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Abstract

In this paper we suggest a J-type test for a given spatial model against
one or more nonnested alternatives. The considered models can, but need
not, contain spatial lags in both the dependent variable and disturbance
term. The test is computationally simple and quite intuitive. Our suggested
test is based on formal large sample results which account for triangular
arrays.

1 Introduction2

The J-test is a well established procedure for testing non-nested models3.
Essentially, the procedure relates to whether or not the predictive value of
an alternative model adds significance to the null model.

The purpose of this paper is to suggest a J-test for the specification of
spatial model containing a spatially lagged dependent variable and a spa-
tially lagged disturbance term, henceforth a SARAR(1,1) model, when the
alternative is one, or more SARAR(1,1) models. Our suggested test is com-
putationally simple, and its rationale is obvious. It is also based on formal
large sample results which account for triangular arrays.

1Department of Economics, University of Maryland, College Park, MD 20742. E-mail:
Kelejian@econ.umd.edu

2 I would like to thank Roger Betancourt for suggesting certain problems to me involving
the testing of non-nested hypotheses which then led to this paper. I would also like to
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pleased to acknowledge financial support from the National Institute of Aging/National
Institue of Heath, Grant # 2 R44 AG027622-02.

3See e.g., Davidson and MacKennen (1981), MacKennen, White, and Davidson (1983),
Godfrey (1983), and the reviews given in Greene (2003, pp. 153-155, 178-180) and Kmenta
(1986, pp 593-600). A nice overview of various procedures for testing nonnested hypothe-
ses, as well as certain Monte Carlo results for doing so are given in Anselin (1986; another
study of issues relating to non-nested models is given in Pesaran and Weeks (2001).
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Our model is specified in Section 2. Our suggested test is described in
Section 3. This paper is meant to be user friendly and so all technical details,
including the formal model specifications, are relegated to the appendices.

2 The Null and Alternative Models

The model of the null hypothesis is

yn = Xnβ + λWnyn + un (1)

= Znγ + un

un = ρMnun + εn

where Zn = (Xn,Wnyn), γ
0 = (β0, λ), yn is an n× 1 vector of observations

on the dependent variable, Xn is an n× k matrix of observations on exoge-
nous variables, Wn and Mn are n × n exogenous weighting matrices which
may be equal, un is an n × 1 vector of disturbance terms, εn is the corre-
sponding vector of innovations, λ and ρ are scalar parameters, and β is a
k× 1 parameter vector. The subscript n denotes possible dependence of the
matrices and vectors on the sample size n, and so our specifications allow
for triangular arrays.

We assume the researcher wishes to test the model in (1) against G
alternatives. These alternative models are

yn = Xn,iβi + λiWn,iyn + un,i (2)

= Zn,iγi + un,i

un,i = ρiMn,iun,i + εn,i, i = 1, ..., G

where Xn,i is an n×ki matrix of observations on the exogenous variables ap-
pearing in the ith considered model, G is a finite constant, etc. As indicated
above, our formal specifications are given in the appendix. As a preview,
our assumptions relating to the null model contain those in Kelejian and
Prucha (1998); for future reference, we note that those assumptions include
the specification that the elements of the innovation vector, εn, in the null
model are identically distributed, and for each given sample size n, are i.i.d.
(0,σ2ε) with a finite fourth moment. Because we consider G possible alter-
natives to the null model, the assumptions in Kelejian and Prucha (1998)
which relate to our null model are correspondingly augmented.
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3 The Suggested J-Test

Premultiplying the null model by (In − ρMn) yields

yn(ρ) = Zn(ρ)γ + εn (3)

where yn(ρ) = (In − ρMn)yn and Zn(ρ) = (In − ρMn)Zn. Let Zn,i(ρi) =
(In − ρiMn,i)Zn,i, and let γ̂n,i be some estimator of γ (described below).
Then an evident extension of the J-test procedure to a spatial framework
would be in terms of an augmented version of (3), namely

yn(ρ) = Zn(ρ)γ +
GX
i=1

αi[Zn,i(ρi)γ̂n,i] + εn (4)

= Zn(ρ)γ +
GX
i=1

αi[Zn,iγ̂i] +
GX
i=1

φi[Mn,iZn,iγ̂n,i] + εn

where αi is a scalar parameter, φi = −αiρi and, given the null model, the
true value of αi = 0, i = 1, ...,G. Let δ = (α1, ..., αG,φ1, ..., φG)

0. Clearly a
test of the null model against all of the alternatives in (2) would be in terms
of the hypotheses H0 : δ = 0 against H1 : δ 6= 0.

