Correlated Choice

Christopher P. Chambers
Georgetown

Yusufcan Masatlioglu
Maryland

Christopher Turansick
Georgetown

Georgetown, 2022

Motivation

- Random Joint Choice Data
- Peer effects
- Dynamic discrete choice
- Choices in different markets
- Stochastic Separability
- (Correlated) private signals
- Naive voting
- Lack of Influence

Example - Private Signals (No Influence)

Example - Private Signals (No Influence)

- Two states of the world: $\{h, l\}$.
- Agents want to take actions that match the state of the world: $\{h, l\}$.
- Agents receive private but correlated signals.

	h	l		h	
h	0.4	0.1		h	0.5
l	0.1	0.4		l	0.5

Example - School Choice (Influence)

Example - School Choice (Influence)

- Two types of schools: $\{$ public, private $\}$.
- Agents have varying preferences which may depend on their peer's choice.

	public	private		public
public	0.4	0.1	public	0.7
private	0.1	0.4	private	0.3

An Observation

- Private Signals:
- When one agent's choice set varied, the other agent's marginal choice probabilities were constant.
- $(0.5,0.5) \rightarrow(0.5,0.5)$
- School Choice:
- When one agent's set of feasible schools changes, the other agent's marginal choice probabilities varied.
- $(0.5,0.5) \rightarrow(0.7,0.3)$
- Is there a connection between a lack of influence (stochastic separability) and marginal choice probabilities being well-defined (marginality)?

Research Questions

- What is the connection between stochastic separability and marginality?
- Does marginality characterize stochastic separability?
- How can we test for separable random utility?

Preview of Main Results

- We offer two generating processes which are characterized by marginality.
- We show that marginality is necessary but insufficient for stochastic separability.
- We characterize separable random utility when each agent has a unique random utility representation.
- We develop a tool kit for analyzing random joint choice rules.

Our Model

- Let X and Y be finite sets of alternatives.
- $x \in A \subseteq X$
- $y \in B \subseteq Y$
- Let $\mathcal{L}(S)$ denote the set of linear orders over S.
- $\succ \in \mathcal{L}(X)$
- $\succ^{\prime} \in \mathcal{L}(Y)$
- Let $\mathcal{C}(S)$ denote the set of choice functions of S.
- $c_{X} \in \mathcal{C}(X)$
- $c_{Y} \in \mathcal{C}(Y)$
- Let $\Delta(S)$ denote the set of probability distributions over finite set S.
- $\nu_{+} \in \Delta(S)$
- Let $\Sigma(S)$ denote the set of signed measures over finite set S.
- $\nu \in \Sigma(S)$

Our Data

■ Let \mathcal{X} be the collection of each non-empty subset of X.

- Let \mathcal{Y} be the collection of each non-empty subset of Y.
- We observe joint choice probabilities on product sets.
- For each $A \times B \in \mathcal{X} \times \mathcal{Y}$, we observe how frequently the pair $(x, y) \in A \times B$ is chosen.
$\square p(x, y \mid A, B)$ denotes how frequently the pair (x, y) is chosen from the choice set $A \times B$.
- We call p a random joint choice rule.

Interpretations of Our Data

- Repeated choice by two agents
- Voting history of two senators
- Population level choice data by two groups
- Choice of major among roommates, choice of education level among twins
- Repeated choice by a single agent
- Choice in two markets, choice of cereal and shampoo
- Population level choice data across time
- Voting data in 2016 and 2020, dynamic discrete choice

Stochastic Separability

- We call a function $c: \mathcal{X} \times \mathcal{Y} \rightarrow X \times Y$ a joint choice function if $c(A, B) \in A \times B$.
- We say that a joint choice function is separable if $c(\cdot, \cdot)=\left(c_{X}(\cdot), c_{Y}(\cdot)\right)$.

DEfinition

A random joint choice rule p is stochastically separable if there exists $\nu_{+} \in \Delta(\mathcal{C}(X) \times \mathcal{C}(Y))$ such that the following holds for all $A \in \mathcal{X}, B \in \mathcal{Y}, x \in A$, and $y \in B$.

$$
p(x, y \mid A, B)=\sum_{c \in \mathcal{C}(X) \times \mathcal{C}(Y)} \nu_{+}(c) \mathbf{1}\{c(A, B)=(x, y)\}
$$

Marginality

Definition

We say that a random joint choice rule p satisfies marginality if the following holds for all $A, A^{\prime} \in \mathcal{X}, B, B^{\prime} \in \mathcal{Y}, x \in A$, and $y \in B$.

