Microeconometrics: Clustering

Ethan Kaplan



1 Gauss Markov Assumptions

e OLS is minimum variance unbiased (MVUE) if
— Linear Model: Y; = X;8 + ¢;
- E(e]X;) =0
- V(g X;) =02 <
— Cov (ei, ej) =0

— Normally distributed errors.

e What happens if we relax homoskedasticity? Uncor-
related errors?

— Bias of @? No!

— Bias of SE (3)7

* Yes, distorted test size: OLS formula for stan-
dard errors not valid: o2 (X'X)



* Up or down? Could be either (In general, pos-
itive correlation =—- OLS standard errors are
too low, negative correlation — OLS stan-
dard errors are too high).

— OLS not MVUE anymore

e This lecture will be about what to do when the ho-
moskedasticity and uncorrelated errors assumptions

are relaxed



2 Non-Spherical Disturbances: Ex-

amples

2.1 Classical OLS
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2.2 Heteroskedasticity
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2.3 General
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2.4 General Clustered (with G clusters)
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2.5 Random Effects Model

e Each cluster is structured as

2.6 Clustered AR(1) Model
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3 Bias in Standard Errors with Non-

Spherical Disturbances

e Model Outline: Assume
- Y =XB+¢€
- V(X)=0%

— V(e):ag



5 1
- Bors = (X'X) " XY

- SE (BoLs) = (X'X)7H(X'QX) (X'X) 7

Note that

N T
—X/X:ZZ:U%

1=1t=1
- X'e = Z Z Tit€it
1=1t=
— Since X is one dimensional vector, we get
SE (Bors) = (X’X>_1 (X'QX) (X'X)
= (X’X)_2 X'QX

—1
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— Implications:

* p, > 0,p. > 0 == OLS standard errors
downward biased: interpretation - some of the
lack of variation is not independent

* p, > 0,p. < 0 == OLS standard errors
upward biased: interpretation - some of the
variation is not independent



4 Three Types of Fixes

o Keep B estimate and adjust standard errors.

— Eicker-White heteroskedasticity robust standard
errors

— Cluster-Robust standard errors (called "cluster-
ing the standard errors")

— Use complete variance-covariance matrix for in-
ference

e Alter the estimator of B in addition to using non-OLS
standard errors

— GLS - Generalized Least Squares
— FGLS - Feasible Generalized Least Squares

— MLE - Maximum Likelihood

e (Collapse data



5 General Tradeoff

e By imposing structure you get greater efficiency
— Less parameters to estimate

— More observations per parameter

e But you could be wrong about the structure in which
case you could have the wrong standard errrors

6 Eicker-White Heteroskedasticity
Robust Standard Errors

e Heteroskedasticity robust standard errors keeps the
OLS estimator but changes the standard errors by
using the formula

V (BoLs) = (X’X)_l X'x (X’X)_l



where =

e In other words:
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e Note that the sample size for estimating o

2

IS one

so that we do not have a consistent estimate of azz.

e Tradeoff with GLS

— Negative: Less efficient if truly heteroskedastic

— Positive: Doesn’t require knowledge of the variance-

covariance matrix



7 Clustered Standard Errors

e When error terms are correlated within groups but
not across groups and when the division of observa-
tions into groups is known, standard errors can be
"clustered" or adjusted for within-group correlation.

e (lustered standard errors allow for arbitrary patterns
of correlation within clusters (groups). Many clus-
ters are needed to invoke assymptotic approxima-

tions (Donald and Lang, 2007).

7.1 Single Dimensional Clustering

Cluster-robust standard errors formula:

(X’X) 1 x'ax (X’X) !



where =
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In other words:
X C -1 ¢ C -1
V (Bors) = | 2 XiXe| Y XlectlXe | Y XiXe
c=1 c=1 c=1

7.2 Multi-Dimensional Clustering

e Suppose correlation exists in multiple dimensions within
two dimensions of groups over time (i.e. within work-
ers over time and across workers within a certain
block of time)



e Two options:

— Choose one dimension relevant to the parameter
of interest and cluster only on one dimension

— Cluster on two dimensions

e Assumptions
— Yijt = XiitB + €t
— Cov <€ijt7 ijt) # 0
— cov (Ez’jta eimt) # 0
— Ccov (eijs, €ijt) =0

e So:

