Correlated Choice

Christopher P. Chambers

Georgetown

Yusufcan Masatlioglu

Maryland

Christopher Turansick Georgetown

Georgetown, 2022

3

Motivation

- Random Joint Choice Data
 - Peer effects
 - Dynamic discrete choice
 - Choices in different markets
- Stochastic Separability
 - (Correlated) private signals
 - Naive voting
 - Lack of Influence

Example - Private Signals (No Influence)

Example - Private Signals (No Influence)

- Two states of the world: $\{h, l\}$.
- Agents want to take actions that match the state of the world: $\{h, l\}$.
- Agents receive private but correlated signals.

		h	l		h
_	h	0.4	0.1	h	0.5
	l	0.1	0.4	l	0.5

Example - School Choice (Influence)

Example - School Choice (Influence)

- Two types of schools: {*public*, *private*}.
- Agents have varying preferences which may depend on their peer's choice.

	public	private		public
public	0.4	0.1	public	0.7
private	0.1	0.4	private	0.3

An Observation

- Private Signals:
 - When one agent's choice set varied, the other agent's marginal choice probabilities were constant.
 - $(0.5, 0.5) \rightarrow (0.5, 0.5)$
- School Choice:
 - When one agent's set of feasible schools changes, the other agent's marginal choice probabilities varied.
 - $(0.5, 0.5) \rightarrow (0.7, 0.3)$
- Is there a connection between a lack of influence (stochastic separability) and marginal choice probabilities being well-defined (marginality)?

Research Questions

- What is the connection between stochastic separability and marginality?
- Does marginality characterize stochastic separability?
- How can we test for separable random utility?

Preview of Main Results

- We offer two generating processes which are characterized by marginality.
- We show that marginality is necessary but insufficient for stochastic separability.
- We characterize separable random utility when each agent has a unique random utility representation.
- We develop a tool kit for analyzing random joint choice rules.

Our Model

- Let X and Y be finite sets of alternatives.
 - $x \in A \subseteq X$
 - $y \in B \subseteq Y$
- Let $\mathcal{L}(S)$ denote the set of linear orders over S.
 - $\succ \in \mathcal{L}(X)$
 - $\succ' \in \mathcal{L}(Y)$
- Let $\mathcal{C}(S)$ denote the set of choice functions of S.
 - $c_X \in \mathcal{C}(X)$
 - $c_Y \in \mathcal{C}(Y)$
- Let $\Delta(S)$ denote the set of probability distributions over finite set S.
 - $\nu_+ \in \Delta(S)$
- Let $\Sigma(S)$ denote the set of signed measures over finite set S.
 - $\nu \in \Sigma(S)$

- Let \mathcal{X} be the collection of each non-empty subset of X.
- Let \mathcal{Y} be the collection of each non-empty subset of Y.
- We observe joint choice probabilities on product sets.
 - For each $A \times B \in \mathcal{X} \times \mathcal{Y}$, we observe how frequently the pair $(x, y) \in A \times B$ is chosen.
- p(x, y|A, B) denotes how frequently the pair (x, y) is chosen from the choice set $A \times B$.
 - We call p a random joint choice rule.

Interpretations of Our Data

- Repeated choice by two agents
 - Voting history of two senators
- Population level choice data by two groups
 - Choice of major among roommates, choice of education level among twins
- Repeated choice by a single agent
 - Choice in two markets, choice of cereal and shampoo
- Population level choice data across time
 - Voting data in 2016 and 2020, dynamic discrete choice

Stochastic Separability

- We call a function $c: \mathcal{X} \times \mathcal{Y} \to X \times Y$ a joint choice function if $c(A, B) \in A \times B$.
- We say that a joint choice function is separable if $c(\cdot, \cdot) = (c_X(\cdot), c_Y(\cdot))$.

DEFINITION

A random joint choice rule p is stochastically separable if there exists $\nu_+ \in \Delta(\mathcal{C}(X) \times \mathcal{C}(Y))$ such that the following holds for all $A \in \mathcal{X}, B \in \mathcal{Y}, x \in A$, and $y \in B$.

$$p(x, y|A, B) = \sum_{c \in \mathcal{C}(X) \times \mathcal{C}(Y)} \nu_+(c) \mathbf{1}\{c(A, B) = (x, y)\}$$

Marginality

DEFINITION

We say that a random joint choice rule p satisfies *marginality* if the following holds for all $A, A' \in \mathcal{X}, B, B' \in \mathcal{Y}, x \in A$, and $y \in B$.

