Attention Overload

Matias D. Cattaneo Paul H. Y. Cheung Xinwei Ma Yusufcan Masatlioglu October 19, 2023

Introduction

Abundance of alternatives

So many options

Attention is scarce

• Consumer simply cannot pay attention to everything

Competitions over consumer's attention are fierce

• Global spending on advertising is around \$674 billion every year

- Random attention
- Recent literature

Manzini and Mariotti (2014), Brady and Rehbeck (2016), Aguiar (2017), Cattaneo et al (2020)

$$\pi(a|S) = \sum_{A \subseteq S} \mathbb{1}(a \text{ is }\succ\text{-best in } A) \cdot \mu(A|S)$$

Attention Overload

Each alternative gets less attention when there are more alternatives

How is attention affected when some alternatives are eliminated?

Adam: Full attention in $S: \mu_{Adam}(S|S) = 1$ Ben: (Extreme) Limited attention in $S: \mu_{Ben}(\{a\}|S) = 1$

What will they do in a smaller set $T \subseteq S$?

	$\mu_{Adam}(T T)$	$\mu_{Ben}(\{a\} T)$
Attention Overload	1	≤ 1
Tversky 1972 Aguiar 2017	1	1
Brady-Rehbeck 2016	No restriction	1
Cattaneo et al 2020	No restriction	1
Demirkan-Kimya 2020	No restriction	No restriction

Using a non-parametric approach:

- Attention Overload Model (AOM):
 - Single Preference + Random Attention Rule
- Heterogeneous Preference AOM (HAOM)
 - Random Preference + Random Consideration Set Mapping

Attention Frequency

$$\underbrace{\phi(a|S)}_{\text{Attention frequency of }a} := \sum_{a \in A \subseteq S} \mu(A|S)$$

Attention Overload $\phi(a|S) \leq \phi(a|T) ext{ for } a \in T \subseteq S$

Attention Overload
$$\phi(a|S) \leq \phi(a|T) \mbox{ for } a \in T \subseteq S$$

 π is a Attention Overload Model if there exists \succ , μ satisfying attention overload s.t.

$$\pi(a|S) = \sum_{A \subseteq S} \mathbb{1}(a \text{ is } \succ \text{-best in } A) \cdot \mu(A|S)$$

- Require testing against
 - ► All ≻
 - \blacktriangleright All μ

Let $U_{\succ}(a)$ be the weak upper contour set of a.

Axiom (\succ -Regularity) $\pi(U_{\succ}(a)|T) \ge \pi(a|S)$ for all $a \in T \subseteq S$

• Weaker than Regularity: $\pi(a|T) \ge \pi(a|S)$

Axiom (\succ -Regularity) $\pi(U_{\succ}(a)|T) \ge \pi(a|S)$ for all $a \in T \subseteq S$

Characterization

 π has an AOM representation with \succ if and only if π satisfies $\succ\text{-Regularity.}$

 $\bullet\,$ Bypass the construction of $\mu\,$

Lemma (Revealed Preference-1) Let π be an AOM with \succ . If $\pi(b|S) > \pi(b|\{a,b\})$ and $\{a,b\} \subseteq S$, then it must be $a \succ b$. *Lemma* (Revealed Preference-1) Let π be an AOM with \succ . If $\pi(b|S) > \pi(b|\{a,b\})$ and $\{a,b\} \subseteq S$, then it must be $a \succ b$.

Proof:

Lemma (Revealed Preference-1) Let π be an AOM with \succ . If $\pi(b|S) > \pi(b|\{a,b\})$ and $\{a,b\} \subseteq S$, then it must be $a \succ b$.

Proof:

Lemma (Revealed Preference-1) Let π be an AOM with \succ . If $\pi(b|S) > \pi(b|\{a,b\})$ and $\{a,b\} \subseteq S$, then it must be $a \succ b$.

Proof:

Lemma (Revealed Preference-1) Let π be an AOM with \succ . If $\pi(b|S) > \pi(b|\{a, b\})$ and $\{a, b\} \subseteq S$, then it must be $a \succ b$.

Proof:

$$\begin{split} \phi(b|\{a,b\}) &\geq \phi(b|S) \\ \sum_{b \in J \subseteq \{a,b\}} \mu(J|\{a,b\}) &\geq \sum_{b \in J \subseteq S} \mu(J|S) \\ \pi(b|\{a,b\}) + \sum_{\substack{b \in J \subseteq \{a,b\}\\ b \text{ is not } \succ \text{-best}}} \mu(J|\{a,b\}) &\geq \pi(b|S) + \sum_{\substack{b \in J \subseteq S\\ b \text{ is not } \succ \text{-best}}} \mu(J|S) \\ \sum_{\substack{b \in J \subseteq \{a,b\}\\ b \text{ is not } \succ \text{-best}}} \mu(J|\{a,b\}) &\geq \pi(b|S) - \pi(b|\{a,b\}) > 0 \end{split}$$

Lemma (Revealed Preference-1) Let π be an AOM with \succ . If $\pi(b|S) > \pi(b|\{a, b\})$ and $\{a, b\} \subseteq S$, then it must be $a \succ b$.

