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Abstract

We suggest a nonparametric heteroscedasticity and autocorrelation con-
sistent (HAC) estimator of the variance-covariance (VC) matrix for a vector
of sample moments within a spatial context. We demonstrate consistency
under a set of assumptions that should be satisfied by a wide class of spa-
tial models. We allow for more than one measure of distance, each of which
may be measured with error. Monte Carlo results suggest that our estimator
is reasonable in finite samples. We then consider a spatial model containing
various complexities and demonstrate that our HAC estimator can be applied
in the context of that model.
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1 Introduction2

Spatial models are an important tool in economics, regional science and geog-
raphy in analyzing a wide range of empirical issues.3 Typically, these models
focus on spatial interactions, which could be due to competition between
cross sectional units, copy-cat policies, net work issues, spill-overs, exter-
nalities, regional issues, etc. Applications in the recent literature include,
for example, the determinants of various forms of productivity, various cat-
egories of local public expenditures, vote seeking and tax setting behavior,
population and employment growth, contagion problems, and the determi-
nants of welfare expenditures.4 To facilitate the empirical analysis of spatial
issues the formal development of estimation methods for spatial models has
received increasing attention in recent years.5

The purpose of this paper is two-fold: First we suggest, within a spatial
context, a nonparametric heteroscedasticity and autocorrelation consistent
(HAC) estimator of a variance-covariance (VC) matrix for a vector of sample
moments of the form n−1/2H 0u, where H is a nonstochastic matrix, u is
a vector of disturbances, and n is the sample size - i.e., a spatial HAC,
henceforth SHAC. The need to estimate the VC matrix of such a vector of
sample moments arises frequently within the context of instrumental variable
(IV) estimation. We demonstrate the consistency of our SHAC estimator
under a set of relatively simple assumptions that cover, in particular, the
important and widely used class of Cliff-Ord type models.

2We thank Badi Baltagi and three anonymous referees for valuable suggestions and
helpful comments. We are also indebted to John Benedetto, Immanuel Bomze, Roger
Horn, and Benedikt Pötscher for helpful discussions. We also thank Irani Arraiz for excel-
lent research assistance. Both authors gratefully acknowledge support from the National
Science Foundation through grant SES-0001780.

3Classic references on spatial models are Cliff and Ord (1973, 1981), Anselin (1988),
and Cressie (1993).

4Some applications along these lines are, e.g., Audretsch and Feldmann (1996), Bell
and Bockstael (2000), Bernat (1996), Besley and Case (1995), Bollinger and Ihlanfeldt
(1997), Buettner (1999), Case (1991), Case, Hines, and Rosen (1993), Dowd and LeSage
(1997), Holtz-Eakin (1994), Kelejian and Robinson (2000, 1997, 1993), Pinkse, Slade, and
Brett (2002), Rey and Boarnet (1998), Shroder (1995), and Vigil (1998).

5Recent theoretical contributions include Baltagi and Li (2004, 2001a,b), Baltagi, Song
and Koh (2003), Conley (1999), Kelejian and Prucha (2004, 2002, 2001, 1999, 1998, 1997),
Kelejian, Prucha, and Yuzefovich (2003), Lee (2004, 2003, 2002, 2001a,b), LeSage (2000,
1997), Pace and Barry (1997), Pinkse and Slade (1998), Pinkse, Slade, and Brett (2002),
and Rey and Boarnet (2004).
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HAC estimators have been the focus of extensive research in the time se-
ries literature. A classic reference in that literature is Grenander and Rosen-
blatt (1957). Contributions to this research in the econometrics literature
include, among others, Newey and West (1987), Gallant and White (1988),
Andrews (1991), Andrews and Monahan (1992), Pötscher and Prucha (1997)
and de Jong and Davidson (2000).
In the statistics literature Priestley (1964) made early contributions to-

wards an extension of HAC estimation for spatial processes within the context
of estimating spectral densities of stationary random fields (with the index
an element of Z2). The theoretical econometrics literature relating to HAC
estimators for spatially dependent data is relatively sparse. To the best of
our knowledge, the first contributions to the theoretical econometrics litera-
ture are Conley (1996, 1999). However, the approach we take in this paper
differs from that of Conley in important ways. Conely assumes that the un-
derlying data generating process is represented by continuous-index random
field (with the index an element of a metric space), and explicitly models
sampling from this process. He assumes that the data generating process is
spatially stationary and spatially alpha mixing. Our setup is different and
aims, among other things, to accommodate spatial processes that are gener-
ated by Cliff-Ord type models. Those models do not explicitly index observa-
tions in terms of elements of a metric space (although they can accommodate
such interpretations) and generate the observations as the solution of a si-
multaneous equation system. Spatial dependences are modeled in terms of a
so-called spatial weights matrix. Even if the underlying innovations are i.i.d.,
this will in general result in a spatial process that is non-stationary simply
if the respective units have different numbers of neighbors, as is frequently
the case in applications.6 Our dependence assumptions are stated in terms
of simple conditions on a decomposition of the variance-covariance matrix,
which accommodates non-stationary and (unconditionally) heteroskedastic
processes. Another distinguishing feature is that our setup and proofs allows
for a triangular array structure of the data. The reason for this is that tech-
nically this structure arises due the presence of spatial lags, which are often
the focus of attention in Cliff-Ord type models.
Pinkse, Slade, and Brett (2002) consider a specific Cliff-Ord type spatial

6This is consistent with the view of, e.g., Fuentes (2002a,b) who states that spatial
processes are often “nonstationary, in the sense that the spatial structure depends on
location”. Of course, there are also many situations where stationarity is appropriate and
our setup allows for a wide set of stationary processes.
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model and demonstrate, within the context of that model, the consistency
of a spatial HAC estimator. Their consistency result is given under a set of
high level assumptions, which seem substantially more complex than those
maintained in this paper. Driscoll and Kraay (1998) also provide results
regarding the consistent non-parametric estimation of a large sample VC
matrix for spatially dependent data. However, in contrast to the above cited
papers and our specifications, their approach relates to a panel data model
in which the number of time periods T limits to infinity.
Our specifications also accommodate situations in which the researcher

considers more than one distance measure and is unsure about which one
to use in the specification of the SHAC estimator. To that effect we allow
for the researcher to employ several distance measures, and we show that
our estimator remains consistent, as long as the “true” distance measure is
included in the set of measures employed by the researcher.7 We also allow
for measurement errors relating to the distance measures. Our consistency
result is also generic in the sense that the estimated residuals used in the
formulation of the SHAC estimator may correspond to a variety of linear
and non-linear models, provided they are n1/2-consistently estimated.
All of our asymptotic results are derived under the assumption of a single

cross section in which the number of cross sectional units n tends to infinity.
Generalizations to a finite number of cross section, T , are trivial. We also give
Monte Carlo results which suggest that our SHAC estimator yields reasonable
results in finite samples.
The second part of the paper considers a general spatial regression model

that allows for endogenous regressors, their spatial lags, as well as exogenous
regressors. The model may, in particular, represent the i-th equation of a si-
multaneous system of equations.8 The disturbance process allows for general

7The economics of a particular application will typically suggest a set of possible dis-
tance measures. Our setup only maintains that one of these measures is the “true” one,
and does not require for the researcher to combine different distance measures into one
distance measure. The specification of our estimator is thus quite different from specifica-
tions where distance is taken to be a p-dimensional Euclidean distance in Rp, which may,
e.g., be viewed as composed of a set of lower dimensional Euclidean distances. Of course,
the case of one p-dimensional distance measure is included as a special case.

