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Abstract

This paper is concerned with the estimation of the autoregressive parameter
in a widely considered spatial autocorrelation model. The typical estimator
for this parameter considered in the literature is the (quasi) maximum likeli-
hood estimator corresponding to a normal density. However, as discussed in
the paper, the (quasi) maximum likelihood estimator may not be computa-
tionally feasible in many cases involving moderate or large sized samples. In
this paper we suggest a generalized moments estimator that is computation-
ally simple irrespective of the sample size. We provide results concerning the
large and small sample properties of this estimator.



1 Introduction1

There exists a large body of literature that considers autocorrelation of the
disturbances across cross sectional units for panel data, i.e., data which are
observed both across cross sectional units and over time. However, the esti-
mation of models that permit for autocorrelation of the disturbances across
cross sectional units for cases in which the data are only observed in one
time period has - until recently - only received relatively little attention in
the theoretical econometrics literature. For example, in most econometric
text books there is no discussion relating to spatial models, when only a
single cross section of data is available.2 This is unfortunate because issues
relating to geographical proximity, transportation, spill-over effects, etc., sug-
gest that such models are important. Indeed, in recent years there have been
a number of theoretical and applied econometric studies involving spatial
issues, which include contributions by Case (1991), Conley (1996), Delong
and Summers (1991), Dubin (1988), Kelejian and Robinson (1993), Moulton
(1990), Quah (1992) and Topa(1996).3

One of the most widely referenced models of spatial autocorrelation is
one that was put forth by Cliff and Ord (1973, 1981). This model is a vari-
ant of the model considered by Whittle (1954), and is sometimes referred to
as a spatial autoregressive (SAR) model - see, e.g., Anselin (1988). In the
SAR model the disturbance term corresponding to a cross sectional unit is,
as discussed in more detail below, modeled as a weighted average of distur-
bances corresponding to other cross sectional units, plus an innovation. This
weighted average involves a scalar parameter, say ρ, and a set of weights
which describe the spatial interactions. The innovations are typically as-
sumed to be i.i.d. N(0, σ2). In a regression framework, the parameters of
interest would then be ρ, σ2, and the vector of regression coefficients. Typi-

1We would like to thank Michael Binder, Benedikt Pötscher, You-Qiang Wang, an
anonymous referee and the editors for helpful comments, and Dennis Robinson for provid-
ing some of the weighting matrices.

2Of course, if panel data are available one can consider, e.g., a seemingly unrelated
regression model, or an error component model to permit for cross sectional correlation,
and estimate the cross sectional correlations via the time dimension of the panel if the
time dimension is sufficiently large.

3There is an extensive literature relating to spatial models in the regional science and
geography literature; see, e.g., Anselin (1988), Bennett and Hordijk (1986), Cliff and Ord
(1973, 1981), and Cressie (1993) and the references cited therein. For critical comments
see Kelejian and Robinson (1995).
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cally, the spatial weights do not involve unknown parameters.4

Regression models containing spatially correlated disturbance terms based
on the SARmodel are typically estimated by the (quasi) maximum likelihood
(ML) estimator, where the likelihood function corresponds to the normal dis-
tribution. We use the term (quasi) ML estimator rather than the term ML
estimator to cover specifications where the actual distribution is permitted
to differ from the normal distribution, as is the case in our analysis below.
Given appropriate conditions these (quasi) ML estimators should be consis-
tent and asymptotically normally distributed. However, to the best of our
knowledge, formal results establishing these properties under a specific set of
low level assumptions do not seem to be available for the SAR model consid-
ered here. We note, however, that Mardia and Marshall (1984) give a general
result concerning the consistency and asymptotic normality of the ML esti-
mator for regression models with general disturbance covariances, provided
that the disturbances are normally distributed. Clearly their theorem will
cover many Gaussian spatial processes. However, in a formal sense their the-
orem is not applicable to the typical SAR model, even in the case where the
disturbances are normally distributed. The reason for this is that Mardia
and Marshall assume that the elements of the disturbance covariance matrix
do not depend on the sample size. As will be seen below, this assumption is
not satisfied for the typical SAR model.5

A practical difficulty with the (quasi) ML method in SAR models is that
the estimation of ρ entails significant computational complexities. As our
discussion will make clear, these complexities can be overwhelming if the
spatial weights are not symmetric, which is typically the case in practice,

4See, e.g., Anselin (1988, 1990) and the references cited therein. For an empirical study
involving a parameterized weighting matrix see Dubin (1988).

5Of course, the general literature on (quasi) ML estimation contains various sets of
sufficient conditions under which (quasi) ML estimators are consistent and asymptotically
normally distributed; see, e.g., Gallant and White (1988), Heijmans and Magnus (1986,
1987), and Pötscher and Prucha (1991a,b) for recent contributions in the econometrics
literature as well as for other references. One approach to formally establish the asymptotic
properties of the (quasi) ML estimators under a specific set of low level assumptions for
the SAR model considered here would be to formally establish that those assumptions are
covered by one of the sets of sufficient conditions given in the general literature on (quasi)
ML estimation. We note, however, that such a demonstration may be involved. Also, if N
cross sections are observed not only for one but for T periods, spatial autocorrelation can
be modeled in a general fashion via a seemingly unrelated regression model and standard
large sample theory can be applied to the case in which N is fixed and T → ∞.
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even if the sample size is only moderate, or if the sample size is large, which
is also the case in various applications - e.g., there are more than 3000 counties
in the U.S. These practical difficulties are troublesome since, as Cliff and Ord
(1981, p.153) suggest, thus far the only available alternative to the (quasi)
ML estimator of ρ in the SAR model is a moments estimator, which was
suggested by Ord (1975). This estimator, however, is generally not seriously
considered because of its inefficiency - see, e.g., Ord (1975, p.122).6

The purpose of this paper is two-fold. First, on a theoretical level, we
suggest an estimator for the parameter ρ in the SAR model based on a
“generalized” moments approach. This estimator is, relative to the (quasi)
ML estimator, computationally simple. We then provide a formal proof for
the consistency of the estimator under an explicit set of conditions. We note
that these conditions do not involve the assumption of normality. Second, we
give Monte Carlo results relating to, among other things, the small sample
distribution of our suggested estimator and the (quasi) ML estimator. These
results suggest that under a variety of distributions including the normal
distribution our estimator of ρ is “virtually as efficient” as the (quasi) ML
estimator, defined as the maximizer of the likelihood function corresponding
to the normal distribution.
In the context of a regression model we also demonstrate that, under

typical assumptions, ρ is a nuisance parameter in the sense that the feasible
generalized least squares (feasible GLS) estimator based on a consistent es-
timator of ρ is asymptotically equivalent to the GLS estimator. Therefore,
the importance of our results concerning the estimation of ρ also relate to
the computational simplicity of feasible GLS estimators. As a by-product
we also establish the limiting distribution of those estimators. We note that
this requires the use of a central limit theorem for triangular arrays.
Recently, in an interesting dissertation, Conley (1996) has also consid-

ered a class of generalized method of moments estimators within a spatial
setting. Rather than to assume a specific model for the generation of the
data he maintains that the data are stationary and spatially mixing. Clearly,
avoiding specific modelling assumptions is appealing with regard to issues of
potential misspecification. On the other hand, Conley’s stationarity assump-
tion may be restrictive in many applied settings. Also, this assumption is

6Also, this estimator is specified as the solution of a single quadratic equation and
hence, in general, is not well defined unless a further selection mechanism between the two
possible roots is specified.
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in general not satisfied by the class of spatial ARMA processes as defined,
e.g., in Anselin and Florax (1995), including the SAR model considered here,
because of the nature of the spatial weighting matrices used in modelling
those processes.7 Additionally, the derivation of asymptotic results for M-
estimators, and in particular generalized method of moments estimators,
typically involves a demonstration that the objective function of the estima-
tor converges uniformly over the parameter space to its asymptotic counter
part. Provided that the functions forming the objective function are “first
moment continuous”, that a “local” law of large numbers holds, and given
compactness of the parameter space the desired uniform convergence follows
immediately fromWald’s (1949) approximation technique, cp., e.g., Pötscher
and Prucha (1989, pp. 680-81). Conley maintains “first moment continuity”
as an assumption towards establishing uniform convergence. However, in
particular applications a verification of this high level assumption may be
“involved”. In this paper we deduce the needed uniform convergence from
a set of lower level assumptions. We note further that Conley’s dissertation
also provides a treatment of covariance matrix estimators in a spatial setting.
The SAR model is specified and interpreted in Section 2. This section

also contains a discussion relating to (quasi) maximum likelihood estimation.
Our estimator, and a variation of it, are defined and discussed in Section 3.
Results showing that ρ is a nuisance parameter in a regression framework are
given in Section 4. The Monte Carlo study is described, and results relating
to our suggested estimators as well as to the (quasi) maximum likelihood
are given in Section 5. Section 6 contains suggestions for further work. All
proofs are relegated to the Appendix.

