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Abstract

This paper considers functional central limit theorems for stationary absolutely

regular mixing processes. Bounds for the entropy with bracketing are derived using

recent results in Nickl and Pötscher (2007). More specifically, their bracketing metric

entropy bounds are extended to a norm defined in Doukhan, Massart and Rio (1995,

henceforth DMR) that depends both on the marginal distribution of the process and on

the mixing coefficients. Using these bounds, and based on a result in DMR, it is shown

that for the class of weighted Besov spaces polynomially decaying tail behavior of the

function class is sufficient to obtain a functional central limit theorem under minimal

conditions. A second class of functions that allow for a functional central limit theorem

under minimal conditions are smooth functions defined on bounded sets. Similarly, a

functional CLT for polynomially explosive tail behavior is obtained under additional

moment conditions that are easy to check. An application to a Hausman specification

test illustrates the theory.

Keywords: dependent process, empirical process, mixing, Besov classes, Hausman

test

∗University of Maryland, Department of Economics, Tydings Hall 3145, 7343 Prinkert Dr., College Park,

MD 20742, USA. email: kuersteiner@econ.umd.edu; http://econweb.umd.edu/˜kuersteiner/

1

http://arxiv.org/abs/1603.07978v1


1 Introduction

Central limit theorems for empirical processes defined on dependent data and indexed

by smooth classes of functions are being considered. Doukhan, Massart and Rio (1994)?

and Doukhan, Massart and Rio (1995)? (henceforth DMR) are landmark contributions in

this literature. The key insight from those papers is that a specific norm that combines

dependence properties and the marginal distribution of the process provides the appropriate

measure to assess the complexity of the function class in terms of bracketing entropy.

However, as pointed out by Rio (1998, 2013)?? the results of DMR are not minimal

in the sense of providing convergence under dependence assumptions equivalent to finite

dimensional cases. In fact, for a β-mixing process with mixing coefficients βm, central limit

theorems can be established under the minimal condition that
∑∞

m=0 βm < ∞. Rio (1998,

2013)? shows that such minimal results are possible in some cases involving VC classes

as well as certain Lipschitz type functions. In this paper the function classes for which

such minimal results are possible are expanded to smooth classes of rapidly asymptoting

functions as well as function classes defined on a bounded set. This is achieved by directly

employing recent results of complexity measures for weighted Besov spaces in Haroske and

Triebel (2005)? and Nickl and Pötscher (2007)?. In addition to these improvements over the

existing literature the paper also gives a number of explicit results that relate dependence

properties of the underlying process to smoothness properties of the indexing function class.

Separate results then need to be employed to arrive at explicit central limit theorems.

This is particularly relevant for dependent data where there is a potentially complex interac-

tion between the properties of the function class, dependence of the process and properties

of the marginal distribution of the process. An additional requirement, especially in econo-

metric applications, is that function spaces be defined on unbounded sets, typically R
d.

This further limits applicability of many results available in the iid literature.

Andrews (1991)? has given similar results under related conditions but essentially

under the assumption of function classes restricted to a bounded domain. Nickl (2007)?

mentions the possibility of obtaining explicit empirical process central limit theorems for

the dependent case using the approach pursued here but does not give such results. A

useful by-product of obtaining empirical central limit theorems for specific function classes

are stochastic equicontinuity results for these function classes. This fact is exploited in the

part of the paper that develops a Hausman specification test for linearity of the conditional

mean.

Empirical central limit theorems have a long history in probability and have found
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wide applications in statistics. Early results are due to Dudley (1978, 1984)?? and Pol-

lard (1982)?. General results for iid data using bracketing were obtained by Ossiander

(1987)? and Pollard (1989)? and based on Vapnik-Cervonenkis (VC) classes by Pollard

(1990)?. Early results for dependent processes include Berkes and Phillip (1977)? gen-

eralizing Donsker’s theorem to strongly mixing stationary sequence. Uniform CLT’s over

function classes for dependent processes were studied in Doukhan, Leon and Portal (1987)?,

Massart (1987)?, Andrews (1991)?, Andrews and Pollard (1994)? and Hansen (1996)?. Ar-

cones and Yu (1994)? consider absolutely regular processes indexed by VC classes. A very

influential paper is Doukhan, Massart and Rio (1995) which considers absolutely regular

processes under a bracketing condition, extending results from Ossiander to the dependent

case.

The paper is organized as follows. Section 2 presents definitions of smooth function

classes and measures of dependence and presents the main results of the paper. Section 3

contains a detailed comparison with other related results in the literature. An application

to the problem of testing for a linear conditional mean using a Hausman test is given in

Section 4. Proofs are collected in the appendix in Section A.

2 A Functional CLT for Dependent Processes

Let the sequence χt be (measurable) random variables defined on the probability space

(Ω,A,P) . Assume that {χt}∞t=−∞ is strictly stationary with values in the measurable space
(
R
d,Bd

)
where Bd is the Borel σ-field on R

d and d ∈ N+. Let Al = σ (χt : t ≤ l) be the

sigma field generated by , ...χl−1, χl and Dl = σ (χt : t ≥ l) . Following DMR, p.379 the

absolutely regular mixing coefficient βm is defined as

2βm = sup
∑

(i,j)∈I×J

|P (Ai ∩Dj)− P (Ai)P (Dj)|

where the supremum is taken over all finite partitions Ai and Dj of A0 and Dm. The

definition of βm is due to Volkonski and Rozanov (1959)? who give an alternative equivalent

formulation that is sometimes used in the literature (see for example Arcones and Yu,

1994).? Strong mixing is defined as

αm = sup
(A,D)∈A0×Dm

|P (D ∩A)− P (A)P (D)| ,

and ϕ-mixing is based on

ϕm = sup
(A,D)∈A0×Dm

|P (D|A)− P (D)|
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and the relationship 2αm ≤ βm ≤ ϕm ≤ 1 holds. The condition

∑∞
m=0 βm <∞ (1)

is frequently imposed in what follows.

Define the Euclidian norm for a real valued matrix or vector A as ‖A‖2 = trAA′.

Let χ ⊆ R
d be a non-empty Borel set. Define the sup-norm ‖f‖∞ = supx∈χ |f (x)| for any

measurable function f : X→R. Similarly, for r ≥ 1 let ‖f‖r,P =
(∫

|f (x)|r dP (x)
)1/r

where

P is the marginal distribution of χt and let Lr (P ) be the set of functions with ‖f‖r,P <

∞. The following definitions are given in Rio (1993)? and DMR. For a nonincreasing

function h : R → R define the inverse h−1 (u) = inf {t : h (t) ≤ u} . Let Qf (u) be the

quantile function defined as the inverse of the tail probability P (|f (χt)| > t) . Let ⌊t⌋ be

the largest integer smaller or equal to t ∈ R and define β−1 (u) = inf
{
t : β⌊t⌋ ≤ u

}
. Now

define the norm

‖f‖2,β =

√∫ 1

0
β−1 (u) (Qf (u))

2 du <∞.

DMR, Lemma 1, show that if (1) holds, the set L2,β (P ) of functions with ‖f‖2,β < ∞
equipped with the norm ‖.‖2,β is a normed subspace of L2 (P ) and that ‖f‖2,P ≤ ‖f‖2,β .

Consider the class of functions F with elements f : X → R. For a sample {χt}nt=1 define

the empirical process

vn (f) = n1/2
n∑

t=1

(f (χt)− E [f (χt)]) .

When (1) is satisfied, Rio (1993, Theorem 1.2) shows that for f ∈ L2,β (P ) ,

∞∑

t=−∞

|Cov (f (χ0) , f (χt))| ≤ 4 ‖f‖22,β

and for Γ (f, f) =
∑∞

t=−∞Cov (f (χ0) , f (χt)) it follows that

lim
n→∞

Var (vn (f)) = Γ (f, f) ≤ 4 ‖f‖22,β .

Following DMR and van der Vaart and Wellner (1996, p.83)? let F be a subset of a

normed space (V, ‖‖V ) of functions f : χ → R with norm ‖‖V . For any pair of functions,

l, u ∈ F and δ > 0, the set [l, u] ⊂ F is a δ-bracket if l ≤ u with ‖l − u‖V ≤ δ and for all

f ∈ [l, u] it follows that l ≤ f ≤ u. The bracketing number N[] (δ,F , ‖‖V ) is the smallest

number of δ-brackets needed to cover F . The entropy with bracketing is the logarithm of

N[] (δ,F , ‖‖V ) denoted by H[] (δ,F , ‖‖V ) .
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DMR show in Theorem 1 that if χt is a strictly stationary β-mixing sequence with (1)

holding, marginal distribution P and F ⊂ L2,β (P ) such that

∫ 1

0

√
H[]

(
δ,F , ‖‖2,β

)
dδ < +∞ (2)

then the finite dimensional vector vn (f1) , ..., vn (fk) converges weakly,

(vn (f1) , ..., vn (fk)) →d (v (f1) , ..., v (fk)) , (3)

where v (f) is a Gaussian process with covariance function Γ and a.s. uniformly continuous

sample paths and the asymptotic equicontinuity condition holds for every ǫ > 0:

lim
δ→0

lim sup
n→∞

P
∗

(
sup

‖f−g‖
2,β≤δ, f,g∈F

|vn (f)− vn (g)| > ǫ

)
= 0, (4)

where P
∗ is outer probability. The short hand notation vn (f)  v (f) is used when both

(3) and (4) hold.

