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Motivation

Random Joint Choice Data

• Peer effects

• Dynamic discrete choice

• Choices in different markets

Stochastic Separability

• (Correlated) private signals

• Naive voting

• Lack of Influence
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Example - Private Signals (No Influence)

Agent 1 Agent 2
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Example - Private Signals (No Influence)

Two states of the world: {h, l}.

Agents want to take actions that match the state of the world: {h, l}.

Agents receive private but correlated signals.

h l

h 0.4 0.1

l 0.1 0.4

h

h 0.5

l 0.5
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Example - School Choice (Influence)

Agent 1 Agent 2

School Applications and Acceptances
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Example - School Choice (Influence)

Two types of schools: {public, private}.

Agents have varying preferences which may depend on their peer’s choice.

public private

public 0.4 0.1

private 0.1 0.4

public

public 0.7

private 0.3
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An Observation

Private Signals:

• When one agent’s choice set varied, the other agent’s marginal choice probabilities were constant.

• (0.5, 0.5)→ (0.5, 0.5)

School Choice:

• When one agent’s set of feasible schools changes, the other agent’s marginal choice probabilities varied.

• (0.5, 0.5)→ (0.7, 0.3)

Is there a connection between a lack of influence (stochastic separability) and marginal choice

probabilities being well-defined (marginality)?
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Research Questions

What is the connection between stochastic separability and marginality?

Does marginality characterize stochastic separability?

How can we test for separable random utility?
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Preview of Main Results

We offer two generating processes which are characterized by marginality.

We show that marginality is necessary but insufficient for stochastic separability.

We characterize separable random utility when each agent has a unique random utility

representation.

We develop a tool kit for analyzing random joint choice rules.
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Our Model

Let X and Y be finite sets of alternatives.

• x ∈ A ⊆ X
• y ∈ B ⊆ Y

Let L(S) denote the set of linear orders over S.

• �∈ L(X)

• �′∈ L(Y )

Let C(S) denote the set of choice functions of S.

• cX ∈ C(X)

• cY ∈ C(Y )

Let ∆(S) denote the set of probability distributions over finite set S.

• ν+ ∈ ∆(S)

Let Σ(S) denote the set of signed measures over finite set S.

• ν ∈ Σ(S)
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Our Data

Let X be the collection of each non-empty subset of X.

Let Y be the collection of each non-empty subset of Y .

We observe joint choice probabilities on product sets.

• For each A×B ∈ X × Y, we observe how frequently the pair (x, y) ∈ A×B is chosen.

p(x, y|A,B) denotes how frequently the pair (x, y) is chosen from the choice set A×B.

• We call p a random joint choice rule.
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Interpretations of Our Data

Repeated choice by two agents

• Voting history of two senators

Population level choice data by two groups

• Choice of major among roommates, choice of education level among twins

Repeated choice by a single agent

• Choice in two markets, choice of cereal and shampoo

Population level choice data across time

• Voting data in 2016 and 2020, dynamic discrete choice
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Stochastic Separability

We call a function c : X × Y → X × Y a joint choice function if c(A,B) ∈ A×B.

We say that a joint choice function is separable if c(·, ·) = (cX(·), cY (·)).

Definition

A random joint choice rule p is stochastically separable if there exists ν+ ∈ ∆(C(X)× C(Y )) such

that the following holds for all A ∈ X , B ∈ Y, x ∈ A, and y ∈ B.

p(x, y|A,B) =
∑

c∈C(X)×C(Y )

ν+(c)1{c(A,B) = (x, y)}
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Marginality

Definition

We say that a random joint choice rule p satisfies marginality if the following holds for all

A,A′ ∈ X , B,B′ ∈ Y, x ∈ A, and y ∈ B.∑
y∈B p(x, y|A,B) =

∑
y′∈B′ p(x, y

′|A,B′)∑
x∈A p(x, y|A,B) =

∑
x′∈A′ p(x

′, y|A′, B)

We can define marginal choice probabilities.

