A Random Attention Model

Matias D. Cattaneo U. Michigan

Yusufcan Masatlioglu U. Maryland **Xinwei Ma** U. Michigan

Elchin Suleymanov U. Michigan

RA Examples Revealed Preference Characterization Extension

Limited Attention

Abundance of Alternatives

Ex: Almost 500 search results for 50-59 inch TV

Limited Attention

- Abundance of Alternatives
- Ex: Almost 500 search results for 50-59 inch TV

- Some facts about Amazon customers' search behavior
 - 70%
 - 35%

Limited Attention

- Abundance of Alternatives
- Ex: Almost 500 search results for 50-59 inch TV

- Some facts about Amazon customers' search behavior
 - 70%
 - 35%
- Limited Attention: a serious critique for revealed preferences

Limited (Deterministic) Attention

• Masatlioglu, Nakajima, and Ozbay (2012) shows that inferring preference from choices is possible (Revealed Preferences).

 \triangleright Two-stage Choice

Random Consideration

- The revealed preferences result of Masatlioglu, Nakajima, and Ozbay (2012) is not applicable if the consumer utilizes
 - multiple E-commerces

• and/or multiple platforms

Random Attention

Random Attention

Stochastic Choice

$$\pi(a|S) = \sum_{\substack{T \subset S, \\ a \text{ is } \succ \text{-best in } T}} \mu(T|S)$$

 $\blacksquare \succ \enspace$ - complete and transitive

æ

Two Approaches

- Two possible approaches
 - 1) Committing to a particular attention formation
 - 2) Imposing intuitive and nonparametric restrictions on μ

Two Approaches

- Two possible approaches
 - 1) Committing to a particular attention formation
 - 2) Imposing intuitive and nonparametric restrictions on μ
- We choose the second one
 - our revealed preference result is applicable for multiple attention formations as long as our restriction is satisfied.

Monotonic Attention

Monotonic Attention: If $a \notin T$, then

 $\mu(T|S) \le \mu(T|S-a)$

Some Examples of Monotonic Attention Formations

- Fixed Independent Consideration (MM, 2014)
- Variable Independent Consideration (MM, 2014)
- Logit Attention (BR, 2017)
- Ordered Logit
- Elimination by Aspect
- Stochastic Satisficing
- Amazon versus Jet

• • • •

Random Attention Model (RAM)

$$\pi(a_k|S) = \sum_{\substack{T \subset S, \\ a_k \text{ is } \succ \text{-best in } T}} \mu(T|S)$$

- $\blacksquare \succ \enspace$ complete and transitive
- $\blacksquare \mu$ monotonic

Random Attention Model (RAM)

RAM accommodates well-documented and seemingly anomalous behaviors.

Attraction Effect

Probabilistic Attraction Effect

- a_1 and a_2 are equally chosen in a binary comparison,
- a_3 is a decoy for a_1 ,

$\pi(a S)$	$\{a_1, a_2, a_3\}$	$\{a_1,a_2\}$	$\{a_1,a_3\}$	$\{a_2,a_3\}$
a_1	1	1/2	1	
a_2	0	1/2		1
a_3	0		0	0

Attraction Effect

Probabilistic Attraction Effect

- a_1 and a_2 are equally chosen in a binary comparison,
- a_3 is a decoy for a_1 ,

 $\pi(a_1|\{a_1, a_2, a_3\}) > \pi(a_1|\{a_1, a_2\})$

Violation of Regularity

Random Attention Model allows

 $\pi(a|S) > \pi(a|S-b)$

• Removing an alternative can decrease the choice probability

Prediction Power

- Is the model too general?
- The random attention model can be falsified.

Prediction Power

- Is the model too general?
- The random attention model can be falsified.
 - For example, the following π is outside of the model whenever $\beta_1\beta_2\beta_3 > 0$,

• How can we deduce preferences under random attention?

■ How can we deduce preferences under random attention?

- However, richness does not help us much
 - More degree of freedom
 - Allowing many possibilities
 - Less revelations

• Observation: $\pi(a|S) > \pi(a|S-b)$ implies "a is better than b"

• Observation: $\pi(a|S) > \pi(a|S-b)$ implies "a is better than b"

How?

