Economics 326: Budget Constraints and Utility Maximization

Ethan Kaplan

September 12, 2012

Outline

1. Budget Constraint

2. Utility Maximization

1 Budget Constraint

- Two standard assumptions on utility:
- Non-satiation: $\frac{\partial U\left(C_{x}, C_{y}\right)}{\partial C_{x}}>0$ for all values of $C_{x}, C_{y}>0$
- Convexity: Let C_{1}, C_{2} and C_{3} be commodity bundles such that $C_{1} \succeq C_{3}$ and $C_{2} \succeq C_{3}$. Then any convex combination of C_{1} and C_{2} is also weakly preferred to $C_{3}: t C_{1}+(1-t) C_{2} \succeq C_{3}$ for all $t \in[0,1]$.
- Suppose you have a utility function that satisfies non-satiation: $U\left(C_{X}, C_{Y}\right)$. If you wanted to choose values of C_{X} and C_{Y} that maximized your utility, what would you choose?
- What stops the consumer from choosing her maximum utility?
- Income! (i.e. the costs of consumption)
- We now introduce a budget constraint.
- Note we aren't going to need a constraint on the producers side because their, the costs of production can be directly subtracted from revenues. Profits is equal to revenues minus costs. However, utility is a different unit than dollars and so you can't maximize utility net of costs like you can with revenues.
- A budget constraint for a consumer choosing between two goods has through components:
- Amount spend on good C_{X} (the price of C_{X} : $P_{C_{X}}$ mulitplied by the quantity of C_{X} consumed): $P_{C_{X}} C_{X}$
- Amount spend on good C_{Y} (the price of C_{Y} : $P_{C_{Y}}$ mulitplied by the quantity of C_{Y} consumed): $P_{C_{Y}} C_{Y}$
- Income: I
- General Form of Budget Constraint: $P_{C_{X}} C_{X}+P_{C_{Y}} C_{Y} \leq$ I
- We leave open the possibility that the consumer might not spend all her money.
- With non-satiation, the consumer can always get higher utility from consuming more and therefore will always spend every cent of her income:

$$
-P_{C_{X}} C_{X}+P_{C_{Y}} C_{Y}=I
$$

2 Utility Maximization

- We now discuss utility maximization: $U\left(C_{X}, C_{Y}\right)$
- Components:
- Objective function: $U\left(C_{X}, C_{Y}\right)$
- Constraint: $P_{C_{X}} C_{X}+P_{C_{Y}} C_{Y} \leq I$
- Endogenous Variables: ?
- Parameters: ?
- What do we want to do?
- Maximize utility subject to budget constraint and solve for endogenous variables as a function of the parameters.
- Example with Cobb-Douglass utility function:

$$
\begin{gathered}
\max _{C_{X}, C_{Y}} C_{X}^{0.5} C_{Y}^{0.5} \\
\text { s.t. } P_{C_{X}} C_{X}+P_{C_{Y}} C_{Y} \leq I
\end{gathered}
$$

- We solve using two different methods.

2.1 Solution by Langrangian

- Step 1: Write the Lagrangian

$$
L=C_{X}^{0.5} C_{Y}^{0.5}+\lambda\left[I-P_{C_{X}} C_{X}-P_{C_{Y}} C_{Y}\right]
$$

- Note that λ is the Lagrange multiplier and L is the maximand. The objective function is still: $C_{X}^{0.5} C_{Y}^{0.5}$.
- Step 2: Write down the endogenous variables: C_{X}, C_{Y}, and λ.
- Step 3: Take the derivatives (First Order Conditions or FOCs) for the endogenous variables:

$$
\begin{align*}
\frac{\partial L}{\partial C_{X}} & =.5 C_{X}^{-0.5} C_{Y}^{0.5}-\lambda P_{C_{X}}=0 \tag{1}\\
\frac{\partial L}{\partial C_{Y}} & =.5 C_{X}^{0.5} C_{Y}^{-0.5}-\lambda P_{C_{Y}}=0 \tag{2}\\
\frac{\partial L}{\partial \lambda} & =I-P_{C_{X}} C_{X}-P_{C_{Y}} C_{X}=0 \tag{3}
\end{align*}
$$

- Step 4: We have 3 equations and 3 unknowns. We can solve! Combine (1) and (3) :

$$
\begin{equation*}
\lambda=\frac{.5 C_{X}^{-0.5} C_{Y}^{0.5}}{P_{C_{X}}}=\frac{.5 C_{X}^{0.5} C_{Y}^{-0.5}}{P_{C_{Y}}} \tag{4}
\end{equation*}
$$