• p1(x,A) =
∑

y∈Y p(x, y|A, Y )

• p2(y,B) =
∑

x∈X p(x, y|X,B)
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Marginality vs Stochastic Separability

Theorem 1

1 A random joint choice rule p satisfies marginality if and only if there exists a signed measure

ν over C(X)× C(Y ) such that for all A ∈ X , B ∈ Y, x ∈ A, and y ∈ B we have the following.

p(x, y|A,B) =
∑

c∈C(X)×C(Y )

ν(c)1{c(A,B) = (x, y)}

2 There exist random joint choice rules which satisfy marginality but are not stochastically

separable.
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Counterexample

w x

a 0.5 0

b 0 0.5

w x

c 0.5 0

d 0 0.5

y z

a 0.5 0

b 0 0.5

y z

c 0 0.5

d 0.5 0
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Counterexample

w x

a 0.5 0

b 0 0.5

w x

c 0.5 0

d 0 0.5

y z

a 0.5 0

b 0 0.5

y z

c 0 0.5

d 0.5 0
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Counterexample

w x

a 0.5 0

b 0 0.5

w x

c 0.5 0

d 0 0.5
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a 0.5 0

b 0 0.5

y z

c 0 0.5
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Counterexample

w x

a 0.5 0

b 0 0.5

w x

c 0.5 0

d 0 0.5

y z

a 0.5 0

b 0 0.5

y z

c 0 0.5
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Counterexample

w x

a 0.5 0

b 0 0.5

w x

c 0.5 0

d 0 0.5

y z

a 0.5 0

b 0 0.5

y z

c 0 0.5

d 0.5 0
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Proof Sketch - Necessity

Separable choice functions satisfy marginality.

The linear combination of vectors which satisfy marginality also satisfies margianlity.

This is the easy direction. Sufficiency is hard.
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Proof Sketch - Sufficiency

w x

a 0.2 0.3

b 0.4 0.1

w x

c 0.15 0.35

d 0.45 0.05

y z

a 0.5 0

b 0.1 0.4

y z

c 0.3 0.2

d 0.3 0.2
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Proof Sketch - Sufficiency

w x

a 0.2 0.3

b 0.4 0.1

w x

c 0.15 0.35

d 0.45 0.05

y z

a 0.5 0

b 0.1 0.4

y z

c 0.3 0.2

d 0.3 0.2
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Proof Sketch - Sufficiency

w x

a 0 0.3

b 0.4 0.1

w x

c −0.05 0.35

d 0.45 0.05

y z

a 0.3 0

b 0.1 0.4

y z

c 0.1 0.2

d 0.3 0.2
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Proof Sketch - Sufficiency

w x

a 0 0.3

b 0.4 0.1

w x

c −0.05 0.35

d 0.45 0.05

y z

a 0.3 0

b 0.1 0.4

y z

c 0.1 0.2

d 0.3 0.2
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Proof Sketch - Sufficiency

w x

a 0 0

b 0.4 0.1

w x

c −0.05 0.05

d 0.45 0.05

y z

a 0.3 −0.3

b 0.1 0.4

y z

c 0.1 −0.1

d 0.3 0.2
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Proof Sketch - Sufficiency

w x

a 0 0

b 0.4 0.1

w x

c −0.05 0.05

d 0.45 0.05

y z

a 0.3 −0.3

b 0.1 0.4

y z

c 0.1 −0.1

d 0.3 0.2
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Proof Sketch - Sufficiency

w x

a 0 0

b 0 0.1

w x

c −0.05 0.05

d 0.05 0.05

y z

a 0.3 −0.3

b −0.3 0.4

y z

c 0.1 −0.1

d −0.1 0.2
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Proof Sketch - Sufficiency

w x

a 0 0

b 0 0.1

w x

c −0.05 0.05

d 0.05 0.05

y z

a 0.3 −0.3

b −0.3 0.4

y z

c 0.1 −0.1

d −0.1 0.2

28/74



Proof Sketch - Sufficiency

w x

a 0 0

b 0 0

w x

c −0.05 0.05

d 0.05 −0.05

y z

a 0.3 −0.3

b −0.3 0.3

y z

c 0.1 −0.1

d −0.1 0.1
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Proof Sketch - Sufficiency

w x

a 0 0

b 0 0

w x

c −0.05 0.05

d 0.05 −0.05

y z

a 0.3 −0.3

b −0.3 0.3

y z

c 0.1 −0.1

d −0.1 0.1
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Proof Sketch - Sufficiency

w x

a 0 0

b 0 0

w x

c −0.05 −0.25

d 0.05 0.25

y z

a 0 0

b −0.3 0.3

y z

c −0.2 −0.1

d −0.1 0.4
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Proof Sketch - Sufficiency

w x

a 0 0

b 0 0

w x

c −0.05 −0.25

d 0.05 0.25

y z

a 0 0

b −0.3 0.3

y z

c −0.2 −0.1

d −0.1 0.4
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Proof Sketch - Sufficiency

w x

a 0 0

b 0 0

w x

c −0.05 0.05

d 0.05 −0.05

y z

a 0 0

b 0 0

y z

c 0.1 −0.1

d −0.1 0.1

Repeat this process for the remaining choice sets.
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Marginality Revisited

Marginality fails to be sufficient for stochastic separability.