•
$$\sum_{y \in B} p(x, y | A, B) = \sum_{y' \in B'} p(x, y' | A, B')$$

•
$$\sum_{x \in A} p(x, y | A, B) = \sum_{x' \in A'} p(x', y | A', B)$$

• We can define marginal choice probabilities.

- $p_1(x, A) = \sum_{y \in Y} p(x, y | A, Y)$
- $p_2(y,B) = \sum_{x \in X} p(x,y|X,B)$

Marginality vs Stochastic Separability

THEOREM 1

A random joint choice rule p satisfies marginality if and only if there exists a signed measure ν over $\mathcal{C}(X) \times \mathcal{C}(Y)$ such that for all $A \in \mathcal{X}$, $B \in \mathcal{Y}$, $x \in A$, and $y \in B$ we have the following.

$$p(x, y|A, B) = \sum_{c \in \mathcal{C}(X) \times \mathcal{C}(Y)} \nu(c) \mathbf{1}\{c(A, B) = (x, y)\}$$

2 There exist random joint choice rules which satisfy marginality but are not stochastically separable.

	w	x		y	z
a	0.5	0	a	0.5	0
b	0	0.5	b	0	0.5
	w	x		y	z
c	0.5	0	 С	0	0.5
d	0	0.5	d	0.5	0

▲ロト ▲聞 ▶ ▲臣 ▶ ▲臣 ▶ → 臣 → のへで

	w	x		y	z
a	0.5	0	a	0.5	0
b	0	0.5	b	0	0.5
	w	x		y	z
c	0.5	0	 С	0	0.5
d	0	0.5	d	0.5	0

ロト 《母 ト 《臣 ト 《臣 ト 《臣 のへで)

	w	x		y	z
a	0.5	0	a	0.5	0
b	0	0.5	b	0	0.5
	w	x		y	z
c	0.5	0	 С	0	0.5
d	0	0.5	d	0.5	0

▲ロト ▲聞 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○

	w	x		y	z
a	0.5	0	a	0.5	0
b	0	0.5	b	0	0.5
	w	x		y	z
c	0.5	0	 С	0	0.5
d	0	0.5	d	0.5	0

▲ロト ▲聞 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○

	w	x		y	z
a	0.5	0	a	0.5	0
b	0	0.5	b	0	0.5
	w	x		y	z
c	0.5	0	 С	0	0.5
d	0	0.5	d	0.5	0

(ロトメ母 トメヨトメヨト ヨー わえぐ)

Proof Sketch - Necessity

- Separable choice functions satisfy marginality.
- The linear combination of vectors which satisfy marginality also satisfies margianlity.
- This is the easy direction. Sufficiency is hard.

	w	x		y	z
a	0.2	0.3	a	0.5	0
b	0.4	0.1	b	0.1	0.4
	w	x		y	z
c	0.15	0.35	С	0.3	0.2
d	0.45	0.05	d	0.3	0.2

	w	x		y	z
a	0.2	0.3	a	0.5	0
b	0.4	0.1	b	0.1	0.4
	w	x		y	z
c	0.15	0.35	С	0.3	0.2
d	0.45	0.05	d	0.3	0.2

	w	x		y	z
a	0	0.3	a	0.3	0
b	0.4	0.1	b	0.1	0.4
	w	x		y	z
c	-0.05	0.35	c	0.1	0.2
d	0.45	0.05	d	0.3	0.2

	w	x		y	z
a	0	0.3	a	0.3	0
b	0.4	0.1	b	0.1	0.4
	w	x		y	z
c	-0.05	0.35	С	0.1	0.2
d	0.45	0.05	d	0.3	0.2