2 The Spatial Autoregressive Model

In the SAR model an N × 1 disturbance vector u is generated as follows:

u = ρMu+ ε, (1)

where M is an N × N matrix of known constants, ρ is a scalar parameter,
which is typically referred to as the spatial autoregressive parameter, and ε

7As a further technical detail, let (zi) denote the data generating process, and let θ
denote the vector of unknown parameters. Then Conley considers moments of the form
Eg(zi, θ) = 0, i = 1, . . . ,N , where g is some vector valued function. In contrast, the
moments utilized in this paper are of the form Egi,N (z1, . . . , zN , θ) = 0, i = 1, . . . ,N .
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is a N × 1 vector of innovations. For reasons which will become evident, M
is often referred to as a spatial weighting matrix. For reasons of generality
we permit the elements of M and ε to depend on N , i.e., to form triangular
arrays. However, for simplicity of notation we do not indicate this possible
dependence on N explicitly in the following.
It proves helpful to introduce the following notational conventions: In

general, we denote the i-th element of a vector v as vi, and the (i, j)-th
element of a matrix A as aij. Correspondingly, we denote the i-th row and j-
th column of A as ai. and a.j. Given this notation, the typical assumptions
of the SAR model are:8

Assumption 1 : The innovations ε1, ..., εN are independently and identi-
cally distributed (for all N) with zero mean and variance σ2, where 0 < σ2 < b
with b < ∞. Additionally the innovations are assumed to possess finite fourth
moments.

Assumption 2 : (a) All diagonal elements of M are zero. (b) |ρ| < 1.
(c) The matrix I − ρM is nonsingular for all |ρ| < 1.

Given these assumptions it follows from (1) that u = (I−ρM)−1ε. Thus,
E(u) = 0 and E(uu′) = Ω(ρ), where

Ω(ρ) = σ2(I − ρM)−1(I − ρM ′)−1. (2)

We note that, in general, the elements of (I − ρM)−1 will depend on the
sample size N . As a consequence, in general, the elements of u will also
depend on N and thus form a triangular array, even if the elements of ε do
not depend on N . It also follows that, in general, the elements of Ω(ρ) will
depend on N .9

The specification in (1) implies that ui = ρ
∑N

j=1 mijuj + εi, i = 1, . . . , N .
In a cross sectional setting, the nonzero weights mij are often specified to be
those which correspond to units which relate to the i-th unit in a meaningful
way. Such units are often said to be neighbors of unit i. As one example,
if the cross sectional units are geographical regions, one might take mij �= 0

8Generalizations and variations on these assumptions have been considered - see, e.g.,
Anselin (1988), and Cliff and Ord (1973, 1981).

9As remarked in the Introduction, this violates one of the assumptions maintained by
Mardia and Marshall’s (1984) theorem regrading the consistency and asymptotic normality
of ML estimators for Gaussian processes.
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if the i-th and j-th regions are contiguous, and mij = 0, otherwise. In this
setting, each disturbance consists of a weighted sum of disturbances in re-
lated regions, and a term which is i.i.d. over the regions. Clearly Assumption
2(a) is a normalization of the model, Assumption 2(b) is a stability condition
for certain specifications of M , and Assumption 2(c) ensures that the dis-
turbance vector u is uniquely defined in terms of the innovation vector ε.10

One implication of a model such as (1) is that, unlike for most time series
models, mij need not be zero for j > i. Thus, one distinguishing feature
of a spatial model is that the i-th disturbance term may be directly related
to both “future” and “past” disturbances. Also, in a spatial model there is
typically no natural order for arranging the sample.
Assuming for the moment that u is observable and normally distributed,

the log-likelihood for the model in (1) is, using evident notation, given by

ln(L) = −
N

2
{ln(σ2) + ln(2π)} (3)

−
1

2σ2
u′(I − ρM ′)(I − ρM)u+ ln ||I − ρM || .

As remarked above, the normality of u is not one of our maintained as-
sumptions, and hence we refer to the maximizers of (3) as (quasi) ML esti-
mators. In the following we denote those (quasi) ML estimators for ρ and
σ2 as ρ̂QML and σ̂2

QML, respectively. As is evident from (3) the computa-
tion of the (quasi) ML estimators involves the repeated evaluation of the
determinant of the N ×N matrix I − ρM . To minimize the computational
burden, Ord (1975) suggested that the troublesome term in (3) be expressed
as ln ||I − ρM || =

∑N
i=1 ln(|1− ρλi|), where λi denotes the i-th eigenvalue of

M . The advantage of this approach is that (since M is a known matrix) the
eigenvalues of M only have to be computed once at the outset of the numer-
ical optimization procedure employed in finding the (quasi) ML estimates,
and not repeatedly at each of the necessary numerical iterations. However,
this still leaves the researcher with the task of finding the eigenvalues of the
N ×N matrix M . Unless M has a particular structure this task is typically
“challenging”, especially if N is large - recall, e.g., that there are over 3000
counties in the U.S. In fact, in many cases it will be practically impossible to
compute those eigenvalues accurately based on computing technology typ-
ically available to empirical researchers. As an illustration, in some of the

10Kelejian and Robinson (1995) give results which suggest that Assumption 2(c) is
satisfied for many specifications of M considered in the literature.
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Monte Carlo experiments reported below we use “idealized” symmetric M
matrices in which each spatial unit has the same number of neighbors, say
J . Clearly for those matrices all eigenvalues are real. However, when we
employed a standard subroutine for computing the eigenvalues of a general
matrix from the IMSL program library the routine reported eigenvalues with
imaginary parts that differed substantially from zero even for the moderate
sample size N = 400, when the number of neighbors J was 6 or larger.11

In fact, some of the reported imaginary parts differed from zero by more
than .5 in absolute value. Only when we employed a subroutine that uti-
lized the symmetric nature of those M matrices were we able to compute
the eigenvalues accurately. Since, in practice, spatial weighting matrices are
typically not symmetric this suggest that an accurate computation of the
(quasi) ML estimator may not be feasible in many cases even for moderate
sample sizes.12 Given these computational problems, it is clearly important
to have an alternative to the (quasi) ML estimator, which is computationally
feasible for general weighting matrices M , and large sample sizes N .

3 Definition and Consistency of a General-

ized Moments Estimator of ρ

Suppose u defined in (1) represents the disturbance vector in a model, and
based on that model ũ is a predictor of u. For notational convenience let
u = Mu and u = MMu, and correspondingly, ũ = Mũ, and ũ = MMũ.
Similarly, let ε = Mε and note that under Assumptions 1 and 2:

E[
1

N
ε′ε] = σ2, E[

1

N
ε′ε] = σ2N−1Tr(M ′M), E[

1

N
ε′ε] = 0. (4)

11The IMSL subroutine employed was DEVLGR, which itself is based on subroutines
from the EISPACK program library. It seems that other packages such as MATLAB also
employ routines from EISPACK.

12We also experimented with MATLAB 4.2 for Windows, using a PC with a Pentium
133Mhz processor and 32MBs of memory, to calculate the eigenvalues for our “idealized”
M matrices. In those experiments we encountered “out of memory” errors forM matrices
with N ≥ 2000 and J = 10, even when using a routine for sparse symmetric matrices.
In terms of computational time it took, e.g., 22 minutes to compute the eigenvalues in
the case N = 1500 and J = 10, again using a routine for sparse symmetric matrices.
The subsequent computation of the (quasi) ML estimator based on those eigenvalues and
using TSP 4.2 only took seconds. The computation of our generalized moments estimator,
which does not require the computation of eigenvalues, also took only seconds.
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Our generalized moments estimator for ρ is based on these three moments.
Specifically, noting from (1) that ε = u− ρu and so ε = u− ρu, consider the
following three equation system implied by (1) and (4) :

ΓN [ρ, ρ
2, σ2]′ − γN = 0 (5)

where

ΓN =




2
N
E(u′u) −1

N
E(u′u) 1

2
N
E(u

′

u) −1
N

E(u
′

u) 1
N
tr(M ′M)

1
N
E(u′u+ u′u) −1

N
E(u′u) 0


 , γN =




1
N
E(u′u)

1
N
E(u′u)

1
N
E(u′u)


 .

Now consider the following analog to (5) in terms of sample moments based
on ũ:

GN [ρ, ρ
2, σ2]′ − gN = νN(ρ, σ

2) (6)

where

GN =




2
N
ũ′ũ −1

N
ũ
′

ũ 1
2
N
ũ
′

ũ −1
N

ũ
′

ũ 1
N
tr(M ′M)

1
N
(ũ′ũ+ ũ

′

ũ) −1
N

ũ
′

ũ 0


 , gN =




1
N
ũ′ũ

1
N
ũ
′

ũ
1
N
ũ′ũ


 ,

and where the 3×1 vector νN(ρ, σ
2) can be viewed as a vector of residuals. We

now define our generalized moments estimator for ρ and σ2 as the nonlinear
least squares estimator, say ρ̂NLS,N and σ̂2

NLS,N , corresponding to (6). More
specifically,

(ρ̂NLS,N , σ̂2
NLS,N) = argmin

[
νN(ρ, σ

2)′νN(ρ, σ
2) : ρ ∈ [−a, a], σ2 ∈ [0, b]

]
(7)

where a ≥ 1.

