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Recap from last time

First with perfect foresight and two periods; then with 
stochastic rational expectations and infinite horizons:

• Temporary positive (negative) shocks lead to temporary 
current account surpluses (deficits)

• Permanent positive (negative) shocks do not affect the 
current account

• Cant explain persistence of current account without 
investment or other types of mechanisms



Today

• Puzzles:
– Persistence
– Deaton’s Paradox
– Feldstein-Horioka
– Small Response to Shocks

• Theory:
– Large Country Case
– Stochastic Calculus
– Kraay and Ventura ”New Rule”



Deaton’s Paradox (I)

• From last time, we have:

• This suggests that consumption (and the current 
account) should react less to shocks (and thus  
than current income.

• However, Deaton (1992) – in his book 
“Understanding Consumption” – notes that we 
can not reject mean reversion in growth rates not 
levels of GDP!
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Deaton’s Paradox (II)

• In the case of mean reversion in growth rates, our stochastic income 
process is:

• This stochastic income process is integrated of order one: I(1). In 
other words, it is non-stationary. Shocks to levels are more than 
permanent. We can rewrite current income as:
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Deaton’s Paradox (III)

• Calculating the new consumption function :

• Re-expressing, we get:

• However, we can bound this:
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Deaton’s Paradox (IV)

• So, we have an anti-Keynesian consumption function 
(What about in a closed economy?):

• Consumption (and thus the current account) should be 
much more volatile than income in this non-stationary 
case but empirically, they are not.

• Question: Why are consumption functions Keynesian?
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Large Open Economies: 
2 Period Model (I)

• Suppose we have investment and savings in an 
equilibrium model; then:

• Walrasian stability of the equilibrium implies that a 
small rise in the interest rate around the 
equilibrium should lead to excess supply of 
savings:
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Large Open Economies: 
2 Period Model (II)

• We now define exports and imports of 
intertemporal goods:

• Balanced intertemporal trade then implies:
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Large Open Economies: 
2 Period Model (III)

• Going back to the stability condition, we can write 
it as:

• Define import elasticities:
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Large Open Economies: 
2 Period Model (IV)

• Taking the derivative with respect to r:

• Multiplying through by (1+r)(1+r):

• Dividing through by second period foreign exports:
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Large Open Economies: 
2 Period Model (V)

• Substituting for second period foreign exports:

• This leaves us with:

• Finally, substituting the elasticity expressions and 
rearranging: 1* >+ ζζ
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Optimal Control Theory:
Certainty (I)

• Maximization Problem:

• Subject to:
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Note: we are omitting the transversality condition for the sake of 
convenience; obviously, we still need it to get the optimal solution



Optimal Control Theory:
Certainty (II)

• Optimal Control Definitions:

• Value Function Definition:

• Bellman’s Principle (when does it hold?):
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Optimal Control Theory:
Certainty (III)

• Theorem
– Let      solve the problem of maximizing: 

– Subject to                                given 

– Then there exists a costate variable        such that 
the Hamiltonian is defined by:
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Optimal Control Theory:
Certainty (IV)

• Theorem (cont.)
– is maximized at              given  

– in other words:
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Optimal Control Theory:
Certainty (V)

• Why is this true? Take a discrete analogue to:

• Defining each period as length h (where the 
continuous case would result in the limit as h goes 
to zero), it would be 

• subject to:
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Optimal Control Theory:
Certainty (VI)

• Then, from Bellman’s principle, we get:

• Subtracting J from each side:

• Replace the future capital stock using the capital 
accumulation equation:

[ ] [ ] [ ]{ })()(),(max)(
)(

htkJehtktcUtkJ h

tc
++= −δ

[ ] [ ] [ ]{ })()()(),(max0
)(

tkJhtkJehtktcU h

tc
−++= −δ

[ ] [ ][ ] [ ]{ })()(),()()(),(max0
)(

tkJtktchGtkJehtktcU h

tc
−++= −δ



Optimal Control Theory:
Certainty (VII)

• Take the power series representation of the 
discount factor:

• Divide by h:
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Optimal Control Theory:
Certainty (VIII)

• Take the limit as h goes to zero:

• Multiply and divide by G:
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Optimal Control Theory:
Certainty (IX)

• Take the limit of the last term as h goes to zero and 
supress the time subscripts:

• Interpretation:
– (1.) Maximizing life-time utility is the same as maximizing current 

utility given the stock of wealth (k) plus the change in the capital 
stock (G) multiplied by the marginal impact of an increase in the 
capital stock on wealth (J’(k)).

