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1 Matching Estimators: Motivation

e What are matching estimators?

— Individual Matching: Match observations and es-
timate between individually matched observations.

N
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where N is the number of treated observations,
Y; (T = 1) is the outcome for the it/ treated
observation, Yjs;) (1" = 0) is the matched ob-
servation for the it treated observation, and w;
is the population weight of the ith treated obser-
vation. (Note that each treated observation is
matched to at most one untreated observation)

— Block Matching: Match groups of similar obser-
vations (on covariates):
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where Y;; is the jth observation in the i/ group
and Z; 7—1 is the number of observations in the
ith treatment group (and similarly for Zi 7=0)

e Main questions with matching estimators:
— How to do matching?
— How to compute the weights (w;)?

— How to computer the standard errors?

e Many methods:

— Criterion

*x Exact covariate matching
*x Propensity score matching
x Mahalanobis matching

{Z(Eiir}} (Xir — Xjx) S71 (Xiw — X)



— Matching Techniques

* Nearest neighbor matching (For every treat-
ment, find the nearest control - with or without
replacement)

x Genetic algorithm matching
x Many others!
e Why use matching estimators? Under Gauss Markov

Assumptions, OLS is BLUE (Best Linear Unbiased
Estimator)

= Yit = o+ BXj + €
— cov (X, €i¢) = 0
— cov <€it7 ejt) = 0 where 2 #£ )

— V(ey) = o



e Matching Estimators are linear in treatment (and
thus in variables since matching estimators usually
only include treatment variables as RHS variables).
So why use matching estimators as opposed to OLS?

e Tradeoff: Efficiency vs. Robustness

— What does robustness mean?

* Must know ALL the relevant covariates
x Lack of knowledge of functional form
* Must have alot of data

x Then conditional on covariates, only average
difference in outcome comes from treatment.
However, any specific functional form for OLS
or NLS may be mis-specified. So, look only
within covariate groupings.

— Problem: No models (that Im aware of) of ro-
bustness



— Other possibilities of more robust, local estima-
tors with less variance (greater efficiency): non-
parametric and semi-parametric matching



2 Matching Estimators: Estimation

e Use Rubin’'s Potential Outcomes Model

e Assume:
1. Unconfoundedness: (Y;(1),Y;(0)) LI W;|X;
— also called selection on observables assumption
— twins example
2. Overlap: 0 < Pr(W; =1]X;) <1
3. (1) & (2) together are called "strongly ignorable

treatment"

e Given strongly ignorable treatment:
EY; (1) - Y;(0) |X; = 2] =

ElY; (1) [X; = =] = Y[Y;(0) [ X; = 2] =



ETY;(1)|X; =2, W; =1]-E[Y;(0) | X; =2, W; = 0] =

EY;| X, Wy = 1] = E[Y;]| X, Wy = 0]

e How Different is Matching from OLS really?

— Defintion: saturated models are models where
there is a dummy variable for every covariate re-

alization.

— Example: LHS: Wages, RHS: Education (Uni-
versity Completion, HS Completion, Less Than
High School), Race (Black, White), Sex (Female,
Male). Transform variables into dummies (11
dummy variables with one category left out as

the constant):

1. University Completion, Black, Female
2. University Completion, Black, Male

3. University Completion, White, Female



9.

10.

11.

12.

University Completion, White, Male
HS Completion, Black, Female

HS Completion, Black, Male

HS Completion, White, Female

HS Completion, White, Male

< HS, Black, Female

< HS, Black, Male

< HS, White, Female

< HS, White, Male

— This replicates exact covariate matching though

with different weights than matching estimators:

— Matching: (From Mostly Harmless Econometric,



Angrist and Pischke):

~Match Ex Ry

X

Ry = P(Wi:1|XZ':£E)P(Xl:£C)
Ey = E[Yj|X;,W; =1] - E[Y;|X;, W; = 0]

— OLS:
goLs _ Lalia|l = P(W; = 11X; = )]
S Re[1— P(W; = 1|X; = z)]
X

— So, OLS weights by variance of the observations,
matching estimators by their population frequency.

— |Is this a fair characterization of the differences
between OLS and Matching? So, is matching a
weighted OLS?

e Covariate Balance (Rosenbaum and Rubin, 1985)



— With discrete variables and large samples, we
may be able to look within actual covariate bins

— With small sample or continuous variables, we
will not be able to match exactly. But:

x Matching should lead to covariate balance across
treatment and control: X; p7—X ;) 7" IV (O, 02)

x In other words, covariates should be randomly
distributed across treatment and control for
matched observations

e T he Search Problem

— Many search problems have an exponential as-
ymptotic

— Finding the optimal set of matches is such a prob-
lem.

— E.G., we want to estimate ATT and do matching
without replacement:



— With 10 treated and 20 control obs: 184,756
possible matches

— With 20 treated and 40 control obs: 13,784,652,8820
possible matches

— With 40 treated and 80 control obs: 1.075e+423

— With 185 treated and 260 control: 1.633e+69
with 185 treated and 4000 control: computer
infinity

— Matching with replacement makes the search prob-
lem explode even more quickly.

e Propensity Score Matching (Rosenbaum and Rubin,
1985) : Dimensional Reduction

— Suppose that unconfoundness holds, then:
(Yi(1),Y;(0)) I Wilp (X;)

where p (Xj;) is the probability of treatment (es-
timated via linear probability, probit, or logit)



— Intuition: by leaving out covariates, we introduce
ommitted variables bias. However, since X; II
Wi;lp (X;) (covariate balance), adding X, will
not change the estimate of Y; on X

e Steps for propensity score estimation

1. First estimate selection equation
Ti = F(X;)+e
2. Estimate fitted probabilites of selection
F(X;)

3. Create bins of a given width (or do nearest neigh-

bor matching)