Since spatial lags of the dependent variable appear in (4) our suggested
procedure involves instrumental variables. For i = 1, ..., G let

Hn = (Xn,WnXn, ...,W
r
nXn,MnXn,MnWnXn, ...,MnW

r
nXn)LI

Hn,i = (Xn,i,Wn,iXn,i, ...,W
r
n,iXn,i,Mn,iXn,i,Mn,iWn,iXn,i,

...,Mn,iW
r
n,iXn,i)LI

An = (X̄n,WnX̄n, ...,W
r
nX̄n,MnX̄n,MnWnX̄n, ...,MnW

r
nX̄n)LI

where X̄n = (Xn,Xn,1...,Xn,G), the subscript LI denotes the linearly in-
dependent columns of the indicated matrices,4 and, typically, one would
take r ≤ 2. The instrument matrices Hn,Hn,i, and An are assumed to, at
least, contain the linearly independent columns of, respectively (Xn,MnXn),
(Xn,i,Mn,iXn,i), and (X̄n,MnX̄), i = 1, ..., G. Given this notation our sug-
gested procedure is outlined below.

Step 1; Estimate the null model in (1) by two-stage least squares (hence-
forth 2SLS) using the instrument matrixHn. Obtain the estimated residuals

4Among other things, in practice, at least some of the regressor matrices Xn,i, i =
1, ..., G would have variables in common.
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from the null model, say ûn. Also estimate the ith alternative model in (2)
by 2SLS using the instrument matrix Hn,i, i = 1, ..., G.

Step 2: Take γ̂i,n appearing in (4) as the 2SLS estimator based on Hn,i

of the ith alternative model, i=1,...,G.
Step 3: Use the estimated residuals from the null model, namely ûn, to

estimate the parameter ρ in the null model by the GMM procedure suggested
in Kelejian and Prucha (1999). Denote this estimator as ρ̂n. Replace ρ in
(3) by ρ̂n and estimate the resulting model by 2SLS using the instrument
matrix Hn. This is the generalized spatial two stage least squares procedure
suggested in Kelejian and Prucha (1998). Obtain the residual vector, say ε̂n,
and use it to estimate the variance of the elements of the innovation vector:
σ̂2n,ε = ε̂0nε̂n/n.

Step 4: Replace ρ in (4) by ρ̂n and let

Fn = (Zn,1γ̂n,1, ..., Zn,Gγ̂n,G,Mn,1Zn,1γ̂n,1, ...,Mn,GZn,Gγ̂n,G)

δ = (α1, , , .αG, φ1, ..., φG)
0.

Given this notation, the empirical counterpart to (4) would be 5

yn(ρ̂n) ∼ Zn(ρ̂n)γ + Fnδ + εn (5)

Step 5: Estimate (5) by 2SLS using the instrument matrix An.
6 Specifi-

cally, denote the regressor matrix corresponding to (5) as Sn = (Zn(ρ̂n), Fn),
and the regression parameters as η0 = (γ0, δ0). Note that under the null model
the true value of η is η0 where η

0
0 = (γ

0, 0). Let Ŝn = PnSn ≡ (Ẑn(ρ̂n), F̂n)
where Pn = An(A

0
nAn)

−1A0n. Then the 2SLS estimator of η is

η̂n = (Ŝ
0
nŜn)

−1Ŝ0nyn(ρ̂n) (6)

The proof of Theorem 1 is given in the appendix.