- $\sum_{y \in B} p(x, y \mid A, B)=\sum_{y^{\prime} \in B^{\prime}} p\left(x, y^{\prime} \mid A, B^{\prime}\right)$
- $\sum_{x \in A} p(x, y \mid A, B)=\sum_{x^{\prime} \in A^{\prime}} p\left(x^{\prime}, y \mid A^{\prime}, B\right)$
- We can define marginal choice probabilities.
- $p_{1}(x, A)=\sum_{y \in Y} p(x, y \mid A, Y)$
- $p_{2}(y, B)=\sum_{x \in X} p(x, y \mid X, B)$

Marginality vs Stochastic Separability

Theorem 1

11 A random joint choice rule p satisfies marginality if and only if there exists a signed measure ν over $\mathcal{C}(X) \times \mathcal{C}(Y)$ such that for all $A \in \mathcal{X}, B \in \mathcal{Y}, x \in A$, and $y \in B$ we have the following.

$$
p(x, y \mid A, B)=\sum_{c \in \mathcal{C}(X) \times \mathcal{C}(Y)} \nu(c) \mathbf{1}\{c(A, B)=(x, y)\}
$$

2 There exist random joint choice rules which satisfy marginality but are not stochastically separable.

Counterexample

	w	x		y	z	
a	0.5	0		a	0.5	0
b	0	0.5		b	0	0.5
	w	x		y	z	
c	0.5	0		c	0	0.5
		0	0.5		d	0.5
d	0					

Counterexample

	w	x		y	z	
a	0.5	0		a	0.5	0
b	0	0.5		b	0	0.5
	w	x		y	z	
c	0.5	0		c	0	0.5
		0	0.5		d	0.5
d	0					

Counterexample

	w	x		y	z	
a	0.5	0		a	0.5	0
b	0	0.5		b	0	0.5
	w	x		y	z	
c	0.5	0		c	0	0.5
		0	0.5		d	0.5
d	0					

Counterexample

	w	x		y	z	
a	0.5	0		a	0.5	0
b	0	0.5		b	0	0.5
	w	x		y	z	
c	0.5	0		c	0	0.5
		0	0.5		d	0.5
d	0					

Counterexample

	w	x		y	z	
a	0.5	0		a	0.5	0
b	0	0.5		b	0	0.5
	w	x		y	z	
c	0.5	0		c	0	0.5
		0	0.5		d	0.5
d	0					

Proof Sketch - Necessity

- Separable choice functions satisfy marginality.
- The linear combination of vectors which satisfy marginality also satisfies margianlity.
- This is the easy direction. Sufficiency is hard.

Proof Sketch - Sufficiency

	w	x				
	w		y	z		
a	0.2	0.3		a	0.5	0
b	0.4	0.1				
			b	0.1	0.4	
	w	x		y	z	
c	0.15	0.35		c	0.3	0.2
d	0.45	0.05		d	0.3	0.2

Proof Sketch - Sufficiency

	w	x		y	z	
a	0.2	0.3		a	0.5	0
b	0.4	0.1		b	0.1	0.4
	w	x		y	z	
c	0.15	0.35		c	0.3	0.2
	d	0.45	0.05		d	0.3

Proof Sketch - Sufficiency

	w	x		y	z	
a	0	0.3		a	0.3	0
b	0.4	0.1		b	0.1	0.4
	w	x		y	z	
c	-0.05	0.35		c	0.1	0.2
d	0.45	0.05		d	0.3	0.2

Proof Sketch - Sufficiency

	w	x		y	z	
		0	0.3		a	0.3
	0					
b	0.4	0.1		b	0.1	0.4
	w	x		y	z	
c	-0.05	0.35		c	0.1	0.2
d	0.45	0.05		d	0.3	0.2

Proof Sketch - Sufficiency

	w	x		y	z	
		0	0		a	0.3
	-0.3					
b	0.4	0.1		b	0.1	0.4
	w	x		y	z	
c	-0.05	0.05		c	0.1	-0.1
d	0.45	0.05		d	0.3	0.2