• Observation: $\pi(a|S) > \pi(a|S-b)$ implies "a is better than b"

How? WTS: There exists at least one consideration set T such that

- $\ \ \, \mu(T|S)\neq 0$
- $\bullet \ b \in T$
- $\blacksquare a$ is chosen from T

(日) (四) (전) (전) (전) (전)

PROOF:

$$\pi(a|S) = \sum_{\substack{T \subseteq S, \\ a \text{ is } \succ -best \text{ in } T}} \mu(T|S)$$

$$= \sum_{\substack{b \in T \subseteq S, \\ a \text{ is } \succ -best \text{ in } T}} \mu(T|S) + \sum_{\substack{b \notin T \subseteq S, \\ a \text{ is } \succ -best \text{ in } T}} \mu(T|S)$$

$$\leq \sum_{\substack{b \in T \subseteq S, \\ a \text{ is } \succ -best \text{ in } T}} \mu(T|S) + \sum_{\substack{b \notin T \subseteq S, \\ a \text{ is } \succ -best \text{ in } T}} \mu(T|S - b) \text{ (by monotonicity)}$$

$$\leq \sum_{\substack{b \in T \subseteq S, \\ a \text{ is } \succ -best \text{ in } T}} \mu(T|S) + \pi(a|S - b)$$

- E

PROOF continues...

$$\pi(a|S) - \pi(a|S-b) \leq \sum_{\substack{b \in T \subset S, \\ a \text{ is } \succ \text{-best in } T}} \mu(T|S)$$

PROOF continues...

$$\pi(a|S) - \pi(a|S-b) \leq \sum_{\substack{b \in T \subseteq S, \\ a \text{ is } \succ \text{-best in } T}} \mu(T|S)$$

If $\pi(a|S) - \pi(a|S-b) > 0$ then there exists at least one T such that

- $\bullet \ b \in T$
- $\blacksquare a \text{ is } \succ \text{-best in } T$
- $\ \ \, \mu(T|S)\neq 0$

PROOF continues...

$$\pi(a|S) - \pi(a|S-b) \leq \sum_{\substack{b \in T \subseteq S, \\ a \text{ is } \succ \text{-best in } T}} \mu(T|S)$$

If $\pi(a|S) - \pi(a|S-b) > 0$ then there exists at least one T such that

- $\bullet b \in T$
- $a \text{ is } \succ \text{-best in } T$
- $\ \ \, \mu(T|S)\neq 0$

Hence, a is revealed to be preferred to b. DONE

(日) (四) (전) (전) (전) (전)

- $a\mathcal{P}b$ if $\pi(a|S) > \pi(a|S-b)$
- \blacksquare Let $\bar{\mathcal{P}}$ be the transitive closure of $\mathcal P$
- While $\bar{\mathcal{P}}$ informs us about preference, do we miss some revelation?

- $a\mathcal{P}b$ if $\pi(a|S) > \pi(a|S-b)$
- Let $\bar{\mathcal{P}}$ be the transitive closure of \mathcal{P}
- While $\bar{\mathcal{P}}$ informs us about preference, do we miss some revelation?

THEOREM (REVEALED PREFERENCE)

Let π have a RAM representation. Then *a* is **revealed to be preferred** to *b* if and only if $a\overline{\mathcal{P}}b$.

- $a\mathcal{P}b$ if $\pi(a|S) > \pi(a|S-b)$
- Let $\bar{\mathcal{P}}$ be the transitive closure of \mathcal{P}
- While $\bar{\mathcal{P}}$ informs us about preference, do we miss some revelation?

THEOREM (REVEALED PREFERENCE)

Let π have a RAM representation. Then *a* is **revealed to be preferred** to *b* if and only if $a\overline{\mathcal{P}}b$.

 $\mathbf{\bar{P}}$ provides all the information we need to know.

Characterization

RA Examples Revealed Preference Characterization Extension

(中) (종) (종) (종) (종) (종)

Characterization

CHARACTERIZATION

A stochastic choice π has a RAM representation $\inf_{\mathcal{P}} \mathcal{P} \text{ has no cycle.}$

Currently, no regularity violation \Rightarrow no preference revelation

■ How can we improve revealed preference?

Consider an policy maker: Poly

 Poly believes that the source of limited attention is the abundance of alternatives

- Consider an policy maker: Poly
- Poly believes that the source of limited attention is the abundance of alternatives
- Hence, if *a* is chosen over *b* "frequently enough," Poly is willing to conclude:

a is revealed to preferred to b if $\pi(a|\{a,b\}) > \phi \geq 1/2$

- Consider an policy maker: Poly
- Poly believes that the source of limited attention is the abundance of alternatives
- Hence, if *a* is chosen over *b* "frequently enough," Poly is willing to conclude:

a is revealed to preferred to b if $\pi(a|\{a,b\}) > \phi \ge 1/2$

• ϕ : the degree of caution

- Consider an policy maker: Poly
- Poly believes that the source of limited attention is the abundance of alternatives
- Hence, if *a* is chosen over *b* "frequently enough," Poly is willing to conclude:

a is revealed to preferred to b if $\pi(a|\{a,b\}) > \phi \ge 1/2$

- ϕ : the degree of caution
- The corresponding assumption on attention rule is

$$\mu(\{a,b\}|\{a,b\}) \ge \frac{1-\phi}{\phi} \max\left\{\mu(\{a\}|\{a,b\}), \mu(\{b\}|\{a,b\})\right\}.$$

