
Microeconometrics:

Non-Parametric Estimators

Ethan Kaplan



1 Introduction to Non-Parametric

Estimators

� Suppose we want to estimate a highly non-linear re-
lation between two variables. How would we do it?

� Estimate relation with set of orthogonal func-
tions?

� High order polynomials.

� Trigonometric functions.

� Problems?

� Very sensitive to outliers.

� Non-local impact of outliers

� Splines (linear, quadratic, ...)



� Divide X into I di¤erent sections.. 1; 2; ::::I

min
�̂i;�̂i

X
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�
Yit � �̂i � �̂iXit

�2
s:t: �̂i�1 + �̂i�1XI = �̂i + �̂iXI

� Linear, Quadratic, Quartic, Trigonometric

� More local impacts but non-di¤erentiable

� Non-parametric estimators

� Require tons of data - especially problematic
with high dimensionality of estimation

� Must choose how locally to estimate (band-
width)

� Semi-parametric estimators

� Requires greater functional form assumptions

� Better at dealing with high dimensional esti-
mation



2 Histograms

� The histogram is a probability mass function which
is usually an approximation to the probability density
function (pdf) of a random varialbe.

� To create a histogram for a variable X, divide up
X into K parts [0; Xk) (could be equal portion of
X-space or any other division of the X-space).

� Then the histogram is:

f (xk) =
X
j

I
�
Xk�1 � xj < Xk

�
Xk �Xk�1

where I (�) is the indicator function.

� If the histograms are of equal length in X-space,
then we can write the density as:

f (xk) =
X
j

I
�
Xk � h � xj < Xk + h

�
2h



� In the limit as h ! 0, if the density (pdf) is di¤er-
entiable, then you will recover the density.

3 Kernel Density Estimation

� The kernel density estimator is a generalization of
the histogram - it is in general smoother.

� The histogram density is for a sample from the pop-
ulation. Often the sample is a noisy estimate of
the population. Therefore, kernel densities smooth
the density estimates between points using functions
called kernel functions.

� The value of the estimator at a point xo is

f̂ (xo) =
1

Nh

NX
i=1

K

�
xi � xo
h

�



where N is the number of total points being used in
the estimation of the density.

� K (�) is called the kernel function and it is what
smooths the density. It must satisfy 4 conditions

1. K (z) is symmetric around zero and continuous

2.
R
K (z) dz = 1;

Z
zK (z) dz = 0; and

Z
jzjK (z) dz <

1

3. Either

(a) 9z0 such that K (z0) = 0 8z such that jzj �
z0

(b) limz!1 jzjK (z) = 0

4.
Z
z2K (z) dz = c <1

� Usually kernel functions satisfy (3a:) not just (3b:)



� Usually @K
@jzj � 0 so that the impact of data points

zk on the value of the non-parametric estimator at
a point z0 decline with distance between z0 and zk:

� h is called the bandwidth parameter; it roughly gives
the size of the histogram bins.

� Tradeo¤: h large =) density estimate is smoother

� h small =) less functional form bias

� Di¤erent kernels

� Uniform: 12 � I (jzj < 1)

� Triangular: (1� jzj) � I (jzj < 1)

� Epanechnikov: 34
�
1� z2

�
� I (jzj < 1)

� Quartic: 1516
�
1� z2

�2 � I (jzj < 1)



� Gaussian: (2�)�
1
2 e�

z2

2

� Most popular: Epanechnikov and Uniform

� Kernels with higher order terms �t better (lower
bias)

� Kernels with lower order terms are smoother

� The kernel density estimator is biased as N �! 1
keeping h �xed but not if h �! 0 as N �!1

� Since inference is done with a �xed h, assymp-
totic statistical inference is complicated by an as-
symptotic bias term.

� Often densities don�t have error bars on them

� Note that there are two types of convergence we can
discuss since we discussing convergence to a density
not just a paramter:



� Convergence in distribution

� Pointwise convergence

� Most inference is pointwise

� One choice for an optimal bandwidth can come from
minimizing mean integrated square error (between
the density and the data).

� Two choices: kernel and bandwidth. Choice of kernel
doesn�t usually have a large impact on the estima-
tion. Choice of bandwidth, however, is crucial.

4 Non-parametric Regression

� Can we use local regression methods to characterize
the relationship between two variables as opposed



to the density of a variable and the variable itself?
Yes!!! Its called non-parametric regression.

� De�nition of the estimator:

m̂ (x0) =

1
Nh

NX
i=1

K
�
xi�x0
h

�
yi

1
Nh

NX
i=1

K
�
xi�x0
h

�
where again K (�) is the kernel and h is the band-
width.

� Basically you are averaging Y (X0) with X 0s close
to X0 and in a weighted fashion.

� Special case of Local Weighted Average Estimator

m̂ (x0) =
NX
i=1

wi0;hyi

where wio;h = w (xi; x0; h)



� K-Nearest Neighbor Estimator

m̂ (x0) =
1

k

0@y
i�
�
k�1
2

� + :::+ y
i+
�
k+1
2

�1A

� Generalization of kernel regression as local constant:

� Local linear regression estimator

min
a0;b0

NX
i=1

K

�
xi � x0
h

�
(yi � a0 � b0 (xi � x0))2

then

m̂ (x) = â0 + b̂0 (x� x0)

� Regular kernel is local linear with b0 constrained to
be zero. We can generalize this approach to higher
order polynomials.



� One particularlly popular kernel for non-parametric
regression is: LOcally WEighted Scatterplot Smooth-
ing (LOWESS) Estimator

K (z) =
70

81

�
1� jzj3

�3
I (jzj < 1)

where

1. ho;i varies - it depends upon the distance of the
point x0 to the kth nearest neighbor and

2. observations with large residuals, (yi � m̂ (xi)) ;
are downweighted as in a quasi-GLS type estima-
tor.

� Problems with non-parametric regression:

� Requires alot of data, especially for multi-dimensional
density estimation



5 Semi-parametric Regression

� Sometimes better to combine parametric and non-
parametric - where along some dimensions you know
the structure or where you don�t care as much if
you don�t know the structure. Structure reduces
the curse of dimensionality as with propensity score
matching. This combination of parametric and non-
parametric regression is called semi-parametric re-
gression.

� Some semi-parametric estimators:

� Partially Linear:

E (Y jX;Z) = X� + � (Z)
parameters: �; non-parametric part: �

� Single Index:

E (Y jX) = G (X�)
parameters: �; non-parametric part: G



� Generalized Partial Linear:

E (Y jX;Z) = G (X� + � (Z))

parameters: �; non-parametric parts: G; �

6 Identi�cation: IV + Non-parametrics

1. Almost nothing done here (a few recent papers such
as by Blundell and Powell).

2. Hard because you need alot of data both for IV and
for non-parametrics.

3. Even more di¢ cult if you want your instruments to
be non-parametric.



7 Overview

� Positive: Non-parametric methods can be very good
data description techniques since they are very �ex-
ible.

� Negative: Require alot of data.

� Negative: Di¢ cult to do inference.

� Negative: Di¢ cult to get good indenti�cation.

� Net: Often good complement (not substitute) for
parametric analysis.