Proof:

$$\begin{split} \phi(b|\{a,b\}) &\geq \phi(b|S) \\ \sum_{b \in J \subseteq \{a,b\}} \mu(J|\{a,b\}) &\geq \sum_{b \in J \subseteq S} \mu(J|S) \\ \pi(b|\{a,b\}) + \sum_{\substack{b \in J \subseteq \{a,b\}\\ b \text{ is not } \succ-best}} \mu(J|\{a,b\}) &\geq \pi(b|S) + \sum_{\substack{b \in J \subseteq S\\ b \text{ is not } \succ-best}} \mu(J|S) \\ \sum_{\substack{b \in J \subseteq \{a,b\}\\ b \text{ is not } \succ-best}} \mu(J|\{a,b\}) &\geq \pi(b|S) - \pi(b|\{a,b\}) > 0 \end{split}$$

Lemma (Revealed Preference-2) Let π be an AOM with \succ .

If $\pi(b|S) > \pi(b|T)$ for $T \subseteq S$, then some alternatives in T are better than b.

$\pi(\cdot S)$	a	b	c	d
$\{a, b, c, d\}$	0.05	0.1	0.1	0.75
$\{a, b, c\}$	0.8	0.2	0	_
$\{b, c, d\}$	-	0.7	0.3	0
$\{a,b\}$	0.9	0.1	-	-

• Initially, there are 24(=4!) possible preferences

- Regularity violations: $\{a,b,c\} \rightarrow \{a,b\}$, $a \succ b$
 - Only 12 possible preferences
- Regularity violations: $\{a,b,c,d\} \to \{a,b,c\},$ either $a \succ c \text{ or } b \succ c$
 - Only 8 possible preferences
- Regularity violations: $\{a, b, c, d\} \rightarrow \{b, c, d\}$, either $b \succ d$ or $c \succ d$
 - Only 4 possible preferences
- Applying \succ -Regularity
 - Only two left: $a \succ b \succ c \succ d$ and $a \succ c \succ b \succ d$

Revealed Attention

Let π be an AOM and (μ, \succ) represent π . Then, for every a and S such that $a \in S$,

$$\max_{R \supseteq S} \pi(a|R) \leq \phi(a|S) \leq \min_{T \subseteq S: \ a \in T} \pi(U_{\succeq}(a)|T)$$

- New revealed attention in the literature
- Lower bound is independent of preference
- The bound is "tight"

$\pi(\cdot S)$	a	b	с	d
$\{a, b, c, d\}$	0.05	0.1	0.1	0.75
$\{a, b, c\}$	0.8	0.2	0	_
$\{b, c, d\}$	-	0.7	0.3	0
$\{a, b\}$	0.9	0.1	-	-

- \bullet Focus on the choice set $\{a,b,c,d\}$
- $\phi(a|\{a,b,c,d\})$ must be 0.05
- $\phi(b|\{a,b,c,d\})$ and $\phi(c|\{a,b,c,d\})$ must be between 0.1 and 0.25
- $\phi(d|\{a, b, c, d\})$ must be between 0.75 and 1

heterogeneous preferences

- AOM assumes a single preference
 - Nest Random Utility Model in terms of choice behavior
 - ► > is not always fully revealed
- Allowing all preferences
 - No hope in identification
- Heterogenous Preference AOM (HAOM_▷)
 - ▶ Limiting variability of preference and attention through a list, ▷
 - Assume an item's placement on a list *means something* for attention and evaluation.

A list (linear order) \triangleright over X

- Amazon's product list
- Google's search results
- A ballot for a specific election

denoted by $\langle a_1, a_2, \ldots, a_{|X|} \rangle$

- Each type (\succ,Γ)
 - \blacktriangleright >: preference
 - \blacktriangleright Γ : deterministic attention rule
- Both preferences and attention are based on the underlying list \triangleright

- $\bullet~\Gamma$: list-based attention if
 - $\emptyset \neq \Gamma(S) \subseteq S$ (limited consideration)
 - $a_k \in \Gamma(S)$ implies $a_j \in \Gamma(S)$ if $j \le k$ (following list)
 - $a_k \in \Gamma(S)$ implies $a_k \in \Gamma(T)$ if $a_k \in T \subseteq S$ (attention overload)
 - $\Gamma(S) = S$ whenever |S| = 2 (full attention at binaries)
- \bullet All list-based attention denoted by $\mathcal{AO}_{\triangleright}$

