Microeconometrics: Clustering

Ethan Kaplan

1 Gauss Markov Assumptions

- OLS is minimum variance unbiased (MVUE) if
 - Linear Model: $Y_i = X_i\beta + \epsilon_i$

$$- E(\epsilon_i | X_i) = \mathbf{0}$$

$$- V(\epsilon_i | X_i) = \sigma^2 < \infty$$

$$- cov(\epsilon_i, \epsilon_j) = 0$$

- Normally distributed errors.
- What happens if we relax homoskedasticity? Uncorrelated errors?
 - Bias of $\hat{\beta}$? No!
 - Bias of $SE\left(\hat{\beta}\right)$?
 - * Yes, distorted test size: OLS formula for standard errors not valid: $\sigma^2 (X'X)^{-1}$

- * Up or down? Could be either (In general, positive correlation ⇒ OLS standard errors are too low, negative correlation ⇒ OLS standard errors are too high).
- OLS not MVUE anymore
- This lecture will be about what to do when the homoskedasticity and uncorrelated errors assumptions are relaxed

2 Non-Spherical Disturbances: Examples

2.1 Classical OLS

$$\left(\begin{array}{cccccccccc}
\sigma^2 & 0 & 0 & 0 & 0\\
0 & \sigma^2 & 0 & 0 & 0\\
0 & 0 & \sigma^2 & 0 & 0\\
0 & 0 & 0 & \sigma^2 & 0\\
0 & 0 & 0 & 0 & \sigma^2
\end{array}\right)$$

2.2 Heteroskedasticity

$$\begin{pmatrix} \sigma_1^2 & 0 & 0 & 0 & 0 \\ 0 & \sigma_2^2 & 0 & 0 & 0 \\ 0 & 0 & \sigma_3^2 & 0 & 0 \\ 0 & 0 & 0 & \sigma_4^2 & 0 \\ 0 & 0 & 0 & 0 & \sigma_5^2 \end{pmatrix}$$

2.3 General

$$\begin{pmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} & \sigma_{14} & \sigma_{15} \\ \sigma_{12} & \sigma_2^2 & \sigma_{23} & \sigma_{24} & \sigma_{25} \\ \sigma_{13} & \sigma_{23} & \sigma_3^2 & \sigma_{34} & \sigma_{35} \\ \sigma_{14} & \sigma_{24} & \sigma_{34} & \sigma_4^2 & \sigma_{45} \\ \sigma_{15} & \sigma_{25} & \sigma_{35} & \sigma_{45} & \sigma_5^2 \end{pmatrix}$$

2.4 General Clustered (with G clusters)

(σ_1^2	σ_{12}	σ_{13}	•	•	0	0	0
	σ_{12}	σ_2^2	σ_{23}	•	•	0	0	0
	σ_{13}	σ_{23}	σ_3^2	•	•	0	0	0
	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•
	0	0	0	•	•	σ_1^2	σ_{12}	σ_{13}
	0	0	0	•	•	σ_{12}	σ_2^2	σ_{23}
ĺ	0	0	0	•	•	σ_{13}	σ_{23}	σ_3^2

2.5 Random Effects Model

• Each cluster is structured as

$$\begin{pmatrix} \sigma^2 + \sigma_G^2 & \sigma_G^2 & \sigma_G^2 \\ \sigma_G^2 & \sigma^2 + \sigma_G^2 & \sigma_G^2 \\ \sigma_G^2 & \sigma_G^2 & \sigma^2 + \sigma_G^2 \end{pmatrix}$$

2.6 Clustered AR(1) Model

3 Bias in Standard Errors with Non-Spherical Disturbances

• Model Outline: Assume

$$-Y = X\beta + \epsilon$$
$$-V(X) = \sigma_X^2$$
$$-V(\epsilon) = \sigma_\epsilon^2$$
$$-Cov(X_{itg}, X_{isg}) = \rho_x$$
$$-Cov(X_{itg}, X_{itg'}) = 0$$
$$-Cov(\epsilon_{itg}, \epsilon_{isg}) = \rho_\epsilon$$
$$-Cov(\epsilon_{itg}, \epsilon_{itg'}) = 0$$

• OLS

$$-\hat{\beta}_{OLS} = (X'X)^{-1} X'Y$$
$$-SE(\hat{\beta}_{OLS}) = (X'X)^{-1} (X'\Omega X) (X'X)^{-1}$$