– (2.) The maximized net flow of utility in a given period is a fraction 
(depending upon the discount factor) of the total. Reminiscent of???
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Optimal Control Theory:
Certainty (X)

• We can now take derivatives of the un-maximized 
value function to get the Pontryagin necessary 
conditions. We start with maximizing with respect 
to c:

• Now, we maximize with respect to k. But c is a 
function of the current stock of k. So, we know 
there will be a policy function: c(k)
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Optimal Control Theory:
Certainty (XI)

• Maximizing this function with respect to k, we 
obtain:

• Combining like terms:

• From the optimal conditions for c (i.e. using the 
envelope theorem):
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Optimal Control Theory:
Certainty (XII)

• Remember that J’(k) is the marginal value of 
wealth, like a lagrange multiplier. Lets give it a 
name:

• Then:

• So:
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Optimal Control Theory:
Certainty (XIII)

• Finally, we can write:

• Asset Pricing Interpretation: the benefits of holding 
additional k has two components: dividends and capital 
gains. The dividend portion is represented by the first two 
terms where the asset (k) pays direct utility benefits as well 
as additional benefit in generating future wealth, multiplied 
by the marginal value of wealth. The capital gains leads to 
an increase in the marginal value of k, which is given by 
lambda. The above equation, then, says that, in 
equilibrium, the dividend plus the capital gains must equal 
the rate of time discounting (delta).
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Optimal Control Theory:
Certainty (XIV)

• Finally, we come to our big theorem: 
– Let       solve the utility maximization problem which we 

have been analyzing. Then, there exists so-called co-
state variables       and a Hamiltonian given by: 

– Which is maximized              at all times and for which 
the costate variable obeys the equation: 
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Optimal Control Theory:
Certainty (XV)

• In other words, you can set up a Hamiltonian 
which will leave you with 3 FOCs and a 
transversality condition:
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Stochastic Calculus (I)

• We now turn to stochastic continuous time maximization. 
This is used as opposed to discrete time because some 
times, it is easier (leads to more tractible solutions). 
However, there is a bit of machinery to learn before you 
can do continuous time stochastic maximization.

• The main problem with stochastic continuous time 
maximization is that shocks occur at every instant of time, 
changing the slope of the realized process. Therefore, 
whereas the paths are continuous, they are in general 
nowhere differentiable and thus standard calculus does 
not work. We will show more precisely how this occurs 
and then what can be done to rectify it. The results will be 
a new stochastic calculus, relying on a new chain rule 
called Ito’s Lemma.



Stochastic Calculus (II)

• We start with a discrete analogy:

• subject to:

– again, here, we will supress transversality conditions
– note that theta is a first-order markov stochastic 

process
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Stochastic Calculus (III)

• What are we solving for here? Not just c or c(k) 
but c as a function of k and the realized random 
variable theta; in other words, we are solving for 
state contingent plans. 

• We now form the value function (where have we 
made the Markov assumption?):
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Stochastic Calculus (IV)

• For discrete time, our value function works. For continuous 
time, we follow the process of rearranging the value 
function and deriving an equation for the maximized 
Hamiltonian as we did before. However, when we do, we 
end up with: 

• At first, the above expression looks innocuous. On more 
careful expression, we realize that the above need not 
converge to a well defined random variable and the 
sample path is often not differentiable.
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Stochastic Calculus (V)

• First we start by defining a continuous time random 
process. Since in any given interval, there will be an 
uncountably infinite number of realizations of the random 
variable, the law of large numbers should apply (given that 
enough moments of the distribution exist), and the random 
variable should be normally distributed over any finite time 
interval.

• We now define a random variable over a discrete time 
interval:

• We want the random variable to be normally distributed 
over finite time intervals:
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Stochastic Calculus (VI)

• Now, we divide up the time period into equal 
intervals. Let there be n such time periods of 
length h. Then we can rewrite our random 
variable as:

• Where v(i) is iid and distributed:

• Then the expectation of this variable is:
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Stochastic Calculus (VII)

• Calculating the variance of the random variable, 
we get:

• So, this random variable is normally distributed 
with the desired mean and variance as the sum of 
independent random variables. We now take, of 
course, the limit as the time interval, h, goes to 
zero. We represent this as:
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Stochastic Calculus (VIII)