Remark 1: Note that (7) implies that
∣∣∣ρ̂NLS,N

∣∣∣ ≤ a with a ≥ 1. Since |ρ| <
1, if the bound a is sufficiently large, ρ̂NLS,N is essentially the unconstrained
nonlinear least squares estimator of ρ. The existence and measurability of
ρ̂NLS,N and σ̂2

NLS,N is assured by, e.g., Lemma 2 in Jennrich (1969).

In the following let P (ρ) = (I − ρM)−1. We now specify three additional
assumptions.
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Assumption 3 : (i) The sums
∑N

i=1 |mij| and
∑N

j=1 |mij| are bounded by,
say, cm < ∞ for all 1 ≤ i, j ≤ N, N ≥ 1. (ii) The sums

∑N
i=1 |pij(ρ)| and∑N

j=1 |pij(ρ)| are bounded by, say, cp < ∞ for all 1 ≤ i, j ≤ N, N ≥ 1,
|ρ| < 1.

Assumption 4 : Let ũi denote the i-th element of ũ, where again we sup-
press the dependence of ũ and its elements on N for notational convenience.
We then assume that there exist (finite dimensional) random vectors diN and
∆N such that |ũi − ui| ≤ ‖diN‖ ‖∆N‖ with N−1 ∑N

i=1 ‖diN‖
2+δ = Op(1) for

some δ > 0 and N1/2 ‖∆N‖ = Op(1).
13

Assumption 5 : The smallest eigenvalue of Γ′

NΓN is bounded away from
zero, i.e., λmin(Γ

′

NΓN) ≥ λ∗ > 0.

Remark 2: (a) In practice spatial models are often formulated in such
a way that each cross sectional unit has a limited number of “neighbors”
regardless of the sample size - see, e.g., Case(1991) and Kelejian and Robinson
(1995). In such cases the weighting matrix M is sparse for large N and so
Assumption 3(i) would be satisfied. As a point of information we note that in
many of these cases the elements of M are taken to be nonnegative and row
normalized in that

∑
j mij = 1. In still other cases, the weighting matrix does

not contain zeros but its elements are assumed to decline rapidly in certain
directions because they are defined in terms of variables such as distance - see
e.g., Dubin (1988) and De Long and Summers (1991). Again, under further
reasonable (but idealized) conditions, Assumption 3(i) would be expected to
hold.
(b) Recall from (2) that Ω = σ2PP ′. Assumption 3(ii) then implies that

N−1 ∑N
i=1

∑N
j=1 |ωij| is bounded, thus limiting the degree of correlation.

14

In a time series context this condition ensures that the process possesses
a fading memory. We also note that Assumption 3(ii) is closely related to
Condition A5 in Mandy and Martins-Filho (1994) in their study of large
sample properties of feasible GLS estimators.

13For definiteness, let A be some vector or matrix, then ‖A‖ = [Tr(A′A)]1/2. We note
that this norm is submultiplicative, i.e., ‖AB‖ ≤ ‖A‖ ‖B‖. We also define |A| as the vector
or matrix of absolute values.

14Observe that N−1
∑N

i=1

∑N
j=1 |ωij | ≤ σ2N−1

∑N
i=1

∑N
j=1

∑N
k=1 |pik| |pjk| =

σ2N−1
∑N

k=1

∑N
i=1 |pik|

∑N
j=1 |pjk| ≤ σ2c2p < ∞.
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Remark 3: Assumption 4 should be satisfied for most cases in which ũ is
based upon N1/2- consistent estimators of the regression coefficients. For
example, using evident notation, consider the nonlinear regression model
yi = f(xi, β) + ui. Let β̃N denote the nonlinear least squares estimator
and let ũi = yi − f(xi, β̃N). Assuming that f is differentiable and applying
the mean value theorem it readily seen that |ũi − ui| ≤ ‖diN‖ ‖∆N‖ with
diN = supβ | ∂f(xi, β )/∂β | and ∆N = β̃N − β. Under typical assumptions

maintained for the nonlinear regression model, diN and ∆N will satisfy the
conditions postulated in Assumption 3; cp., e.g., Pötscher and Prucha (1986).

Remark 4: It will become evident that Assumption 5 is an identifiability
condition.

Our basic result is Theorem 1, whose proof is given in the appendix.

Theorem 1 : Let ρ̂NLS,N and σ̂2
NLS,N be the nonlinear least squares estima-

tors defined by (7). Then, given Assumptions 1-5,

(ρ̂NLS,N , σ̂2
NLS,N)

p
→ (ρ, σ2) as N → ∞.

An obvious variation on ρ̂NLS,N in Theorem 1 is based on an over para-
meterization of (6). Specifically, let ϕ = ρ2, α = (ρ, ϕ, σ2), and let α̂OLS,N =
(ρ̂OLS,N , ϕ̂OLS,N , σ̂2

OLS,N) be the ordinary least squares estimator of α based
on (6). Then, it is evident from the proof of Theorem 1 that, under the same

conditions, (ρ̂OLS,N , ϕ̂OLS,N , σ̂2
OLS,N)

p
→ (ρ, ϕ, σ2) as N → ∞.

4 An Application to the Generalized Least

Squares Model

As discussed, the vector u defined in (1) will often represent the vector of
disturbances of some econometric model. In such cases ρ will often be a
nuisance parameter in the sense that the asymptotic distribution of some
estimator of the model parameters of interest will be the same if ρ is known
or if ρ is replaced by a consistent estimator. In many of these cases it will be
possible to estimate the disturbances N1/2-consistently in a first step. The
force of Theorem 1 is that based on those estimated disturbances a simple
and consistent estimator of ρ is available.
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In the following we illustrate this point within the context of a linear
regression model with spatially autoregressive disturbances. In particular,
consider the following model:

y = Xβ + u (8)

where y is the N × 1 vector of observations on the dependent variable, X
is the N × K matrix of observations on the explanatory variables, β is the
K×1 vector of unknown model parameters and u is the vector of disturbances
assumed to be generated by (1). As discussed in Section 2, in general, the
elements of u and hence those of y will depend onN . For reasons of generality
we also permit the elements of X to depend on N , but again we do not
indicate this possible dependence on N explicitly. We maintain the following
typical assumptions for the regressor matrix X and the variance covariance
matrix Ω of the disturbance vector u.

Assumption 6 : The elements of X are nonstochastic and bounded in ab-
solute value by cx, 0 < cx < ∞. Also X has full column rank and the matrix
Qx = limN→∞ N−1X ′X is finite and nonsingular. Furthermore, the matrices
Q

x
(ρ) = limN→∞ N−1X ′Ω(ρ)−1X and Qx(ρ) = limN→∞ N−1X ′Ω(ρ)X are

finite and nonsingular for all |ρ| < 1.

The true GLS estimator for β is defined as β̃
G

N = [X ′Ω(ρ)−1X]−1X ′Ω(ρ)−1y,
and the feasible GLS estimator for β corresponding to some estimator of ρ,

say ρ̃N , is defined as β̃
FG

N = [X ′Ω(ρ̃N)
−1X]−1X ′Ω(ρ̃N)

−1y. The following

theorem first establishes the asymptotic distribution of β̃
G

N , and then shows

that β̃
FG

N has the same asymptotic distribution as β̃
G

N , if ρ̃N is a consistent
estimator for ρ. All proofs are relegated to the appendix.

Theorem 2 : Given assumptions A1 - A3 and A6 hold:

(a) The true GLS estimator β̃
G

N is a consistent estimator for β, and

N1/2[β̃
G

N − β]
D
→ N(0, σ2Q

x
(ρ)−1).

(b) Let ρ̃N be a consistent estimator for ρ. Then the true GLS estima-

tor β̃
G

N and the feasible GLS estimator β̃
FG

N have the same asymptotic
distribution.
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(c) Suppose further that σ̃2
N is a consistent estimator for σ2. Then

σ̃2
N [N

−1X ′Ω(ρ̃N)
−1X]−1 is a consistent estimator for σ2Q

x
(ρ)−1.

As remarked in the Introduction, for the spatial model considered here

a rigorous proof of the asymptotic distribution of the GLS estimator β̃
G

N

requires the use of a central limit theorem for triangular arrays (even if the
elements of M and X do not depend on N). Such a central limit theorem is
given in the Appendix.
Theorem 2 assumes the existence of a consistent estimator of ρ and σ2.