• if $\phi = 0.5$ then $\mu(\{a,b\}|\{a,b\}) \ge \max\left\{\mu(\{a\}|\{a,b\}), \mu(\{b\}|\{a,b\})\right\}.$ and

a is revealed to preferred to b if $\pi(a|\{a,b\}) > 0.5$

 $\begin{array}{l} \text{if } \phi = 0.5 \\ \text{then} \\ \mu(\{a,b\}|\{a,b\}) \geq \max\left\{\mu(\{a\}|\{a,b\}), \mu(\{b\}|\{a,b\})\right\}. \\ \text{and} \\ a \text{ is revealed to preferred to } b \text{ if } \pi(a|\{a,b\}) > 0.5 \\ \text{if } \phi = 0.75 \\ \text{then} \\ \mu(\{a,b\}|\{a,b\}) \geq \frac{1}{3} \max\left\{\mu(\{a\}|\{a,b\}), \mu(\{b\}|\{a,b\})\right\}. \\ \text{and} \\ a \text{ is revealed to preferred to } b \text{ if } \pi(a|\{a,b\}) > 0.75 \end{array}$

Consider the following data

$\pi(a S)$	$\{a_1, a_2, a_3\}$	$\{a_1, a_2\}$	$\{a_1, a_3\}$	$\{a_2, a_3\}$
a_1	0.6	0.5	0.6	
a_2	0.2	0.5		0.2
a_3	0.2		0.4	0.8

Consider the following data

$\pi(a S)$	$\{a_1, a_2, a_3\}$	$\{a_1, a_2\}$	$\{a_1,a_3\}$	$\{a_2, a_3\}$
a_1	0.6	0.5	0.6	
a_2	0.2	0.5		0.2
a_3	0.2		0.4	0.8

• $\pi(a_1|\{a_1, a_2, a_3\}) > \pi(a_1|\{a_1, a_2\}) \Rightarrow a_1 \succ a_3$

(日) (四) (전) (전) (전) (전)

Consider the following data

$\pi(a S)$	$\{a_1, a_2, a_3\}$	$\{a_1,a_2\}$	$\{a_1, a_3\}$	$\{a_2,a_3\}$
a_1	0.6	0.5	0.6	
a_2	0.2	0.5		0.2
a_3	0.2		0.4	0.8

- $\pi(a_1|\{a_1, a_2, a_3\}) > \pi(a_1|\{a_1, a_2\}) \Rightarrow a_1 \succ a_3$
- Assume Poly's caution parameter is 0.75

Consider the following data

$\pi(a S)$	$\{a_1, a_2, a_3\}$	$\{a_1, a_2\}$	$\{a_1,a_3\}$	$\{a_2, a_3\}$
a_1	0.6	0.5	0.6	
a_2	0.2	0.5		0.2
a_3	0.2		0.4	0.8

- $\pi(a_1|\{a_1, a_2, a_3\}) > \pi(a_1|\{a_1, a_2\}) \Rightarrow a_1 \succ a_3$
- Assume Poly's caution parameter is 0.75
- $\pi(a_3|\{a_2, a_3\}) > 0.75 \Rightarrow a_3 \succ a_2$
- Full Revelation $a_1 \succ a_3 \succ a_2$

Related Literature

- Manzini and Mariotti (2014),
- Brady and Rehbeck (2016), Gul, Natenzon, and Pesendorfer (2014),
- Echenique, Saito, and Tserenjigmid (2014),
- Echenique and Saito (2017),
- Fudenberg, Iijima, and Strzalecki (2015) and
- Aguiar, Boccardi, and Dean (2016)
- Dogan and Yildiz (2018)
- Ahumada and Ulku (2018)
- Horan (2018)
- Yildiz (2016)
- Li and Tang (2016)

WRAP-UP

- Provides conditions under which the preference is identified from choice data, without observing consideration sets.
- Constructs test statistics facilitating estimation and inference:
 - Reformulates identification as testing moment inequalities.
 - There is a large literature on testing moment inequalities and inference in partially identified models.
 - Other test statistics and methods for critical values can be easily adapted.
 - Provides uniformly valid distributional approximations and critical values.
 - Implements in R and Matlab.
- Revealed Preference is a powerful tool:
 - both rational and boundedly rational behavior,
 - both deterministic and stochastic choice.