8Among other things, this model differs from the i-th equation’s specifications consid-
ered in Kelejian and Prucha (2004) in that their disturbance VC matrix is parametrically
specified, while ours is not, and our specifications here allow for some of the endogenous
regressors to be generated by a non-linear model, while theirs do not.
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patterns of correlation and heteroscedasticity. We define an IV estimator for
this model and derive its asymptotic distribution. We then apply our results
concerning SHAC estimation derived in the first part of this paper to obtain
a consistent estimator for the asymptotic variance covariance matrix of the
IV estimator.
The (non-parametric) model of spatial correlation and heteroscedasticity

is specified in Section 2. That section also contains a discussion of the model
assumptions. In Section 3 we specify our SHAC estimator. We first con-
sider the case of single and then the case of multiple distance measures. In
this section we give our central results concerning the consistency of SHAC
estimators. In Section 4 we specify a general spatial model which allows
the disturbance process to be of the general form considered in Section 2.
Section 4 also contains large sample results concerning the estimator of the
regression parameters of that model, as well as of our SHAC estimator of the
VC matrix involved. In Section 5 we report on a limited Monte Carlo study.9

Section 6 contains conclusions and suggestions for further work. Technical
details are relegated to the appendix.
It will be helpful to introduce the following notation: Let An with n ∈ N

be some matrix; we then denote the (i, j)-th element of An as aij,n. Similarly,
if vn with n ∈ N is a vector, then vi,n denotes the i-th element of vn. An
analogous convention is adopted for matrices and vectors that do not depend
on the index n, in which case the index n is suppressed on the elements. If
An is a square matrix, then A−1n denotes the inverse of An. If An is singular,
then A−1n should be interpreted as the generalized inverse of An. Further,
let (Bn)n∈N be some sequence of n× n matrices. Then we say the row and
column sums of the (sequence of) matrices Bn are bounded uniformly in
absolute value if there exists a constant cB <∞ (that does not dependent of
n) such that

max
1≤i≤n

nX
j=1

|bij,n| ≤ cB and max
1≤j≤n

nX
i=1

|bij,n| ≤ cB for all n ∈ N

holds. For future reference we note that if (Bn)n∈N and (An)n∈N are se-
quences of n × n matrices whose row and column sums are bounded uni-
formly in absolute value, then so are the row and column sums of An + Bn

and AnBn. Also, if Cn is a sequence of q × n matrices whose elements are
9In a different context, Monte Carlo results relating to nonparametric estimation of

asymptotic variances are also given in Conley and Molinari (2005).
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uniformly bounded in absolute value, then so are the elements of CnAn, see,
e.g., Kelejian and Prucha (1998).

2 A Model for Spatial Correlation

In the following we specify a general cross sectional disturbance process, al-
lowing for unknown forms of heteroscedasticity and correlations across spatial
units. Our SHAC estimator will be based on estimated disturbances. We will
maintain a generic and simple set of assumptions concerning the estimated
disturbances, which should make our estimator applicable in many situations
involving linear and nonlinear models, provided that the model parameters
are estimated n1/2-consistently. The results do not depend on the interpre-
tation of the spatial process as a disturbance process. The case where the
process is observed is covered as a trivial special case.

2.1 Assumptions

We assume that the n× 1 disturbance vector un is generated as follows:

un = Rnεn (1)

where εn is a n × 1 vector of innovations and Rn is an n × n nonstochastic
matrix whose elements are not known. Now let Hn be a n×ph nonstochastic
matrix of instruments. The asymptotic distribution of corresponding instru-
mental variable estimators will then typically involve the variance covariance
matrix

Ψn = (ψij,n) = V C(n−1/2H 0
nun) = n−1H 0

nΣnHn (2)

where Σn = (σij,n) denotes the variance covariance matrix of un. The focus
of the first part of this paper is to find a consistent estimator for Ψn and to
prove the consistency of that estimator under a set of assumptions that is
suitable in a spatial context.10

Let u0n = (u1,n, ..., un,n), û0n = (û1,n, ..., ûn,n), and ε0n = (ε1,n, ..., εn,n)
where ûn is an estimator for un. Also, at this point, assume there is a

10We note that the elements of respective vectors and matrices are allowed to depend
on the sample size, i.e., to form triangular arrays. This accommodates, among others, the
case where the disturbances are generated from Cliff-Ord type models; see, e.g., Kelejian
and Prucha (1999) on this point.
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meaningful distance measure, with the usual properties, between units i and
j, say dij,n = dji,n ≥ 0. We allow for the case where the researcher measures
those distances with error as say d∗ij,n = d∗ji,n ≥ 0.11
We can now state the set of maintained assumptions. A detailed discus-

sion of those assumptions will be given in the next subsection. The assump-
tions maintain that various quantities are uniformly bounded by some finite
constants, which do not depend on i or n.

Assumption 1 : For each n > 1, εi,n is i.i.d. (0, 1) with E |εi,n|q ≤ cE for
some q ≥ 4, with 0 < cE <∞.

Assumption 2 : The (nonstochastic) matrix Rn is nonsingular and the row
and column sums of Rn and R−1n are bounded uniformly in absolute value by
some constant cR, 0 < cR <∞.

Assumption 3 : The (nonstochastic) instrument matrixHn has full column
rank ph for n large enough, and its elements are uniformly bounded in absolute
value by some constant cH, 0 < cH <∞.

We assume that the researcher can select a distance dn > 0 such that
dn ↑ ∞ as n→∞. For each unit i = 1, . . . , n, let ci,n denote the number of
units (neighbors) j for which d∗ij,n ≤ dn, i.e.,

ci,n =
nX

j=1

1d∗ij,n ≤ dn,

and let cn = max
1≤i≤n

(ci,n).

Assumption 4 : (a) Ec2n = o(n2τ) where τ ≤ 1
2
(q − 2)/(q − 1) and q is

defined in Assumption 1; (b)
Pn

j=1 |σij,n|d
ρS
ij,n ≤ cS for some ρS ≥ 1 and

0 < cS <∞, where σij,n is the (i, j)−th element of Σn.

Assumption 5 : The distance measure employed by the researcher is given
by

d∗ij,n = dij,n + vij,n ≥ 0,
where vij,n = vji,n denotes the measurement errors, |vij,n| ≤ cV with 0 < cV <
∞, and (vij,n) is independent of (εi,n).
11At a later point we extend our results to the case involving multiple distances, each

measured with error.
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Our next assumption relates to the estimator ûn.

Assumption 6 : There exist finite dimensional vectors zi,n and ∆n such
that ûi,n − ui,n = zi,n∆n, and

n−1
nX
i=1

||zi,n||2 = Op(1) and n1/2||∆n|| = Op(1).
12

2.2 Discussion of the Assumptions

A widely used model for spatial correlation is the spatial AR(1) model intro-
duced by Cliff and Ord (1973, 1981):

un = ρWnun + εn, |ρ| < 1,

where ρ is a scalar parameter and Wn is an n× n spatial weighting matrix.
This model is a variant of a model introduced by Whittle (1954), and can be
viewed as a special case of (1) with13

Rn = (In − ρWn)
−1.

A typical assumption in the literature for this model is that Rn satisfies
Assumption 2; see, e.g., Lee (2002, 2003, 2004) and Kelejian and Prucha
(1998, 1999, 2004).14 More generally, a special case of (1) is the spatial
ARMA(p,q) model in which case

Rn = (In − ρ1W1,n − ...− ρqWp,n)
−1[In + λ1M1,n + ...+ λqMq,n]

where, for r = 1, ..., p and s = 1, ..., q, ρr and λs are scalar parameters, and
Wr,n and Ms,n are spatial weighting matrices. On an intuitive level, if a > b
the i-th row ofWa,n selects neighbors which are more distant in some relevant

12For definiteness, let A be some vector or matrix, then kAk = [Tr(A0A)]1/2. We note
that this norm is submultiplicative, i.e., kABk ≤ kAk kBk.
13For a review of some applications of this model see, e.g., Anselin (2001a).
14Of course, if εn = Φ