Besov spaces are now defined as in Nickl and Pötscher (2007, Remark 2). For Lebesgue

measure λ let Lp

(
R
d, λ
)
be the set of all functions f : Rd → R with ‖f‖p,λ =

(∫
|f (x)|p dx

)1/p
<

∞. Let α = (α1, ..., αd) be a multi index of non-negative integers αi, with |α| =
∑d

i=1 αi

and let Dα denote the partial differential operator ∂|α|/ ((∂x1)
α1 ... (∂xd)

αd) of order |α|
in the sense of distributions - see Stein (1970, p. 121).? For a function f : Rd → R the

difference operator ∆z is defined as ∆zf (.) = f (.+ z) − f (.) and ∆2
zf (.) = ∆z (∆zf (.))

for z ∈ R
d. Let 0 < s <∞ and set s = [s]− + {s}+ where [s]− is integer and 0 < {s}+ ≤ 1.

For example, when s = 1, {s}+ = 1 and [s]− = 0. Let 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞. For f ∈
Lp

(
R
d, λ
)
with ‖Dαf‖p,λ <∞ and for 0 ≤ α ≤ [s]− define

‖f‖∗s,p,q,λ =
∑

0≤α≤[s]−

‖Dαf‖p,λ +
∑

α=[s]−

(∫

Rd

|z|−{s}+q−d
∥∥∆2

zD
αf
∥∥q
p,λ
dz

)1/q

for q <∞, and for q = ∞ define

‖f‖∗s,p,∞,λ =
∑

0≤α≤[s]−

‖Dαf‖p,λ +
∑

α=[s]−

sup
06=z∈Rd

|z|−{s}+
∥∥∆2

zD
αf
∥∥
p,λ
.

Then the Besov space Bs
pq

(
R
d
)
is defined as Bs

pq

(
R
d
)
=
{
f ∈ Lp

(
R
d, λ
)
: ‖f‖∗s,p,q,λ <∞

}
.

An equivalent definition can be given in terms of Fourier transforms F acting on the space

of complex tempered distributions on R
d (see Edmunds and Triebel, 1996, 2.2.1)?. Denote

by F−1 the inverse of F. Let ϕ0 (x) be a complex valued C∞-function on R
d with ϕ0 (x) = 1
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if ‖x‖ ≤ 1 and ϕ0 (x) = 0 if ‖x‖ ≥ 3/2. Define ϕ1 (x) = ϕ0 (x/2) − ϕ0 (x) and ϕk (x) =

ϕ1

(
2−k+1x

)
for k ∈ N. Let 0 ≤ s < ∞, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, with q = 1 if s = 0. For

f ∈ Lp

(
R
d, λ
)
and q <∞ define

‖f‖s,p,q,λ =

(
∞∑

k=0

2ksq
∥∥F−1 (ϕkFf)

∥∥q
p,λ

)1/q

and for q = ∞
‖f‖s,p,∞,λ = sup

0≤k<∞
2ks
∥∥F−1 (ϕkFf)

∥∥
p,λ
.

Then, it follows (see Nickl and Pötscher, 2007, p. 180) that

Bs
pq

(
R
d
)
=
{
f ∈ Lp

(
R
d, λ
)
: ‖f‖s,p,q,λ <∞

}

and the norms ‖f‖∗s,p,q,λ and ‖f‖s,p,q,λ are equivalent on Bs
pq

(
R
d
)
. Define 〈x〉 = 1 + ‖x‖2 .

Weighted Besov spaces are now defined as in Edmunds and Triebel (1996, 4.2) and Nickl

and Pötscher (2007, p.181) for ϑ ∈ R as

Bs
pq

(
R
d, ϑ
)
=

{
f :
∥∥∥f (.) 〈x〉ϑ/2

∥∥∥
s,p,q,λ

<∞
}
.

For s > d/p or s = d/p with q = 1 define

Bs
pq

(
R
d, ϑ
)
= Bs

pq

(
R
d, ϑ
)
∩
{
f : f (.) 〈x〉ϑ/2 ∈ C

(
R
d
)}

where C
(
R
d
)
is the vector space of bounded continuous real valued functions on R

d with the

sup-norm ‖.‖∞ . Nickl and Pötscher (2007, Proposition 3) show that f ∈ Bs
pq

(
R
d
)
implies

that f is bounded and if p < ∞ it also follows that lim‖x‖→∞ f (x) = 0. These restrictions

do not necessarily apply when f ∈ Bs
pq

(
R
d, ϑ
)
and ϑ < 0. This feature of weighted spaces

is important for applications in econometrics, as will be demonstrated in Section 4.

The following result gives upper bounds for entropy with bracketing on the normed

space L2,β (P ) . It extends Theorem 1 of Nickl and Pötscher (2007) to the space L2,β (P )

which plays a crucial role in obtaining a functional CLT for dependent processes.

Theorem 1 Assume that 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, ϑ ∈ R and s > d/p. Further assume

that F ⊂Bs
pq

(
R
d, ϑ
)
is nonempty and bounded. If ϑ > 0 then

H[]

(
δ,F , ‖‖2,β

)
-

{
δ−d/s if ϑ > s− d/p

δ−(ϑ/d+1/p)−1

if ϑ < s− d/p
.
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If ϑ ≤ 0 and if for some γ > 0 it holds that

∥∥∥〈χt〉(γ−ϑ)/2
∥∥∥
2,β

<∞

then it follows that

H[]

(
δ,F , ‖‖2,β

)
-

{
δ−d/s if γ > s− d/p

δ−(γ/d+1/p)−1

if γ < s− d/p
.

The difference between Nickl and Pötscher (2007, Theorem 1) and Theorem 1 is that

bracketing is with respect to the norm ‖.‖2,β rather than the conventional ‖.‖r,P norm on

Lr

(
R
d, P

)
. The result obtained here directly leads to a functional CLT based on the results

of DMR. A corollary to Theorem 1 is obtained for the case when the function space F is

restricted to a bounded domain X. Then the following result applies.

Corollary 2 Let X ⊂R
d and there exists a finite M with 〈x〉 ≤ M for all x ∈ X. Assume

that 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, ϑ ∈ R and s > d/p. Further assume that F ⊂Bs
pq (X, ϑ) is

nonempty and bounded. Then,

H[]

(
δ,F , ‖‖2,β

)
-

{
δ−d/s if ϑ > s− d/p

δ−(ϑ/d+1/p)−1

if ϑ < s− d/p
.

The bounds on bracketing numbers obtained in Theorem 1 and Corollary 2 can now

be applied to obtain a functional central limit theorem based on Theorem 1 of DMR. The

proof is based on using the tail decay properties of weighted function spaces to establish

that F ⊂ L2,β (P ) . This property is satisfied without further assumptions on the marginal

distribution of χt if ϑ > 0.

Theorem 3 Let χt be a strictly stationary and β-mixing process. Assume that (1) holds.

Assume that 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, ϑ ∈ R and s > d/p. Further assume that

F ⊂Bs
pq

(
R
d, ϑ
)
is nonempty and bounded. Assume that one of the following conditions

hold: (i) ϑ > 0, ϑ > s − d/p and s/d > 1/2; (ii) ϑ > 0, ϑ < s− d/p and ϑ/d+ 1/p > 1/2;

(iii) ϑ ≤ 0 and for some γ > 0 it follows that
∥∥∥〈χt〉(γ−ϑ)/2

∥∥∥
2,β

< ∞, γ > s − d/p and

s/d > 1/2; (iv) ϑ ≤ 0 and for some γ > 0 it follows that
∥∥∥〈χt〉(γ−ϑ)/2

∥∥∥
2,β

<∞, γ < s− d/p

and γ/d+1/p > 1/2. Then, vn (f) v (f) where v (f) is a Gaussian process with covariance

function Γ and a.s. uniformly continuous sample paths.

We note that the conditions 1/2 < s/d and 1/2 < γ/d + 1/p are the same as the

conditions given in Corollary 5 of Nickl and Pötscher (2007) for the iid case. Here these
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conditions need to hold in conjunction with bounds on the β-mixing coefficients and the

moment condition in (5).

Theorem 3 shows that an empirical process CLT can be obtained under the minimal

Condition (1) if F is a space of functions that asymptote to zero rapidly enough, measured

by the parameter ϑ > 0. If the decay is rapid enough relative to smoothness as in case (i)

then the functional CLT holds under the minimal condition s/d > 1/2. Even in case (ii)

one still obtains a result with only Condition (1) imposed on the dependence of the process.

An immediate corollary obtains for the case where χt takes values in a bounded set X ⊂R
d.

Corollary 4 Let χt be strictly stationary and β-mixing. Assume that P (χt ∈ X) = 1 for

a bounded Borel set X ⊂R
d and there exists a finite M with 〈x〉 ≤ M for all x ∈ X.

Assume that (1) holds. Assume that 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, ϑ ∈ R and for s, d < ∞
and s > d/p. Further assume that F ⊂Bs

pq (X) is nonempty and bounded. Assume that

s/d > 1/2. Then, vn (f) v (f) where v (f) is a Gaussian process with covariance function

Γ and a.s. uniformly continuous sample paths.