- Simplifying (4), we get:

$$
\begin{equation*}
P_{C_{Y}} C_{Y}=P_{C_{X}} C_{X} \tag{5}
\end{equation*}
$$

- Suppose we stopped here and solve for C_{Y} :

$$
C_{Y}=\frac{P_{C_{X}} C_{X}}{P_{C_{Y}}}
$$

- Are we finished? Have we expressed the endogenous variable as a function of exogenous parameters?
- Finally, since $\lambda>0$, we know that the FOC must hold:

$$
I=P_{C_{X}} C_{X}+P_{C_{Y}} C_{Y}
$$

or

$$
\begin{equation*}
P_{C_{X}} C_{X}=I-P_{C_{Y}} C_{Y} \tag{6}
\end{equation*}
$$

- We can then replace (6) into (5) to get:

$$
P_{C_{Y}} C_{Y}=I-P_{C_{Y}} C_{Y}
$$

or

$$
C_{Y}^{*}=\frac{I}{2 P_{C_{Y}}}
$$

- We similarly can solve for C_{X}^{*} :

$$
C_{X}^{*}=\frac{I}{2 P_{C_{X}}}
$$

- How does C_{X}^{*} differ from C_{X} ?
- C_{X}^{*} is the maximized value of the variable C_{X} given the parameters.
- Is C_{X}^{*} a variables?
- What is $C_{X}^{*}\left(I, P_{C_{X}}, P_{C_{Y}}\right) ?$
- Step 5: Check to see that the solution is a maximum by checking second order conditions.
- We mostly won't be doing this step for this course.
- What can go wrong?
- The derivate of a function is zero at a local optimum
* Could be a minimum
* Could be a local maximum
* But we want a GLOBAL MAXIMUM! Highest utility possible given the budget constraint!
* What would be the interpretation of a local maximum?
- Example: try solving for FOGs for $F(X)=$ $X^{3}-9 X=(X+3)(X-3) X$

$$
\begin{aligned}
\frac{d F(X)}{d X} & =3 X^{2}-9=0 \\
X^{*} & = \pm \sqrt{3}
\end{aligned}
$$

2.2 Solution by Plugging In

- Step 1: Show non-satiation of the objective function:

$$
\begin{aligned}
& \frac{\partial U\left(C_{X}, C_{Y}\right)}{\partial C_{X}}=.5 C_{X}^{-0.5} C_{Y}^{0.5}>0 \\
& \frac{\partial U\left(C_{X}, C_{Y}\right)}{\partial C_{Y}}=.5 C_{X}^{0.5} C_{Y}^{-0.5}>0
\end{aligned}
$$

- Since the consumer's utility function represents preferences that are non-satiated, she will always spend all her money which means that the budget constraint is an equality

$$
I=P_{C_{X}} C_{X}+P_{Y} C_{Y}
$$

- Step 2: Write down the endogenous variables: C_{X}, C_{Y}
- Step 3: Plug in the budget constraint into the objective function by choosing one of the two endogenous variables to replace:

$$
C_{X}=\frac{I-P_{C_{Y}} C_{Y}}{P_{C_{X}}}
$$

- The new objective function is thus:

$$
\left(\frac{I-P_{C_{Y}} C_{Y}}{P_{C_{X}}}\right)^{0.5} C_{Y}^{0.5}
$$

- Step 4: Take the derivatives (First Order Conditions or FOCs) for the endogenous variable (note that the objective function is now a function of one variable and we do not need the constraint any more):

$$
\max \left(\frac{I C_{Y}-P_{C_{Y}} C_{Y}^{2}}{P_{C_{X}}}\right)^{0.5}
$$

- Now remember that we can use a monotonic transformation of the utility function and since C_{X} and C_{Y} are always positive, we can $G=$ U^{2} :

$$
\max \frac{I C_{Y}-P_{C_{Y}} C_{Y}^{2}}{P_{C_{X}}}
$$

- Maximizing, we get:

$$
\frac{I}{P_{C_{X}}}-\frac{2 P_{C_{Y}} C_{Y}}{P_{C_{X}}}=0
$$

- Solving for the endogenous variable C_{Y}, we get:

$$
C_{Y} \frac{2 P_{C_{Y}}}{P_{C_{X}}}=\frac{I}{P_{C_{X}}}
$$

or

$$
C_{Y}^{*}=\frac{I}{2 P_{C_{Y}}}
$$

- Look familiar?
- What are the parameters of this problem?
- Why is C_{Y}^{*} not a function of all the parameters? What's the interpretation?
- Last question: What happens to the consumption of Y when income increases? the price of Y increases? the price of X increases?