1/2
n ηn, where Φ

1/2
n is a diagonal matrix with nonnegative uni-

formly bounded elements and the elements of ηn are i.i.d., then we can take Rn =

(In − ρWn)
−1Φ

1/2
n . The matrix Rn then satisfies Assumption 2, provided the row and

column sums of (In − ρWn)
−1 are uniformly bounded in absolute value.
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space to the i-th unit than does the i-th row of Wb,n, and similarly for the
i-th rows ofMa,n andMb,n; see Anselin (1988, 2001b) for a further discussion.
Assumption 1 implies that the variance-covariance matrix of un is given

by Σn = RnR
0
n. Assumption 2 then implies that the row and column sums

of Σn are uniformly bounded in absolute value, and so the extent of corre-
lation is restricted. In a time series context this condition ensures that the
process possesses a fading memory. We note that the extent of correlation is
necessarily restricted in virtually all large sample theory, - see, e.g. Amemiya
(1985, ch. 3,4) and Pötscher and Prucha (1997, ch. 5,6).
Another implication of Assumptions 1 and 2 is, as is readily seen, that

the q-th moments of ui,n are uniformly bounded.
The spatial model specified in Section 4 below is conditional on the ex-

ogenous variables and the weighting matrix, which are therefore taken as
matrices of constants. The instrumental variables used to estimate such spa-
tial models are typically formulated in terms of the exogenous variables and
the weighting matrix. Our Assumption 3 is consistent with this scenario.
Assumption 4(a) relates to the bandwidth of the SHAC estimator con-

sidered below. In essence, as will be seen, cn plays the same role as the
bandwidth parameter (multiplied by two) in the time series literature in that
in conjunction with a kernel function specified below it limits the number of
sample covariances entering into the SHAC estimator to no more than ncn.
Clearly Assumption 4 implies that cn = op(n

τ ). Also observe that the bound
τm =

1
2
(q − 2)/(q − 1) ≤ 1/2; for q = 4 we have τm = 1/3 and as q →∞ we

have τm → 1/2.
Our consistency proof relies, in part, upon Chebyshev’s inequality. Among

other things, Assumptions 4 (a) and (b) ensure that the bias and variance
terms limit to zero. Along with our other assumptions, part (a) also ensures
that the probability limit of the HAC estimator based on estimated distur-
bances is asymptotically equivalent to one which has the same form but is
based on true disturbances. Among other things, part (b) restricts the extent
of correlation in relation to the distances between cross sectional units, which
are implicitly assumed to (eventually) increase as the sample size increases.15

As an illustration and comparison with the time series literature consider the
case where all units are arranged in an ordered fashion on a line, with the

15As an illustration, Assumption 4(b) would not be reasonable for cases in which the
sample size increases because of more intensive sampling within a given distance, e.g.,
increased sampling within a given neighborhood. Cressie (1993, p.57) refers to this case
as “infill asymptotics”.
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distance between the i-th and j-th unit equal to |i− j| and the covariance
between them equal to σ2uρ

|i−j| for some |ρ| < 1. Then Assumption 4(b)
would be satisfied for, e.g., ρS = 1 since

P∞
i=1 |ρi|i = |ρ|/(1 − |ρ|)2 < ∞.

Assumption 4(b) generalizes this feature.
Assumption 5 specifies that the measurement errors are uniformly bounded

and independent of the model disturbance. Clearly, the nonnegativity of the
measured distances implies that the measurement errors depend in part upon
the “true” distances involved.16

Assumption 6 should be satisfied for most cases in which ûn is based upon
n1/2-consistent estimators of regression coefficients. For example, using evi-
dent notation, consider the nonlinear regression model yi,n = f(xi,n, β)+ui,n.
Let β̂n denote the nonlinear least squares estimator and let ûi,n = yi,n −
f(xi,n, β̂n). Assuming that f is differentiable and applying the mean value
theorem it is readily seen that ûi,n−ui,n = zin∆n with zin =

£
∂f(xi,n, β)/∂β

¤
β∗n

where β∗n is, element by element, between β̂n and β, and ∆n = β̂n−β. Under
typical assumptions maintained for the nonlinear regression model, zin and
∆n will satisfy the conditions postulated in Assumption 6; cp., e.g., Pötscher
and Prucha (1986).

3 Spatial HAC Estimators

In this section we first specify a class of kernel functions. We then sug-
gest consistent spatial HAC estimators for Ψn based on this class, which
determines weights for the different covariances as a function of measured
distances between respective units. We first consider the case where the re-
searcher employs a single distance measure, possibly measured with error,
and provide a result for the consistency of the corresponding spatial HAC
estimator. We then extend the discussion to the case where the researcher
is unsure about the proper choice of a distance measure. We formulate a
spatial HAC estimator that employes several distance measures, and demon-
strate the consistency of the estimator as long as the “true” distance measure,
possibly measured with error, is among those considered by the researcher.

16We note that Conley (1999) also maintains bounded measurement errors.
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3.1 A Single Distance Measure

Let K(.) denote the kernel function. Then the weights for the different
covariances will be of the form K(d∗ij,n/dn) where d

∗
ij,n ≥ 0 and dn > 0 are as

in Assumptions 4 and 5.

Assumption 7 : The kernel K : R → [−1, 1], with K(0) = 1, K(x) =
K(−x), K(x) = 0 for |x| > 1, satisfies

|K(x)− 1| ≤ cK |x|ρK , |x| ≤ 1, (3)

for some ρK ≥ 1 and 0 < cK <∞.

Note that K(d∗ij,n/dn) = K(d∗ji,n/dn) since d
∗
ij,n = d∗ji,n. Of course, since

d∗ij,n/dn ≥ 0 it would have sufficed to define K on the R+. We have specified
the Kernel as is usual in the time series literature where frequently the differ-
ence between two time periods (rather than the absolute difference) divided
by the truncation lag is used as an argument in the Kernel function.
Clearly if (3) holds for some ρK ≥ 1, then it also holds for ρK = 1.

The larger the value of ρK for which this condition is satisfied, the flatter
and smoother the kernel will be at zero; compare, e.g., Pötscher and Prucha
(1997), pp. 129. We note that this condition is satisfied for many of the
usual kernels such as the rectangular kernel, Bartlett or triangular kernel,
the Parzen kernel, Tukey-Hanning kernel, Blackman-Tukey kernel, quadratic
spectral kernel, exponential density kernel, etc.; see Brockwell and Davis
(1991), pp. 359-361, and Andrews (1991).
Using evident notation, the (r, s)-th element of the true variance-covariance

matrix Ψn in (2) and our corresponding SHAC estimator of it are given by,
respectively

ψrs,n = n−1
nX
i=1

nX
j=1

hir,nhjs,nσij,n, (4)

ψ̂rs,n = n−1
nX
i=1

nX
j=1

hir,nhjs,nûi,nûj,nK
¡
d∗ij,n/dn

¢
. (5)

For later reference, let Ψ̂n = (ψ̂rs,n). For purposes of comparison with the
time series literature consider, from a spatial perspective, the degenerate case
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where all units are arranged on a line in an ordered fashion and dij,n = |i− j|
which is measured without error. Let hi.,n denote the i-th row of Hn. In this
case, Ψ̂n would reduce to

Ψ̂n = K(0)n−1
nX
i=1

h0i.,nhi.,nû
2
i,n (6)

+
n−1X
j=1

K(j/dn)

n−jX
i=1

£
h0i.,nhi+j.,n + h0i+j.,nhi.,n

¤
ûi,nûi+j,n,

which is an expression familiar from the time series literature, see, e.g.,
Pötscher and Prucha (1997, chapter 12). On the other hand, it will typically
be the case in a spatial context that dij,n 6= di+r,j+r,n so that expressions com-
parable to (6) will not exist. The next theorem establishes the consistency
of our estimator Ψ̂n defined by (5).

Theorem 1 : Let Ψn = (ψrs,n) and Ψ̂n = (ψ̂rs,n) be as defined by (4) and
(5). Given the model in (1) and Assumptions 1-7,

Ψ̂n −Ψn = op(1).