• X(t) is called a continuous random walk with drift mu and 
instantaneous rate of variance sigma-squared. It is also 
called a Gaussian diffusion process. A more general 
diffusion process can be written with the drift and variance 
both depending upon time as well as the level of the 
random variable:

• Now we will develop rules for multiplication of differentials 
using the stochastic calculus. There will essentially be two 
types of differentials, stochastic (i.e. dz) and non-
stochastic (i.e. dt). Remember from differential calculus 
that terms which are going to zero of order higher than h 
drop out:

-
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Stochastic Calculus (IX)

• This same principle will hold for stochastic calculus. 
Heuristically, dt is of order h and dz is of order h to the 
one-half times v. So:

• Finally, we come to the strange case. (intuition: variance is 
constant over intervals):
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Ito’s Lemma (I)

• Now we are ready to show Ito’s lemma (basically, 
the chain rule for stochastic calculus). Ito’s lemma 
states:

• In particular if X follows a diffusion process, then 
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Ito’s Lemma (II)

• Now we are ready to show Ito’s lemma (basically, 
the chain rule for stochastic calculus). Ito’s lemma 
states:

• Use the multivariate Taylor Rule: 
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Ito’s Lemma (III)

• All higher order terms disappear – they are equal 
to zero by the rules of the calculus and we are left 
with exactly:

• Which can be re-expressed as: 
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Continuous time stochastic 
maximization (I)

• We now return to our Bellman equation:

• Doing what we did in the non-stochastic case, we obtain: 

• Rewriting:
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Continuous time stochastic 
maximization (II)

• Now we divide by h:

• and take the limit as h goes to zero: 

• Now, using Ito’s lemma for the chain rule, we derive:
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Continuous time stochastic 
maximization (III)

• We can now state our theorem: If we are maximizing

• subject to: 

• And given an initial condition, k(s), at each point in time, 
the optimal control, c, is given by:
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Continuous time stochastic 
maximization (IV)

• There is a Hamiltonian form and a separate theorem 
which I will not go over. However, it is often referred to as 
the risk-adjusted Hamiltonian. For our purposes, the 
Bellman Equation will suffice.
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Feldstein-Horioka Puzzle
• Feldstein-Horioka (1980, Economic Journal) ran the 

following regression for the 21 OECD countries (at 
that time) from 1960-1974:

• They found very high correlation (ranges between 
.85 and .95) depending upon specification.

• Is this what we would expect? Why or why not? 
Would you expect it to be more or less true for 
developing countries?
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“mother of all puzzles.” Table 1, which looks at cross-country

regressions of average investment and savings rates, gives an update

of the Feldstein-Horioka results, and extends them to look at a

broader sample of countries. We do find that the coefficient on sav-

ing has fallen, from 0.89 in Feldstein and Horioka’s 1960-1974 sam-

ple, to 0.60 for our 1990-1997 sample of OECD countries, excluding

Korea. But this is not to say that the puzzle has gone away. First, even

0.60 is still quite a bit larger than one would expect in world of per-

fectly integrated markets. Second, if one includes Korea, the coeffi-

cient rises to 0.76.

Indeed, the popular wisdom, based on Dooley, Frankel, and

Mathieson (1987) and Summers (1988), is that the Feldstein- Horioka

results are sharply diluted when one adds developing countries to their

original OECD sample. But while the first row in Table 1 confirms

175
Perspectives on OECD Economic Integration:

Implications for U.S. Current Account Adjustment

Table 1
Feldstein-Horioka Regressions, 1990-1997

a

a OLS regression. Standard errors in parenthesis.
b Israel and Jordan are excluded from all regressions in this table. The inclusion of both

countries in the first regression decreases the estimate of β to .39. The inclusion of Israel in

the second regression decreases it to .63.
c If one adds Korea to the OECD sample, the estimate for β rises to .76. Korea is included in

the larger samples.
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No. of
Obsvs. α β R2

All countriesb 55 .13
(.02)

.49
(.07)

.46

Countries with
GNP/cap > $2000

41 .07
(.02)

.70
(.09)

.62

OECD countriesc 24 .08
(.02)

.60
(.09)