When the asymptotic behavior of f as ‖x‖ → ∞ is proportional to 〈χt〉−ϑ/2 and ϑ ≤ 0,

then more restrictive conditions on the dependence need to be imposed. This happens

implicitly through the condition

∥∥∥〈χt〉(γ−ϑ)/2
∥∥∥
2,β

<∞ (5)

which must hold for some γ > 0. The advantage of this condition is that it only involves

the marginal distribution of χt and not the properties of the functional class, other than

through the parameter ϑ. Results in DMR can be used to give simple sufficient conditions

for 5. Under additional assumptions about the order of βm and moment restrictions on the

marginal distribution of ‖χt‖2 the following result can be given for the case when ϑ ≤ 0,

i.e. when lim‖x‖ f (x) → 0 does necessarily not hold.

Theorem 5 Let χt be strictly stationary and β-mixing. Assume that for some r > 1,
∑∞

m=1m
1/(r−1)βm < ∞ holds. Assume that 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, ϑ ∈ R, ϑ ≤ 0 and

s > d/p. Further assume that F ⊂Bs
pq

(
R
d, ϑ
)
is nonempty and bounded. Assume that for

some γ > 0 such that (r (γ − ϑ)) > 1 it holds that either (i) γ > s− d/p and s/d > 1/2 or

(ii) γ < s− d/p and γ/d+1/p > 1/2, and that E
[
‖χt‖2r(γ−ϑ)

]
<∞. Then, vn (f) v (f)

where v (f) is a Gaussian process with covariance function Γ and a.s. uniformly continuous

sample paths.
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The form of the last theorem is particularly useful when a comparison with other result

in the literature is desired, since those results are often presented in terms of moment

bounds and size restrictions on mixing coefficients.

More generally, the results show that in weighted Besov spaces control over tail behavior

of the function class can be utilized to give sufficient conditions for a CLT that directly

involve the marginal distribution of χt rather than that of f (χt) . This is possible because

the asymptotic behavior of f (χt) is controlled by terms that are functions of ‖χt‖ . The
next corollary gives explicit versions of this result for Sobolev, Hölder and Lipschitz classes

of functions.

A special case of Besov spaces are Sobolev spaces. They are defined as follows (see Nickl

and Pötscher, 2007, Section 3.3.2). Let 1 < p <∞, real s ≥ 0 and

Hs
p

(
R
d
)
=
{
f ∈ Lp

(
R
d, λ
)
: ‖f‖s,p,λ ≡

∥∥F−1 (〈x〉s Ff)
∥∥
p,λ

<∞
}

where the norms are formulated in terms of the Fourier transform F.When s ≥ 0 is integer,

an equivalent norm on Hs
p

(
R
d
)
is given by

‖f‖ =
∑

0≤|α|≤s

‖Dαf‖p,λ .

Similar as before define the Banach space Hs
p

(
R
d
)
of continuous functions for s > d/p as

Hs
p

(
R
d
)
= Hs

p

(
R
d
)
∩
{
f :∈ C

(
R
d
)}

.

The space of weighted Sobolev functions is given by

Hs
p

(
R
d, ϑ
)
=
{
f : f (.) 〈x〉ϑ/2 ∈ Hs

p

(
R
d
)}

.

The following Corollary is a special case of Theorem 3. The proof follows in the same way

as the proofs of similar corollaries in Nickl and Pötscher (2007) by arguing that bounded

subsets of Hs
p

(
R
d, ϑ
)
are also bounded subsets of Bs

p∞

(
R
d, ϑ
)
.

Corollary 6 Let χt be a strictly stationary and β-mixing process. Assume that (1) holds.

Assume that 1 < p ≤ ∞, ϑ ∈ R and s > d/p. Further assume that F ⊂Hs
p

(
R
d, ϑ
)
is

nonempty and bounded. Assume that one of the following conditions hold: (i) ϑ > 0,

ϑ > s− d/p and s/d > 1/2; (ii) ϑ > 0, ϑ < s − d/p and ϑ/d + 1/p > 1/2; (iii) ϑ ≤ 0 and

for some γ > 0 it follows that
∥∥∥〈χt〉(γ−ϑ)/2

∥∥∥
2,β

<∞, γ > s− d/p and s/d > 1/2; (iv) ϑ ≤ 0

and for some γ > 0 it follows that
∥∥∥〈χt〉(γ−ϑ)/2

∥∥∥
2,β

<∞, γ < s− d/p and γ/d+1/p > 1/2.

Then, vn (f) v (f) where v (f) is a Gaussian process with covariance function Γ and a.s.

uniformly continuous sample paths.
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The following Corollary again considers the special case where the domain of the function

space is a bounded subset of Rd.

Corollary 7 Let χt be a strictly stationary and β-mixing process. Assume that P (χt ∈ X) =

1 where X ⊂R
d and there exists a finite M with 〈x〉 ≤ M for all x ∈ X. Assume that (1)

holds. Assume that 1 < p ≤ ∞, ϑ ∈ R and s, d < ∞ with s > d/p. Further assume

that F ⊂Hs
p (X,ϑ) is nonempty and bounded. Assume that s/d > 1/2. Then, vn (f) v (f)

where v (f) is a Gaussian process with covariance function Γ and a.s. uniformly continuous

sample paths.

For s > 0, s not integer, the Hölder space is the space Cs
(
R
d
)
of all ⌊s⌋-times differen-

tiable functions f with finite norm

‖f‖s,∞ =
∑

0≤|α|≤⌊s⌋

‖Dαf‖∞ +
∑

|α|=⌊s⌋

sup
x 6=y

|Dαf (x)−Dαf (y)|
|x− y|s−⌊s⌋

.

The weighted space Cs
(
R
d, ϑ
)
is given by

Cs
(
R
d, ϑ
)
=

{
f :
∥∥∥f (.) 〈x〉ϑ/2

∥∥∥
s,∞

<∞
}
.

Related is the Zygmund space Cs
(
R
d
)
for s > 0 defined in Triebel (1983, p.36) or Triebel

(1992, p.4). Let

‖f‖zs,∞ =
∑

0≤|α|≤[s]−

‖Dαf‖∞ +
∑

|α|=[s]−

sup
06=z∈Rd

|z|−{s}+
∥∥∆2

zD
αf
∥∥
∞
.

By Triebel (1992, p.5), Cs
(
R
d, ϑ
)
= Cs

(
R
d, ϑ
)
when s > 0 and s is not integer. The space

Cs (X) is considered by van der Vaart and Wellner (1996, p. 154) under the additional

constraint that ‖f‖s,∞ ≤M for some bounded constantM. As noted there, when 0 < s < 1,

Cs (X) contains the Lipschitz functions (see Adams and Fournier 2003, Theorem 1.34)?.

The following corollaries specialize previous results to Hölder spaces.

Corollary 8 Let χt be strictly stationary and β-mixing. Assume that (1) holds. Assume

that ϑ ∈ R and s > d/2. Further assume that F ⊂Cs
(
R
d, ϑ
)
is nonempty and bounded.

Assume that one of the following conditions hold: (i) ϑ > 0, ϑ > s and s/d > 1/2; (ii) ϑ > 0,

ϑ < s and ϑ/d > 1/2; (iii) ϑ ≤ 0 and for some γ > 0 it follows that
∥∥∥〈χt〉(γ−ϑ)/2

∥∥∥
2,β

< ∞,

γ > s and s/d > 1/2; (iv) ϑ ≤ 0 and for some γ > 0 it follows that
∥∥∥〈χt〉(γ−ϑ)/2

∥∥∥
2,β

<

∞, γ < s and γ/d > 1/2. Then, vn (f)  v (f) where v (f) is a Gaussian process with

covariance function Γ and a.s. uniformly continuous sample paths.
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The proof follows again from noting that F is a bounded subset in Bs
∞∞

(
R
d, ϑ
)
, see

Nickl and Pötscher (2007, p. 188). As before additional results for the cases of bounded

support can be stated as follows.

Corollary 9 Let χt be a strictly stationary and β-mixing. Assume that P (χt ∈ X) = 1

where X ⊂R
d and there exists a finite M with 〈x〉 ≤ M for all x ∈ X. Assume that (1)

holds. Assume that ϑ ∈ R , s, d < ∞ and s > 0. Further assume that F ⊂Cs (X, ϑ) is

nonempty and bounded. Assume that s/d > 1/2. Then, vn (f)  v (f) where v (f) is a

Gaussian process with covariance function Γ and a.s. uniformly continuous sample paths.

When ϑ ≤ 0 such that lim‖x‖ f (x) → 0 does not hold, a more specific result can be

given for functions in Cs
(
R
d, ϑ
)
as long as one is willing to impose additional conditions

on the rate of decay of βm. This is done in the following corollary.

Corollary 10 Let χt be strictly stationary and β-mixing. Assume that for some r > 1,
∑∞

m=1m
1/(r−1)βm < ∞ holds. Assume that ϑ ∈ R, ϑ ≤ 0 and s > 0. Further assume

that F ⊂Cs
(
R
d, ϑ
)
is nonempty and bounded. Assume that for some γ > 0 such that

(r (γ − ϑ)) > 1 it holds that either (i) γ > s and s/d > 1/2 or (ii) γ < s and γ/d > 1/2,

and that E
[
‖χt‖2r(γ−ϑ)

]
<∞. Then, vn (f) v (f) where v (f) is a Gaussian process with

covariance function Γ and a.s. uniformly continuous sample paths.

Corollary 10 should only be applied to cases where ϑ ≤ 0. As in previous results, when

ϑ > 0, the functional central limit theorem can be established under weaker assumptions.