• Note that

$$-X'X = \sum_{i=1}^{N} \sum_{t=1}^{T} x_{it}^{2}$$

$$-X'\epsilon = \sum_{i=1}^{N} \sum_{t=1}^{T} x_{it}\epsilon_{it}$$

– Since \boldsymbol{X} is one dimensional vector, we get

$$SE\left(\hat{\beta}_{OLS}\right) = \left(X'X\right)^{-1} \left(X'\Omega X\right) \left(X'X\right)^{-1}$$
$$= \left(X'X\right)^{-2} X'\Omega X$$

*

$$\implies p \lim SE\left(\hat{\beta}_{OLS}\right) = \\ \left(\sum_{i=1}^{N}\sum_{t=1}^{T}x_{it}^{2}\right)^{-2} \left(\sum_{i=1}^{N}\sum_{t=1}^{T}x_{it}\epsilon_{it}\right)^{2}$$

$$= \frac{NT\sigma_X^2 \sigma_\epsilon^2 + NT(T-1)\rho_X \rho_\epsilon}{\left(NT\sigma_X^2\right)^2}$$
$$= \frac{\sigma_\epsilon^2 + (T-1)\frac{\rho_X \rho_\epsilon}{\sigma_X^2}}{NT\sigma_X^2}$$

- Implications:

- * $\rho_x > 0, \rho_\epsilon > 0 \implies$ OLS standard errors downward biased: interpretation - some of the lack of variation is not independent
- * $\rho_x > 0, \rho_\epsilon < 0 \implies$ OLS standard errors upward biased: interpretation some of the variation is not independent

4 Three Types of Fixes

- Keep $\hat{\beta}$ estimate and adjust standard errors.
 - Eicker-White heteroskedasticity robust standard errors
 - Cluster-Robust standard errors (called "clustering the standard errors")
 - Use complete variance-covariance matrix for inference
- Alter the estimator of $\hat{\beta}$ in addition to using non-OLS standard errors
 - GLS Generalized Least Squares
 - FGLS Feasible Generalized Least Squares
 - MLE Maximum Likelihood
- Collapse data

5 General Tradeoff

- By imposing structure you get greater efficiency
 - Less parameters to estimate
 - More observations per parameter
- But you could be wrong about the structure in which case you could have the wrong standard errrors

6 Eicker-White Heteroskedasticity Robust Standard Errors

• Heteroskedasticity robust standard errors keeps the OLS estimator but changes the standard errors by using the formula

$$V\left(\hat{\beta}_{OLS}\right) = \left(X'X\right)^{-1} X'\hat{\Omega}X\left(X'X\right)^{-1}$$

where $\hat{\Omega} =$

$$\left(\begin{array}{cccccccc} \hat{\epsilon}_1^2 & 0 & 0 & 0 & 0 \\ 0 & \hat{\epsilon}_2^2 & 0 & 0 & 0 \\ 0 & 0 & \hat{\epsilon}_3^2 & 0 & 0 \\ 0 & 0 & 0 & \hat{\epsilon}_4^2 & 0 \\ 0 & 0 & 0 & 0 & \hat{\epsilon}_5^2 \end{array}\right)$$

• In other words:

$$V\left(\hat{\beta}_{OLS}\right) = \left(\sum_{i=1}^{N} x_i x_i'\right)^{-1} \left(\sum_{i=1}^{N} \hat{\epsilon}_i^2 x_i x_i'\right) \left(\sum_{i=1}^{N} x_i x_i'\right)^{-1}$$

- Note that the sample size for estimating σ_i^2 is one so that we do not have a consistent estimate of σ_i^2 .
- Tradeoff with GLS
 - Negative: Less efficient if truly heteroskedastic
 - Positive: Doesn't require knowledge of the variancecovariance matrix

7 Clustered Standard Errors

- When error terms are correlated within groups but not across groups and when the division of observations into groups is known, standard errors can be "clustered" or adjusted for within-group correlation.
- Clustered standard errors allow for arbitrary patterns of correlation within clusters (groups). Many clusters are needed to invoke assymptotic approximations (Donald and Lang, 2007).