V(Bop) = (x'X)
where Q = X' (QSIJ)X



o 51 = gl 1 gJ _ §INJ \yhere SK is the cluster

matrix for dimension K
Q = x' (&™) x =
X/ (@@’Sf ) X4+ X/ (%@’SJ ) X —
X' (es') x

— A cluster matrix is a matrix of zeros and ones
where a zero is entered if the entry in the variance-
covariance matrix is assumed to be zero and a
one is entered if the entry in the variance-covariance
matrix is estimated. Example: Let S! be given
by (consecutive groupings):

ool .
OO MM
== O O
== O O



— and S7 be given by (odd and even groupings):

1 0 0

O = O M=

01 1
1 0 0
0 1 1
— Then, the intersection matrix enters a one if en-

tries from both cluster matrices (S’ and S7) are

one and zero otherwise:

1 00O
0100
0 01O
0 001



e Thus, estimate 3 separate OLS regressions: one clus-
tered by SZ, the next by SV, and the third by SN/
and then compute the abve formula.

8 Weighted Least Squares

e \We now introduce estimators where we alter the esti-
mation of 3 in addition to the standard errors. Why
would we do this? Efficiency!

8.1 GLS

e Estimation

— Variance-covariance matrix known: 2



1 1 1
— Regress Q 2Y = Q 2X[5+Q 2u
- B=(x'ax) tx'Qy

— Downweights high variance observations, upweights

low variance observations
— Takes into account cross-observation correlation
patterns
e Positive
— Can handle arbitrary correlation structures

— Efficient if you know the correlation structure

e Negative

— Relies on knowing the variance-covariance matrix

Q



— Weights efficiently so doesn’'t estimate average
treatment effect in the presence of treatment ef-

fect heterogeneity

8.2 FGLS

e Estimation
— Stage 1: Run OLS - Y = X8+ 1

— Stage 2: extract variance-covariance matrix from
stage 1 - Q and run GLS with estimated matrix:

A1 A1 A1
Regress 2 2Y =Q 2X5+Q 2u

- B= (X’QX)_lx’sz

e Positive

— Can handle arbitrary correlation structures



— Doesn't rely on knowing the variance-covariance

matrix €2

e Negative

R
— Biased in small samples: E (X’QX) X'QY #
B

— Variance-covariance matrix noisy. Note that BFGLS
is consistent for § but Q) is not consistent for Q.
_ A : N(N+1)
To estimate, €2, we need to estimate ———=
entries of the variance-covariance matrix for a

sample size of N

— Weights efficiently so doesn’t estimate average
treatment effect in the presence of treatment ef-
fect heterogeneity



9 Maximum Likelihood

e Can structurally model error terms - easy to allow
for non-spherical disturbances

— Note: not all distributions have an independent
variance parameter - some like poisson, negative
binomial, exponential have only one parameter.
Others like the normal, lognormal have indepen-
dent mean and variances.

e Benefits of MLE

— Can have better small sample properties if you
know the error term

— Easier to model error structure

— Reachers Cramer-Rao lower bound - efficient!

e Costs



— You need to know the distribution
— Not consistent if the distribution is wrong

— Can be biased in small samples even if the distri-
bution is correct

— Doesn’t generally have closed form computational
formulas - have to solve simultaneously for set
of first order conditions. Additional problems of
knowing whether a solution to the set of first or-
der conditions is a local /global maximum /minimum.

10 Structured FGLS:

10.1 Example - Cochrane-Orcutt

e Assume Y = X108 + €;; where €3 = pe;p_1 +



e Then follow these steps:
1. Estimate Y;; = X ;108 + €;¢
2. Regress €;4 = pe;jr—1 + p;y and obtain p

3. Then transform data to
Yie — pYi—1 = (Xit — pXi1—1) B+ €

4. B is now correct and so are the OLS standard

errors



10.2 Example: Newey-West

e Variance covariance matrix with each cluster assumed

to equal:

( 02_ [1—%}02 [1—%]02 \
_1—% o2 o2 1—% o2
(R R

\ 1—% o2 [1—%} o2 o2 )

e The above formulation, called the Newey-West esti-
mator, allows for linear fall off in correlation of error

terms within clusters

e Can be estimated using GLS or MLE



11 Collapsing

e Suppose that X variables are the same within cluster
so that

Yig=a+0Xg+Cg+ ey

e Then there is no loss in collapsing the data because
there is no within cluster variation used to identify 8
e Otherwise you trade off:

— Not using variation from a correlation structure
you do not know

— Throwing away useful correlation within clusters
from covariates X