We demonstrate in the Appendix that under Assumptions 1-3 and 5-6 the
ordinary least squares (OLS) estimator β̃N = [X ′X]−1X ′y is N1/2-consistent.
Given this, the corresponding residuals ũi = yi − xi.β̃N satisfy Assumption
4 with diN = |xi.| and ∆N = β̃N − β. Thus, via the suggested generalized
moments estimator and Theorem 1, these residuals can be used to obtain
consistent estimators of ρ and σ2. According to Theorem 2 these estimators
can then be used in formulating a feasible GLS estimator (and an estimator
for its asymptotic variance covariance matrix) with the feasible and true GLS
estimator being asymptotically equivalent.

5 A Monte Carlo Model Study

It is of interest to analyze the small sample properties of the generalized
moments estimators ρ̂NLS and ρ̂OLS and compare them with those of the
(quasi) maximum likelihood estimator ρ̂QML defined as the maximizer of the
normal log-likelihood function (3).15 For this purpose we have conducted
a two part Monte Carlo study. The first part of the Monte Carlo study is
based on “idealized” weighting matrices M which differ in size and in the
number of neighbors. For these idealized weighting matrices the number of
neighbors per unit is taken to be the same in each of the respective matri-
ces. For future reference, we note that, for a given sample size, the number
of neighbors per unit can be viewed as a measure of the sparseness of that
matrix. In using these idealized weighting matrices we can readily explore
the effects of sample size and number of neighbors on the small sample prop-
erties of our considered estimators. Of course, the use of idealized weighting
matrices raises the concern that results corresponding to those matrices may

15We note that ρ̂QML (and σ̂2QML) denote the (joint) maximizers of the normal log-
likelihood function (3), even if the actual distribution is not normal.
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not be representative of results corresponding to “real world” matrices. The
second part of the Monte Carlo study is hence based on real world weighting
matrices.
For both parts of the Monte Carlo study we consider three distributions of

ε and seven selections of ρ. As discussed in more detail below, we consider a
total of 36 cases for each distribution of ε. The results for each case are based
on 500 Monte Carlo replications. To summarize the results of the respective
Monte Carlo experiments we estimate response functions. It turns out that
the estimated response functions based on idealized and real world weighting
matrices are not “significantly” different.16 The estimates for the response
functions reported below will hence be based on both sets of weighting ma-
trices. These response functions can also be used to interpolate results for
other cases.
We now describe the design of the Monte Carlo experiments in more

detail. Note first from (1) that σ is a scale factor for u, as well as for u and
u, in that their standard deviations are proportional to σ. Because of this, the
estimators for ρ defined above do not depend upon σ2. Hence, without loss
of generality, we took σ2 = 1 in generating the data for all of the experiments
considered; however, in all of the experiments, σ2 was viewed as an unknown
parameter concerning estimation.
The first distribution for ε explored in the experiments is the normal.

More specifically, we assume that the εi are i.i.d. N(0, 1). This case is
viewed as a base case for the small sample comparisons, since in this case
ρ̂QML is actually the maximum likelihood estimator . The second distribu-
tion considered is a normalized version of the log-normal. More specifically,
we assume in this case that εi = [exp(ξi) − exp(.5)]/[exp(2) − exp(1)].5 ,
where the ξi are i.i.d. N(0, 1). The normalization implies that the εi are
i.i.d. (0, 1). This distribution was considered because it is not symmetric.
The third distribution considered is a normalized version of a mixture of nor-
mals in which one normally distributed random variable is contaminated by
another which has a larger variance. More specifically, we assume here that
εi = [λiξi+(1−λi)ζi]/(5.95)

.5, where the λi are i.i.d. Bernoulli variables with
Prob(λi = 1) = .95, the ξi are i.i.d. N(0, 1), and the ζi are i.i.d. N(0, 100).
Also, the processes (λi), (ξi) and (ζi) are assumed to be jointly independent.
Again, the normalization implies that εi is i.i.d. (0, 1). This case was consid-

16For our “test of significance” we employed the Chow test in a classical fashion. While
in this context this testing procedure is not a formal one, it should be illustrative.
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ered because the implied distribution has thicker tails than the normal.17 In
particular, for the specification considered Eε4i /(Eε2i )

2=̇14.15.
As mentioned, the first part of the Monte Carlo study is based on idealized

weighting matricesM . For each of the three distributions of ε we consider 15
cases which relate to seven selections of ρ, three selections of the weighting
matrix M , and three selections of the sample size N . We note that the
total number of combinations of these selections of ρ, M , and N would lead
to 7 × 3 × 3 = 63 cases for each distribution of ε. To keep the Monte
Carlo study manageable we consider only 15 of those cases per distribution
of ε, but summarize the results of the Monte Carlo experiments in terms
of response functions. The three specifications of the weighting matrices M
differ in terms of sparseness, and therefore in terms of the extent of implied
autocorrelation concerning the disturbance terms ui defined by (1). In the
first specification, which we henceforth refer to as 1 ahead and 1 behind,
M was selected such that each element of u is directly related to the one
immediately after and immediately before it. In doing this, we specified a
“circular” world so that, e.g., uN is directly related to u1 and to uN−1 and,
and similarly, u1 to u2 and uN . Furthermore, we specified M such that all
nonzero elements of M are equal and that the respective rows sum to unity.
That is, in this case, each row ofM has two nonzero elements which are equal
to 1/2. Correspondingly, the next two specifications ofM are “3 ahead and 3
behind”, and “5 ahead and 5 behind”, again in a circular world. The nonzero
elements of M in these two cases are respectively taken as 1/6 and 1/10.18

Let J denote the average number of neighbors for each unit. We can then
characterize the above matrices with J = 2, 6, 10, respectively.
The second part of the Monte Carlo experiment is based on three real

world weighting matrices M . In particular, those matrices represent the
spatial weighting matrices for 58, 100, and 254 counties in the states of
California, North Carolina, and Texas. For these matrices two counties are
defined as neighbors if they are in the same state and if a 50 mile circle
centered at the population center of one county includes the population center
of the other county. Neighbors are indicated by nonzero elements in the M
matrix. These nonzero elements are specified to be equal in each row, and
to sum to unity in each row. Again, we characterize these matrices by their

17We note that mixtures of normals are frequently used to model the effects of outliers.
18We emphasize that the estimators for ρ considered in this paper do not depend on

the particular ordering of the data. Thus any M matrix obtained from a rearrangement
of the data would yield the same results.
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average number of neighbors, i.e., with J = 3.8, 10.9, 6.6, respectively. Given
seven selections of ρ the three real world weighting matrices lead to 7×3 = 21
additional cases per distribution.
Table 1 gives results on two characteristics of the distributions of ρ̂NLS,

ρ̂OLS, and ρ̂QML for each of the 15 + 21 = 36 cases (defined in terms of N ,
J , and ρ) for each of the three disturbance distributions considered. These
characteristics are closely related to the standard measures of bias and root
mean squared error (RMSE), but unlike these measures are assured to exist.
Our measure of bias is defined as the difference between the median and the
true parameter value. Our measure corresponding to the RMSE is defined as
[bias2 + (IQ/1.35)2]1/2 where IQ is the inter-quantile range. That is, IQ =
c1−c2 where c1 is the .75 quantile and c2 is the .25 quantile. If the distribution
is normal, IQ/1.35 is (apart from rounding errors) equal to the standard
deviation. In the following we will refer to our measures simply as bias and
RMSE. The results in Table 1 are Monte Carlo estimates of these measures
based on quantiles computed from the empirical distributions corresponding
500 Monte Carlo replications. Before discussing response functions for the
RMSEs we note some points.
The average absolute biases are generally similar for ρ̂QML and ρ̂NLS, but

higher for ρ̂OLS for all three cases of considered distributions. The biases,
while typically negative, are relatively small in absolute value. The RMSEs
for ρ̂QML and ρ̂NLS are also generally very close in magnitude, and consid-
erably lower than those relating to ρ̂OLS. This suggests that the general-
ized moments estimator ρ̂NLS and the (quasi) maximum likelihood estimator
ρ̂QML possess very similar small sample properties, both under normality and
non-normality. We conjecture that a reason for this is that ρ̂QML and ρ̂NLS

are both, in essence, defined in terms of second order moments. Given the
similarity of the small sample properties of ρ̂QML and ρ̂NLS, a major advan-
tage of the generalized moments estimator ρ̂NLS as compared to the (quasi)
maximum likelihood estimator ρ̂QML seems to be that ρ̂NLS remains readily
computable even for large sample sizes N and general spatial weighting ma-
trices M , as was discussed in some detail at the end of Section 2. We note,
however, that the over-parameterization underlying the definition of ρ̂OLS

is costly in terms of small sample efficiency. For example, on average the
RMSE corresponding to ρ̂OLS is more than twice as large as those of ρ̂NLS

and ρ̂QML. For this reason we will henceforth focus attention only on ρ̂NLS

and ρ̂QML.
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Table 1a: Biases and RMSE of Estimators for ρ,
Normal Error Distribution