7.1 Single Dimensional Clustering

Cluster-robust standard errors formula:

$$\left(X'X\right)^{-1}X'\hat{\Omega}X\left(X'X\right)^{-1}$$

where
$$\hat{\Omega} = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} & . & . & 0 & 0 & 0 \\ \sigma_{12} & \sigma_2^2 & \sigma_{23} & . & . & 0 & 0 & 0 \\ \sigma_{13} & \sigma_{23} & \sigma_3^2 & . & . & 0 & 0 & 0 \\ . & . & . & . & . & . & . & . \\ 0 & 0 & 0 & . & . & \sigma_1^2 & \sigma_{12} & \sigma_{13} \\ 0 & 0 & 0 & . & . & \sigma_{12} & \sigma_2^2 & \sigma_{23} \\ 0 & 0 & 0 & . & . & \sigma_{13} & \sigma_{23} & \sigma_3^2 \end{pmatrix}$$

In other words:

$$V\left(\hat{\beta}_{OLS}\right) = \left(\sum_{c=1}^{C} X'_{c} X_{c}\right)^{-1} \sum_{c=1}^{C} X'_{c} \hat{\epsilon}_{c} \hat{\epsilon}'_{c} X_{c} \left(\sum_{c=1}^{C} X'_{c} X_{c}\right)^{-1}$$

7.2 Multi-Dimensional Clustering

 Suppose correlation exists in multiple dimensions within two dimensions of groups over time (i.e. within workers over time and across workers within a certain block of time)

- Two options:
 - Choose one dimension relevant to the parameter of interest and cluster only on one dimension
 - Cluster on two dimensions
- Assumptions

$$-Y_{ijt} = X_{ijt}\beta + \epsilon_{ijt}$$
$$-cov(\epsilon_{ijt}, \epsilon_{kjt}) \neq 0$$
$$-cov(\epsilon_{ijt}, \epsilon_{imt}) \neq 0$$
$$-cov(\epsilon_{ijs}, \epsilon_{ijt}) = 0$$

• So:

$$V(\hat{\beta}_{2D}) = (X'X)^{-1} \hat{Q} (X'X)^{-1}$$

where $\hat{Q} = X' (\hat{\Omega} S^{IJ}) X$

• $S^{IJ} = S^I + S^J - S^{I \cap J}$ where S^K is the cluster matrix for dimension K

$$\hat{Q} = X' \left(\hat{\epsilon}\hat{\epsilon}'S^{IJ}\right) X = X' \left(\hat{\epsilon}\hat{\epsilon}'S^{I}\right) X + X' \left(\hat{\epsilon}\hat{\epsilon}'S^{J}\right) X - X' \left(\hat{\epsilon}\hat{\epsilon}'S^{I\cap J}\right) X$$

 A cluster matrix is a matrix of zeros and ones where a zero is entered if the entry in the variancecovariance matrix is assumed to be zero and a one is entered if the entry in the variance-covariance matrix is estimated. Example: Let S^I be given by (consecutive groupings):

- and S^J be given by (odd and even groupings):

$$\left(\begin{array}{rrrrr}1 & 0 & 1 & 0\\ 0 & 1 & 0 & 1\\ 1 & 0 & 1 & 0\\ 0 & 1 & 0 & 1\end{array}\right)$$

 Then, the intersection matrix enters a one if entries from both cluster matrices (S^I and S^J) are one and zero otherwise:

$$\left(\begin{array}{rrrrr}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{array}\right)$$

• So
$$V(\hat{\beta}_{2D}) =$$

 $(X'X)^{-1} X'(\hat{\epsilon}\hat{\epsilon}'S^{I}) X(X'X)^{-1} +$
 $(X'X)^{-1} X'(\hat{\epsilon}\hat{\epsilon}'S^{J}) X(X'X)^{-1} -$
 $(X'X)^{-1} X'(\hat{\epsilon}\hat{\epsilon}'S^{I}) X(X'X)^{-1}$

Thus, estimate 3 separate OLS regressions: one clustered by S^I, the next by S^J, and the third by S^{I∩J} and then compute the abve formula.

8 Weighted Least Squares

We now introduce estimators where we alter the estimation of β in addition to the standard errors. Why would we do this? Efficiency!