Theorem 1: Under Assumptions A.1-A.7 given in the appendix

n1/2(η̂n − η0)
D→ N(0, σ2ε p limn→∞

n(Ŝ0nŜn)
−1) (7)

σ̂2n,ε
P→ σ2ε

5The model in (5) is not exact, even if δ = 0 because ρ̂n 6= ρ.
6The large sample results described below will go through if at this stage the instrument

matrix An is replaced byHn. However, one suspects that the power of the test will increase
if the instrument matrix is taken to be An. This issue deserves further attention, especially
if G is large!
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Small sample inferences can be based on the approximation

η̂n ' N [η, σ̂2n,ε(Ŝ
0
nŜn)

−1] (8)

Let k̄ = k+1+2G and, using evident notation let η̂0n = (γ̂
0
n, δ̂

0
n); let V̂n,δ̂ be

the estimated small sample variance-covariance matrix corresponding to δ̂n
- i.e., the lower 2G×2G submatrix of the k̄× k̄ matrix σ̂2n,ε(Ŝ

0
nŜn)

−1. Then,
a Wald test of H0 : δ = 0 against H1 : δ 6= 0 at the a% level of significance
would be to reject H0 if

δ̂
0
nV̂

−1
n,δ̂

δ̂n > χ21−a(2G) (9)

The test suggested in (9) can easily be carried out in most software packages.

Remark : It is reasonable to assume that researchers may want to
estimate the autoregressive parameter ρi in the alternative models given in
(2) by the GMM approach of Kelejian and Prucha (1999). Denote these
estimators as ρ̂n,i, i = 1, ...,G. Under further assumptions, it is not difficult
to show that if the null model is the true model, and ρ̂n,i is the linear GMM
estimator described in Kelejian and Prucha (1999), then p limn→∞ ρ̂n,i =
ci, i = 1, ..., G where ci is a finite constant. We conjecture that the nonlinear
GMM estimator of ρi also converges to a finite constant under reasonable
assumptions. If so, the suggested test can be based on the first line of (4),
instead of the second line. That is, in that first line replace ρi and ρ, by,
respectively ρ̂n,i, i = 1, ..., G, and ρ̂n obtained in step 3. That model would
then be estimated by 2SLS in terms of the instruments An. One would
then test the hypothesis αi = 0, i=1,...,G in the usual way. Under these
conditions it is not clear whether this procedure is efficient relative to the
one suggested in reference to (9).

Remark 2: Space limitations prevent a formal analysis of an extension
of our results to a panel data framework. However, we conjecture that, un-
der reasonable assumptions, an obvious extension of our results to such a
framework will hold. Specifically, in a panel data setting suppose the distur-
bance term in each time period is a spatial AR(1) with innovations specified
as error components, as in Kapoor, Kelejian, and Prucha (2007). Suppose
there are G alternative models of a similar sort. Then we suggest the fol-
lowing procedure. (a) Estimate the null model in terms of an instrumental
variable procedure; also estimate the parameters of the disturbance process
of that null model by the GMM procedure described in Kapoor, Kelejian,
and Prucha (2007). (b) Use the estimated parameters of the disturbance

5



process to transpose the null model into one which corresponds to a model
which has an error term which is not spatially correlated, time autocorre-
lated, or heteroskedastic— see Kapoor, Kelejian, and Prucha (2007) for useful
transformations. (c) Estimate the regression parameters of the alternative
models, and use these estimated regression parameters to construct vari-
ables which reflect the predictive influence of the alternative models. Add
these constructed variables to the transformed null model. (d) Estimate the
resulting expanded and transformed null model by the 2SLS procedure. (e)
Test the significance of the added variables in the usual way.

A Appendix

Assumption A.1 All diagonal elements of the spatial weighting matrices
Wn,Mn,Wn,i are zero, i = 1, ..., G.

Assumption A.2 The matrices (I −λWn) and (I − ρMn) are nonsingular
for all |λ| < 1 and |ρ| < 1.

Assumption A.3 The row and column sums of the matrices Wn, Mn,Wn,i,
Mn,i, (I−λWn)

−1, and (I−ρMn)
−1 are bounded uniformly in absolute value,

i=1,...,G.

Assumption A.4 The regressor matrices Xn,Xn,i, i = 1, ..., G have full
column rank (for n large enough). Furthermore, the elements of these ma-
trices are uniformly bounded in absolute value.

Assumption A.5 The elements of the innovation vector εn in the null
model, namely {εi,n : 1 ≤ i ≤ n, n ≥ 1} are distributed identically. Fur-
ther, the innovations {εi,n : 1 ≤ i ≤ n} are for each n distributed (jointly)
independently with E(εi,n) = 0, E(ε2i,n) = σ2ε, where 0 < σ2ε < b with b <∞.
Additionally the innovations are assumed to possess finite fourth moments.