4. Check for covariate balance across treatment and
control within bins



5. Estimate difference between treatment and con-
trol within bins

Zé\il Yi; (I'=1) B 2%1 Yy (T'=0)
Z; T=1 Z; T=0

6. Choose weights

(a) Homogeneous treatment effect: weight by size
of bin or other measures of variance of estimate

(b) Heterogeneous treatment effect: weight using
population weights

7. Estimate average treatment effect by weighting
across bins:

& (B Y (=1 S Vi (T =0)
=1

Z; 7=1 Z; T=0

8. Estimate standard errors for average treatment
effect

(a) Estimate component by component

2 2 % %
[from O-X,T:].’ O'X,T:()a YT:la YT=07 p(ﬂ?)}



(b) Bootstrap

— Problems with bootstrapping IV estimators

(at least nearest neighbor matching) due to
non-linearities: Abadie, Imbens (2006)

e Some problems with FE: Interlude on Measurement
Error (From Ashenfelter and Krueger, 1994)

— Attenuation:
True:
y; = Bx; + ¢
Observed

T; = xT;+ 04
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e — 9, is called the reliability ratio

O3 +0%



— Measurement Error Tradeoff

Suppose T=2;

Y1, = od; + BXq; + py + €15
Yo; = aZ; + BXo; + p; + €24

pi = ¥ X1; + v X2 +0Z; + w;

Then Bpp = Bpp comes from the regression yq; —
y2i = B (X1i — Xoi) + €1 — €2

It can be shown that

2
A _ 1_ 0-5
orE 5( 02+ o7] <1-px>>




where px is the correlation coefficient of X within

cov(X1;X2;)

the "fixed effect" group: 5

Ox

— So there is a tradeoff: bias from exclusion of the

fixed effect versus bias due to exacerbation of the
attenuation in the presence of measurement error
with highly correlated X's.

Intuition: if the X's are highly correlated, then
when using fixed effects, most of the variation
left is measurement error.

Relavance to matching: One can think of match-
ing as a type of fixed effect. Could be exacerba-
tion of attenuation in the presence of measure-
ment error in treatment. What about measure-
ment error in covariates? Non-classical measure-
ment error? Not yet studied!

e Tradeoff: Matching often allows for better controls,

less bias but at the cost of efficiency.



— Many observations thrown away.

— Also since emphasis is on average treatment ef-
fect, in the presence of heterogeneity, must use
population weights as opposed to weighting be

inverse variance: efficiency loss.

— Propensity Score can help when overlap is low
(Angrist and Han, 2004)

x Dont have to throw away observations with
low overlap

x Can gain in efficiency even without gain from
less observations thrown out due to greater
comparisons per bin

e Previews of Things to Come: Comparison with IV

— |V estimates ATE if

1. Homogeneous treatment effect



2. Set of compliers is the entire population

— Matching Estimators estimate ATE if

1. Homogeneous Treatment Effect

2. Overlap satisfied at all parts of distribution of
covariates (i.e. over full support of covariates)

e Understanding Matching: Future Econometric Re-

search

— Does matching help with omitted variable bias?
No!

— Can matching help when there is functional form
uncertainty and no omitted variable bias (Ro-
bustness)? Yes!

— Can matching help with specification bias? Yes
(functional form) and no (variable selection)!



— Unknown: Matching and Measurement Error (In
Treatment and in Covariates)

— Unknown: Constructing SEs for Matching Esti-

mators

— Unknown: Balancing Bias (Due to Functional Form)

with Efficiency



3 Bootstrapping

e Method for estimating standard errors when tech-
niques don't exist for estimating SEs from economet-
ric theory (for example small sample distributions-
i.e. IV), when SE computation is to computationally

Intensive.

e Conisder

Y =XB+e€

e Non-Parametric Bootstrapping
— 1. Estimate true 8 from the full sample

2. Choose N observations at random (with re-
placement)

3. Estimate Bj



4. Estimate J of the Bj

5. Either

(a) Test 3 relative to the non-parametric distri-

bution of Bj

(b) or compute the variance of the Bj DI T

N

where 5 = >jed ‘% test using the normal-

ity assumption with ,\/V (BJ)

e Paramtetric Bootstrapping

-1

Estimate B from the full sample
Calculate the residuals: ¢, = Y; — X3

Take the full sample of X;; for each X, re-

sample a residuals €j; at random



4. Create a sample of N pairs (Xi,Yij> where
Y, = BX; + €

5. Run a regression for each sample and obtain a
distribution 3,

6. Either

(a) Test 3 relative to the non-parametric distri-
bution of 3,,

N
e ()
(b) or compute the variance of the 3, : ) 7
A meM
2 Bm :
where 8 = Z M) and test using the nor-

meM

mality assumption with 'V (Bm)
e Which bootstrap method is preferable?
— With parametric, you resample € for the differ-

ent X, which is what you want to do so non-
parametric is preferable but:



— If cov(X,e) # 0, then your 3 which you use
to compute Y;-j will be tainted; in this case, it is
better to use the parametric bootstrapping

e Block Bootstrap

— Suppose cov (ei, ej) *~0fori#£y

— Then you can block bootstrap (i.e. randomly
pick K sequential observations at a time)

— This way, you randomly sample blocks of data
which keeps the error structure in tact



4 Jackknife

e Similar to bootstrap
e Estimate B from the full sample

e Define Bj — estimate without the jth observation
(could exclude more than one)

e Like boostrapping but
1. Without replacement

2. Constructed by excluding variables rather than
including them

e [hen: either

1. Test B relative to the non-parametric distribution



N2
()
2. or compute the variance of the Bj :ZjejT

n

where B = > jed |B—JJ| test using the normality

assumption with \\/V (BD