Bias RMSE

N J ρ ρ̂QML ρ̂NLS ρ̂OLS ρ̂QML ρ̂NLS ρ̂OLS

49. 2.0 -0.90 .0034 -.0012 -.0205 .0364 .0439 .2111
49. 2.0 0.90 -.0051 -.0031 .0222 .0351 .0436 .2155
49. 6.0 -0.50 -.0008 -.0345 -.0155 .2879 .2952 .2973
49. 6.0 0.50 -.0193 -.0184 -.0078 .1599 .1649 .4807
49. 10.0 0.00 -.0294 -.0416 -.0210 .3139 .3410 .7245
58. 3.8 -0.90 .0205 -.0068 -.0429 .1110 .1190 .4705
58. 3.8 -0.50 .0175 -.0126 .0217 .1615 .1715 .2964
58. 3.8 -0.25 .0113 -.0127 .0246 .1663 .1836 .2173
58. 3.8 0.00 -.0023 -.0153 -.0076 .1691 .1814 .2991
58. 3.8 0.25 -.0080 -.0135 .0423 .1610 .1632 .4441
58. 3.8 0.50 -.0139 -.0132 .1085 .1332 .1324 .6179
58. 3.8 0.90 -.0070 -.0049 .1209 .0434 .0475 .5320
100. 2.0 0.00 .0019 .0013 .0029 .0903 .0907 .0931
100. 6.0 -0.50 .0006 -.0106 -.0128 .1925 .2043 .2000
100. 6.0 0.50 -.0092 -.0064 .0141 .1076 .1121 .3553
100. 10.0 -0.25 -.0068 -.0234 .0067 .2292 .2431 .4278
100. 10.0 0.25 -.0145 -.0167 .0448 .1734 .1751 .5031
100. 10.9 -0.90 -.0143 -.0275 -.0477 .2871 .3195 .3025
100. 10.9 -0.50 -.0165 -.0249 -.0554 .2762 .2958 .3431
100. 10.9 -0.25 -.0148 -.0234 -.0300 .2573 .2721 .3937
100. 10.9 0.00 -.0147 -.0198 -.0227 .2390 .2432 .4449
100. 10.9 0.25 -.0197 -.0150 -.0105 .2024 .2058 .4635
100. 10.9 0.50 -.0123 -.0128 -.0007 .1588 .1618 .4610
100. 10.9 0.90 -.0061 -.0042 .0140 .0510 .0622 .3492
254. 6.6 -0.90 .0126 -.0039 -.0158 .0617 .0960 .1543
254. 6.6 -0.50 -.0020 -.0059 .0026 .1068 .1206 .1249
254. 6.6 -0.25 -.0012 -.0085 -.0042 .1116 .1171 .1221
254. 6.6 0.00 .0017 -.0080 .0016 .1093 .1097 .1525
254. 6.6 0.25 -.0041 -.0058 .0137 .0953 .0972 .1795
254. 6.6 0.50 -.0074 -.0061 .0195 .0763 .0795 .2025
254. 6.6 0.90 -.0042 -.0029 .0139 .0267 .0303 .1642
400. 2.0 -0.25 -.0010 -.0017 -.0035 .0464 .0463 .0628
400. 2.0 0.25 -.0026 -.0021 -.0019 .0449 .0461 .0606
400. 6.0 0.00 -.0093 -.0114 -.0022 .0811 .0833 .1408
400. 10.0 -0.90 -.0189 -.0122 -.0251 .1379 .1557 .1466
400. 10.0 0.90 -.0017 -.0018 -.0086 .0201 .0213 .1435
Column Averages of
Absolute Values .0093 .0121 .0231 .1378 .1466 .2999
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Table 1b: Biases and RMSE of Estimators for ρ,
Log-normal Error Distribution

Bias RMSE

N J ρ ρ̂QML ρ̂NLS ρ̂OLS ρ̂QML ρ̂NLS ρ̂OLS

49. 2.0 -0.90 .0036 -.0030 -.0087 .0337 .0357 .2005
49. 2.0 0.90 -.0013 -.0038 .0042 .0299 .0358 .2013
49. 6.0 -0.50 .0018 -.0008 -.0183 .2348 .2706 .2827
49. 6.0 0.50 -.0041 -.0010 .0451 .1426 .1456 .4277
49. 10.0 0.00 -.0211 -.0138 .0158 .2789 .3165 .5880
58. 3.8 -0.90 .0521 -.0317 -.2430 .1642 .1485 .7087
58. 3.8 -0.50 .0277 -.0556 .0199 .1948 .1936 .3784
58. 3.8 -0.25 -.0031 -.0557 .0675 .1832 .1942 .3569
58. 3.8 0.00 -.0147 -.0586 .0676 .1532 .1884 .4968
58. 3.8 0.25 -.0225 -.0479 .1685 .1478 .1755 .7617
58. 3.8 0.50 -.0223 -.0326 .2603 .1362 .1428 1.0143
58. 3.8 0.90 -.0106 -.0111 .1848 .0504 .0540 .8143
100. 2.0 0.00 -.0016 -.0014 -.0007 .0870 .0851 .0851
100. 6.0 -0.50 .0058 -.0040 -.0093 .1653 .1816 .1816
100. 6.0 0.50 -.0007 -.0007 .0117 .0938 .0953 .3031
100. 10.0 -0.25 -.0085 -.0143 .0155 .2268 .2405 .3735
100. 10.0 0.25 -.0116 -.0110 .0434 .1718 .1745 .4255
100. 10.9 -0.90 -.0038 -.0177 -.0306 .2547 .2920 .2772
100. 10.9 -0.50 -.0002 -.0169 -.0269 .2423 .2706 .3407
100. 10.9 -0.25 -.0018 -.0163 -.0218 .2306 .2535 .3927
100. 10.9 0.00 -.0091 -.0123 -.0102 .2029 .2272 .4627
100. 10.9 0.25 -.0134 -.0094 -.0029 .1789 .1891 .5049
100. 10.9 0.50 -.0135 -.0083 .0057 .1412 .1451 .5032
100. 10.9 0.90 -.0091 -.0055 .0192 .0516 .0558 .3820
254. 6.6 -0.90 .0395 -.0155 -.0215 .0851 .0983 .1734
254. 6.6 -0.50 .0033 -.0158 .0105 .1038 .1109 .1321
254. 6.6 -0.25 -.0044 -.0132 .0280 .1032 .1079 .1415
254. 6.6 0.00 -.0052 -.0076 .0458 .0949 .1002 .2061
254. 6.6 0.25 -.0056 -.0060 .0646 .0862 .0889 .2697
254. 6.6 0.50 -.0067 -.0041 .0854 .0727 .0708 .2978
254. 6.6 0.90 -.0058 -.0019 .0661 .0296 .0286 .2211
400. 2.0 -0.25 -.0012 -.0014 .0013 .0442 .0442 .0573
400. 2.0 0.25 -.0009 -.0015 -.0012 .0434 .0444 .0600
400. 6.0 0.00 .0010 .0007 -.0053 .0827 .0874 .1352
400. 10.0 -0.90 -.0066 -.0057 -.0077 .1417 .1538 .1452
400. 10.0 0.90 -.0013 -.0003 .0027 .0194 .0217 .1366
Column Averages of
Absolute Values .0096 .0141 .0456 .1307 .1408 .3456
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Table 1c: Biases and RMSE of Estimators for ρ,
Contaminated Error Distribution