- The list and possible preferences are the same except for one alternative
- For all j < k, define \succ_{kj} as a linear order where the kth alternative in \triangleright is moved to the jth position.
 - $\begin{array}{l} \blacktriangleright \succ_{21} = \langle a_2, a_1, a_3, a_4, \dots, a_{|X|} \rangle \\ \blacktriangleright \succ_{42} = \langle a_1, a_4, a_2, a_3, \dots, a_{|X|} \rangle \\ \blacktriangleright \succ_{11} = \langle a_1, a_2, a_3, a_4, \dots, a_{|X|} \rangle = \triangleright \end{array}$
- $\mathcal{P}_{\triangleright}$: all such preferences and $|\mathcal{P}_{\triangleright}| = \frac{n(n-1)}{2} + 1 < n!$

Heterogeneous Preference Attention Overload

We say that a probabilistic choice function π has a *Heterogeneous Preference Attention Overload* representation with respect to \triangleright (HAOM_{\triangleright}) if there exists τ on $\mathcal{AO}_{\triangleright} \times \mathcal{P}_{\triangleright}$ such that

$$\pi(a|S) = \tau \Big(\Big\{ (\Gamma,\succ) \in \mathcal{AO}_{\triangleright} \times \mathcal{P}_{\triangleright} : a \text{ is } \succ \text{-best in } \Gamma(S) \Big\} \Big).$$

- Assume the list is observable
- Later, we allow for unobservable lists

Axiom (List-Regularity) For all $a_j, a_k \in T \subset S$ with j < k, $\pi(a_k|T) \ge \pi(a_k|S)$. Axiom (List-Monotonicity) For all a_j, a_k, a_ℓ such that $j < k < \ell$, $\pi(a_\ell|a_k) \ge \pi(a_\ell|a_j)$. Axiom (List-Boundedness) $\sum_{j=2}^{|X|} \pi(a_j|a_{j-1}) \le 1$. Axiom(List-Regularity)For all $a_j, a_k \in T \subset S$ with j < k, $\pi(a_k|T) \ge \pi(a_k|S)$.Axiom(List-Monotonicity)For all a_j, a_k, a_ℓ such that $j < k < \ell$, $\pi(a_\ell|a_k) \ge \pi(a_\ell|a_j)$.Axiom(List-Boundedness) $\sum_{j=2}^{|X|} \pi(a_j|a_{j-1}) \le 1$.

Characterization

Given \triangleright , a choice rule π satisfies the above three axioms if and only if π has an HAOM_{\triangleright} representation.

Preference Types

Let τ be a HAOM_> representation of π . Then (i) $\tau(\succ_{kj}) = \pi(a_k|a_j) - \pi(a_k|a_{j-1})$ for k > j > 1, (ii) $\tau(\succ_{k1}) = \pi(a_k|a_1)$, and (iii) $\tau(\succ_{11}) = 1 - \sum_{k=2}^{|X|} \pi(a_k|a_{k-1})$.

Preference Types

Let τ be a HAOM_{\triangleright} representation of $\pi.$ Fix S and let a_{s_1} be its top-listed item. Then, for $k>s_1$,

$$\pi(a_k|S) \le \tau(\{(\Gamma,\succ): \Gamma \in \mathcal{AO}_{\triangleright} \text{ and } a_k \succ a_{s_1}\})$$

• Non-binary choice data provides bounds on types

Revealed Attention

Let τ be a HAOM_b representation of π . Fix S and let a_{s_1} be its top-listed item. Then, (i) $\phi(a_{s_1}|S) = 1$; (ii) for $a_k \in S$ and $k > s_1$ $\max_{R \supseteq S} \sum_{\ell \ge k} \pi(a_\ell | R) \le \phi(a_k | S) \le 1 - \sum_{s_1 < j \le k: a_j \in S} \left(\max_{R \supseteq \{a_{s_1}, a_j\}} \pi(a_j | R) - \min_{\{a_{s_1}, a_j\} \subseteq T \subseteq S} \pi(a_j | T) \right)$

```
Let aL_{\pi}b if

(i) there exists \{a, b\} \subseteq S \subseteq T such that \pi(a|S) < \pi(a|T), or

(ii) there exists c such that \pi(c|b) > \pi(c|a) and \pi(b|c) > \pi(b|a).
```

Revealed List

If a strict π has a HAOM_ $\triangleright}$ representation, the list is uniquely identified up to the last two elements by L_ $\pi.$

- Attention Overload
 - A missing piece in the random attention literature
- \bullet Two models: AOM and HAOM $_{\triangleright}$
 - Applicable in different circumstances

I hope I did not cause Attention Overload