Remark 1: Although the estimator Ψ̂n is symmetric and consistent, it
may not be positive semi-definte in finite samples. In many cases the dis-
tance measure will correspond to a Euclidean norm in Rp, p ≥ 1, and
d∗ij/d = kzi − zjkp = [

Pp
l=1(zli − zlj)

2]
1/p, where the vectors zi = [z1i, . . . , zpi]0

describe certain characteristics of unit i, and where we have dropped sub-
scripts n for notational convenience. A leading example would be the case
of geographic distances, in which case zi would be of dimension 2 × 1 and
would contain the (normalized) geographic coordinates of unit i. We next
discuss the case of Euclidean distance measures in more detail, and provide
for this case general conditions regarding kernel functions that ensures that
Ψ̂n is positive semi-definite. Given the non-negativity of distance measures,
our discussion will focus w.l.o.g. on the restriction of the kernel function
to [0,∞). Let Pp be the class of continuos functions ϕ : [0,∞) → R with
ϕ(0) = 1 and where for all positive integers n the matrixh

ϕ(kzi − zjkp)
in
i,j=1

12



is positive semi-definte for any points z1, . . . , zn in Rp. Clearly, if a kernel
function K belongs to Pp and dij/d = kzi − zjkp, then Ψ̂n is positive semi-
definite. A complete description of the classPp is given in the seminal article
by Schoenberg (1938).17 He established that Pp ⊇ Pp+1 and that ϕ is an
element of Pp if and only if it is of the form

ϕ(x) = Γ
³p
2

´Z ∞

0

µ
2

rx

¶(p−2)/2
J(p−2)/2(rx)dF (r), x ≥ 0, (7)

where F is a probability distribution function on [0,∞) and J(p−2)/2 is a Bessel
function of order (p−2)/2. The functions ϕ(x) defined by (7) are [(p− 2)/2]-
times differentiable on (0,∞), where [a] denotes the greatest integer less
than or equal to a. The following result covers the triangular kernel and
generalizations thereof: Consider the class of kernel functions

Kν(x) =

½
(1− x)ν, 0 ≤ x ≤ 1
0, x > 1

.

Then Kν(x) is an element of Pp if and only if ν ≥ (p + 1)/2. This result is
due to by Golubov (1981). It establishes in particular that K1(x) belongs to
P1 and K2(x) belongs P1 and P2; for a recent reference and discussion of
functions of the from (7) see, e.g., Gneiting (2002).

Remark 2: As a by-product of proving Theorem 1 we also obtain in-
formation on the rate of convergence. In particular, suppose the follow-
ing additional assumptions hold: Ec2n(dn) = o(dηn), dn = O(n2τ/η) and
d−1n = O(n−2τ/η) for some η > 0.18 Then we have ψ̂rs,n − ψrs,n = Op(γn)
with

γn = max
©
n−1/2+1/q+τ(1−1/q), n−2ρ∗τ/η

ª
17Schoenberg’s (1938) results utilizes Bochner’s (1933) theorem, that establishes the

equivalence between positive definite functions and characteristic functions of finite mea-
sures on Rp. Bochner’s theorem has been used widely, including by Priestley (1981) and
Yaglom (1987) within the context of spectral density estimation. It also underlies re-
sults given, e.g., in Conley (1999) and Pötscher and Prucha (1997), regarding the positive
semidefiniteness of smoothed periodogram estimators.
18For example, and as discussed in more detail in our Monte Carlo study below, if spatial

units are located on a square grid (of respective length one) and the distance dij,n between
units is given by the Euclidean distance, then cn(dn) ≤ 4(dn+ cV )

2− 4(dn + cV ) + 4, and
thus Ec2n(dn) = o(dηn) for η > 4.
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with ρ∗ = min{ρS, ρK}. The implied optimal rate for γn is achieved for τ ∗ =
1
2
[q − 2] / [q − 1 + 2q(ρ∗/η)] < 1

2
(q−2)/(q−1) and is given by n−[(q−2)(ρ∗/η)]/[q−1+2q(ρ∗/η)].

We note that τ ∗ falls within the range postulated for τ in Assumption 4. As
q → ∞ we have τ ∗ → 1/ [2 + 4(ρ∗/η)] and the optimal rate is given by
n−(ρ∗/η)/[1+2(ρ∗/η)].

3.2 Multiple Distance Measures

We now generalize the above result by allowing the researcher to consider
several distance measure between units i and j, namely dij,m,n = dji,m,n,
m = 1, . . . ,M . We allow for measurement errors in the measurement of
these distances. In the following let d∗ij,m,n = d∗ji,m,n ≥ 0 denote the distance
measures employed by the researcher. Corresponding to each of these mea-
sures, we assume that the researcher can select a distance dm,n > 0 such that
dm,n ↑ ∞ as n → ∞, m = 1, . . . ,M . For each unit i = 1, . . . , n, let ci,n
denote the number of units (neighbors) j for which d∗ij,m,n ≤ dm,n for at least
one m = 1, . . . ,M , i.e.,

ci,n =
nX

j=1

(1−
MY
m=1

1d∗ij,m,n>dm,n),

and let cn = max
1≤i≤n

(ci,n). Of course, ifM = 1, then, dropping subscript m, we

have ci,n =
Pn

j=1(1− 1d∗ij,n>dn) =
Pn

j=1 1d∗ij,n≤dn, which is the expression for
ci,n employed above in our discussion of the case of a single distance measure.
We now replace Assumptions 4 and 5 by the following two assumptions.

Assumption 4 ∗: (a) Ec2n = o(n2τ) where τ ≤ 1
2
(q − 2)/(q − 1) and q is

defined in Assumption 1; (b)
Pn

j=1 |σij,n|d
ρS
ij,1,n ≤ cS for some ρS ≥ 1 and

0 < cS <∞.

Assumption 5 ∗: The distance measures employed by the researcher are
given by

d∗ij,m,n = dij,m,n + vij,m,n ≥ 0
where vij,m,n = vji,m,n denotes the measurement errors, |vij,m,n| ≤ cV with
0 < cV <∞, and {(vij,m,n), m = 1, . . . ,M} is independent of (εi,n).
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Remark 3: Assumption 4∗(b) is postulated to hold w.l.o.g. for the first
distance measure, since we can always relabel the measures. It is important
to note that we do not assume that the researcher knows the distance measure
for which Assumption 4∗(b) holds. We only postulate that the set of measures
considered by the researcher contains the “true” distance measure, i.e., the
measure for which Assumption 4∗(b) holds.

Our SHAC estimator for the (r, s)-th element of the true variance-covariance
matrixΨn defined by (4) is, in the present case of multiple distance measures,
now given by

ψ̂rs,n = n−1
nX
i=1

nX
j=1

hir,nhjs,nûi,nûj,nK
³
min
m
{d∗ij,m,n/dm,n}

´
. (8)

As is evident from the specification, the estimator includes all covariance
terms for which at least one of the ratios d∗ij,m,n/dm,n is less than one. The
next theorem establishes the consistency of our estimator Ψ̂n defined by (8).

Theorem 2 : Let Ψn = (ψrs,n) and Ψ̂n = (ψ̂rs,n) be as defined by (4) and
(8). Given the model in (1) and Assumptions 1-3, 4∗, 5∗, 6-7,

Ψ̂n −Ψn = op(1).

Clearly Theorem 2 is a generalization of Theorem 1. The importance
of this generalization is that in practice researchers can consider “many”
distance measures between units and base their SHAC estimator on just the
minimum of the measured ratios described in (8).

4 A General Spatial Regression Model

In this section we derive the limiting distribution of an instrumental variable
estimator for the parameters of a single Cliff-Ord type spatial equation, which
may be part of a system of equations, and may contain spatial lags of the
exogenous, as well as endogenous variables. Formal estimation of such models
in the single equation case has been recently considered by, e.g., Lee (2002,
2003, 2004) and Kelejian and Prucha (1998,1999), and in the systems case by
Kelejian and Prucha (2004). In contrast to this earlier literature, in this paper
we do not impose any specific structure on the disturbance process apart from
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that provided by (1). We also allow for endogenous regressors which could
be generated by a nonlinear model. We derive the limiting distribution of the
instrumental variable estimator of the regression parameters. It will become
clear that, in light of Theorem 2, the variance-covariance matrix involved in
that distribution can be consistently estimated.