.68



this view (the coefficient falls to 0.49 in the extended fifty-five-coun-

try sample), it is quite misleading. In fact, as Table 1 also shows, the

Feldstein-Horioka paradox holds as strongly for middle income

countries (>$2000 per capita) as it does for rich countries. It is really

only when the poorest countries are added that the coefficient drops

(and here one might also question whether this is partly an artifact of

much poorer data). Chart 2 graphs saving versus investment for the

OECD countries. Chart 3 gives a sample of middle income countries

(those for which the necessary data are available in the IMF’s IFS

database). As one can see from the figures, and as the regressions in

Table 1 confirm, the slope coefficients are actually quite similar for

the two groups. Finally, since the folk wisdom is also that the

Feldstein-Horioka coefficient can be quite sensitive to outliers, we

test robustness in Table 2 by checking how the estimated F-H rela-

tionship changes when various outliers are excluded. It is notable

that when Japan is excluded from our OECD sample (sans Korea),
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Chart 2
Saving-Investment Puzzle: 1990-1997
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the coefficient drops from 0.60 to 0.49. On the other hand, when Sin-

gapore is dropped from the extended sample that includes mid-

dle-income countries, the coefficient rises from 0.70 to 0.82.

All in all, we may conclude that the past twenty-five years of capi-

tal-market integration have slightly tempered the Feldstein-Horioka

results, but overall the paradox is still alive and well.

Home bias in trade 2.3

Recent research has also documented the remarkable extent of

home bias in international trade patterns. Of course, one would

expect that states within a country should trade more with each other

than states across national boundaries. Geographical proximity, lan-

guage, a common legal and regulatory system, and the like, all help

to promote intranational trade relative to international trade. But
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Chart 3
Saving-Investment Puzzle: 1990-1997
Non-OECD Countries with GNP Per Capita
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Kraay and Ventura (I)

• Summary:

– Traditional Rule: Temporary positive (negative) shocks lead to 
increases (decreases) in national savings and equivalent 
increases (decreases) in holdings of net foreign assets (i.e. the 
current account).

– Kraay and Ventura (New) Rule: Temporary positive (negative) 
shocks lead to increases (decreases) in national savings which get 
invested in domestic versus foreign assets in proportion to current 
net foreign assets. Deficit countries experiencing positive shocks 
(for instance) then increase their deficits and surplus countries 
experiencing positive shocks then increase their surpluses. 
Similary, negative shocks will attenuate pre-existing patterns.



Kraay and Ventura (II)

• Intuition of the new rule:

– A small open economy has a temporary positive 
income shock. It consumes only the dividends on the 
shock, which essentially are zero. Essentially, it invests 
all the additional income. If there are no decreasing 
returns in aggregate production, then it chooses to 
invest based upon the risk characteristics of investment 
which shouldnt change from a transitory income shock. 
In this case, the country will invest in foreign versus 
domestic assets in proportion to their current allocation. 
If the country is running deficits, they will invest more in 
domestic assets and increase their deficit. If the country 
is running a surplus, they will invest more in foreign 
assets and increase their surplus.   



Kraay and Ventura (III)

• The small country solves the following decision-
making problem:

• subject to:

• and assuming:
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Kraay and Ventura (IV)

• Where 
– a is the value of assets
– k is domestic ownership of the domestic capital stock
– is domestic ownership of the foreign capital stock
– is the rate of return on domestic capital
– is the rate of return on foreign capital (which is 

constant due to the small country assumption)
– is the rate of return on a risk-free domestic bond
– are Wiener processes which are normally 

distributed and for which:

(in other words,      is the covariance of returns across 
countries)
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Kraay and Ventura (V)

• Note that:
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Kraay and Ventura (VI)

• Then the Bellman equation is given by:
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Kraay and Ventura (VII)

• Now we take our first order conditions with 
respect to c, k, and     :*k
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Kraay and Ventura (VIII)

• Now, using the guess and check method (the 
guess coming from intuition in the discrete time 
case), we conjecture that the value function is 
equal to:

• This holds for some function f which does not 
need to be more specified.

• In order to check, just plug this into the bellman 
equation and see that it is satisfied.
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Kraay and Ventura (IX)

• Now we take our first order conditions with 
respect to c, k, and     :*k
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Kraay and Ventura (X)

• Expressing things cleanly:

• What is the interpretation of this first equation? 
What assumption gets this result?
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Kraay and Ventura (XI)

• Relating the two capital equations, we get:
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Kraay and Ventura (XII)
• Implicitly Differentiating the Capital Equation:
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Kraay and Ventura (XIII)

• Here is our final equation:

• How do we interpret it when diminshing returns 
are small (or zero)? What happens when we 
increase diminishing returns?

• What happens when the domestic capital asset 
ratio is negative? positive? Interpretation?
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