Bias RMSE

N J ρ ρ̂QML ρ̂NLS ρ̂OLS ρ̂QML ρ̂NLS ρ̂OLS

49. 2.0 -0.90 .0021 .0005 .0094 .0257 .0268 0.1630
49. 2.0 0.90 .0005 .0016 .0031 .0252 .0273 0.1667
49. 6.0 -0.50 .0148 .0035 .0049 .1947 .2219 0.2329
49. 6.0 0.50 -.0020 .0012 .0120 .1183 .1206 0.3708
49. 10.0 0.00 .0023 -.0042 .0605 .2289 .2505 0.5745
58. 3.8 -0.90 .0563 -.0215 -.2058 .1679 .1218 0.7515
58. 3.8 -0.50 .0377 -.0395 -.0112 .1707 .1637 0.3739
58. 3.8 -0.25 .0224 -.0388 .0520 .1370 .1677 0.3178
58. 3.8 0.00 -.0035 -.0319 .0892 .1203 .1687 0.5490
58. 3.8 0.25 -.0117 -.0261 .2298 .1345 .1596 0.9347
58. 3.8 0.50 -.0110 -.0171 .3210 .1271 .1345 1.2607
58. 3.8 0.90 -.0040 -.0058 .2363 .0508 .0524 0.7936
100. 2.0 0.00 -.0034 -.0020 -.0023 .0582 .0582 0.0621
100. 6.0 -0.50 .0051 .0081 .0006 .1493 .1514 0.1615
100. 6.0 0.50 .0035 .0043 .0060 .0832 .0851 0.2636
100. 10.0 -0.25 .0122 .0016 .0210 .1984 .1975 0.3424
100. 10.0 0.25 .0013 .0017 .0479 .1384 .1403 0.3728
100. 10.9 -0.90 .0358 .0084 .0078 .2505 .2614 0.2890
100. 10.9 -0.50 .0301 .0056 .0095 .2313 .2390 0.3676
100. 10.9 -0.25 .0232 .0040 .0277 .2158 .2193 0.4303
100. 10.9 0.00 .0173 .0032 .0463 .1871 .1952 0.4862
100. 10.9 0.25 .0104 .0035 .0547 .1635 .1650 0.5121
100. 10.9 0.50 -.0009 .0023 .0654 .1264 .1264 0.5069
100. 10.9 0.90 -.0018 -.0004 .0713 .0455 .0484 0.3719
254. 6.6 -0.90 .0458 -.0132 -.0256 .0872 .0961 0.1961
254. 6.6 -0.50 .0086 -.0102 .0148 .1012 .1069 0.1289
254. 6.6 -0.25 .0007 -.0075 .0338 .0891 .1046 0.1685
254. 6.6 0.00 .0006 -.0075 .0598 .0846 .1037 0.2428
254. 6.6 0.25 -.0035 -.0046 .0981 .0838 .0921 0.3248
254. 6.6 0.50 -.0062 -.0041 .1165 .0737 .0760 0.3618
254. 6.6 0.90 -.0055 -.0022 .0887 .0290 .0315 0.2571
400. 2.0 -0.25 .0000 -.0002 -.0019 .0369 .0360 0.0490
400. 2.0 0.25 -.0002 .0001 .0024 .0363 .0361 0.0535
400. 6.0 0.00 -.0021 -.0031 -.0008 .0791 .0775 0.1252
400. 10.0 -0.90 .0004 -.0049 .0026 .1356 .1419 0.1341
400. 10.0 0.90 -.0011 -.0013 .0033 .0177 .0195 0.1232
Column Averages of
Absolute Values .0108 .0082 .0568 .1168 .1229 .3561
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Observations concerning the response of the RMSEs to the sample size N ,
the average number of neighbors J of the weighting matrixM , and the value
of ρ are not readily apparent from Table 1. For this reason, we describe
the general results in the table via response functions. In doing this we
estimate separate response functions for ρ̂NLS and ρ̂QML for each of the three
distributions considered. These six functions have the same form but different
parameters. These response functions describe the results in Table 1, and
should be useful for inferring corresponding results for experiments which
have “similar” sets of parameter values.
Let s = 1, . . . , 36 denote the s-th case considered in Table 1 corresponding

to a particular distribution. Using evident notation, we then specify the
response functions for the RMSE of ρ̂ = ρ̂QML or ρ̂ = ρ̂NLS for a particular
distribution as follows:

RMSE(ρ̂s | Ns, Js, ρs) = (9)

N−1/2
s exp[a1 + a2(1/Js) + a3ρs + a4(ρs/Js) + a5ρ

2
s]

where a1, . . . , a5 are parameters to be estimated using the data from Table
1 on the corresponding 36 cases. We estimate a1, . . . , a5 by least squares
(taking logs on both sides).
A few points concerning the response function in (9) should be noted.

First, rather than being empirically determined, the exponent of the sam-
ple size is taken as −1/2 because of evident large sample considerations.
Second, the function in (9) is relatively simple, but yet nonnegative and
able to accommodate certain patterns that might be suggested from time
series considerations. For example, for an AR(1) model (with autocorrela-
tion coefficient ρ), the variance in the asymptotic distribution of the (quasi)
maximum likelihood estimator for ρ is, under typical assumptions, propor-
tional to 1− ρ2.19 It should be noted that this variance is symmetric about,
and maximized at, zero; in addition, it approaches its minimum value as ρ
approaches the “critical” points ±1. Although the spatial models considered
in our Monte Carlo study are not identical to an AR(1) model, one might
never-the-less expect the relationship between the RMSE and the parameter
ρ to peak at some point, and then decline as ρ approaches “critical” points
at which I−ρM is singular. For all of the spatial weighting matrices consid-
ered in our experiments, the smallest positive critical point is 1.0; however,

19 See, e.g., Johnston (1984, p.329).
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the largest negative critical point is equal to −1 only for the case in which
J = 2; for all other cases considered the largest negative critical point is less
than −1. In allowing for an interaction term between ρ and 1/J in (9) our
response function permits a priori that the RMSEs might peak at a value of
ρ which varies with J . There is also another avenue by which J might effect
the RMSEs. Specifically, recall that ui = ρui + εi. The weighting matrices
considered in the experiments are such that ui is a straight average of the
disturbances which correspond to the “neighbors” of the i-th region. Because
of this, the variance of ui (relative to that of ui) should be inversely related to
J , the average number of neighbors. Ceteris paribus, one might expect large
values of J to be associated with large RMSEs because estimation efficiency
is typically an increasing function of regressor variances. Finally, other forms
of the response functions were considered but were dominated by the form
in (9).
The estimation results for the six response functions are given in Table A

in the appendix. Over-all, the results in that table suggest that the response
functions fit the data well. The R2 values and the t-ratios are all quite
high suggesting both a tight fit and that each term considered is important.
For all cases considered, the estimated value of a5 is negative and so each
function peaks at a given value of ρ, and then declines. The estimates of
the coefficients are such that this “maximizing” value of ρ declines as J
increases. For all cases considered, if J > 2 the value of ρ at which each
function peaks is negative but greater than −.25. For all cases in which
J = 2, this “maximizing” value of ρ is very close to zero, namely, between
−.03 and .04. The estimated coefficients are also such that increases in J are,
again in all cases, associated with increases in the RMSEs. These results are
consistent with prior notions. Graphs of the estimated response functions for
the case of a normal error distribution are given in Figures 1 and 2 for ρ̂QML

and ρ̂NLS. Of course, in this case the (quasi) ML estimator ρ̂QML is the ML
estimator. The graphs for the case of a log-normal and contaminated error
distribution are similar, but are not given here to conserve space.
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The Monte Carlo results reported here correspond to the case in which
the disturbances ui are observable. We also performed corresponding experi-
ments involving estimated disturbances, but we do not report here the details
of those experiments because of space limitations. Those experiments suggest
that the statements based on Table 1 and Table A in the Appendix concern-
ing the relative efficiency of the three estimators carry over qualitatively to
cases in which ρ is estimated from estimated disturbances.

6 Suggestions for Further Work

The autocorrelation model considered in this paper is sometimes referred to
as a spatial autoregressive model of order one in that only one “spatial lag”
of the disturbance term, represented by ρMu in (1), is being considered.
Higher order spatial models involving more than one spatial lag of the dis-
turbance term (e.g., using evident notation, ρ1M1u+ . . .+ ρpMpu) as well as
of the innovation term (e.g., ε + ρp+1Mp+1ε + . . . ρp+qMp+qε) have also been
considered in the literature. It should be of interest to extend the generalized
moments approach suggested in this paper to those models, and to determine
corresponding large sample properties.
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A Appendix

In proving Theorem 1 we have to consider the following moments

ϑ1,N = N−1u′u = N−1ε′(C1,N)ε, C1,N = P ′P,
ϑ2,N = N−1u′u = N−1ε′(C2,N)ε, C2,N = P ′MP,
ϑ3,N = N−1u′u = N−1ε′(C3,N)ε, C3,N = P ′M ′MP,
ϑ4,N = N−1u′u = N−1ε′(C4,N)ε, C4,N = P ′(M ′)2MP,
ϑ5,N = N−1u′u = N−1ε′(C5,N)ε, C5,N = P ′(M ′)2M2P,
ϑ6,N = N−1u′u = N−1ε′(C6,N)ε, C6,N = P ′M2P,
ϑ7,N = N−1ε′ε = N−1ε′(C7,N)ε, C7,N = M ′M,
ϑ8,N = N−1ε′ε = N−1ε′(C8,N)ε, C8,N = M ′.

(A.1)

The corresponding moments based on ũ, ũ and ũ in place of, respectively, u, u
and u will be denoted by ϑ̃h,N , h = 1, . . . , 6. In the following we will suppress
the subscript N for the matrices Ch,N and their elements, h = 1, . . . , 8. To
prove Theorem 1 we need several lemmata.

Lemma 1 : Under Assumption 3 the elements of the matrices Ch defined in
(A.1) have the following properties, h = 1, . . . , 8:

∑N
i=1 |ch,ij| ≤ c,

∑N
j=1 |ch,ij| ≤

c for all N ≥ 1 and 1 ≤ i, j ≤ N for some 0 < c < ∞. Furthermore
N−2 ∑N

i=1

∑N
j=1(ch,ij + ch,ji)

2 = o(1).