4.1 Model Specification

Consider the Cliff-Ord type regression model

yn = Xnβ0 + λ0Wnyn + Ynγ0 + un, |λ0| < 1 (9)

where yn is an n× 1 vector of observations on the dependent variable corre-
sponding to n cross sectional units, Xn is a corresponding n× kx matrix of
observations on kx non-stochastic regressors,Wn is an n×n weighting matrix
of known constants, Yn is a corresponding n × ry matrix of observations on
ry endogenous variables, un is the disturbance vector, and β0, λ0, and γ0 are
correspondingly defined parameters. The disturbance vector un is assumed
to be generated according to (1), which allows for general patterns of spatial
correlation and heteroscedasticity.
In the above model the (i, j)-th element of the weighting matrix, wij,n,

would typically be taken to be non-zero only if units i and j are related in
a meaningful way, in which case these units are said to be neighbors. The
non-zero elements of Wn would also typically be assumed to decline as a
measure of distance between the corresponding units increases. The distance
measure could relate to geographic space, technology space, etc.19 In the
literature Wnyn is said to be the spatial lag of yn. Our specification allows
for the elements of all data vectors and matrices to depend on the sample size.
Consequently the specification allows for Xn and Yn to contain, respectively,
the spatial lags of some or all of the considered exogenous and endogenous
variables. In the following it will be convenient to express (9) more compactly
as

yn = Znδ0 + un (10)

where Zn = (Xn,Wnyn, Yn) and δ00 = (β
0
0, λ0, γ

0
0).

In the following we specify a set of assumptions for model (10), which are
in addition to Assumptions 1, 2 and 4∗ for the disturbance process.

19For a dicussion of some weighting matrix formulations see Anselin (1988, Chapter 3)
and Kelejian and Robinson (1995).
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Assumption 8 : All diagonal elements of Wn are zero.

Assumption 9 : (a) (I − λ0Wn) is nonsingular. (b) The row and column
sums of Wn, and (I − λ0Wn)

−1 are bounded uniformly in absolute value by
some constant cW , 0 < cW <∞.
Assumption 10 : Xn has full column rank (for n large enough), and its
elements are uniformly bounded in absolute value by constant cX, 0 < cX <
∞.
We will estimate the model by an instrumental variable procedure. To-

wards this end again let Hn be the n × ph matrix of instruments. In this
section we maintain the following assumptions concerning Hn which are an
extension of those given in Assumption 3.

Assumption 11 : The (nonstochastic) instrument matrix Hn has full col-
umn rank ph ≥ kx+ry+1 for n large enough, and its elements are uniformly
bounded in absolute value by some constant cH, 0 < cH <∞. It contains at
least the linearly independent columns of (Xn,WnXn). Furthermore, Hn has
the following properties:

(a) QHH = limn→∞ n−1H 0
nHn is a finite nonsingular matrix;

(b) QHZ = p limn→∞ n−1H 0
nZn is a finite matrix which has full column rank

kx + ry + 1;

(c) Ψ = limn→∞ n−1H 0
nΣnHn is a finite nonsingular matrix where, again,

Σn = E(unu
0
n) = RnR

0
n.

The above assumptions are consistent with those maintained for Cliff-Ord
type models in the recent literature. For further discussions and interpreta-
tions see, e.g., Kelejian and Prucha (2004). It seems of interest to further
comment on the choice of the instruments. Clearly the optimal instruments
for Zn are EZn = [Xn, E(Wnyn), E(Yn)]. Solving (9) “partially” for yn and
assuming that the roots of λ0Wn are less than unity in absolute value20 yields

Eyn = (In − λ0Wn)
−1(Xnβ0 +EYnγ0) (11)

=
∞X
s=0

λi0W
i
n(Xnβ0 +EYnγ0).

20In many models the weighting matrix is row normalized and it is assumed that |λ0| < 1.
In this case, as well as in others, the roots of λ0Wn would be less than unity in absolute
value and so the expansion in (11) holds.
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Under reasonable conditions, if (9) represents one equation of a linear system
of equations, the discussion in Kelejian and Prucha (2004) implies thatEYn =P∞

s=0W
s
nXnΠs, where Xn denotes the matrix of all exogenous variables in

the system and Πs are (reduced form) parameter matrices. In applications
we may now try to approximate the optimal instruments by selecting Hn

such that it includes the independent columns of (Xn,WnXn, . . . ,W
g
nXn)

for some g ≥ 1. Of course, if all exogenous variables in the system are
not observed, we may construct instruments based only on the observed set.
We also note that if the elements of the exogenous variables are uniformly
bounded, then so will be the elements of W s

nXn for s ≥ 1, and thus our
selection of instruments will be consistent with Assumption 11. Similarly, if
one or more of the elements of Yn are generated by a nonlinear model, we are
effectively assuming that the elements of E(Yn) are uniformly bounded and
relate to Xn,WnXn and, perhaps, to other variables that may or may not be
included in Hn. A final point should be noted concerning Assumption 11(b),
which in essence ensures that the instruments Hn identify the parameters.
Suppose β0 = 0 and γ0 = 0 so that E(Wnyn) = 0. It should be clear, in this
case, that Assumption 11(b) will not hold. Therefore, the estimation theory
presented below will not enable the researcher to test the hypothesis that
β0 = 0 and γ0 = 0. However, unlike for the case described in Kelejian and
Prucha (1998), our results do enable the researcher to test the hypothesis
β0 = 0. Indeed, given our other assumptions, an analysis which is virtually
identical to that in Kelejian and Prucha (1998) will demonstrate that our
results and corresponding testing procedures only require that at least one
element of β0 or γ0 be non-zero.

21

The next assumption bounds the third absolute moments of the elements
yir,n of Yn.

Assumption 12 : The expectations E|yir,n|3 are uniformly bounded by some
constant cY , 0 < cY <∞.

Assumption 1 maintains that the innovations have uniformly bounded
fourth moments. Given this, Assumption 12 should be satisfied for typical
specifications of Cliff-Ord type models. In particular, if (9) represents one
equation of a linear system of equations such as that considered in Kelejian
and Prucha (2004), but with the disturbance processes allowed to be of the

21If the weighting matrix is row normalized, that non-zero element must correspond to
a non-constant regressor - see, e.g., Kelejian and Prucha (1998).
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more general form considered in this paper, then Assumption 12 holds. This
follows since the demonstration in the earlier paper that the third absolute
moments of the endogenous variables as well as their spatial lags are uni-
formly bounded did not depend on the specific structure of the disturbance
process and only used the features of Assumptions 1 and 2 in this paper.

4.2 Instrumental Variable Estimation

We next define a spatial 2SLS estimator which is based on the instruments
Hn. We derive its asymptotic distribution and provide a consistent estimator
for its variance covariance matrix that utilizes the SHAC estimator considered
in Section 4. In particular, let Ẑn = PnZn where Pn = Hn(H

0
nHn)

−1H 0
n; then

the spatial 2SLS estimator for the parameter vector δ of (10) is given by

δ̂n = (Ẑ
0
nZn)

−1Ẑ 0nyn. (12)

Let ûn = (û1,n, ..., ûn,n) denote the 2SLS residuals, i.e., ûn = yn − Znδ̂n.
Based on those residuals and Hn, let Ψ̂n = (ψ̂rs,n), as given in (8), be the
corresponding SHAC estimator of Ψn = n−1H 0

nΣnHn and of its limit, Ψ =
limn→∞ n−1H 0

nΣnHn. We can now give the following theorem concerning the
asymptotic distribution of δ̂n and the consistent estimation of its asymptotic
variance covariance matrix.

Theorem 3 : Assume the disturbance specification in (1), the model in (10),
and Assumptions 1, 2, 4∗, 5∗, and 7-12. Then (a) n1/2(δ̂n − δ0)

d→ N(0,Φ)

and (b) Φ̂n
p→ Φ as n→∞, where

Φ = (Q0
HZQ

−1
HHQHZ)

−1Q0
HZQ

−1
HHΨQ

−1
HHQHZ(Q

0
HZQ

−1
HHQHZ)

−1,

Φ̂n = n2(Ẑ 0nẐn)
−1Z 0nHn(H

0
nHn)

−1Ψ̂n(H
0
nHn)

−1H 0
nZn(Ẑ

0
nẐn)

−1.

Given Theorem 3, small sample inferences concerning δ0 can be based on the
approximation δ̂n ∼ N(δ0, n

−1Φ̂n).