3 Discussion and Comparison with the Literature

Andrews (1991)? considers the space Hs
p (X) where X is a bounded subset of Rd. He allows

for heterogeneous near epoch dependent processes which include as special cases strong

mixing stationary sequences. Since β-mixing considered here implies strong mixing the

results of this paper are obtained under somewhat stronger assumptions as far as the mixing

concept and stationarity requirements are concerned. On the other hand, no boundedness

of X is required. Andrews (1991, p.199) discusses some ways of relaxing the boundedness

assumption regarding the support but does not provide a general treatment. Moreover, as

pointed out by Nickl and Pötscher (2007, p. 179) it follows for f ∈Hs
p

(
R
d
)
, lim‖x‖ f (x) → 0

while this is not necessarily the case for f ∈ Hs
p

(
R
d, ϑ
)
and ϑ < 0.

Andrews (1991, Theorem 4 and Comment 1) obtains a functional central limit theorem

for strong mixing processes of size −2, f ∈ Hs
2 (X) and s/d > 1/2. Corollary 7 shows that,

11



at least under the additional assumption of stationarity and β-mixing but only satisfying

(1), this result can be obtained for all functions in Hs
p (X) with s/d > 1/2. Note that a β-

mixing process that satisfies Condition (1) also is α-mixing with
∑∞

m=1 αm <∞ but is not

necessarily α-mixing of size −2. In this sense, the conditions given here are complementary

to Andrews (1991).

Andrews (1991, Comment 3) also considers the case of strong mixing processes of size

−2 and Lipschitz function classes. More specifically, when X is a bounded interval on R, a

functional central limit theorem holds for functions f such that |f (x)− f (y)| ≤ K |x− y|s

with s ∈ (1/2, 1]. By Adams and Fournier (2003, Theorem 1.34) the function class Cs (X)

with s ∈ (1/2, 1) contains the Lipschitz functions with s ∈ (1/2, 1). Then, Corollary 9

can be used to establish a functional central limit theorem for Lipschitz functions and for

stationary β-mixing processes that satisfy Condition (1). Note that when s ∈ (1/2, 1) and

X is a bounded interval, it follows that for d = 1 the condition s/d > 1/2 is satisfied.

Rio (2013, Theorem 8.1) considers the generalized Lipschitz spaces Lip∗
(
s, p,Rd

)
de-

fined in Meyer (1992)?. Rio (2013, Proposition 8.1) gives an equivalent norm ‖f‖ond
for functions f ∈ Lip∗

(
s, p,Rd

)
. Meyer (1992, Proposition 7, p. 200) shows that every

f ∈ Lip∗
(
s, p,Rd

)
is in Bs

p∞

(
R
d
)
. Rio (2013, Theorem 8.1) shows that for every strongly

mixing and stationary sequence with
∑∞

m=1 αm < ∞, f ∈ Lip∗
(
s, p,Rd

)
with p ∈ [1, 2] ,

s > d/p and ‖f‖ond ≤ a for some constant a < ∞, the empirical process vn (f) satisfies a

stochastic equicontinuity condition and thus a functional central limit theorem.

The results given here complement the ones in Rio (2013). If a process is strictly

stationary and β-mixing with Condition (1) and f ∈ Bs
pq

(
R
d, ϑ
)
with ϑ > s − d/p then

Theorem 3(i) establishes a functional CLT under the conditions that s > d/p and s/d > 1/2.

In particular, if p = ∞,then the FCLT holds under the minimal condition that ϑ > s > 0

and s/d > 1/2. This case is not covered by the results in Rio (2013). To see this note that

Bs
p1∞

(
R
d
)
⊂ B

s+d/p1−d/p2
p2∞

(
R
d
)
for p1 ≤ p2 ≤ ∞ by Triebel (1983, 2.7.1) indicating that

the class Bs
p∞

(
R
d
)
for p > 2, which is covered by Theorem 3, is a larger class than the

one considered by Rio (2013). Further, from Haroske and Triebel (1994, 2005)?? it follows

for ϑ > 0, ϑ/d < 1, s1 − s2 > 0 and p1 (1− ϑ/d) < p2 that Bs1
p1∞

(
R
d, ϑ
)
is embedded

in Bs2
p2∞

(
R
d
)
. For example, when d = 1 the constraints s > 1/2, s > 1/p, ϑ < 1 and

p1 (1− ϑ) < 2 must hold for Bs1
p1∞

(
R
d, ϑ
)
to be embedded in Bs2

p2∞

(
R
d
)
. Thus, for Rio’s

results to encompass Theorem 3 one needs p < 2/ (1− ϑ) . The results of Rio (2013) then

cover the spaces Bs
p∞

(
R
d, ϑ
)
for values of ϑ < 1 and values of p ≤ ∞. However, as ϑ

approaches 0, the largest value p can take approaches 2 while such a constraint does not

12



apply to Theorem 3. On the other hand, Rio (2013) covers cases with ϑ = 0 and p ≤ 2

which can only be handled by Theorem 3 under additional moment restrictions and stronger

assumptions on the β-mixing coefficients.

When p = 2, then s/d > 1/2 and ϑ > s − d/2 lead to a FCLT by means of Theorem

3. This case essentially corresponds to Rio (2013) when s − d/2 is close to zero. By

Triebel (1983, 2.7.1)? it follows that Bs1
pq

(
R
d, ϑ
)
is continuously embedded in Bs0

pq

(
R
d, ϑ
)

for s1 ≥ s0. Thus, to apply Theorem 3 one can always choose s small enough such that

s − d/2 is arbitrarily small and therefore ϑ can be chosen small. If ϑ < s − d/p then

Theorem 3(ii) holds under the condition that ϑ/d > 1/2+ 1/p such that the CLT holds for

p sufficiently large and s/d > 1/2.

These arguments indicate that the results in Rio (2013) are slightly sharper for the case

when p ∈ [1, 2] because of the requirement in Theorem 3 that ϑ > s− d/p. In addition, by

Triebel (1983, 2.3.2, Proposition 2), Bs
pq0

(
R
d, ϑ
)
is continuously embedded in Bs

pq1

(
R
d, ϑ
)

for q0 ≤ q1 ≤ ∞ and p > 0 such that Bs
pq

(
R
d
)
is continuously embedded in Lip∗

(
s, p,Rd

)
.

This implies that the results in Rio cover the spaces Bs
pq

(
R
d
)
for p ∈ [1, 2] and q ≤ ∞.

In summary, the results in Theorem 3 are very similar to Rio (2013) when p ≤ 2 and

the tail behavior of the function class is controlled by a polynomial. However, the results

are achieved with simpler proofs. Because of the embedding result in Triebel (1983, 2.7.1),

additional function classes are covered by Theorem 3 that are not contained in Rio (2013)

when p > 2. Theorem 3 also covers cases when ϑ ≤ 0 and p ≤ ∞ that are not covered by Rio

(2013). However, in these situations somewhat stronger assumptions than (1) need to be

imposed on dependence. Here the case ϑ = 0 and p = ∞ may be of particular interest since

the tail behavior of f (x) no longer necessarily satisfies lim‖x‖ f (x) → 0 (see Proposition 3

of NP). This is one example of a case not covered by the results in Rio (2013).

The results in DMR are stated in general terms and form the basis for what is derived

here. Nevertheless, on p.403-405 DMR provide a number of different approaches with which

high level assumptions can be replaced with more primitive conditions. These methods do

not lead to the sharpest possible results in terms of conditions imposed on βm for the classes

of functions considered by Rio (2013) and results given here for functions whose tail decay

is well controlled by a polynomial or are restricted to a bounded domain. In particular,

Theorem 3 shows that ϑ > 0, i.e. when tail behavior is controlled by polynomials, the

functional CLT can be obtained without requiring the additional moment bound in (5).

As a result, neither the marginal distribution of χt nor the dependence of the process need

further restrictions beyond Condition (1). On the other hand, the results in DMR lead to
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similar conditions as the ones given in Theorem 5 for spaces where ϑ ≤ 0. The following

result illustrates this. By exploiting condition (2.11) in DMR and applying Theorem 1 in

Nickl and Pötscher (2007) one obtains the following.

Theorem 11 Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, ϑ ∈ R and s− d/p > 0. For 1 < r <∞ let χt be

a strictly stationary, absolutely regular process such that
∑∞

m=1m
1/(r−1)βm <∞. For some

γ > 0 it follows that ∥∥∥〈χt〉(γ−ϑ)/2
∥∥∥
2r,P

<∞ (6)

Let F be a bounded subset of Bs
pq

(
R
d, ϑ
)
. Further one of the conditions holds: i) γ > s−d/p

and 1/2 < s/d ii) γ < s − d/p and 1/2 < γ/d + 1/p. Then vn (f) v (f) where v (f) is a

Gaussian process with covariance function Γ and a.s. uniformly continuous sample paths.

The conditions of Theorem 11 are the same as given in Theorem 5 for the case when

ϑ ≤ 0. However, the limitation of Theorem 11 over Theorems 3 and 5 is that it does not

deliver a functional central limit theorem under the minimal condition (1) when ϑ > 0.