コト 4 聞 ト 4 臣 ト 4 臣 ト 1 臣 - りへで

	w	x			y	z
a	0	0	-	a	0.3	-0.3
b	0.4	0.1		b	0.1	0.4
	w	x	-		y	z
c	-0.05	0.05	-	С	0.1	-0.1
d	0.45	0.05		d	0.3	0.2

	w	x		y	z
a	0	0	 a	0.3	-0.3
b	0.4	0.1	b	0.1	0.4
	w	x		y	z
c	-0.05	0.05	 С	0.1	-0.1
d	0.45	0.05	d	0.3	0.2

	w	x		y	z
a	0	0	a	0.3	-0.3
b	0	0.1	 b	-0.3	0.4
	w	x		y	z
c	-0.05	0.05	c	0.1	-0.1
d	0.05	0.05	d	-0.1	0.2

ロト 《御 と 《 臣 と 《 臣 と ののの)

	w	x		y	z
a	0	0	 a	0.3	-0.3
b	0	0.1	b	-0.3	0.4
	w	x		y	z
c	-0.05	0.05	 С	0.1	-0.1
d	0.05	0.05	d	-0.1	0.2

28/74

	w	x		y	z
a	0	0	a	0.3	-0.3
b	0	0	b	-0.3	0.3
	w	x		y	z
С	-0.05	0.05	с	0.1	-0.1
d	0.05	-0.05	d	-0.1	0.1

- ロト * 母 * * 目 * * 目 * 「目 * の々で、

	w	x		y	z
a	0	0	a	0.3	-0.3
b	0	0	b	-0.3	0.3
	w	x		y	z
С	-0.05	0.05	с	0.1	-0.1
d	0.05	-0.05	d	-0.1	0.1

・ ・ 母・ ・ ヨ・ ・ ヨ・ ・ りゃぐい

	w	x		y	z
a	0	0	 a	0	0
b	0	0	b	-0.3	0.3
	w	x		y	z
c	-0.05	-0.25	 С	-0.2	-0.1
d	0.05	0.25	d	-0.1	0.4

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ④ ● ●

	w	x		y	z
a	0	0	a	0	0
b	0	0	b	-0.3	0.3
	w	x		y	z
c	-0.05	-0.25	c	-0.2	-0.1
d	0.05	0.25	d	-0.1	0.4

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - 釣ん(で)

	w	x		y	z
a	0	0	a	0	0
b	0	0	b	0	0
	w	x		y	z
c	-0.05	0.05	c	0.1	-0.1
d	0.05	-0.05	d	-0.1	0.1

• Repeat this process for the remaining choice sets.

Marginality Revisited

- Marginality fails to be sufficient for stochastic separability.
- We can characterize marginality via the linear span of separable choice functions.
- What about separable utility functions?

Marginality vs Separable Random Utility

THEOREM 2

A random joint choice rule p satisfies marginality if and only if there exists a signed measure ν over $\mathcal{L}(X) \times \mathcal{L}(Y)$ such that for all $A \in \mathcal{X}, B \in \mathcal{Y}, x \in A$, and $y \in B$ we have the following.

$$p(x, y | A, B) = \sum_{(\succ, \succ') \in \mathcal{L}(X) \times \mathcal{L}(Y)} \nu(\succ, \succ') \mathbf{1}\{x \succ A \setminus \{x\}, y \succ' B \setminus \{y\}\}$$

Some Additional Technology

- Block-Marschak polynomials
 - For multiple agents:

$$p(x, y|A, B) = \sum_{A': A \subseteq A'} \sum_{B': B \subseteq B'} q(x, y|A, B)$$

• For a single agent:

$$p_1(x, A) = \sum_{A': A \subseteq A'} q_1(x, A')$$
$$p_2(y, B) = \sum_{B': B \subseteq B'} q_2(y, B')$$

• These keep track of the change in the choice probability of x not already explained by the supersets of A.

$$q_1(x, A) = p_1(x, A) - \sum_{A': A \subsetneq A'} q_1(x, A')$$

Block-Marschak Polynomials and Random Utility

Proposition 1

A signed measure ν over $\mathcal{L}(X)$ induces a marginal random choice rule p_1 if and only if the following holds.

$$\nu(\{\succ | X \setminus A \succ x \succ A \setminus \{x\}\}) = q_1(x, A)$$

PROPOSITION 2

A signed measure ν over $\mathcal{L}(X) \times \mathcal{L}(Y)$ induces a random joint choice rule p if and only if the following holds.