Proof. The first claim follows since by Assumption 3 the row and column
sums of the absolute values of the elements of the matrices P and M are
bounded, and this property is preserved under matrix multiplication.20 Next
observe that the row and column sums of the absolute values of the elements
of the matrices Ch + C ′

h and [Ch + C ′

h ][Ch + C ′

h] are then bounded by 2c
and 4c2, respectively. The second claim of the lemma now follows since
N−2 ∑N

i=1

∑N
j=1(ch,ij + ch,ji)

2 = N−2Tr{[Ch + C ′

h ][Ch + C ′

h ]} ≤ 4c2/N → 0
as N → ∞.

20To see this consider matrices AN = (aij,N ), BN = (bij,N ) and DN = (dij,N ) = ANBN .

Suppose
∑

N

i=1
|aij,N | < ca,

∑
N

j=1
|aij,N | < ca,

∑
N

i=1
|bij,N | < cb,

∑
N

j=1
|bij,N | < cb. Then∑N

i=1
|dij,N | ≤

∑N

i=1

∑N

k=1
|aik,N | |bkj,N | =

∑N

k=1
|bkj,N |

∑N

i=1
|aik,N | ≤ cacb. Similarly,∑

N

j=1
|dij,N | ≤ cacb.
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Lemma 2 : Under Assumptions 1-3 the moments ϑh,N have the following
properties, h = 1, . . . , 8: Eϑh,N = O(1) and var(ϑh,N) = o(1), and hence

ϑh,N − Eϑh,N
p
→0 as N → ∞, and ϑh,N = Op(1).

Proof. By Lemma 1, all elements ch,ji are bounded in absolute value.
Hence Eϑh,N = σ2N−1 ∑N

i=1 ch,ii = O(1). Observe further that var(ϑh,N) =
N−2[(µ4−σ4)

∑N
i=1 c

2
h,ii+σ4 ∑N−1

i=1

∑N
j=i+1(ch,ij + ch,ji)

2] with µ4 = Eε4i , since
cov(εiεj, εrεs) = 0 unless i = r and j = s, or i = s and j = r. Clearly a suf-
ficient condition for var(ϑh,N) = o(1) is that N−2 ∑N

i=1

∑N
j=1(ch,ij + ch,ji)

2 =
o(1), which holds in light of Lemma 1. The last two claims follow from
Chebychev’s inequality and, e.g., Corollary 5.1.1.2 in Fuller (1976), p. 186,
respectively.

Lemma 3 : Consider random variables vi,N , wi,N , ṽi,N and w̃i,N and assume
that

| ṽi,N − vi,N |≤ Dv
iNτ v

N , | w̃i,N − wi,N |≤ Dw
iNτw

N , (A.2)

where Dv
iN , D

w
iN , τ

v
N , and τw

N are, respectively, nonnegative random variables
with N−1 ∑N

i=1(D
v
iN)

2 = Op(1), N−1 ∑N
i=1(D

w
iN)

2 = Op(1), τ
v
N = op(1), τw

N =
op(1). Suppose furthermore that N−1 ∑N

i=1 v
2
i,N = Op(1) and N−1 ∑N

i=1 w
2
i,N =

Op(1). Then N−1 ∑N
i=1 ṽi,N w̃i,N −N−1 ∑N

i=1 vi,Nwi,N
p
→ 0 as N → ∞.

Proof. Observe that∣∣∣∣∣N−1
N∑
i=1

ṽi,N w̃i,N −N−1
N∑
i=1

vi,Nwi,N

∣∣∣∣∣
≤ N−1

N∑
i=1

|ṽi,N − vi,N | |wi,N |+N−1
N∑
i=1

|w̃i,N − wi,N | |vi,N |

+N−1
N∑
i=1

|ṽi,N − vi,N | |w̃i,N − wi,N |

≤ [N−1
N∑
i=1

(Dv
iN)

2]1/2[N−1
N∑
i=1

w2
i,N ]

1/2τ v
N

+[N−1
N∑
i=1

(Dw
iN)

2]1/2[N−1
N∑
i=1

v2i,N ]
1/2τw

N

+[N−1ΣN
i=1(D

v
iN)

2]1/2[N−1ΣN
i=1(D

w
iN)

2]1/2τ v
Nτw

N .

The last inequality follows from (A.2) and Hölder’s inequality. Since τ v
N =

op(1) and τw
N = op(1) the claim in the lemma follows by observing that all

other terms are bounded in probability.
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Lemma 4 : Under Assumptions 1-4, ϑ̃h,N − ϑh,N
p
→ 0 as N → ∞ for

h = 1, . . . , 6.

Proof. To prove the lemma it suffices to show, in light of Lemma 3, that
ui, ui, ui and the ũi, ũi, ũi, satisfy the properties maintained for vi,N and
ṽi,N in that lemma. First observe that by Lemma 2, N−1 ∑N

i=1 u
2
i = Op(1),

N−1 ∑N
i=1 u

2
i = Op(1) and N−1 ∑N

i=1 u
2
i = Op(1). Next observe that by

Assumption 4 we have |ũi − ui| ≤ ‖diN‖ ‖∆N‖ with N−1 ∑N
i=1 ‖diN‖

2+δ =
Op(1) for some δ > 0 and N1/2 ‖∆N‖ = Op(1). Since N−1 ∑N

i=1 ‖diN‖
2 ≤

[N−1 ∑N
i=1 ‖diN‖

2+δ]2/(2+δ) by Lyapunov’s inequality, ui and ũi clearly satisfy
the properties maintained for vi,N and ṽi,N in Lemma 3. Next observe that

N∑
j=1

|mij|
p = cp−1

m

N∑
j=1

|mij| [|mij| /cm]
p−1 ≤ cp−1

m

N∑
j=1

|mij| ≤ cpm

and that

ũi =
N∑
j=1

mijũj = ui +
N∑
j=1

mij(ũj − uj), and

ũi =
N∑
j=1

mijũj = ui +ΣN
j=1mijΣ

N
s=1mjs(ũs − us).

Hence, using the triangle and Hölder’s inequalities with q = 2+δ and 1
q
+ 1

p
=

1,

∣∣∣ũi − ui

∣∣∣ ≤
N∑
j=1

|mij| ‖djN‖ ‖∆N‖

≤ [
N∑
j=1

|mij|
p ]1/p[

N∑
j=1

‖djN‖
q ]1/q ‖∆N‖ ≤ DNτN ,

| ũi − ui | ≤
N∑
j=1

|mij|
N∑
s=1

|mjs| ‖dsN‖ ‖∆N‖

≤
N∑
j=1

|mij| [
N∑
s=1

|mjs|
p]1/p[

N∑
s=1

‖dsN‖
q]1/q ‖∆N‖ ≤ DNτN ,

withDN = cm[N
−1 ∑N

j=1 ‖djN‖
q]1/q, DN = c2m[N

−1 ∑N
j=1 ‖djN‖

q]1/q and τN =

N1/q ‖∆N‖ . By Assumption 4, DN = Op(1), DN = Op(1) and τN = op(1).
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Hence ui and ũi as well as ui and ũi also satisfy the properties maintained
for vi,N and ṽi,N in Lemma 3, and thus the claims of Lemma 4 follow from
Lemma 3.

Proof of Theorem 1: The existence and measurability of ρ̂NLS,N and

σ̂2
NLS,N is assured by, e.g., Lemma 2 in Jennrich (1969). The objective
function of the nonlinear least squares estimator and its corresponding non-
stochastic counterpart are given by, respectively,

RN(θ) =
[
GN(ρ, ρ

2, σ2)′ − gN
]′ [

GN(ρ, ρ
2, σ2)′ − gN

]

RN(θ) =
[
ΓN(ρ, ρ

2, σ2)′ − γN

]′ [
ΓN(ρ, ρ

2, σ2)′ − γN

]

where θ = ( ρ, σ2)′. To prove the consistency of (ρ̂NLS,N , σ̂2
NLS,N) we show

that the conditions of, e.g., Lemma 3.1 in Pötscher and Prucha (1991a) are
satisfied for the problem at hand. We first show that θ = (ρ, σ2)′ is iden-
tifiably unique (where θ = (ρ, σ2)′ denotes the vector of true parameters).
Observe that because of (5)

RN(θ)−RN(θ) =
[
ρ− ρ, ρ2 − ρ2, σ2 − σ2

]
Γ′
NΓN

[
ρ− ρ, ρ2 − ρ2, σ2 − σ2

]′

≥ λmin(Γ
′
NΓN)

[
ρ− ρ, ρ2 − ρ2, σ2 − σ2

] [
ρ− ρ, ρ2 − ρ2, σ2 − σ2

]′

≥ λ∗

[
ρ− ρ, σ2 − σ2

] [
ρ− ρ, σ2 − σ2

]′
= λ∗ ‖θ − θ‖2 .