4 Application: A Hausman Test for Linearity

In this section the problem of testing for linearity in the conditional expectation E [y|x] of a
process χt = (yt, xt) is considered. The purpose of the section is to illustrate how the central

limit theory developed in this paper can be used to obtain limiting results for fairly general

classes of processes and conditional mean functions. Because lineartity and unbounded

domains are important ingredients to this application, the theory for weighted function

spaces is particularly relevant for this application. Minimal dependence conditions in (1)

could be obtained under the additional assumption that the domain of χt is bounded. This

is an immediate consequence from results in earlier sections and is only noted in passing.

The insights underlying the Hausman test are ingenious and have found applications

to a large number of testing problems in econometrics. In the particular case considered

here the idea is to estimate the conditional mean by a linear regression of yt on xt. This

estimate will not be consistent if the conditional expectation is non-linear, but is efficient,

at least under additional regularity conditions, if the expectation is linear. An alternative

estimator adds sieve basis functions to the linear regression. This estimator is consistent

for the parameter of the linear term even if the conditional expectation is non-linear. Thus,

under the null of linearity, both estimators should converge to the same parameter, however,

with one of them having a smaller variance. Under the alternative only the second estimator
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is consistent for the linear term in a series expansion of E [y|x] while the first estimator

will be asymptotically biased. The Hausman test exploits these differences in asymptotic

behavior by looking at the difference between the two estimators. Under the null, they

have a well defined limiting distribution, while under alternatives the difference diverges,

thus lending power to the test.

The estimation problem considered here is semi-parametric in nature. The distribution

of the test statistic depends on the non-parametric sieve estimator employed in the second

estimator. The influence function of the test statistic defines an empirical process that can

be used to obtain the limiting distribution for the test statistic under the null and local

alternatives. This is now formalized.

Let χt = (yt, xt) ∈ R
2 be a strictly stationary β-mixing process. Consider testing the

hypothesis that E [yt|xt] = ψ0 + ψ1xt is linear against the alternative that E [yt|xt] is a

general nonlinear function g(xt) of xt. The problem of testing for non-linearites thus can

be cast in a framework where a general model of the form

E [yt|xt] = ψ0 + ψ1xt + h (xt)

with h (xt) = g (xt) − ψ1xt is estimated. A linear regression estimator for ψ1 is gener-

ally inconsistent if h (xt) 6= 0. A Hausman test is then based on the squared difference

for two estimators of ψ1. Under the null, ψ1 is simply estimated as a regression of yt

on a constant and xt. Under the alternative, ψ1 is the coefficient of the linear term in

a series regression of yt on xt. Define P κ (z) = (p1κ (z) , ..., pκκ (z))
′, where p1κ (z) = z

for all κ, µκP = E [P κ (zt)] and P̃ κ (z) = P κ (z) − µκP . Define P = [P κ (x1) , ..., P
κ (xn)]

′ ,

MP =
[
P κ (x1)

κ − P̄ κ, ..., P κ (xn)− P̄ κ
]′

where M = In − n−11n1
′
n with 1n a vector

of length one composed of the element one, P̄ κ = n−1
∑n

t=1 P
κ (xt) . The series esti-

mator for E [y|x] is ĝ (x) = ψ̂0,κ + P κ (x) ψ̂κ where ψ̂κ = (P ′MP )−1 P ′My and where

ψ̂1κ is the first component of ψ̂κ. The estimator for the constant is given by ψ̂0,jκ =

ȳ − P̄ κψ̂κ with ȳ = n−1
∑n

t=1 yt. Partition P = [P1, P2] where P1 = [x1, ..., xn]
′ and

P2 =
[
(p2κ (x1) , ..., pκκ (x1))

′ , ...., (p2κ (xn) , ..., pκκ (xn))
′]′ . Then,

P ′MP =

[
P ′
1MP1 P ′

1MP2

P ′
2MP1 P ′

2MP2

]
:=

[
∆̂11 ∆̂12

∆̂21 ∆̂22

]
.

Using the partitioned inverse formula and focusing on the first component one obtains

ψ̂1,κ =
P ′
1

(
I −MP2∆̂

−1
22 P

′
2

)
My

(
∆̂11 − ∆̂12∆̂

−1
22 ∆̂21

) (7)
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whereas the linear regression estimator is given by

ψ̂1 =
P ′
1My

∆̂11

=

∑n
t=1 (xt − x̄) yt

∆̂11

. (8)

Let θκ =
(
ψ1, ψ1,κ

)
and θ̂κ =

(
ψ̂1, ψ̂1,κ

)
where ψ̂1,κ and ψ̂1 are given by (7) and (8)

respectively. A Hausman test of linearity then compares the two estimators by forming the

test statistic (
ψ̂1 − ψ̂1,κ

)2
/V̂ar

(
ψ̂1 − ψ̂1,κ

)
.

An alternative estimator for θκ is based on a Z-estimator1 using a plug in non-parametric

estimate ĥκ (xt) =MP2∆̂
−1
22 P2My. For this purpose define the moment function

m̂
(
χt, θκ, ĥκ

)
=


 (yt − ȳ − ψ1 (xt − x̄)) (xt − x̄)(

yt − ȳ − ψ1,κ (xt − x̄)− ĥκ (xt)
)
(xt − x̄)


 (9)

and let

mn (θκ) = n−1
n∑

t=1

m̂
(
χt, θκ, ĥκ

)
. (10)

The Z-estimator θ̃κ is obtained by solving mn

(
θ̃κ

)
= 0. The limiting distribution of

ψ̃1 − ψ̃1,κ depends on non-parametric sieve estimators used in the construction of ψ̃1,κ

and differs from the regression based estimators because the second component ψ̃1,κ is not

estimated efficiently. The joint limiting distribution for ψ̃1 and ψ̃1,κ can be analyzed in the

framework of Newey (1994).? The following condition defines the sieve bases used for the

non-parametric estimate ĥ.

Condition 1 The functions pjκ (xt) ∈ L2 (P ) for all j ≤ κ and all κ. Define the closed

span

G =sp {pjκ (xt) , 1 ≤ j ≤ κ, κ ∈ N+}

as the smallest closed subset of L2 (P ) that contains all pjκ (xt) (see Brockwell and Davis,

1991, p.54?). Further define the closed span

G1=sp {pjκ (xt) , 2 ≤ j ≤ κ, κ ∈ N+}

as the subspace that excludes the linear component p1κ (xt) .

1This terminology appreas for example in van der Vaart (1998, p 41).?
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The limiting distribution and thus the test statistic is analyzed for the following data-

generating mechanism under local alternatives. Let

yt = ψ0 + ψ1xt +
h0 (xt)√

n
+ ut

where ut = yt − E [yt|xt] such that E [ut|xt] = 0 and h0 (x) = h0 ∈ Bs
∞∞ (R, ϑ) for

some s > 0 and some ϑ ∈ R. Let E [xt] = µx and b̃ (h) = [b (h) , 0]′ with b (h) =

E [(xt − µx)h (xt)] . Under the null of a linear conditional mean the function h0 = 0. Let

Q = E [∂m (χt, θ, h) /∂θ] . Denote h0,n = h0/
√
n and let m (χt, θ, h) be a population analog

of m̂ (χt, θ, h) defined in (9) where in m(.) the empirical means ȳ and x̄ are replaced with

µy and µx. Under regularity conditions it follows from arguments similar to Newey (1994)

that for h fixed,

√
n
(
θ̃κ − θ

)
= Q−1

(
n−1/2

n∑

t=1

(m (χt, θ, h0,n) + γ (χt))

)
+ op (1) .

The correction term γ (χt) accounts for non-parametric estimation of the nuisance param-

eter h and can be derived using the methods developed in Newey (1994). It is given by

γ (χt) =

[
0

−δ (xt)

](
yt − ψ0 − ψ1xt −

h0 (xt)√
n

)

where δ (xt) = E [xt|G1] is the L2 (P ) projection of xt onto G1. Define the empirical process

vn (h) = n−1/2
n∑

t=1

(m (χt, θ, h0,n) + γh (χt)− E [m (χt, θ, h0,n)]) (11)

The central limit theorems developed in the first part of the paper play a dual role in

analyzing the limiting properties of θ̂κ. On the one hand, stochastic equicontinuity prop-

erties of the empirical process (11) can be used to verify regularity conditions in Newey

(1994). On the other hand, the functional central limit theorem allows for a stochastic

process representation of the limiting distribution of θ̂κ over the class of local alternatives.

Condition 2 Let χt be a strictly stationary and β-mixing process. Assume that (1) holds.

Assume that for some ϑ ∈ R, F ⊂Bs
∞∞

(
R
d, ϑh

)
is nonempty and bounded, 0 ∈ F and

h ∈ F . Assume that one of the following conditions hold: (i) ϑ ≤ −2 and for some γ > 0 it

follows that
∥∥∥〈χt〉(γ−ϑ−1)/2

∥∥∥
2,β

< ∞, γ > s and s > 1/2; (iii) ϑ ≤ −2 and for some γ > 0

it follows that
∥∥∥〈χt〉(γ−ϑ−1)/2

∥∥∥
2,β

<∞, γ < s and γ > 1/2.
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Condition (2) directly leads to the following lemma, which is a direct consequence of

Theorem 3. Let vt = ut
(
[xt − µx, xt − µx − δ (xt)]

′) and Γ (h) =
∑∞

j=−∞E
[
vtv

′
t−j

]
.

Lemma 12 Assume that Condition 2 holds. Let vn (h) be defined in (11). Then, vn (h) 

v (h) where v (h) is a Gaussian process with covariance function Γ (h) and a.s. uniformly

continuous sample paths.