$$\nu(\{(\succ,\succ')|X\setminus A\succ x\succ A\setminus\{x\},Y\setminus B\succ' y\succ' B\setminus\{y\}\})=q(x,y|A,B)$$

 $\{a, b, c\}$

 $\{a,b\} \qquad \qquad \{a,c\} \qquad \qquad \{b,c\}$

 $\{a\}$ $\{b\}$ $\{c\}$

Ø

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ― 圖 … 釣ぬゆ

▲□▶ ▲□▶ ▲□▶ ▲□▶ 亘 の��

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二頁 - 釣ぬゆ

Conditional Graph

・ロト ・ 理 ・ ・ ヨ ・ ・ 日 ・ うへつ

Linear Order Pairs and Our Graphs

- A path on the marginal graph corresponds to a linear order of X.
- A path on the conditional graph corresponds to a linear order of Y.
- What does a linear order pair look like using our graphs?
 - A path on the marginal graph: $\succ \in \mathcal{L}(X)$.
 - For each conditional graph along that path, a common path on each conditional graph: $\succ' \in \mathcal{L}(Y)$.

Some Preliminary Results

Inflow equals outflow on the marginal graph.

- $\sum_{x \in A} q_1(x, A) = \sum_{z \notin A} q_1(z, A \cup \{z\})$
- This is a result of probabilities summing to one.

■ Inflow equals outflow on the conditional graph.

•
$$\sum_{y \in B} q(x, y | A, B) = \sum_{z \notin B} q(x, z | A, B \cup \{z\})$$

• This is equivalent to marginality and is a result of p(x, A|B) = p(x, A|B').

Inflow equals outflow between conditional graphs for each (y, B).

•
$$\sum_{x \in A} q(x, y|A, B) = \sum_{z \notin A} q(z, y|A \cup \{z\}, B)$$

• This is equivalent to marginality and is a result of p(x, A|B) = p(x, A|B').

Proof Sketch

- As before, necessity is easy.
- Maximization of a pair of linear orders induces a separable choice function.
- The linear span of separable choice functions satisfies marginality.
- Sufficiency is hard and proceeds in steps.
 - **1** Show how we can decompose any conditional graph if we have marginality.
 - 2 Decompose every conditional graph on one "layer" of the marginal graph.
 - 3 Adapt the marginality trick from the proof of Theorem 1 to this collection of graphs.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ― 圖 … 釣ぬゆ

47/74

メロト メ母ト メヨト メヨト 三日 - のへで

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 ─ のへで

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ 釣��

<ロト < 部 > < 部 > < 部 > < 部 > < 部 > < の < で</p>

<ロト < 部 > < 注 > < 注 > こ の < で</p>

<ロト < 部 > < き > < き > き の < で</p>

- Decomposing a conditional graph leaves us with a signed measure over linear orders of Y (that sums to $q_1(x, A)$).
- We'll use a similar process to decompose the marginal graph.
- Whenever we "subtract out" an edge on the marginal graph, we are decomposing the conditional graph associated with that edge.
 - Decomposing the marginal graph gives us the marginal distribution over linear orders of X.
 - Decomposing the conditional graphs gives us the distribution over linear orders of Y conditional on a linear order of X.
 - Note that the marginal and conditional distributions are not unique.

56/74

▶ ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 = りへの

61/74

Recall that inflow equals outflow between conditional graphs for each (y, B).

$$\sum_{x \in A} q(x, y | A, B) = \sum_{z \notin A} q(z, y | A \cup \{z\}, B)$$

• This tells us the following for all $y \in B \subseteq Y$.

$$q(a, y | \{a, c, d\}, B) + q(b, y | \{b, c, d\}, B) = 0$$

63/74

Proof Sketch - Sufficiency

- We combine our marginal distribution with our conditional distributions to create one joint measure.
- Since our decomposition leaves every graph with zero weight everywhere, the joint measure we found satisfies Proposition 2, so we are done.