Proof Sketch - Sufficiency

	w	x		y	z	
a	0	0		a	0.3	-0.3
b	0.4	0.1		b	0.1	0.4
	w	x		y	z	
c	-0.05	0.05		c	0.1	-0.1
d	0.45	0.05		d	0.3	0.2

Proof Sketch - Sufficiency

	w	x		y	z
a	0	0	a	0.3	-0.3
b	0	0.1	b	-0.3	0.4
	w	x		y	z
c	-0.05	0.05	c	0.1	-0.1
d	0.05	0.05	d	-0.1	0.2

Proof Sketch - Sufficiency

	w	x		y	z
a	0	0	a	0.3	-0.3
b	0	0.1	b	-0.3	0.4
	w	x		y	z
c	-0.05	0.05	c	0.1	-0.1
d	0.05	0.05	d	-0.1	0.2

Proof Sketch - Sufficiency

	w	x		y	z	
a	0	0		a	0.3	-0.3
b	0	0		b	-0.3	0.3
	w	x		y	z	
c	-0.05	0.05		c	0.1	-0.1
d	0.05	-0.05		d	-0.1	0.1

Proof Sketch - Sufficiency

	w	x		y	z	
a	0	0		a	0.3	-0.3
b	0	0		b	-0.3	0.3
	w	x		y	z	
c	-0.05	0.05		c	0.1	-0.1
d	0.05	-0.05		d	-0.1	0.1

Proof Sketch - Sufficiency

	w	x		y	z
a	0	0	a	0	0
b	0	0	b	-0.3	0.3
	w	x		y	z
c	-0.05	-0.25	c	-0.2	-0.1
d	0.05	0.25	d	-0.1	0.4

Proof Sketch - Sufficiency

	w	x		y	z
a	0	0	a	0	0
b	0	0	b	-0.3	0.3
	w	x		y	z
c	-0.05	-0.25	c	-0.2	-0.1
d	0.05	0.25	d	-0.1	0.4

Proof Sketch - Sufficiency

	w	x		y	z	
	0	0		a	0	0
b	0	0		b	0	0
	w	x		y	z	
c	-0.05	0.05		c	0.1	-0.1
d	0.05	-0.05		d	-0.1	0.1

- Repeat this process for the remaining choice sets.

Marginality Revisited

- Marginality fails to be sufficient for stochastic separability.
- We can characterize marginality via the linear span of separable choice functions.
- What about separable utility functions?

Marginality vs Separable Random Utility

Theorem 2

A random joint choice rule p satisfies marginality if and only if there exists a signed measure ν over $\mathcal{L}(X) \times \mathcal{L}(Y)$ such that for all $A \in \mathcal{X}, B \in \mathcal{Y}, x \in A$, and $y \in B$ we have the following.

$$
p(x, y \mid A, B)=\sum_{\left(\succ, \succ^{\prime}\right) \in \mathcal{L}(X) \times \mathcal{L}(Y)} \nu\left(\succ, \succ^{\prime}\right) \mathbf{1}\left\{x \succ A \backslash\{x\}, y \succ^{\prime} B \backslash\{y\}\right\}
$$

Some Additional Technology

- Block-Marschak polynomials
- For multiple agents:

$$
p(x, y \mid A, B)=\sum_{A^{\prime}: A \subseteq A^{\prime}} \sum_{B^{\prime}: B \subseteq B^{\prime}} q(x, y \mid A, B)
$$

- For a single agent:

$$
\begin{aligned}
& p_{1}(x, A)=\sum_{A^{\prime}: A \subseteq A^{\prime}} q_{1}\left(x, A^{\prime}\right) \\
& p_{2}(y, B)=\sum_{B^{\prime}: B \subseteq B^{\prime}} q_{2}\left(y, B^{\prime}\right)
\end{aligned}
$$

■ These keep track of the change in the choice probability of x not already explained by the supersets of A.

$$
q_{1}(x, A)=p_{1}(x, A)-\sum_{A^{\prime}: A \subsetneq A^{\prime}} q_{1}\left(x, A^{\prime}\right)
$$

Block-Marschak Polynomials and Random Utility

Proposition 1

A signed measure ν over $\mathcal{L}(X)$ induces a marginal random choice rule p_{1} if and only if the following holds.

$$
\nu(\{\succ \mid X \backslash A \succ x \succ A \backslash\{x\}\})=q_{1}(x, A)
$$