The following high level regularity conditions are similar to conditions imposed in Newey

(1994)?. Since this section is mostly meant to highlight the usefulness of the functional

central limit theory discussed in this paper the regularity conditions are high level with

regard to the semiparametric estimators used here. Full development of these estimators is

beyond the scope of this paper.

Condition 3 i) Let ut = yt −E [yt|xt] . Then, E
[
u2t |xt

]
= σ2t (xt) and E

[
σ2t (xt)x

2
t

]
<∞.

ii)Let ĥ be a series estimator of h0,n. Then, there exists a sequence κn such that κn → ∞
as n→ ∞ and

√
n
∥∥∥ĥ− h0,n

∥∥∥
2

2,β
= op (1) .

iii) 1/
√
n
∑n

t=1

(
(xt − µx)

(
ĥt − h0,n

)
− γ (xt)

)
= op (1) .

The next lemma establishes the limiting process for the empirical moment function

mn (θκ) .

Lemma 13 Assume that Conditions 2 and 3 hold. Let mn (θκ) be defined in (10). Then,

√
nmn (θκ) = vn (h) + b̃ (h) + op (1)

and
√
nmn (θκ) v (h) + b̃ (h)

where v (h) is a Gaussian process with covariance function Γ (h) and a.s. uniformly con-

tinuous sample paths.

The following condition is needed to derive an asymptotic limiting distribution of the two

estimators for ψ1.Note that the conditions here are much simpler than related conditions

in Newey (1994) because the estimators considered here exist in closed form.

Condition 4 Let
(
δ̂κ (x1) , ..., δ̂ (xn)

)′
=MP2∆̂

−1
22 ∆̂21 be the empirical projection of xt− x̄

on G1.

i) For κn as specified in Condition 3 it follows that

Q̂ = n−1
n∑

t=1

[
(xt − x̄)2 0

0 (xt − x̄)2

]
→p Q
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where Q is a fixed, positive definite matrix that does not depend on h.

ii)Assume that n−1
(
∆̂11 − ∆̂12∆̂

−1
22 ∆̂21

)
= ∆11−∆12∆

−1
22 ∆21+op (1) and n

−1∆̂11 = ∆11+

op (1) where ∆11 = Var (xt) > 0 and ∆11 −∆12∆
−1
22 ∆21 = Var (xt − δ (xt)) > 0. Define

Λ =

[
∆11 ∆11 −∆12∆

−1
22 ∆21

∆11 −∆12∆
−1
22 ∆21 ∆11 −∆12∆

−1
22 ∆21

]
.

iii) Let γ̂ (xt) =
[
0,−δ̂ (xt)

]′ (
yt − ȳ − ψ1 (xt − x̄)− ĥ (xt)

)
. Then, it follows that

sup
h∈F

∥∥∥∥∥n
−1/2

n∑

t=1

m̂t (χt, θκ, h) −mt (χt, θκ, h)

∥∥∥∥∥ = op (1) .

iv) Assume that n−1
∑n

t=1 (xt − x̄)h0 (xt) = b (h) + op (1) .

We are now in a position to state the asymptotic limiting distribution of the estimators

for ψ1 under the null of h = 0 and local alternatives. This distribution forms the basis for

finding critical values for the Hausman test statistic for non-linearity.

Lemma 14 Assume that Conditions 2, 3 and 4 hold. Then, it follows that for h0 fixed,

√
n
(
θ̃κn − θ0

)
→d Q

−1
(
v (h) + b̃ (h)

)

where b̃ (0) = 0 and Q−1v (h) ∼ N
(
0, Q−1Γ (h)Q−1

)
for h fixed. If in addition, E

[
ut|At−1

]
=

0 and E
[
u2t |xt

]
= σ2 where σ2 is constant and σ2 > 0, then it follows that Q−1v (h) ∼

N
(
0, σ2Q−1ΛQ−1

)
where ∆ is defined in Condition 4(ii).

To form the Hausman statistic assume that Γ̂ is a consistent estimator of Γ and Q̂ is

consistent for Q by Condition 4. Let e = (1,−1)′ . A generalized Hausman statistic to test

the null hypothesis of a linear conditional mean then is given as

H̃1 =
n
(
ψ̃1 − ψ̃1,κ

)2

e′Q̂−1Γ̂Q̂−1e
(12)

If the additional conditions imposed on ut in Lemma 14 hold then test statistic can be

simplified to

H̃2 =

(
ψ̃1 − ψ̃1,κ

)2

σ̂2
(
∆̂12∆̂

−1
22 ∆̂21/∆̂2

11

) . (13)

The limiting distributions of the two Hausman statistics are summarized in the following

Theorem.
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Theorem 15 Assume that Conditions 2, 3 and 4 hold. Then, Ĥ1 defined in (12) converges

(pointwise for h0 fixed) to a non-central χ2 process

Ĥ1 →d χ
2
1

(
λ̃1

)

where for fixed h, χ2
1 (λ1) is a non-central chi-square distribution with one degree of freedom

and non-centrality parameter λ1 and

λ̃1 =
b (h)

∆11

√
e′Q−1ΓQ−1e

.

If in addition, E
[
ut|At−1

]
= 0 and E

[
u2t |xt

]
= σ2 where σ2 is constant and σ2 > 0, then

it follows that

Ĥ1 →d χ
2
1

(
λ̃2

)
, Ĥ2 →d χ

2
2

(
λ̃2

)

where the non-centrality parameter λ2 is given by

λ̃2 =
b (h)

∆11

√
σ2
(
∆12∆

−1
22 ∆21/∆2

11

) .

Theorem 15 establishes that under the null hypothesis of a linear conditional mean of yt

the limiting distribution of Ĥ1 and, under additional conditions, of Ĥ2 are asymptotically

χ2
1. For a significance level α, let cα be the critical value of the central χ2

1 distribution,

i.e. α = Pr
(
χ2
1 > cα

)
. The null hypothesis of a linear conditional mean then is rejected if

Ĥ1 > cα or Ĥ2 > cα.

The analysis in Theorem 15 also shows how the power of the test against local alter-

natives depends on the efficiency gain of ψ1 over ψ1κ under the null distribution. The

asymptotic power function of the test is given by Pr
(
χ21 (λ1) > cα

)
as h ranges over the set

of permissible alternatives.

Now assume that the martingale and homoskedasticity restrictions on ut are satisfied.

An alternative version of the test H2 then is based on the OLS estimators θ̂κ. By similar

arguments as in the proof of Lemma 14 it can be shown that the asymptotic variance

of ψ̂1 − ψ̂1,κ is σ2
((

∆11 −∆12∆
−1
22 ∆21

)−1 −∆−1
11

)
. This implies that the concentration

parameter for the regression based statistic is given by

λ̂2 =
b (h)

∆11

√
σ2
(

∆12∆
−1

22
∆21

∆11(∆11−∆12∆
−1

22
∆21)

) .

This result implies that the regression based test, while having the same limiting distribution

under the null of linearity, is less powerful against local alternatives than the plug-in Z-

estimator based test.
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5 Conclusion

The paper combines recent results on bracketing numbers for weighted Besov spaces with

a functional central limit theorem for strictly stationary β-mixing processes. It is shown

that by specializing the bracketing results to a particular Hilbert space of relevance to the

dependent limit theory, functional central limit theorems for dependent processes indexed

by Besov classes can be obtained directly. These insights lead to some new results in

function spaces with polynomially decaying functions over unbounded domains and smooth

functions over bounded domains.

It is shown how the limit theory can be used to simplify some proofs in the analy-

sis of semiparametric estimators and tests. An example for a Hausman test for linearity

is considered in detail. More specifically, the central limit theorem implies a stochastic

equicontinuity property that helps shorten arguments needed to establish the limiting be-

havior of the test. The central limit theory also allows to represent the limiting distribution

over a class of local alternatives under general conditions. Finally, a comparison of two ver-

sions of the test when stronger conditions on the model are imposed is provided. It is shown

that a test based on a less efficient plug in estimator is preferred over a regression based

version of the test.

A detailed analysis of non-parametric estimation in weighted Besov spaces is beyond

the scope of the paper and left for future research. As such, a number of the conditions

imposed in Section 4 are high level.
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A Proofs

Proof of Theorem 1. The proof follows the argument in Nickl and Pötscher (2007,

p.184). Let N (δ,F , ‖.‖∞) be the minimal covering number of F . with respect to ‖.‖∞
and H (δ,F , ‖.‖∞) = logN (δ,F , ‖.‖∞) the metric entropy for F . From Nickl and Pötscher

(2007, p.184, Eq.3) it follows that for all ϑ ∈ R and all γ > 0

H
(
δ,F ,

∥∥∥〈x〉(ϑ−γ)/2
∥∥∥
∞

)
-

{
δ−d/s if γ > s− d/p

δ−(γ/d+1/p)−1

if γ < s− d/p
(14)

Let Bi be closed balls in C
(
R
d, 〈x〉(ϑ−γ)/2

)
=
{
f : f (.) 〈x〉(ϑ−γ)/2 ∈ C

(
R
d
)}

with radius δ

(relative to the norm
∥∥∥(.) 〈x〉(ϑ−γ)/2

∥∥∥
∞
) covering F . Note that the number of such balls is

N
(
δ,F ,

∥∥∥(.) 〈x〉(ϑ−γ)/2
∥∥∥
∞

)
. Let fi be the center of Bi. Then each Bi contains the functions

f such that

sup
x∈Rd

|f (x)− fi (x)| 〈x〉(ϑ−γ)/2 ≤ δ.