Proposition 2

A signed measure ν over $\mathcal{L}(X) \times \mathcal{L}(Y)$ induces a random joint choice rule p if and only if the following holds.

$$\nu(\{(\succ,\succ')|X\setminus A\succ x\succ A\setminus\{x\},Y\setminus B\succ' y\succ' B\setminus\{y\}\})=q(x,y|A,B)$$

Separable Random Utility

DEFINITION

A random joint choice rule p is *rationalizable* by separable random utility if there exists $\nu_+ \in \Delta(\mathcal{L}(X) \times \mathcal{L}(Y))$ such that the following holds for all $A \in \mathcal{X}$, $B \in \mathcal{Y}$, $x \in A$, and $y \in B$.

$$p(x,y|A,B) = \sum_{(\succ,\succ')\in\mathcal{L}(X)\times\mathcal{L}(Y)} \nu_{+}(\succ,\succ')\mathbf{1}\{x\succ A\setminus\{x\}, y\succ' B\setminus\{y\}\}$$

Non-Negativity

Proposition 2

A signed measure ν over $\mathcal{L}(X) \times \mathcal{L}(Y)$ induces a random joint choice rule p if and only if the following holds.

$$\nu(\{(\succ,\succ')|X\setminus A\succ x\succ A\setminus \{x\}, Y\setminus B\succ' y\succ' B\setminus \{y\}\}) = q(x,y|A,B)$$

• We're looking for a probability distribution, so $\nu \geq 0$.

• This means $q \ge 0$.

NON-NEGATIVITY

For each $x \in A \subseteq X$ and $y \in B \subseteq Y$, $q(x, y|A, B) \ge 0$.

Marginality Still Too Weak

• Our counterexample to Theorem 1 still works.

• When the choice set is not a (weak) subset of $\{c, d\} \times \{y, z\}$:

$$\nu_{1}(\succ,\succ') = \begin{cases} \frac{1}{2} & \text{if } (\succ,\succ') = (a \succ b \succ c \succ d, w \succ x \succ y \succ z) \\ \frac{1}{2} & \text{if } (\succ,\succ') = (b \succ a \succ d \succ c, x \succ w \succ z \succ y) \\ 0 & \text{otherwise} \end{cases}$$

• When the choice set is a (weak) subset of $\{c, d\} \times \{y, z\}$:

$$\nu_2(\succ,\succ') = \begin{cases} \frac{1}{2} & \text{if } (\succ,\succ') = (d\succ c, y\succ z) \\ \frac{1}{2} & \text{if } (\succ,\succ') = (c\succ d, z\succ y) \\ 0 & \text{otherwise} \end{cases}$$

Failures of Uniqueness and Marginality

• The marginal choice probabilities for each agent fail to have a unique RUM representation.

$$\nu_{1}(\succ) = \begin{cases} \frac{1}{2} & \text{if } \succ \in \{a \succ b \succ c \succ d, b \succ a \succ d \succ c\} \\ 0 & \text{otherwise} \end{cases}$$
$$\nu_{2}(\succ) = \begin{cases} \frac{1}{2} & \text{if } \succ \in \{a \succ b \succ d \succ c, b \succ a \succ c \succ d\} \\ 0 & \text{otherwise} \end{cases}$$

 Marginality only fails to be sufficient if both agents' marginal choice probabilities fail to have a unique RUM representation.

Separable Random Utility with Unique Marginals

Theorem 3

Suppose that a random joint choice rule p satisfies marginality and at least one marginal random joint choice rule has a unique random utility representation. p is rationalizable by separable random utility if and only if it satisfies non-negativity.

Proof Sketch

イロト (個) (注) (注) (注) しょうくび

Proof Sketch

▲□▶ ▲□▶ ▲□▶ ▲□▶ 亘 の��

- When a marginal random choice rule has a unique random utility representation, each linear order in the support of the representation has some edge unique to that linear order among linear orders in the support. (Turansick (2022))
- Recall that inflow equals outflow between conditional graphs for each (y, B).

•
$$\sum_{x \in A} q(x, y|A, B) = \sum_{z \notin A} q(z, y|A \cup \{z\}, B)$$

• This means, when we decompose the conditional graph at that edge, we can always subtract out that decomposition at every conditional graph along the path.

Conclusion

- We study stochastic choice data that captures the joint choice of multiple agents.
- We consider the extension of the latent variable hypothesis to multiple agents.
- Without imposing rationality, the latent variable hypothesis has no content in the single agent case.
- With multiple agents, the latent variable hypothesis has testable content beyond marginality.
- Without joint choice data, we may frequently fail to reject separable stochastic choice theories.