Hence for every ε > 0 and any N we have:

inf
{θ:‖θ−θ‖≥ε}

[RN(θ)−RN(θ)] ≥ inf
{θ:‖θ−θ‖≥ε}

λ∗ ‖θ − θ‖2 = λ∗ε
2 > 0,

which proves that θ is identifiable unique. Next let FN = [GN ,−gN ] and
ΦN = [ΓN ,−γN ], then

∣∣∣RN(θ)−RN(θ)
∣∣∣ =

∣∣∣∣
[
ρ, ρ2, σ2, 1

]
[F ′

NFN − Φ′
NΦN ]

[
ρ, ρ2, σ2, 1

]′∣∣∣∣
≤ ‖F ′

NFN − Φ′
NΦN‖

∥∥∥ρ, ρ2, σ2, 1
∥∥∥2

≤ ‖F ′
NFN − Φ′

NΦN‖ [1 + a2 + a4 + b4].
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Since Lemmata 2 and 4 imply that FN − ΦN
p
→ 0 and that the elements of

FN and ΦN are, respectively, Op(1) and O(1) it follows that RN(θ)−RN(θ)
converge to zero uniformly over the (extended) parameter space, i.e.,

sup
ρ∈[−a,a],σ2∈[0,b]

∣∣∣RN(θ)−RN(θ)
∣∣∣ ≤‖ F ′

NFN − Φ′
NΦN ‖ [1 + a2 + a4 + b4]

p
→ 0

as N → ∞. The consistency of (ρ̂NLS,N , σ̂2
NLS,N) now follows directly from

Lemma 3.1 in Pötscher and Prucha (1991a).

The proof of Theorem 2 requires a central limit theorem (CLT) for tri-
angular arrays. The CLT below follows readily from a corollary to the
Lindeberg-Feller CLT for triangular arrays using the Cramer-Wold device.
That corollary is, e.g., given in Billingsley (1979), p. 319 (Problem 27.6).21

Theorem A : Let {viN , 1 ≤ i ≤ N,N ≥ 1} be a triangular array of random
variables that are identically distributed and (jointly) independent for each N
with EviN = 0 and Ev2iN = σ2, 0 < σ2 < ∞. Let {zij,N , 1 ≤ i ≤ N,N ≥ 1},
j = 1, ...,K be triangular arrays of real numbers that are bounded in absolute
value, i.e., cz = supN supi≤N,j≤K | zij,N |< ∞. Further, let {VN : n ≥ 1} and
{ZN : n ≥ 1} with VN = (viN)i=1,...,N and ZN = (zij,N)i=1,...,N ; j=1,...,K denote
corresponding sequences of N × 1 random vectors and N ×K real matrices,
respectively, and let limN→∞ N−1Z ′

NZN = Q be finite and positive definite.

Then N−1/2Z ′
NVN

D
→ N(0, σ2Q).

Proof of Theorem 2: To prove part (a) of the theorem observe that

N1/2[β̃
G

N − β] = [N−1Z ′Z]−1N−1/2Z ′ε where Z = (I − ρM)X. Note that,
in general, the elements of Z will depend on the sample size N . However, for
notational simplicity we will not denote this dependence explicitly in the fol-
lowing. Observe further that under the maintained assumptions the elements
of Z are bounded in absolute value by (1 + cm)cx and that limN→∞ N−1Z ′Z
= Q

x
(ρ) is finite and nonsingular. Recall that the innovations ε1, ..., εN are in-

dependently and identically distributed (for eachN) with mean zero and vari-

ance σ2. Hence it follows from Theorem A that N−1/2Z ′ε
D
→ N(0, σ2Q

x
(ρ))

21More precisely, we use a slight generalization of that corollary where the assumption
that the random variables of interest are constructed from a sequence of i.i.d. random
variables is replaced by the assumption that they are constructed from a triangular array
of (for each sample) independent and identically distributed random variables.
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and consequently N1/2[β̃
G

N − β]
D
→ N(0, σ2Q

x
(ρ)−1). Of course, this also

implies that β̃
G

N is consistent.

We prove part (b) of the theorem by showing that N1/2[β̃
G

N − β̃
FG

N ]
p
→ 0

as N → ∞. To prove this it suffices to show that

N−1X ′[Ω(ρ̃N)
−1 − Ω(ρ)−1]X

p
→ 0 (A.3)

and
N−1/2X ′[Ω(ρ̃N)

−1 − Ω(ρ)−1]u
p
→ 0. (A.4)

Clearly Ω(ρ̃N)
−1 − Ω(ρ)−1 = (ρ− ρ̃N)(M +M ′) + (ρ2 − ρ̃2N)M

′M . Hence

N−1X ′[Ω(ρ̃N)
−1 − Ω(ρ)−1]X (A.5)

= (ρ− ρ̃N)N
−1X ′(M +M ′)X + (ρ2 − ρ̃2N)N

−1X ′M ′MX

and

N−1/2X ′[Ω(ρ̃N)
−1 − Ω(ρ)−1]u (A.6)

= (ρ− ρ̃N)N
−1/2X ′(M +M ′)u+ (ρ2 − ρ̃2N)N

−1/2X ′M ′Mu.

Under the maintained assumptions the elements of N−1X ′(M + M ′)X and
N−1X ′M ′MX are bounded in absolute value by 2c2xcm and c2xc

2
m, respectively;

cp. footnote 20. Condition (A.3) then follows from (A.5) since ρ̃N is assumed
to be consistent.
Next consider the terms N−1/2X ′M ′u, N−1/2X ′Mu and N−1/2X ′M ′Mu.

Clearly the expected value of each element of these vectors is zero. The
variance covariance matrices of these vectors are given by, respectively,

N−1X ′ΦsX, s = 1, 2, 3,

with Φ1 = M ′PP ′M , Φ2 = MPP ′M ′, Φ3 = M ′MPP ′M ′M . Since the
row and column sums of the absolute values of the matrices P and M are
bounded, it follows that the row and column sums of the matrices Φs are also
bounded by some finite constants, say, cs (s = 1, 2, 3); cp. footnote 20. Since
the elements of X are bounded in absolute value by cx it then follows that
the elements of the variance covariance matrices N−1X ′ΦsX are bounded in
absolute value by c2xcs < ∞ (s = 1, 2, 3). It then follows from, e.g., Corollary
5.1.1.2 in Fuller (1976), that the elements of N−1/2X ′M ′u, N−1/2X ′Mu and
N−1/2X ′M ′Mu are Op(1). Condition (A.4) is now seen to hold from (A.6)
since ρ̃N is assumed to be consistent.
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Part (c) of the Theorem follows immediately from (A.3) and Assumption
6 and the fact that σ̃2 is a consistent estimator for σ2.

Next we prove that under Assumptions 1-3 and 5-6 the OLS estima-
tor β̃N is N1/2-consistent, as was claimed in the discussion after Theorem
2. Observe that N1/2[β̃N − β] = [N−1X ′X ]−1N−1/2Z ′ε with Z defined
here as Z = (I − ρM ′)−1X. Note again that, in general, the elements
of Z will depend on the sample size N . By assumption limN→∞ N−1Z ′Z
= limN→∞ N−1X ′Ω(ρ)X = Qx(ρ) is finite and nonsingular, and the inno-
vations ε1, ..., εN are independently and identically distributed (for each N)
with mean zero and variance σ2. Hence it follows from Theorem A that
N−1/2Z ′ε

D
→ N(0, σ2Qx(ρ)). Observing that Qx = limN→∞ N−1X ′X is finite

and nonsingular it follows that N1/2[β̃N − β]
D
→ N(0, Q−1

x Qx(ρ)Q
−1
x ).

The following table contains the estimation results for the response func-
tions for ρ̂QML and ρ̂NLS discussed in Section 5.
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Table A: The Response Functions for ρ̂QML and ρ̂NLS

Parameter Estimates
Estimator â1 â2 â3 â4 â5 R2 ∗

Normal Error Distribution

ρ̂QML 1.11015 -2.77568 -0.98016 2.03430 -1.14638 .91
(16.88) (11.49) (9.46) (4.92) (11.53)

ρ̂NLS 1.12976 -2.77091 -1.04065 2.17021 -0.97829 .93
(20.10) (13.42) (11.75) (6.14) (11.51)

Log-normal Error Distribution

ρ̂QML 1.01024 -2.70593 -0.98919 1.85930 -0.97475 .92
(15.25) (11.12) (9.48) (4.46) (9.74)

ρ̂NLS 1.08550 -2.77321 -1.06518 2.19157 -0.96662 .94
(18.99) (13.21) (11.83) (6.10) (11.19)

Contaminated Error Distribution

ρ̂QML 0.93495 -3.07788 -1.04396 2.10490 -0.85946 .90
(12.40) (11.11) (8.78) (4.44) (7.54)

ρ̂NLS 1.01993 -3.13841 -1.04142 2.24336 -0.92679 .93
(16.09) (13.47) (10.43) (5.63) (9.67)

∗The R2 statistic is the square of the correlation coefficient between the RMSE

and its response function prediction based on the values in Table 1. The numbers

in parentheses are t-ratios (in absolute value).
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