8.1 GLS

- Estimation
 - Variance-covariance matrix known: Ω

– Regress $\Omega^{-\frac{1}{2}}Y=\Omega^{-\frac{1}{2}}X\beta+\Omega^{-\frac{1}{2}}\mu$

$$- \hat{\beta} = \left(X' \Omega X \right)^{-1} X' \Omega Y$$

- Downweights high variance observations, upweights low variance observations
- Takes into account cross-observation correlation patterns
- Positive
 - Can handle arbitrary correlation structures
 - Efficient if you know the correlation structure
- Negative
 - Relies on knowing the variance-covariance matrix $\boldsymbol{\Omega}$

 Weights efficiently so doesn't estimate average treatment effect in the presence of treatment effect heterogeneity

8.2 **FGLS**

- Estimation
 - Stage 1: Run OLS $Y = X\beta + \mu$
 - Stage 2: extract variance-covariance matrix from stage 1 $\hat{\Omega}$ and run GLS with estimated matrix: Regress $\hat{\Omega}^{-\frac{1}{2}}Y = \hat{\Omega}^{-\frac{1}{2}}X\beta + \hat{\Omega}^{-\frac{1}{2}}\mu$

$$-\hat{\beta} = \left(X'\hat{\Omega}X\right)^{-1}X'\hat{\Omega}Y$$

• Positive

- Can handle arbitrary correlation structures

- Doesn't rely on knowing the variance-covariance matrix $\boldsymbol{\Omega}$
- Negative
 - Biased in small samples: $E\left(X'\hat{\Omega}X\right)^{-1}X'\hat{\Omega}Y \neq \beta$
 - Variance-covariance matrix noisy. Note that $\hat{\beta}_{FGLS}$ is consistent for β but $\hat{\Omega}$ is not consistent for Ω . To estimate, $\hat{\Omega}$, we need to estimate $\frac{N(N+1)}{2}$ entries of the variance-covariance matrix for a sample size of N
 - Weights efficiently so doesn't estimate average treatment effect in the presence of treatment effect heterogeneity

9 Maximum Likelihood

- Can structurally model error terms easy to allow for non-spherical disturbances
 - Note: not all distributions have an independent variance parameter - some like poisson, negative binomial, exponential have only one parameter. Others like the normal, lognormal have independent mean and variances.
- Benefits of MLE
 - Can have better small sample properties if you know the error term
 - Easier to model error structure
 - Reachers Cramer-Rao lower bound efficient!
- Costs

- You need to know the distribution
- Not consistent if the distribution is wrong
- Can be biased in small samples even if the distribution is correct
- Doesn't generally have closed form computational formulas - have to solve simultaneously for set of first order conditions. Additional problems of knowing whether a solution to the set of first order conditions is a local/global maximum/minimum.

10 Structured FGLS:

10.1 Example - Cochrane-Orcutt

• Assume $Y_{it} = X_{it}\beta + \epsilon_{it}$ where $\epsilon_{it} = \rho\epsilon_{it-1} + \mu_{it}$

- Then follow these steps:
 - 1. Estimate $Y_{it} = X_{it}\beta + \epsilon_{it}$
 - 2. Regress $\epsilon_{it} = \rho \epsilon_{it-1} + \mu_{it}$ and obtain ρ
 - 3. Then transform data to

$$Y_{it} - \rho Y_{it-1} = (X_{it} - \rho X_{it-1})\beta + \epsilon_{it}$$

4. $\hat{\boldsymbol{\beta}}$ is now correct and so are the OLS standard errors

10.2 Example: Newey-West

• Variance covariance matrix with each cluster assumed to equal:

$$\begin{pmatrix} \sigma^2 & \left[1 - \frac{1}{M}\right]\sigma^2 & \cdot & \left[1 - \frac{K}{M}\right]\sigma^2 \\ \left[1 - \frac{1}{M}\right]\sigma^2 & \sigma^2 & \cdot & \left[1 - \frac{K-1}{M}\right]\sigma^2 \\ \left[1 - \frac{2}{M}\right]\sigma^2 & \left[1 - \frac{1}{M}\right]\sigma^2 & \cdot & \left[1 - \frac{K-2}{M}\right]\sigma^2 \\ \cdot & \cdot & \cdot & \cdot \\ \left[1 - \frac{K}{M}\right]\sigma^2 & \left[1 - \frac{K-1}{M}\right]\sigma^2 & \cdot & \sigma^2 \end{pmatrix}$$

- The above formulation, called the Newey-West estimator, allows for linear fall off in correlation of error terms within clusters
- Can be estimated using GLS or MLE

11 Collapsing

• Suppose that X variables are the same within cluster so that

$$Y_{ig} = \alpha + \beta X_g + C_g + \epsilon_{ig}$$

- Then there is no loss in collapsing the data because there is no within cluster variation used to identify β
- Otherwise you trade off:
 - Not using variation from a correlation structure you do not know
 - Throwing away useful correlation within clusters from covariates X