijt� + �ijt

� cov
�
�ijt; �kjt

�
6= 0

� cov
�
�ijt; �imt

�
6= 0

� cov
�
�ijs; �ijt

�
= 0

� So:

V
�
�̂2D

�
=

�
X 0X

��1
Q̂
�
X 0X

��1
where Q̂ = X 0

�

̂SIJ

�
X



� SIJ = SI + SJ � SI\J where SK is the cluster
matrix for dimension K

Q̂ = X 0
�
�̂�̂0SIJ

�
X =

X 0
�
�̂�̂0SI

�
X +X 0

�
�̂�̂0SJ

�
X �

X 0
�
�̂�̂0SI\J

�
X

� A cluster matrix is a matrix of zeros and ones
where a zero is entered if the entry in the variance-
covariance matrix is assumed to be zero and a
one is entered if the entry in the variance-covariance
matrix is estimated. Example: Let SI be given
by (consecutive groupings):0BBB@

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

1CCCA



� and SJ be given by (odd and even groupings):0BBB@
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

1CCCA
� Then, the intersection matrix enters a one if en-
tries from both cluster matrices (SI and SJ) are
one and zero otherwise:0BBB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1CCCA

� So V
�
�̂2D

�
=

�
X 0X

��1
X 0

�
�̂�̂0SI

�
X
�
X 0X

��1
+�

X 0X
��1

X 0
�
�̂�̂0SJ

�
X
�
X 0X

��1 ��
X 0X

��1
X 0

�
�̂�̂0SI\J

�
X
�
X 0X

��1



� Thus, estimate 3 separate OLS regressions: one clus-
tered by SI ; the next by SJ ; and the third by SI\J

and then compute the abve formula.

8 Weighted Least Squares

� We now introduce estimators where we alter the esti-
mation of � in addition to the standard errors. Why
would we do this? E¢ ciency!

8.1 GLS

� Estimation

� Variance-covariance matrix known: 




� Regress 
�
1
2Y = 
�

1
2X� +
�

1
2�

� �̂ =
�
X 0
X

��1X 0
Y
� Downweights high variance observations, upweights
low variance observations

� Takes into account cross-observation correlation
patterns

� Positive

� Can handle arbitrary correlation structures

� E¢ cient if you know the correlation structure

� Negative

� Relies on knowing the variance-covariance matrix





� Weights e¢ ciently so doesn�t estimate average
treatment e¤ect in the presence of treatment ef-
fect heterogeneity

8.2 FGLS

� Estimation

� Stage 1: Run OLS - Y = X� + �

� Stage 2: extract variance-covariance matrix from
stage 1 - 
̂ and run GLS with estimated matrix:

Regress 
̂�
1
2Y = 
̂�

1
2X� + 
̂�

1
2�

� �̂ =
�
X 0
̂X

��1
X 0
̂Y

� Positive

� Can handle arbitrary correlation structures



� Doesn�t rely on knowing the variance-covariance
matrix 


� Negative

� Biased in small samples:E
�
X 0
̂X

��1
X 0
̂Y 6=

�

� Variance-covariance matrix noisy. Note that �̂FGLS
is consistent for � but 
̂ is not consistent for 
.
To estimate, 
̂, we need to estimate N(N+1)2
entries of the variance-covariance matrix for a
sample size of N

� Weights e¢ ciently so doesn�t estimate average
treatment e¤ect in the presence of treatment ef-
fect heterogeneity



9 Maximum Likelihood

� Can structurally model error terms - easy to allow
for non-spherical disturbances

� Note: not all distributions have an independent
variance parameter - some like poisson, negative
binomial, exponential have only one parameter.
Others like the normal, lognormal have indepen-
dent mean and variances.

� Bene�ts of MLE

� Can have better small sample properties if you
know the error term

� Easier to model error structure

� Reachers Cramer-Rao lower bound - e¢ cient!

� Costs



� You need to know the distribution

� Not consistent if the distribution is wrong

� Can be biased in small samples even if the distri-
bution is correct

� Doesn�t generally have closed form computational
formulas - have to solve simultaneously for set
of �rst order conditions. Additional problems of
knowing whether a solution to the set of �rst or-
der conditions is a local/global maximum/minimum.

10 Structured FGLS:

10.1 Example - Cochrane-Orcutt

� Assume Yit = Xit� + �it where �it = ��it�1 + �it



� Then follow these steps:

1. Estimate Yit = Xit� + �it

2. Regress �it = ��it�1 + �it and obtain �

3. Then transform data to

Yit � �Yit�1 = (Xit � �Xit�1)� + �it

4. �̂ is now correct and so are the OLS standard
errors



10.2 Example: Newey-West

� Variance covariance matrix with each cluster assumed
to equal:0BBBBBBBB@

�2
h
1� 1

M

i
�2 :

h
1� K

M

i
�2h

1� 1
M

i
�2 �2 :

h
1� K�1

M

i
�2h

1� 2
M

i
�2

h
1� 1

M

i
�2 :

h
1� K�2

M

i
�2

: : : :h
1� K

M

i
�2

h
1� K�1

M

i
�2 : �2

1CCCCCCCCA

� The above formulation, called the Newey-West esti-
mator, allows for linear fall o¤ in correlation of error
terms within clusters

� Can be estimated using GLS or MLE



11 Collapsing

� Suppose thatX variables are the same within cluster
so that

Yig = �+ �Xg + Cg + �ig

� Then there is no loss in collapsing the data because
there is no within cluster variation used to identify �

� Otherwise you trade o¤:

� Not using variation from a correlation structure
you do not know

� Throwing away useful correlation within clusters
from covariates X