We can characterize marginality via the linear span of separable choice functions.

What about separable utility functions?
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Marginality vs Separable Random Utility

Theorem 2

A random joint choice rule p satisfies marginality if and only if there exists a signed measure ν

over L(X)× L(Y ) such that for all A ∈ X , B ∈ Y, x ∈ A, and y ∈ B we have the following.

p(x, y|A,B) =
∑

(�,�′)∈L(X)×L(Y )

ν(�,�′)1{x � A \ {x}, y �′ B \ {y}}
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Some Additional Technology

Block-Marschak polynomials

• For multiple agents:

p(x, y|A,B) =
∑

A′:A⊆A′

∑
B′:B⊆B′

q(x, y|A,B)

• For a single agent:

p1(x,A) =
∑

A′:A⊆A′
q1(x,A′)

p2(y,B) =
∑

B′:B⊆B′
q2(y,B′)

These keep track of the change in the choice probability of x not already explained by the

supersets of A.

q1(x,A) = p1(x,A)−
∑

A′:A(A′

q1(x,A′)

36/74



Block-Marschak Polynomials and Random Utility

Proposition 1

A signed measure ν over L(X) induces a marginal random choice rule p1 if and only if the

following holds.

ν({� |X \A � x � A \ {x}}) = q1(x,A)

Proposition 2

A signed measure ν over L(X)× L(Y ) induces a random joint choice rule p if and only if the

following holds.

ν({(�,�′)|X \A � x � A \ {x}, Y \B �′ y �′ B \ {y}}) = q(x, y|A,B)
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Marginal Graph

∅

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}
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Marginal Graph
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Marginal Graph
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Marginal Graph
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Marginal Graph
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Conditional Graph

∅
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Linear Order Pairs and Our Graphs

A path on the marginal graph corresponds to a linear order of X.

A path on the conditional graph corresponds to a linear order of Y .

What does a linear order pair look like using our graphs?

• A path on the marginal graph: �∈ L(X).

• For each conditional graph along that path, a common path on each conditional graph: �′∈ L(Y ).
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Some Preliminary Results

Inflow equals outflow on the marginal graph.

•
∑

x∈A q1(x,A) =
∑

z 6∈A q1(z,A ∪ {z})
• This is a result of probabilities summing to one.

Inflow equals outflow on the conditional graph.

•
∑

y∈B q(x, y|A,B) =
∑

z 6∈B q(x, z|A,B ∪ {z})
• This is equivalent to marginality and is a result of p(x,A|B) = p(x,A|B′).

Inflow equals outflow between conditional graphs for each (y,B).

•
∑

x∈A q(x, y|A,B) =
∑

z 6∈A q(z, y|A ∪ {z}, B)

• This is equivalent to marginality and is a result of p(x,A|B) = p(x,A|B′).
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Proof Sketch

As before, necessity is easy.

Maximization of a pair of linear orders induces a separable choice function.

The linear span of separable choice functions satisfies marginality.

Sufficiency is hard and proceeds in steps.

1 Show how we can decompose any conditional graph if we have marginality.

2 Decompose every conditional graph on one “layer” of the marginal graph.

3 Adapt the marginality trick from the proof of Theorem 1 to this collection of graphs.
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Proof Sketch - Conditional Graph
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Proof Sketch - Conditional Graph
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Proof Sketch - Conditional Graph
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Proof Sketch - Conditional Graph
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Proof Sketch - Conditional Graph
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Proof Sketch - Conditional Graph
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Proof Sketch - Conditional Graph

∅
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Proof Sketch - Marginal Graph

Decomposing a conditional graph leaves us with a signed measure over linear orders of Y (that

sums to q1(x,A)).

We’ll use a similar process to decompose the marginal graph.

Whenever we “subtract out” an edge on the marginal graph, we are decomposing the conditional

graph associated with that edge.

• Decomposing the marginal graph gives us the marginal distribution over linear orders of X.

• Decomposing the conditional graphs gives us the distribution over linear orders of Y conditional on a

linear order of X.