5 A Monte Carlo Study

In this section we give some illustrative Monte Carlo results which suggest
that our SHAC estimator performs reasonably well in finite samples.
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5.1 Monte Carlo Design

OurMonte Carlo design is influenced by the widely used format for the analy-
sis of spatial regression models by Anselin and Rey (1991) and Anselin and
Florax (1995), as well as by the format used by Andrews (1991) and Andrews
and Monahan (1992) for the analysis of HAC estimators. In particular, we
consider the following special case of the spatial model considered above:

yn = Xnβ0 + un, (13)

un = ρ0Wnun + εn, |ρ0| < 1,

withXn = [en, xn] consisting of two regressors (one of which is the intercept),
and β0 = [a0, b0]

0 = [1, 5]0. That is, we consider a linear regression model
where the disturbances follow a first order Cliff-Ord spatial autoregressive
process. The spatial units are assumed to be located on a square grid at
locations {(r, s) : r, s = 0, 1, . . . ,m}, and thus the total number of units is
n = (m + 1)2. The distance dij between units is given by the Euclidean
distance. As, e.g., in Baltagi et al. (2003) the weights matrix Wn is taken
to be a rook-type matrix where two units are neighbors if their Euclidean
distance is less than or equal to one. The weights matrix is normalized such
that the weights in each row sum to one. Given this In−ρ0Wn is nonsingular,
and hence un = (In−ρ0Wn)

−1εn. The εi,n are taken to be i.i.d. standardized
normal, and thus

Σn = Eunu
0
n = (In − ρ0Wn)

−1(In − ρ0W
0
n)
−1. (14)

The OLS estimator and its (normalized) variance covariance matrix, condi-
tional on the regressors, are given by

β̂n = [ân, b̂n]
0 = (X 0

nXn)
−1X 0

nyn, (15)

V C(
√
n(β̂n − β0) | Xn) = (n

−1X 0
nXn)

−1 £n−1X 0
nEunu

0
nXn

¤
(n−1X 0

nXn)
−1.

Analogous to Andrews (1991) and Andrews and Monahan (1992) we consider
the case where n−1X 0

nXn = In, and the estimand of interest in our Monte
Carlo study is taken to be the variance of the least squares estimator cor-
responding to the slope parameter b0, i.e., the (normalized) variance of b̂n.
Given our setup this variance is given by

ψn = var(
√
n(b̂n − b0) | xn) (16)

= n−1x0nEunu
0
nxn = n−1

nX
i=1

nX
j=1

xi,nxj,nEui,nuj,n,
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where xi,n denotes the i-th element of xn. The SHAC estimator for ψn is
given by

ψ̂HAC,n = n−1
nX
i=1

nX
j=1

xi,nxj,nûi,nûj,nK(d
∗
ij,n/dn), (17)

where ûi,n denotes the i-th element of the OLS residual vector ûn = yn −
Xnβ̂n. We also compute the estimator for ψn corresponding to the “classical”
OLS variance covariance matrix estimator. Since n−1X 0

nXn = In this esti-
mator is simply given by ψ̂OLS,n = n−1

Pn
i=1 û

2
i,n. Our Monte Carlo results

relate to five experimental values for ρ0, namely (-0.8, -0.5, 0, 0.5, 0.8), and
two sample sizes, namely n = 400 and n = 1024. We also consider a case
in which measurement errors are absent, and one in which they are not. In
all twenty of our experiments we used the Parzen kernel, which is consistent
with Assumption 7.
For each Monte Carlo iteration we draw a set of innovations εn from a

standardized normal distribution. For a given regressor vector xn we can
then generate yn from the above model. The elements of the n × 1 vec-
tor xn are generated via the following simple spatial autoregressive model:
xn = 0.3Wnxn+ ζn where the elements of ζn are i.i.d. draws from a uniform
distribution over the interval [0, 1]. The elements of xn are then further stan-
dardized by subtracting the sample mean and dividing each observation by
the sample standard deviation so that n−1X 0

nXn = In. Although the esti-
mand of interest is the variance ψn, which is conditional on xn, we randomly
draw, similar to Andrews (1991), a new set of regressor vectors xn for each
repetition of the experiment (in the above described manner) to reduce the
dependence of the results on particular realizations of xn. As a result the
value of the estimand ψn will vary across repetitions. Among other things,
in the tables we will report its average value across repetitions.
Our first set of experiments relates to the case in which measurement

errors are absent in the distance measure, i.e., d∗ij,n = dij where dij stands
for the Euclidean distance between units i and j. It is not difficult to check
that if cn(dn) is the maximum numbers of neighbors that satisfy dij ≤ dn,
then cn(dn) ≤ 4d2n− 4dn+4 and thus if dn = o(nκ), then cn = o(n2κ). In our
Monte Carlo study we took dn = [n1/4], where [z] denotes the nearest integer
that is less than or equal to z.22

22In a future larger Monte Carlo study it may be of interest to consider specifications
where dn = c[n1/4] for different values of c, as well as various other variations of the Monte
Carlo design.
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In our second set of experiments we allow for errors of measurement.
Specifically, in this case we assume the “true” Euclidean distance dij is mea-
sured as d∗ij,n = dij + vij,n where vij,n denotes a random measurement error.
For the case in which dij = 1, we take P (vij,n = 0) = P (vij,n = 1) = 1/2; for
the case in which dij ≥ 2 we take P (vij,n = −1) = P (vij,n = 0) + P (vij,n =
1) = 1/3. For each replication we generate a set of measurement errors which
are independent of the disturbances and regressors.

5.2 Monte Carlo Results

Table 1 gives results relating to small sample biases and RMSEs for our
SHAC estimator ψ̂HAC,n based on the Parzen kernel for sample sizes n = 400
and n = 1024 for the case in which the measurement errors are zero. These
results are based on 1000 Monte Carlo replications. As expected, for all
cases considered, the RMSEs are lower for the sample size n = 1024 than
for n = 400. For sample size n = 400 the magnitude of the biases and
RMSEs corresponding to the Parzen kernel are on average roughly 8% and
23%, respectively, of the true value of ψn. For sample size n = 1024 their
magnitudes are on average roughly 4% and 16%, respectively. These results
are encouraging. The biases and RMSEs are lowest for the case in which
ρ = 0.
Table 1 also reports results relating to small sample biases and RMSEs

of the “classical” OLS variance covariance matrix estimator ψ̂OLS,n. For the
case in which ρ = 0 this estimator is consistent, and known to perform well.
As expected, for ρ = 0 both bias and RMSE of the estimator ψ̂OLS,n are
small. For ρ 6= 0 the estimator is generally inconsistent. As expected, the
bias increases with |ρ|, and the bias remains high even as the sample size
increases.
The results in Table 1 support our theoretical findings for ψ̂HAC,n. Given

the limited nature of our experiments, these results can only provide limited
information regarding the relative performance of ψ̂HAC,n and ψ̂OLS,n. More
informative small sample comparisons would have to be based on a wider
Monte Carlo study involving, among other things, heteroskedastic innova-
tions εn, various weighting matrices, as well as various dependence structures
for xn, etc.
Finally, for illustrative purposes, Table 2 gives results relating to the use

of the Parzen kernel for the case in which there are errors of measurement
concerning distances. The cases considered are the same as those in Table
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1. All of the results are based on 500 Monte Carlo repetitions.23 A glance at
Table 2 suggests that for all cases considered the biases and RMSEs decrease
as the sample size increases. Also, although the RMSEs are generally larger
than corresponding values in Table 1, on average the difference is, roughly,
only 15% and 10% for n = 400 and n = 1024, respectively.

6 Conclusion and Suggestions for Future Re-
search

In this paper we suggested a spatial HAC (SHAC) estimator of a variance
covariance matrix in a spatial framework, and demonstrated the consistency
of that estimator. An important aim of this paper was to establish that
consistency under a set of relatively simple assumptions that covers, among
others, the important and widely used class of Cliff-Ord type models. Our
assumptions allow the researcher to be unsure about which distance measure
to use in the SHAC estimator, as well as for measurement errors in the
distance measures considered. Our consistency result is also generic in the
sense that residuals may correspond to a variety of linear and non-linear
models, provided they are n1/2-consistently estimated.
In this paper we also derived the asymptotic distribution of an IV esti-

mator for the parameters of a general spatial model and demonstrated that a
consistent estimator of the VCmatrix involved can be based on our suggested
SHAC procedure.
Finally, we gave Monte Carlo results which suggest that our SHAC esti-

mator performs reasonably well in small samples. Our Monte Carlo study
was based on a limited number of experiments relating to model parameter
values, only one kernel, one weighting matrix, one process generating the re-
gressors xn, one process for the innovations εn, and only one specification of
measurement errors relating to the measured distances underlying our SHAC
estimator. Therefore one suggestion for future research would be to expand
that Monte Carlo study to one which has a wider scope of experimental model
parameter values, various spatial weights matrices as well as kernels, various

23The smaller number of Monte Carlo repetitions was considered because for n = 1024
even for this smaller number of iterations, each Monte Carlo experiment corresponding
to a particular value of ρ0 took four days to complete on a fast PC. We also note that
because of the difference in the number of Monte Carlo repetitions the numbers for ψn are
slightly different in the two tables.
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generating mechanisms for xn and εn, and more than one specification of
distance measurement errors. As part of such a study it would be of interest
to explore bandwidth selection issues as well as the small sample properties
of Wald-type test statistics that involve the SHAC estimator.
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A Appendix

Proof of Theorem 1: Theorem 1 is a special case of Theorem 2, which is
proven below.