The brackets [
fi (x)− δ 〈x〉(γ−ϑ)/2 , fi (x) + δ 〈x〉(γ−ϑ)/2

]

are contained in Bi and cover F . The L2,β (P ) norm of these brackets is

∥∥∥2δ 〈x〉(γ−ϑ)/2
∥∥∥
2,β
.

First consider the case when ϑ > 0. In that case one can choose γ = ϑ. Then,
∥∥∥2δ 〈x〉(γ−ϑ)/2

∥∥∥
2,β

=

‖2δ‖2,β . Now note that for the constant function δ

Qδ (u) = inf (t : P (|δ| > t) ≤ u) = δ

such that

‖2δ‖22,β =

∞∑

m=0

∫ βm

0
(Q2δ (u))

2 du = (2δ)2
∞∑

m=0

βm <∞

by Condition (1). One obtains from Nickl and Pötscher (2007, p.184, eq. 4) that

H[]

(
2δ

∞∑

m=0

βm,F , ‖‖2,β

)
≤ H (δ,F , ‖‖∞)

such that the result follows immediately from (14).

When ϑ ≤ 0 the brackets have size

2δ
∥∥∥〈x〉(γ−ϑ)/2

∥∥∥
2,β

<∞
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which is bounded by the conditions of the Theorem. It follows again by Nickl and Pötscher

(2007, p.184, eq. 4) that

H[]

(
2δ
∥∥∥〈x〉(γ−ϑ)/2

∥∥∥
2,β
,F , ‖‖2,β

)
≤ H

(
δ,F ,

∥∥∥(.) 〈x〉(ϑ−γ)/2
∥∥∥
∞

)
. (15)

Then, (14) delivers the stated result.

Proof of Corollary 2. From the proof of Theorem 1 the L2,β (P ) norm of the brackets

is, for all γ > 0 and all ϑ ∈ R,

∥∥∥2δ 〈x〉(γ−ϑ)/2
∥∥∥
2,β

≤ 2δM (γ−ϑ)/2
∞∑

m=0

βm <∞.

Therefore, the bound in (15) can be applied and the result again follows by (14).

Proof of Theorem 3. The result follows from Theorem 1 in DMR once all of their

conditions are verified. First show that F ∈ L2,β (P ) . Let L (β) be the class of integer

valued random variables with distribution function Gβ (n) = 1 − βn for any n ∈ N (see

DMR, p. 423). For any b ∈ L (β) and some real number K > 0 it follows that

E
[
bf2 (χt)

]
= E

[
b 〈χt〉−ϑ

(
f (χt) 〈χt〉ϑ/2

)2]
(16)

≤
(
sup
x∈Rd

sup
f∈F

∣∣∣f (x) 〈x〉ϑ/2
∣∣∣
)2

E
[
b 〈χt〉−ϑ

]

≤ K2E
[
b 〈χt〉−ϑ

]

where the first inequality is obtained by applying Proposition 3 of Nickl and Pötscher (2007)

and because f (x) 〈x〉ϑ/2 ∈ F by assumption. For any f ∈ F it follows from DMR, Eq.

(6.2) and

‖f‖2,β = sup
b∈L(β)

√
E [bf2 (χt)] (17)

≤ K sup
b∈L(β)

√
E
[
b 〈χt〉−ϑ

]

where the inequality uses (16). If ϑ ≥ 0 the inequality

〈χt〉−ϑ ≤ 1

together with b ≥ 0 leads to

‖f‖2,β ≤ K sup
b∈L(β)

√
E [b] = K ‖1‖2,β = K

√√√√
∞∑

m=0

βm. (18)
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When ϑ < 0, (17) leads to

‖f‖2,β ≤ K
∥∥∥〈χt〉−ϑ

∥∥∥
2,β
. (19)

Since in this case,

〈χt〉−ϑ ≥ 1

and for any γ > 0,

〈χt〉γ−ϑ ≥ 〈χt〉−ϑ

it follows from (19) that

‖f‖2,β ≤ K
∥∥∥〈χt〉γ−ϑ

∥∥∥
2,β

<∞ (20)

which is bounded by assumption. Thus, (18) and (20) show that f ∈ F ⊂Bs
pq

(
R
d, ϑ
)

with either ϑ ≥ 0 or ϑ < 0 and some γ > 0 such that
∥∥∥〈x〉(γ−ϑ)/2

∥∥∥
2,β

< ∞ implies that

F ∈ L2,β (P ) .

It remains to be show that

∫ 1

0

√
H[]

(
δ,F , ‖‖2,β

)
dδ < +∞. (21)

For case (i) Theorem 1 implies that H[]

(
δ,F , ‖‖2,β

)
- δ−d/s such that (21) holds for

d/2s < 1. For case (ii) Theorem 1 implies that H[]

(
δ,F , ‖‖2,β

)
- δ−(γ/d+1/p)−1

such that

(21) holds for 1/2 (γ/d+ 1/p)−1 < 1. Cases (iii) and (iv) follow in the same way. This

establishes the result.

Proof of Corollary 4. For any s > d/p fix ϑ such that ϑ > s− d/p. By construction

0 < ϑ <∞ and thus f (.) 〈x〉ϑ is bounded for x ∈ X and f (.) 〈x〉ϑ ∈ Bs
pq (X, ϑ). As in Nickl

and Pötscher (2007, p.186), conclude that F ⊆ Bs
pq (X, ϑ) . The results of Theorem 3 can

now be applied. In particular, using the bound in (16) leads to

‖f‖2,β ≤ K sup
b∈L(β)

√
E
[
b 〈χt〉−ϑ

]
≤ KM−ϑ/2

√√√√
∞∑

m=0

βm <∞.

The result now follows from the fact that 21 holds by the results in Corollary 2.

Proof of Theorem 5. From DMR Lemma 2, (S.1) and p. 404 it follows for φ (x) = xr

with r > 1 that
∞∑

m=1

m1/(r−1)βm <∞ (22)

and ∥∥∥〈χt〉(γ−ϑ)/2
∥∥∥
2r,P

<∞ (23)
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is sufficient for
∥∥∥〈χt〉(γ−ϑ)/2

∥∥∥
2,β

< ∞. Note that (23) holds since r (γ − ϑ) > 1 and by

Jensen’s inequality

∥∥∥〈χt〉(γ−ϑ)/2
∥∥∥
2r

2r,P
= E

[
〈χt〉r(γ−ϑ)

]
≤ 1 + E

[
‖χt‖2r(γ−ϑ)

]
<∞

where the expectation on the RHS is bounded by assumption. The result now follows from

Theorem 3.

Proof of Theorem 11. The result follows from DMR (eq 2.11) and (eq. S.1). In

particular, the condition ∫ 1

0

√
H[]

(
t, , ‖.‖2p

)
dt <∞ (24)

needs to hold. From Nickl and Pötscher (2007) it follows that under the stated conditions

in (i),

H[]

(
t, , ‖.‖2p

)
- t−d/s

such that (24) holds as long as d/ (2s) < 1 or 1/2 < s/d. Under conditions (ii) one obtains

similarly that

H[]

(
t, , ‖.‖2p

)
- t−(γ/d+1/p)−1

such that (24) holds as long as rp/ (γp+ d) < 1 or 1/2 < (γ/d+ 1/p) .

Proof of Lemma 12. It follows that

vn (h) = n−1/2
n∑

t=1

(m (χt, θ, h0,n) + γh (χt)− E [m (χt, θ, h0,n)])

= n−1/2
n∑

t=1

([
(ut + h0,n (xt)) (xt − µx)

ut (xt − µx − δ (xt))

]
−
[
n−1/2E [(xt − µx)h0 (xt)]

0

])

= n−1/2
n∑

t=1

[
ut (xt − µx)

ut (xt − µx − δ (xt))

]
(25)

−n−1
n∑

t=1

[
(xt − µx) h0 (xt)− E [(xt − µx)h0 (xt)]

0

]

where

n−1/2
n∑

t=1

[
ut (xt − µx)

ut (xt − µx − δ (xt))

]
 v (h)

by Theorem 3 and the fact that f (y, x) = (y − c− ψx− h (x)) (x−µx) ∈ Bs
∞∞

(
R
d,min (ϑ− 1,−2)

)

if h (x) ∈ Bs
∞∞

(
R
d, ϑ
)
. It remains to be shown that the second term in (25) is op (1) . Since

(xt − µx) h0 (xt) ∈ Bs
∞∞

(
R
d, ϑ− 1

)
it follows by Nickl and Pötscher (2007, Theorem 1(2)),
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a strong law of large numbers for β-mixing processes and the arguments in the proof of

Theorem 2.4.1. in van der Vaart and Wellner (1996, p. 122) that

sup
h∈F

∣∣∣∣∣n
−1

n∑

t=1

(xt − µx) h0 (xt)− E [(xt − µx)h0 (xt)]

∣∣∣∣∣ = op (1) .

