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1 Introduction to Non-Parametric

Estimators

e Suppose we want to estimate a highly non-linear re-
lation between two variables. How would we do it?

— Estimate relation with set of orthogonal func-

tions?

x High order polynomials.
x Trigonometric functions.

* Problems?

- Very sensitive to outliers.
- Non-local impact of outliers

— Splines (linear, quadratic, ...)



*x Divide X into I different sections.. 1,2,....1

st. &1+ B 1 X1 = &+ 0;X]
x Linear, Quadratic, Quartic, Trigonometric
x More local impacts but non-differentiable

— Non-parametric estimators

*x Require tons of data - especially problematic
with high dimensionality of estimation

% Must choose how locally to estimate (band-
width)

— Semi-parametric estimators

x Requires greater functional form assumptions

x Better at dealing with high dimensional esti-
mation



2 Histograms

e The histogram is a probability mass function which
is usually an approximation to the probability density
function (pdf) of a random varialbe.

e To create a histogram for a variable X, divide up
X into K parts [0, X}.) (could be equal portion of
X-space or any other division of the X-space).

e Then the histogram is:
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where I (-) is the indicator function.

e If the histograms are of equal length in X-space,
then we can write the density as:
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e In the limit as h — 0, if the density (pdf) is differ-
entiable, then you will recover the density.

Kernel Density Estimation

e The kernel density estimator is a generalization of
the histogram - it is in general smoother.

e The histogram density is for a sample from the pop-
ulation. Often the sample is a noisy estimate of
the population. Therefore, kernel densities smooth
the density estimates between points using functions
called kernel functions.

e The value of the estimator at a point x, is

o) = g 32 1 (B5)




where N is the number of total points being used in
the estimation of the density.

e K (-) is called the kernel function and it is what
smooths the density. It must satisfy 4 conditions

1. K (z) is symmetric around zero and continuous

2. fK(z)dz:1,/zK(z)dz:O,and/|z|K(z)dz<

3. Either

(a) Jzg such that K (zg) = 0 Vz such that |z| >
<0

(b) limy—oo|2| K(2) =0

4. /z2K(z)dz:c<oo

e Usually kernel functions satisfy (3a.) not just (3b.)



e Usually % < 0 so that the impact of data points
21 on the value of the non-parametric estimator at
a point zg decline with distance between zg and 2.

e h is called the bandwidth parameter; it roughly gives
the size of the histogram bins.
— Tradeoff: h large = density estimate is smoother

— h small = less functional form bias

e Different kernels
: 1
— Uniform: 5 - I (|z] < 1)
— Triangular: (1 —|z|)-I(|z| < 1)

— Epanechnikov: % (1 - z2> I (]z] <1)

2
— Quartic: 73 (1—22)" - I(|2] <1)
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1
— Gaussian: (27) 2e

e Most popular: Epanechnikov and Uniform

— Kernels with higher order terms fit better (lower
bias)

— Kernels with lower order terms are smoother

e The kernel density estimator is biased as N — oo
keeping h fixed but not if h — 0 as N — oo

— Since inference is done with a fixed h, assymp-
totic statistical inference is complicated by an as-
symptotic bias term.

— Often densities don't have error bars on them
e Note that there are two types of convergence we can

discuss since we discussing convergence to a density
not just a paramter:



— Convergence in distribution
— Pointwise convergence

— Most inference is pointwise

e One choice for an optimal bandwidth can come from
minimizing mean integrated square error (between
the density and the data).

e Two choices: kernel and bandwidth. Choice of kernel
doesn’t usually have a large impact on the estima-
tion. Choice of bandwidth, however, is crucial.

4 Non-parametric Regression

e Can we use local regression methods to characterize
the relationship between two variables as opposed



to the density of a variable and the variable itself?
Yes!!! lts called non-parametric regression.

Definition of the estimator:
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where again K (-) is the kernel and A is the band-
width.

Basically you are averaging Y (Xg) with X's close
to Xp and in a weighted fashion.

Special case of Local Weighted Average Estimator

N

m(xg) = Y wio pYi
i=1

where w;,, ), = w (x;, g, h)



K-Nearest Neighbor Estimator

frArL(:c)—l + ...+
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Generalization of kernel regression as local constant:

Local linear regression estimator

N

_ x; — xQ
min » K <7’—) (y; — ag — bo (z; — x0))°
ag,bg i—1 h

then

M (z) = ag + bo (z — o)

Regular kernel is local linear with bg constrained to
be zero. We can generalize this approach to higher
order polynomials.



e One particularlly popular kernel for non-parametric
regression is: LOcally WEighted Scatterplot Smooth-
ing (LOWESS) Estimator

K (2) = ;—(1) (1—12P)> 1 (2] < 1)

where

1. h, ; varies - it depends upon the distance of the

kth

point xg to the nearest neighbor and

2. observations with large residuals, (y; — m (x;)),
are downweighted as in a quasi-GLS type estima-
tor.

e Problems with non-parametric regression:

— Requires alot of data, especially for multi-dimensional
density estimation



5 Semi-parametric Regression

e Sometimes better to combine parametric and non-
parametric - where along some dimensions you know
the structure or where you don't care as much if
you don't know the structure. Structure reduces
the curse of dimensionality as with propensity score
matching. This combination of parametric and non-
parametric regression is called semi-parametric re-
gression.

e Some semi-parametric estimators:

— Partially Linear:
EY|X,Z)=XB+ X(Z2)
parameters: 3, non-parametric part: A
— Single Index:
E(Y]X) = G(XP)

parameters: 5, non-parametric part: G



— Generalized Partial Linear:

E(Y|X,Z) =G (X8 +\(2))

parameters: 3, non-parametric parts: G, A

6 Identification: IV 4+ Non-parametrics

1. Almost nothing done here (a few recent papers such
as by Blundell and Powell).

2. Hard because you need alot of data both for IV and
for non-parametrics.

3. Even more difficult if you want your instruments to
be non-parametric.



7 Overview

e Positive: Non-parametric methods can be very good
data description techniques since they are very flex-

ible.

e Negative: Require alot of data.

e Negative: Difficult to do inference.

e Negative: Difficult to get good indentification.

e Net: Often good complement (not substitute) for
parametric analysis.