Proof of Theorem 2: The (r, s)-th element of Ψn and its corresponding
SHAC estimator Ψ̂n as given in (4) and (8) are

ψrs,n = n−1
nX
i=1

nX
j=1

hir,nhjs,nσij,n, (A.1)

ψ̂rs,n = n−1
nX
i=1

nX
j=1

hir,nhjs,nûi,nûj,nK
³
min
m
{d∗ij,m,n/dm,n}

´
. (A.2)

Clearly
ψ̂rs,n − ψrs,n = ars,n + brs,n + crs,n, (A.3)

with

ars,n = n−1
nX
i=1

nX
j=1

hir,nhjs,n [ûi,nûj,n − ui,nuj,n]K
³
min
m
{d∗ij,m,n/dm,n}

´
,

brs,n = n−1
nX
i=1

nX
j=1

hir,nhjs,n [ui,nuj,n − σij ]K
³
min
m
{d∗ij,m,n/dm,n}

´
,

crs,n = n−1
nX
i=1

nX
j=1

hir,nhjs,nσij,n
h
K
³
min
m
{d∗ij,m,n/dm,n}

´
− 1
i
.

To prove that ψ̂rs,n − ψrs,n = op(1) we show that each term on the r.h.s of
(A.3) is op(1).

(a) Proof that ars,n = op(1): Observe that in light of Assumption 6

|ûi,nûj,n − ui,nuj,n| ≤ |ui,n| ||zj,n|| k∆nk+|uj,n| ||zi,n|| k∆nk+||zi,n||||zj,n|| k∆nk2 .

Recalling that |hir,n| ≤ cH , observing that
¯̄
K
¡
minm{d∗ij,m,n/dm,n}

¢¯̄
≤ 1 −
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MQ
m=1

1d∗ij,m,n>dm,n, and utilizing the above inequality we have

|ars,n| ≤ n−1
nX
i=1

nX
j=1

|hir,n| |hjs,n| |ûi,nûj,n − ui,nuj,n|
¯̄̄
K
³
min
m
{d∗ij,m,n/dm,n}

´¯̄̄
≤ A(1)rs,n +A(2)rs,n +A(3)rs,n,

A(1)rs,n = c2H k∆nkn−1
nX
i=1

nX
j=1

Ã
1−

MY
m=1

1d∗ij,m,n>dm,n

!
|ui,n|||zj,n||,

A(2)rs,n = c2H k∆nkn−1
nX
i=1

nX
j=1

Ã
1−

MY
m=1

1d∗ij,m,n>dm,n

!
|uj,n|||zi,n||,

A(3)rs,n = c2H k∆nk2 n−1
nX
i=1

nX
j=1

Ã
1−

MY
m=1

1d∗ij,m,n>dm,n

!
||zi,n||||zj,n||.

Also observe that in light of the definition of cn given before Assumption 4∗

we have
Pn

j=1

µ
1−

MQ
m=1

1d∗ij,m,n>dm,n

¶
≤ cn. Let q be as in Assumption 1. It

then follows from Hölder’s inequality that

A(1)rs,n ≤ c2H k∆nkn−1
nX

j=1

||zj,n||
"

nX
i=1

Ã
1−

MY
m=1

1d∗ij,m,n>dm,n

!#1−1/q " nX
i=1

|ui,n|q
#1/q

≤ c2Hn
−1/2+1/qc1−1/qn

£
n1/2 k∆nk

¤ "
n−1

nX
j=1

||zj,n||
#"

n−1
nX
i=1

|ui,n|q
#1/q

.

As remarked in the text, in light of Assumptions 1 and 2 it is readily seen
that E |ui,n|q ≤ const < ∞. Because of this and the other maintained
assumptions all terms in square brackets in the last inequality are seen to be
Op(1). Now consider

π(1)n = n−1/2+1/qc1−1/qn = n−1/2+1/q+τ(1−1/q)
£
n−τcn

¤1−1/q
.

In light of Assumption 4∗(a) we have cn = op(n
τ) with τ ≤ τm = 1

2
(q −

2)/(q− 1). Observing further that −1/2+ 1/q+ τ(1− 1/q) ≤ −1/2+ 1/q+
τm(1− 1/q) = 0 clearly π

(1)
n = op(1) and hence A

(1)
rs,n = op(1). By the same
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arguments it follows that also A
(2)
rs,n = op(1). Applying Hölder’s inequality

we see further that

A(3)rs,n ≤ c2H k∆nk2 n−1
nX

j=1

||zj,n||
"

nX
i=1

Ã
1−

MY
m=1

1d∗ij,m,n>dm,n

!#1/2 " nX
i=1

||zi,n||2
#1/2

≤ c2Hn
−1/2c1/2n

£
n1/2 k∆nk

¤2 "
n−1

nX
j=1

||zj,n||
#"

n−1
nX
i=1

||zi,n||2
#1/2

.

In light of Assumption 6 all terms in square brackets in the last inequality
are Op(1). Now consider

π(3)n = n−1/2c1/2n = n−1/2(1−τ)
£
n−τcn

¤1/2
.

Since cn = op(n
τ) with τ ≤ 1

2
(q−2)/(q−1) ≤ 1

2
by Assumption 4∗(a) clearly

π
(3)
n = op(1) and hence A

(3)
rs,n = op(1). Thus ars,n = op(1).

(b) Proof that brs,n = op(1): Substitution of ui,n =
Pn

l=1 ril,nεl,n into the
expression for brs,n yields

brs,n = n−1
nX
l=1

nX
k=1

γlk,n [εl,nεk,n − Eεl,nεk,n]

with γlk,n =
Pn

i=1

Pn
j=1 hir,nhjs,nril,nrjk,nK

¡
minm{d∗ij,m,n/dm,n}

¢
. Let Vn =

{(vij,m,n),m = 1, . . . ,M} be the matrix of measurement errors and let εn be
the vector of innovations. Since Vn and εn are independent by Assumption
5∗ clearly Ebrs,n = 0. It hence suffices to show that var(brs,n) = o(1). The
variance of brs,n conditional on Vn is - see, e.g., Kelejian and Prucha (2001a),
p.227 - given by

var(brs,n | Vn) = 2n−2
nX
l=1

nX
k=1

γ2lk,n + n−2
nX
l=1

γ2ll
£
Eε4l,n − 3

¤
.

Next observe that

nX
k=1

¯̄
γlk,n

¯̄
≤ c2H

nX
i=1

|ril,n|
nX

j=1

Ã
1−

MY
m=1

1d∗ij,m,n>dm,n

!
nX

k=1

|rjk,n| ≤ c2Hc
2
Rcn,
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where we have utilized that
Pn

j=1

µ
1−

MQ
m=1

1d∗ij,m,n>dm,n

¶
≤ cn as well as

Assumption 2; hence
Pn

k=1

¯̄
γlk,n

¯̄2 ≤ £Pn
k=1

¯̄
γlk,n

¯̄¤2 ≤ c4Hc
4
Rc
2
n. The variance

of brs,n is now given by

Evar(brs,n | Vn) ≤ E

(
2n−2

nX
l=1

c4Hc
4
Rc
2
n + n−2(cE + 4)

nX
l=1

c4Hc
4
Rc
2
n

)
≤ const∗n−1Ec2n.