Assumption A.6 Let S∗n = [Zn− ρMnZn, F
∗
n ], where F

∗
n is identical to Fn

except that γ̂n,i is replaced by p lim γ̂n,i = φi, i = 1, ..., G.
7 Then we assume

that the instrument matrices satisfy:
(a)

QHH = lim
n→∞

n−1H 0
nHn

QHiHi = lim
n→∞

n−1H 0
n,iHn,i, i = 1, ..., G

QAA = lim
n→∞

n−1A0nAn

7An expression for φi, i = 1, ..., G is given in the appendix.
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where QHH , QHiHi , and QAA are finite and nonsingular.
(b)

QHZ = plim
n→∞

n−1H 0
nZn

QHiZi = plim
n→∞

n−1H 0
n,iZn,i, i = 1, ..., G

QHiZ = plim
n→∞

n−1H 0
n,iZn, i = 1, ..., G

QAS∗ = plim
n→∞

n−1A0nS
∗
n

QHMZ = plim
n→∞

n−1H 0
nMnZn

where QHZ ,QHiZi , QHiZ , QAS∗ , and QHMZ , are finite matrices, and QHZ , QHiZi , QAS∗ ,
and QHMZ have full column rank. Furthermore, the matrix

QHZ − ρQHMZ = plim
n→∞

n−1H 0
n(I − ρMn)Zn

has full column rank for all |ρ| < 1.
(c)

ΦH = lim
n→∞

n−1H 0
n(I − ρMn)

−1(I − ρM 0
n)
−1Hn

ΦA = lim
n→∞

n−1A0n(I − ρMn)
−1(I − ρM 0

n)
−1An

where ΦH and ΦA are finite and nonsingular for all |ρ| < 1.

The following assumption ensures that the autoregressive parameter ρ
in the null model is “identifiably unique”, cp. Kelejian and Prucha (1999).

Assumption A.7 The smallest eigenvalue of Γ
0
nΓn is bounded away from

zero, i.e., λmin(Γ
0
nΓn) ≥ λ∗ > 0, where

Γn =
1

n

⎛⎝ 2E(u0nun) −E(u0nun) 1

2E(u
0
nun) −E(u0nun) tr(M 0

nMn)
E(u0nun + u0nun) −E(u0nun) 0

⎞⎠ (A.1)

and un =Mnun and un =Mnun =M2
nun.

Proof of Theorem 1: Since Assumptions 1-8 in Kelejian and Prucha
(1998) are contained in our list of assumptions, ρ̂n and σ̂

2
n obtained from our

null model in step 3 are consistent. Also, our Assumptions A.3, A.5, parts
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(a) and (b) of A.6, and A.7 imply p limn→∞ γ̂n,i
P→ φi, i = 1, ...,G where φi

is a ki × 1 vector of finite constants, namely

φi = [Q
0
HiZiQ

−1
HiHi

QHiZi ]
−1Q0HiZiQ

−1
HiHi

QHiZγ (A.2)

Let πn,i = n−1H 0
n,iun. Then underlying (A.2) is the result that πn,i

P→ 0.
This follows from Chebyshev’s inequality since E(πn,i) = 0 and V C(πn,i) =
σ2εn

−2H 0
n,i(In − ρMn)(In − ρMn)

0Hn,i → 0 since via Assumptions A.3, A.4,
and A.5 the elements of nV C(πn,i) are 0(1) - see Kelejian and Prucha (1999).

Since ρ̂n is consistent, ρ̂n = ρ +∆n where ∆n
P→ 0. The null model (1)

then implies

yn(ρ̂n) = Zn(ρ̂n)γ + un − ρ̂nMnun (A.3)

= Zn(ρ̂n)γ + εn −∆nMnun

where, consistent with earlier notation yn(ρ̂n) = yn − ρ̂nMnyn, etc. Given
this notation, and noting that Ẑ 0n(ρ̂n)Zn(ρ̂n) = Ẑ 0n(ρ̂n)Ẑn(ρ̂n) and F̂

0
nZn(ρ̂n) =

F̂ 0nẐn(ρ̂n), it follows that η̂n in (6) can be expressed as

η̂n =

∙
γ̂n
δ̂n

¸
(A.4)