Proposition 2

A signed measure ν over $\mathcal{L}(X) \times \mathcal{L}(Y)$ induces a random joint choice rule p if and only if the following holds.

$$
\nu\left(\left\{\left(\succ, \succ^{\prime}\right) \mid X \backslash A \succ x \succ A \backslash\{x\}, Y \backslash B \succ^{\prime} y \succ^{\prime} B \backslash\{y\}\right\}\right)=q(x, y \mid A, B)
$$

Marginal Graph

Marginal Graph

Marginal Graph

Marginal Graph

Marginal Graph

Conditional Graph

Linear Order Pairs and Our Graphs

- A path on the marginal graph corresponds to a linear order of X.
- A path on the conditional graph corresponds to a linear order of Y.
- What does a linear order pair look like using our graphs?
- A path on the marginal graph: $\succ \in \mathcal{L}(X)$.
- For each conditional graph along that path, a common path on each conditional graph: $\succ^{\prime} \in \mathcal{L}(Y)$.

Some Preliminary Results

- Inflow equals outflow on the marginal graph.
- $\sum_{x \in A} q_{1}(x, A)=\sum_{z \notin A} q_{1}(z, A \cup\{z\})$
- This is a result of probabilities summing to one.
- Inflow equals outflow on the conditional graph.
- $\sum_{y \in B} q(x, y \mid A, B)=\sum_{z \notin B} q(x, z \mid A, B \cup\{z\})$
- This is equivalent to marginality and is a result of $p(x, A \mid B)=p\left(x, A \mid B^{\prime}\right)$.
- Inflow equals outflow between conditional graphs for each (y, B).
- $\sum_{x \in A} q(x, y \mid A, B)=\sum_{z \notin A} q(z, y \mid A \cup\{z\}, B)$
- This is equivalent to marginality and is a result of $p(x, A \mid B)=p\left(x, A \mid B^{\prime}\right)$.

Proof Sketch

- As before, necessity is easy.
- Maximization of a pair of linear orders induces a separable choice function.
- The linear span of separable choice functions satisfies marginality.
- Sufficiency is hard and proceeds in steps.

1 Show how we can decompose any conditional graph if we have marginality.
2 Decompose every conditional graph on one "layer" of the marginal graph.
3 Adapt the marginality trick from the proof of Theorem 1 to this collection of graphs.

Proof Sketch - Conditional Graph

Proof Sketch - Marginal Graph

- Decomposing a conditional graph leaves us with a signed measure over linear orders of Y (that sums to $\left.q_{1}(x, A)\right)$.
- We'll use a similar process to decompose the marginal graph.
- Whenever we "subtract out" an edge on the marginal graph, we are decomposing the conditional graph associated with that edge.
- Decomposing the marginal graph gives us the marginal distribution over linear orders of X.
- Decomposing the conditional graphs gives us the distribution over linear orders of Y conditional on a linear order of X.
- Note that the marginal and conditional distributions are not unique.

Proof Sketch - Marginal Graph

Proof Sketch - Marginal Graph

- Recall that inflow equals outflow between conditional graphs for each (y, B).
- $\sum_{x \in A} q(x, y \mid A, B)=\sum_{z \notin A} q(z, y \mid A \cup\{z\}, B)$
- This tells us the following for all $y \in B \subseteq Y$.

$$
q(a, y \mid\{a, c, d\}, B)+q(b, y \mid\{b, c, d\}, B)=0
$$

Proof Sketch - Marginal Graph

Proof Sketch - Marginal Graph

Proof Sketch - Sufficiency

- We combine our marginal distribution with our conditional distributions to create one joint measure.

■ Since our decomposition leaves every graph with zero weight everywhere, the joint measure we found satisfies Proposition 2, so we are done.