Proof of Lemma 13. The proof closely follows arguments in Newey (1994, Sections 5

and 6), except for the fact that here ‖.‖2,β norms rather than Sobolev norms are the natural

norms to use. This is because stochastic equicontinuity of the empirical process determining

the limiting distribution is directly tied to the ‖.‖2,β norm. Let m
(
χt, θ, ĥ

)
= m̂t (θ) and

m (χt, θ, h0) = mt (θ) .Consider the expansion

√
nmn (θκ) = n−1/2

n∑

t=1

m̂t (θκ) = n−1/2
n∑

t=1

(mt (θκ) + γ (χt))

+n−1/2
n∑

t=1

(
m̂t (θκ)−mt (θκ)−D

(
χt, ĥ− h0

))
(26)

+n−1/2
n∑

t=1

(
D
(
χt, ĥ− h0

)
− γ (χt)

)
. (27)

Let An,ε = 1
{∥∥n−1/2

∑n
t=1 (m̂t (θ0)−mt (θ0) + γ (χt))

∥∥ > ε
}
andBn,ε = 1

{∥∥∥ĥ− h0

∥∥∥
2,β

≤ ε

}
.

Then,

lim
ε↓0

lim sup
n→∞

E [An,ε] ≤ lim
ε↓0

lim sup
n→∞

E
[
An,ε/2 ∩Bn,ε/2

]

+ lim
ε↓0

lim sup
n→∞

P

(∥∥∥ĥ− h0

∥∥∥
2,β

> ε/2

)

where the second term is zero by Condition 3(ii). Consequently, all subsequent arguments

are restricted to the set Bn,ε. By the Markov inequality (26) and (27) are op (1) if

E
∥∥∥n−1/2∑n

t=1

(
m̂t (θ0)−mt (θ0)−D

(
χt, ĥ− h0

))∥∥∥ (28)

≤
√
nE
∥∥∥m̂t (θ0)−mt (θ0)−D

(
χt, ĥ− h0

)∥∥∥
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tends to zero and
∥∥∥∥∥n

−1/2
n∑

t=1

(
D
(
χt, ĥ− h0

)
− γ (χt)

)∥∥∥∥∥

≤
∥∥∥∥∥n

−1/2
n∑

t=1

(
D
(
χt, ĥ− h0

)
−
∫
D
(
χ, ĥ− h0

)
dP

)∥∥∥∥∥ (29)

+

∥∥∥∥∥

∫
D
(
χ, ĥ− h0

)
dP − n−1/2

n∑

t=1

γ (χt)

∥∥∥∥∥ (30)

= op (1) .

For (28) note that because m (.) is linear in h one immediately obtains

D (χ, h− h0) =

[
0

(x− µx) (h− h0)

]
(31)

and

‖(m (χ, θ, h) −m (χ, θ, h0)−D (χ, h− h0))‖ = 0

such that the RHS of (28) is zero and consequently, the term in (26) is op (1). Note that

Newey (1994, Assumption 5.1) imposes that a second order approximation of m (χ, θ, h0) is

well behaved. This includes requiring that
√
n
∥∥∥ĥ− h0

∥∥∥
2
= op (1). Here, such a restriction

is not required because m (χ, θ, h0) is linear in h and thus second order terms are zero. For

similar conditions see Andrews (1994, p.58).?

For (29) consider D (χt, h− h0) = f (χt) where only the second component is relevant.

Thus focus on

f (χt) = (xt − µx)h (xt) (32)

and where f (χt) is a class of functions indexed by h ∈ Fh∈Bs
∞∞ (R,ϑh). It follows that

f ∈ F ⊂Bs
∞∞ (R,ϑh − 1) as long as h ∈ Fh. By Theorem 3 the empirical process

vn (f) := n−1/2
n∑

t=1

(
f (χt)−

∫
f (χt) dP

)

satisfies vn (f)  v (f) where v (f) is a Gaussian process. Note that Theorem 3 is estab-

lished by checking all the conditions for DMR, Theorem 1. That Theorem in turn is estab-

lished by establishing stochastic equicontinity of the process vn (f) . This shows that vn (f)

is stochastically equicontinuous. Now, for f0,t = (xt − µx)h0 (xt) and ft = (xt − µx)h (xt)

it follows by a routine argument that

n−1/2
n∑

t=1

(
D (χt, h− h0)−

∫
D (χ, h− h0) dP0

)
= n−1/2

n∑

t=1

(
ft − f0,t −

∫
(ft − f0,t) dP

)
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and

Pr

(∥∥∥∥n−1/2∑n
t=1

(
D
(
χt, ĥ− h0

)
−
∫
D
(
χ, ĥ− h0

)
dP

)∥∥∥∥ > δ

)

≤ Pr

(
sup

‖h−h0‖2,β≤ǫ

∥∥∥∥∥n
−1/2

n∑

t=1

(
ft − f0,t −

∫
(ft − f0,t) dP

)∥∥∥∥∥ > δ/2

)
(33)

+Pr

(∥∥∥ĥ− h0

∥∥∥
2,β

> δ/2

)
(34)

where (33) tends to zero as δ ↓ 0 by the fact that vn (f) is stochastically equicontinuos and

(34) tends to zero as δ ↓ 0 by Condition 3(ii). Together (33) and (34) establishes that (29)

is op (1).

To establish that (30) is op (1) the conditions in Newey (1994, Assumption 5.3) are

sufficient: there is a function γ (χt) such that

E [γ (χt)] = 0, (35)

E
[
‖γ (χt)‖2

]
<∞, (36)

and for all
∥∥∥ĥ− h0

∥∥∥
2,β

small enough,

n−1/2
n∑

t=1

(
γ (χt)−

∫
D
(
χt, ĥ− h0

)
dP

)
→p 0. (37)

For (35) note that formally differentiating m (χ, θ, h) with respect to h leads to D (χ, h) in

(31). Let τ index a path (see Newey, 1994, p.1352 for a definition). Let δ (xt) = E [xt|G1]

be the projection of xt onto G1 such that E
[
D
(
χt, h̃

)]
= E

[
E [(xt − µx) |G1] h̃

]
for all

h̃ ∈ G1. Let g (xt, τ ) be the projection of yt on G for a path τ (see Newey, 1994, p. 1361).

Since G1 ⊂ G it follows by the Projection Theorem that Eτ [δ (xt) g (xt, τ)] = Eτ [δ (xt) yt] .

Then, it follows from Newey (1994, Eq. 4.5) that

∂E [D (χ, h (τ))] /∂τ = E [δ (xt) (yt − g (xt))S (χt)]

where S (χt) is the score of a regular path (see Newey, 1994, Theorem 2.1). By Newey

(1994, Theorem 4.1) the correction term γ (χt) is given by

γ (χt) = δ (xt)ut.

such that E [γ (χt)] = 0 follows immediately from E [ut|xt] = 0.

For (36) note that

|γ (χt)| ≤ |E [xt|G1]ut| ≤ E [|xt| |G1] |ut|
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Then, by Jensen’s inequality

E
[
|γ (χt)|2

]
≤ E

[
(E [|xt| |G1])

2 u2t

]
≤ E

[
x2tu

2
t

]

= E
[
σ2t (xt)x

2
t

]
<∞

where σ2t (xt) = E
[
u2t |xt

]
and E

[
σ2t (xt) x

2
t

]
is bounded by Condition (3)(i).

Finally, (37) is satisfied by Condition (3)(iii). This establishes that (26) and (27) are

op (1) and therefore that the first claim of the Lemma holds. The second part of the Lemma

follows from Lemma (12).

Proof of Lemma 14. The estimator θ̃κ solves

mn

(
θ̃κ

)
= n−1

n∑

t=1

m̂
(
χt, θ̃κ, ĥκ

)
= 0

which means that it can be expressed in closed form as as

[
ψ̃1

ψ̃1,κ

]
= n−1Q̂−1


 P ′

1My

P ′
1

(
I −MP2∆̂

−1
22 P

′
2

)
My


 .

Using the fact that [
ψ1

ψ1,κ

]
= n−1Q̂−1

[
ψ1P

′
1MP1

ψ1,κP
′
1MP1

]

it follows that

√
n

[
ψ̃1 − ψ1

ψ̃1,κ − ψ1,κ

]
= Q̂−1 1√

n

n∑

t=1


 (xt − x̄) (yt − ψ1 (xt − x̄))

(xt − x̄)
(
yt − ȳ − ψ1,κ (xt − x̄)− ĥ (xt)

)

(38)

= Q̂−1 1√
n

n∑

t=1

m̂t

(
χt, θκ, ĥ

)
(39)

By Condition 4(i) it follows that Q̂−1 − Q−1 = op (1) . Then it follows by Condition 4(iii)

and (iv) that
√
n
(
θ̃ − θκ

)
= Q−1 1√

n

n∑

t=1

mt

(
χt, θκ, ĥ

)
+ op (1) .

The result then follows from Lemmas 12 and 13.

Proof of 15. It follows directly from Lemma 14 that for fixed h,

H̃
1/2
1 :=

√
n
(
ψ̃1 − ψ̃1,κ

)

√
e′Q̂−1Γ̂Q̂−1e

= e′
(√

n
(
θ̃ − θκ

))
→d

Q−1v (h)√
e′Q−1ΓQ−1e

+
e′Q−1b̃ (h)√
e′Q−1ΓQ−1e

29



where
e′Q−1b̃ (h)√
e′Q−1ΓQ−1e

=
b (h)

∆11

√
e′Q−1ΓQ−1e

and
Q−1v (h)√
e′Q−1ΓQ−1e

∼ N (0, 1) .

The result follows now from the continuous mapping theorem and the fact that H̃1 =(
H̃

1/2
1

)2
. The result for H̃2 follows in the same way.
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