=

∙
Ẑ 0n(ρ̂n)Ẑn(ρ̂n) Ẑ 0n(ρ̂n)F̂n
F̂ 0nẐn(ρ̂n) F̂ 0nF̂n

¸−1 ∙
Ẑ 0n(ρ̂n)
F̂ 0n

¸
[Zn(ρ̂)γ + εn −∆nMnun]

=

∙
γ
0

¸
+

∙
Ẑ 0n(ρ̂n)Ẑn(ρ̂n) Ẑ 0n(ρ̂n)F̂n
F̂ 0nẐn(ρ̂n) F̂ 0nF̂n

¸−1 ∙
Ẑ 0n(ρ̂n)
F̂ 0n

¸
[εn −∆nMnun]

Therefore

n1/2
∙
γ̂n − γ

δ̂n

¸
= n

∙
Ẑ 0n(ρ̂n)Ẑn(ρ̂n) Ẑ 0n(ρ̂n)F̂n
F̂ 0nẐn(ρ̂n) F̂nF̂n

¸−1
∗ (A.5)

n−1/2
∙
Ẑ 0n(ρ̂n)(εn −∆nMnun)

F̂ 0n(εn −∆nMnun)

¸
= n(Ŝ0nŜn)

−1n−1/2
∙
Ẑ 0n(ρ̂n)(εn −∆nMnun)

F̂n(εn −∆nMnun)

¸
Given that ρ̂n

P→ ρ, and γ̂n,i
P→ φi, i = 1, ..., G, parts (a) and (b) of Assump-

tion 6 relating to QAA and QAS∗ imply

n(Ŝ0nŜn)
−1 P→ Q−1

ŜŜ
= (Q0AS∗Q

−1
AAQAS∗)

−1 (A.6)
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where QŜŜ is an (k + 1 + 2G)× (k + 1 + 2G) finite nonsingular matrix.
Now note that in (A.5) the term n−1/2Ẑ 0n(ρ̂n)Mnun∆n

P→ 0 since

n−1/2Ẑ 0n(ρ̂n)Mnun∆n = [n(Zn − ρ̂nMnZn)
0An][n(A

0
nAn)

−1] ∗ (A.7)

[n−1/2A0nMnun∆n]
P→ Q0A,(Z−ρMZ)Q

−1
AA[n

−1/2A0nMnun∆n]
P→ 0

where QA,(Z−ρMZ) is the first k + 1 columns of the finite matrix QAS∗ , and

n−1/2A0nMnun∆n
P→ 0 since the elements of n−1/2A0nMnun are 0P (1) and

∆n
P→ 0.
Still focusing on (A.5), we have in a similar fashion

n−1/2F̂ 0nMnun∆n = [n
−1F 0nAn][n(A

0
nAn)

−1][n−1/2A0nMnun∆n]
P→ 0 (A.8)

The results in (A.4)-(A.8) imply

n1/2
∙
γ̂n − γ

δ̂n

¸
−Q−1

ŜŜ
n−1/2

∙
Ẑ 0n(ρ̂n)
F̂ 0n

¸
εn

P→ 0 (A.9)

or, recalling that Ŝn = An(A
0
nAn)

−1A0n[Zn(ρ̂), Fn)

n1/2
∙
γ̂n − γ

δ̂n

¸
−Q−1

ŜŜ
Q0AS∗Q

−1
AAn

−1/2A0nεn
P→ 0 (A.10)

By Assumptions A.3 and A.4 the elements of An are uniformly bound in
absolute value, and by part (a) of Assumption A.6, n−1A0nAn limits to a
finite nonsingular matrix, QAA. Given this, and Assumption A.5 concerning
the innovations, the central limit theorem described in Kelejian and Prucha
(1998) implies

n−1/2A0nεn
D→ N(0, σ2εQAA) (A.11)

The proof of Theorem 1 then follows from (A.10) and (A.11), namely

n1/2
∙
γ̂n − γ

δ̂n

¸
= n1/2η̂n

D→ N(0, σ2εQ
−1
ŜŜ
)

since Q−1
ŜŜ
= Q0AS∗Q

−1
AAQAS∗ .
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