Proposition 2

A signed measure ν over $\mathcal{L}(X) \times \mathcal{L}(Y)$ induces a random joint choice rule p if and only if the following holds.

$$
\nu\left(\left\{\left(\succ, \succ^{\prime}\right) \mid X \backslash A \succ x \succ A \backslash\{x\}, Y \backslash B \succ^{\prime} y \succ^{\prime} B \backslash\{y\}\right\}\right)=q(x, y \mid A, B)
$$

Separable Random Utility

DEFINITION

A random joint choice rule p is rationalizable by separable random utility if there exists $\nu_{+} \in \Delta(\mathcal{L}(X) \times \mathcal{L}(Y))$ such that the following holds for all $A \in \mathcal{X}, B \in \mathcal{Y}, x \in A$, and $y \in B$.

$$
p(x, y \mid A, B)=\sum_{\left(\succ, \succ^{\prime}\right) \in \mathcal{L}(X) \times \mathcal{L}(Y)} \nu_{+}\left(\succ, \succ^{\prime}\right) \mathbf{1}\left\{x \succ A \backslash\{x\}, y \succ^{\prime} B \backslash\{y\}\right\}
$$

Non-Negativity

Proposition 2

A signed measure ν over $\mathcal{L}(X) \times \mathcal{L}(Y)$ induces a random joint choice rule p if and only if the following holds.

$$
\nu\left(\left\{\left(\succ, \succ^{\prime}\right) \mid X \backslash A \succ x \succ A \backslash\{x\}, Y \backslash B \succ^{\prime} y \succ^{\prime} B \backslash\{y\}\right\}\right)=q(x, y \mid A, B)
$$

- We're looking for a probability distribution, so $\nu \geq 0$.
- This means $q \geq 0$.

NON-NEGATIVITY
For each $x \in A \subseteq X$ and $y \in B \subseteq Y, q(x, y \mid A, B) \geq 0$.

Marginality Still Too Weak

- Our counterexample to Theorem 1 still works.
- When the choice set is not a (weak) subset of $\{c, d\} \times\{y, z\}$:

$$
\nu_{1}\left(\succ, \succ^{\prime}\right)= \begin{cases}\frac{1}{2} & \text { if }\left(\succ, \succ^{\prime}\right)=(a \succ b \succ c \succ d, w \succ x \succ y \succ z) \\ \frac{1}{2} & \text { if }\left(\succ, \succ^{\prime}\right)=(b \succ a \succ d \succ c, x \succ w \succ z \succ y) \\ 0 & \text { otherwise }\end{cases}
$$

- When the choice set is a (weak) subset of $\{c, d\} \times\{y, z\}$:

$$
\nu_{2}\left(\succ, \succ^{\prime}\right)= \begin{cases}\frac{1}{2} & \text { if }\left(\succ, \succ^{\prime}\right)=(d \succ c, y \succ z) \\ \frac{1}{2} & \text { if }\left(\succ, \succ^{\prime}\right)=(c \succ d, z \succ y) \\ 0 & \text { otherwise }\end{cases}
$$

Failures of Uniqueness and Marginality

- The marginal choice probabilities for each agent fail to have a unique RUM representation.

$$
\begin{aligned}
& \nu_{1}(\succ)= \begin{cases}\frac{1}{2} & \text { if } \succ \in\{a \succ b \succ c \succ d, b \succ a \succ d \succ c\} \\
0 & \text { otherwise }\end{cases} \\
& \nu_{2}(\succ)= \begin{cases}\frac{1}{2} & \text { if } \succ \in\{a \succ b \succ d \succ c, b \succ a \succ c \succ d\} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

- Marginality only fails to be sufficient if both agents' marginal choice probabilities fail to have a unique RUM representation.

Separable Random Utility with Unique Marginals

Theorem 3

Suppose that a random joint choice rule p satisfies marginality and at least one marginal random joint choice rule has a unique random utility representation. p is rationalizable by separable random utility if and only if it satisfies non-negativity.

Proof Sketch

Proof Sketch

Proof Sketch

- When a marginal random choice rule has a unique random utility representation, each linear order in the support of the representation has some edge unique to that linear order among linear orders in the support. (Turansick (2022))
- Recall that inflow equals outflow between conditional graphs for each (y, B).
- $\sum_{x \in A} q(x, y \mid A, B)=\sum_{z \notin A} q(z, y \mid A \cup\{z\}, B)$
- This means, when we decompose the conditional graph at that edge, we can always subtract out that decomposition at every conditional graph along the path.

Conclusion

- We study stochastic choice data that captures the joint choice of multiple agents.
- We consider the extension of the latent variable hypothesis to multiple agents.
- Without imposing rationality, the latent variable hypothesis has no content in the single agent case.
- With multiple agents, the latent variable hypothesis has testable content beyond marginality.
- Without joint choice data, we may frequently fail to reject separable stochastic choice theories.