• Note that the marginal and conditional distributions are not unique.
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Proof Sketch - Marginal Graph
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Proof Sketch - Marginal Graph
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Proof Sketch - Marginal Graph
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Proof Sketch - Marginal Graph
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Proof Sketch - Marginal Graph
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Proof Sketch - Marginal Graph
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Proof Sketch - Marginal Graph
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Proof Sketch - Marginal Graph

Recall that inflow equals outflow between conditional graphs for each (y,B).∑
x∈A q(x, y|A,B) =

∑
z 6∈A q(z, y|A ∪ {z}, B)

This tells us the following for all y ∈ B ⊆ Y .

q(a, y|{a, c, d}, B) + q(b, y|{b, c, d}, B) = 0
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Proof Sketch - Marginal Graph
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Proof Sketch - Marginal Graph
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Proof Sketch - Sufficiency

We combine our marginal distribution with our conditional distributions to create one joint

measure.

Since our decomposition leaves every graph with zero weight everywhere, the joint measure we

found satisfies Proposition 2, so we are done.

Proposition 2

A signed measure ν over L(X)× L(Y ) induces a random joint choice rule p if and only if the

following holds.

ν({(�,�′)|X \A � x � A \ {x}, Y \B �′ y �′ B \ {y}}) = q(x, y|A,B)
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Separable Random Utility

Definition

A random joint choice rule p is rationalizable by separable random utility if there exists

ν+ ∈ ∆(L(X)× L(Y )) such that the following holds for all A ∈ X , B ∈ Y, x ∈ A, and y ∈ B.

p(x, y|A,B) =
∑

(�,�′)∈L(X)×L(Y )

ν+(�,�′)1{x � A \ {x}, y �′ B \ {y}}
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Non-Negativity

Proposition 2

A signed measure ν over L(X)× L(Y ) induces a random joint choice rule p if and only if the

following holds.

ν({(�,�′)|X \A � x � A \ {x}, Y \B �′ y �′ B \ {y}}) = q(x, y|A,B)

We’re looking for a probability distribution, so ν ≥ 0.

This means q ≥ 0.

Non-negativity

For each x ∈ A ⊆ X and y ∈ B ⊆ Y , q(x, y|A,B) ≥ 0.
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Marginality Still Too Weak

Our counterexample to Theorem 1 still works.

When the choice set is not a (weak) subset of {c, d} × {y, z}:

ν1(�,�′) =


1
2

if (�,�′) = (a � b � c � d,w � x � y � z)
1
2

if (�,�′) = (b � a � d � c, x � w � z � y)

0 otherwise

When the choice set is a (weak) subset of {c, d} × {y, z}:

ν2(�,�′) =


1
2

if (�,�′) = (d � c, y � z)
1
2

if (�,�′) = (c � d, z � y)

0 otherwise
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Failures of Uniqueness and Marginality

The marginal choice probabilities for each agent fail to have a unique RUM representation.

ν1(�) =


1
2

if �∈ {a � b � c � d, b � a � d � c}

0 otherwise

ν2(�) =


1
2

if �∈ {a � b � d � c, b � a � c � d}

0 otherwise

Marginality only fails to be sufficient if both agents’ marginal choice probabilities fail to have a

unique RUM representation.
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Separable Random Utility with Unique Marginals

Theorem 3

Suppose that a random joint choice rule p satisfies marginality and at least one marginal random

joint choice rule has a unique random utility representation. p is rationalizable by separable

random utility if and only if it satisfies non-negativity.
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Proof Sketch
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Proof Sketch
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Proof Sketch

When a marginal random choice rule has a unique random utility representation, each linear order

in the support of the representation has some edge unique to that linear order among linear orders

in the support. (Turansick (2022))

Recall that inflow equals outflow between conditional graphs for each (y,B).

•
∑

x∈A q(x, y|A,B) =
∑

z 6∈A q(z, y|A ∪ {z}, B)

This means, when we decompose the conditional graph at that edge, we can always subtract out

that decomposition at every conditional graph along the path.
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Conclusion

We study stochastic choice data that captures the joint choice of multiple agents.

We consider the extension of the latent variable hypothesis to multiple agents.

Without imposing rationality, the latent variable hypothesis has no content in the single agent

case.

With multiple agents, the latent variable hypothesis has testable content beyond marginality.

Without joint choice data, we may frequently fail to reject separable stochastic choice theories.
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