Observing again that Ec2n = o(n2τ ) with τ ≤ 1
2
(q − 2)/(q − 1) ≤ 1/2 shows

that var(brs,n) = o(1) and hence brs,n = op(1).

(c) Proof that crs,n = op(1): Let ρ∗ = min{ρS, ρK}, where ρS and ρK are
as in Assumptions 4∗(b) and 7. Then condition (3) for K(.) also hold with
ρK replaced by ρ∗. Furthermore observe that |K(x)− 1| ≤ (cK + 1) |x|ρ∗ for
all x. Given Assumptions 1, 2 and 4∗(b) we have

Pn
j=1 |σij,n| ≤ c2R <∞ and

nX
j=1

|σij,n| [dij,1,n + cV ]
ρ∗ ≤

nX
j=1

|σij,n| [dij,1,n + cV + 1]
ρS

≤ 2ρS [cV + 1]
ρS

nX
j=1

|σij,n|+ 2ρS
nX

j=1

|σij,n|dρSij,1,n ≤ const <∞

Hence

|crs,n| ≤ n−1
nX
i=1

nX
j=1

|hir,n| |hjs,n| |σij,n|
¯̄̄
K
³
min
m
{d∗ij,m,n/dm,n}

´
− 1
¯̄̄

≤ c2H(cK + 1)n
−1

nX
i=1

nX
j=1

|σij,n|
h
min
m
{d∗ij,m,n/dm,n}

iρ∗
≤ c2H(cK + 1)d

−ρ∗
1,n n−1

nX
i=1

nX
j=1

|σij,n| [dij,1,n + cV ]
ρ∗

≤ const ∗ d−ρ∗1,n = o(1)

since d1,n →∞. This establishes that crs,n = op(1).
Having demonstrated that all terms on the r.h.s. of (A.3) are op(1) this

concludes the proof.

Derivation of optimal rate given in Remark 2: Observe that under the
assumptions of the remark we have Ec2n(dn) = o(n2τ) and hence cn = op(n

τ),

28



and d−1n = O(n−2τ/η). From the proof of Theorem 1 it is then readily seen
that ¯̄̄

ψ̂rs,n − ψrs,n

¯̄̄
≤ |ars,n|+ |brs,n|+ |crs,n|

with ars,n = Op(1)∗
h
n−1/2+1/qc

1−1/q
n

i
= op(n

−1/2+1/q+τ(1−1/q)), brs,n = Op(n
−1/2(Ec2n)

1/2) =

op(n
τ−1/2) and crs,n = Op(d

−ρ∗
n ) = Op(n

−2ρ∗τ/η). Thus ψ̂rs,n− ψrs,n = Op(γn)
with γn as given in the remark. Clearly, γn is minimized for τ ∗ as given in
the remark.

Proof of Theorem 3: From (1), (10), and (12) we have

n1/2(δ̂n − δ0) =Mnn
−1/2L0nεn (A.4)

where Mn = (n
−1Ẑ 0nZn)

−1n−1Z 0nHn(n
−1H 0

nHn)
−1 and L0n = H 0

nRn. Observ-
ing that Ẑ 0nZn = Ẑ 0nẐn = Z 0nHn(H

0
nHn)

−1H 0
nZn and RnR

0
n = Σn it follows

from Assumption 11 that

Mn
p→ (Q0

HZQ
−1
HHQHZ)

−1Q0
HZQ

−1
HH , (A.5)

n−1L0nLn
p→ Ψ,

where both limiting matrices are finite and nonsingular. Assumptions 2 and
11 imply that the elements of Ln are uniformly bounded in absolute value.
Assumption 1 and the central limit theorem for triangular arrays given in
Kelejian and Prucha (1998, p.112) then imply that

n−1/2L0nεn
d→ N(0,Ψ). (A.6)

Part (a) of Theorem 3 follows trivially from (A.4) - (A.6).
Consider now part (b) of Theorem 3. We established above that n−1Ẑ 0nẐn

p→
Q0
HZQ

−1
HHQHZ . Next observe that

Φ̂n = (n
−1Ẑ 0nẐn)

−1n−1Z 0nHn(n
−1H 0

nHn)
−1Ψ̂n(n

−1H 0
nHn)

−1n−1H 0
nZn(n

−1Ẑ 0nẐn)
−1

Part (b) of Theorem 3 then follows in light of Assumption 11, provided
we can establish the consistency of the SHAC estimator Ψ̂n. To show that
this is indeed the case we verify the assumptions of Theorem 2. Assumptions
1, 2, 4∗, 5∗ and 7 are assumed to hold. Assumption 3 is clearly implied by
Assumption 11. Hence we only have to verify that the 2SLS residuals satisfy
Assumption 6. Let zi,n denote the i-th row of Zn, then ûi,n − ui,n = zi.,n∆n
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with ∆n = δ0− δ̂n. Given part (a) of the theorem clearly n1/2 k∆nk = Op(1).
A sufficient condition for zi,n to satisfy the conditions of Assumption 6 is
that all elements have uniformly bounded third absolute moments; see, e.g.,
Lemma A.2 in Kelejian and Prucha (1998). Since the elements of Xn are
uniformly bounded in absolute value by Assumption 10 and the third absolute
moments of the elements of Yn are uniformly bounded by Assumption 12 it
only remains to be shown that E |ȳi,n|3 ≤ const <∞, where ȳi,n denotes the
i-th element of the spatial lag Wnyn. Observe that

Wnyn = Wn(In − λ0Wn)
−1Xnβ0 +Wn(In − λ0Wn)

−1Ynγ0
+Wn(In − λ0Wn)

−1Rnεn

Assumptions 2 and 9 imply that the row and column sums of Wn(In −
λ0Wn)

−1 and Wn(In − λ0Wn)
−1Rn are uniformly bounded in absolute value.

Assumption 10 then implies that the elements of Wn(In− λ0Wn)
−1Xnβ0 are

uniformly bounded in absolute value. It now follow immediately from Lemma
A.2 in Kelejian and Prucha (2004) that the elements of Wnyn have third ab-
solute moments which are uniformly bounded. This completes the proof of
part (b) of Theorem 3.
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Table 1
Bias and RMSE of Spatial HAC Estimator ψ̂HAC,n and OLS Estimator
ψ̂OLS,n of the Variance of b̂n, ψn: Distance without Measurement Error

n = 400

HAC (Parzen Kernel) OLS
ρ ψn Bias RMSE Bias RMSE
0.8 3.428 -0.452 0.911 -1.073 1.201
0.5 1.516 -0.125 0.315 -0.261 0.292
0 1.000 -0.038 0.186 -0.002 0.073
-0.5 1.062 -0.002 0.194 0.204 0.234
-0.8 1.722 0.051 0.375 0.704 0.792
Column Average 0.134 0.396 0.449 0.518
(of asolute values)

n = 1024

HAC (Parzen Kernel) OLS
ρ ψn Bias RMSE Bias RMSE
0.8 3.352 -0.248 0.622 -1.014 1.068
0.5 1.506 -0.067 0.231 -0.250 0.263
0 1.000 -0.020 0.140 -0.001 0.044
-0.5 1.058 -0.001 0.147 0.199 0.211
-0.8 1.682 0.024 0.262 0.672 0.707
Column Average 0.072 0.280 0.427 0.458
(of absolute values)
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Table 2
Bias and RMSE of Spatial HAC Estimator ψ̂HAC,n of the Variance of b̂n,

ψn: Distance with Measurement Errors

n = 400

HAC (Parzen Kernel)
ρ ψn Bias RMSE
0.8 3.417 -0.634 1.006
0.5 1.513 -0.173 0.345
0 1.000 -0.038 0.203
-0.5 1.064 0.044 0.228
-0.8 1.731 0.227 0.497
Column Averages 0.223 0.456
(of asolute values)

n = 1024

HAC (Parzen Kernel)
ρ ψn Bias RMSE
0.8 3.340 -0.388 0.652
0.5 1.504 -0.104 0.245
0 1.000 -0.021 0.150
-0.5 1.058 0.029 0.167
-0.8 1.682 0.138 0.331
Column Averages 0.136 0.309
(of asolute values)
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