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Abstract

Barseghyan and Molinari (2023) give sufficient conditions for semi-nonparametric point iden-
tification of parameters of interest in a mixture model of decision-making under risk, allowing
for unobserved heterogeneity in utility functions and limited consideration. A key assumption in
the model is that the heterogeneity of risk preferences is unobservable but context-independent.
In this comment, we build on their insights and present identification results in a setting where
the risk preferences are allowed to be context-dependent.
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1 Introduction

Barseghyan and Molinari (2023) offer identification results of risk preferences based on observed

bundle choices of decision makers in insurance markets. (See also Barseghyan, Molinari, and Thir-

kettle (2021) for related work and background references.) Their economic model allows for multi-

ple preference types, unobserved heterogeneity within each type, and unobserved heterogeneity in

(random) consideration sets at the bundle level. (See Cattaneo, Ma, Masatlioglu, and Suleymanov

(2020), Barseghyan, Coughlin, Molinari, and Teitelbaum (2021), and Cattaneo, Cheung, Ma, and

Masatlioglu (2023) for background references on random attention and related models.) In particu-

lar, Barseghyan and Molinari (2023) consider decision-making under uncertainty for bundle choices

(e.g., collision and comprehensive auto insurance deductibles), allowing for different utility models

via a finite mixture of preference types, where each preference type is parameterized with random

coefficients. The mixing probabilities for different types are context-independent; that is, for each

decision maker, the same utility function is employed in all contexts.

Barseghyan and Molinari (2023)’s key identification insight is to exploit a single-crossing prop-

erty of the utility models, together with the assumption that prices enter the utility calculation

but variations thereof are independent of the preference type, the random utility parameter, and

the consideration set formation. Then, assuming there exists sufficient variation in prices, they are

able to “match” decision makers of different preference types to marginal price changes in differ-

ent contexts, and semi-nonparametric point identification of the parameters of interest (i.e., the

share of preference types and distributions of the random utility parameters) can be achieved from

observed choice bundles only.

A key assumption in their model is that the heterogeneity of risk preferences is unobservable

but context-independent (in other words, risk behaviors are consistent across environments). While

this assumption is the central tenet of classical behavioral models under risk, a large body of

evidence documents robust evidence for context-dependent risk behavior (Camerer, 1995, 1998).

For example, individuals can be seen as risk-averse for gambles involving significant gains or small

losses and risk-seeking for gambles involving small gains or significant losses, also known as the

“fourfold pattern” of risk preferences (Markowitz, 1952; Tversky and Kahneman, 1992). Moreover,

MacCrimmon and Wehrung (1986, 1990) documented that the degree of risk-taking of the same

individual is influenced by decision environments such as games of chance/gambling, financial

investing, business decisions, and personal decisions. Hence, it is more natural to allow for risk

preferences to be malleable and domain-specific (Weber, Blais, and Betz, 2002).

Motivated by the aforementioned theoretical and empirical evidence from behavioral sciences,

in this comment, we enhance the model of Barseghyan and Molinari (2023) to allow for context-

dependent risk behavior by permitting the mixing probability entering the finite mixture of pref-

erence types to be context-dependent. To be precise, our model introduces a new type of decision

makers who employ different utility functions (and, therefore, different random utility parameters)

for risk assessment across contexts. Due to the presence of such decision makers, the mixed deriva-
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tive of the observed choice probability with respect to price variations in different contexts will

not be zero, meaning that we can no longer “match” decision makers of different types to price

variations in different contexts.

To achieve semi-nonparametric identification, we build on the insight of Barseghyan and Moli-

nari (2023), and observe that context-independent preference may lead to non-smooth responses

to price variations. To provide some intuition, consider a decision maker who uses the same utility

function for risk assessment in all contexts, and she chose products with high deductibles (i.e., low

prices). As price variations across contexts are not perfectly correlated, products in some contexts

can be considered “cheap,” while in other contexts are more “expensive.” The decision maker will

only react to price changes in contexts where the costs are already low. In other words, her de-

cision to purchase high-deductible products cannot be simultaneously binding in all contexts. On

the other hand, if she employs different utility functions across contexts, then it is possible that

all her choices are binding, in which case the choice behavior will react to price variations in all

contexts. We thus present an identification strategy based on discontinuity in derivatives.

The remainder of this comment proceeds as follows. Section 2 reviews the key identification

insights from Barseghyan and Molinari (2023) under full attention, and then presents identification

results for context-dependent preferences leveraging those insights. Section 3 extends our identifi-

cation results for context-dependent preferences to settings with random and limited consideration.

Section 4 concludes.

2 Identification under Full Consideration

We employ the notation in Barseghyan and Molinari (2023) with minimal modifications, and we

also adopt their assumptions throughout this comment with the exception of their Assumption 2.2,

which we aim to generalize.

2.1 Model and Identification Insight

We assume there are two contexts (i.e., choice problems), indexed by I and II, and the decision

maker has to choose between two (risky) alternatives within each context. We label a decision

maker by i, and the prices she faces in the two contexts are xIi and xIIi , respectively. As we show

below, the identification of the parameters will rely on exogenous variation of prices. The decision

maker’s utility function can be either Uνi(·) or Uωi(·), with probability α and 1 − α, respectively.

The risk preference parameters, νi and ωi, are realized from distributions F and G, respectively,

with supports [0, ν̄] and [0, ω̄].

Given the price xIi (or xIIi ), and the assumptions imposed by Barseghyan and Molinari (2023),

there exists a unique risk preference parameter value such that the decision maker is indifferent
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between the two options. Formally, we define for type-ν decision makers:

νi ≤ V1,1
2,1 (x

I
i ) ⇔ bundle I1,1 is preferred to I2,1 with utility Uνi(·),

νi ≤ V1,1
1,2 (x

II
i ) ⇔ bundle I1,1 is preferred to I1,2 with utility Uνi(·),

which is possible when the utility function exhibits single crossing property (Barseghyan and Moli-

nari, 2023, Assumption 2.4). We recall that Vℓ,q
k,r(·) denotes the cutoff level for νi at which the

agent is indifferent between bundles Iℓ,q and Ik,r. In general, the cutoff value would depend on

both prices, xIi and xIIi , but thanks to the “narrow bracketing” assumption (Barseghyan and Moli-

nari, 2023, Assumption 2.3), V1,1
2,1 (·) is only a function of xIi , and V1,1

1,2 (·) is only a function of xIIi .

Similarly, we can also define the cutoff values for type-ω decision makers:

ωi ≤ W1,1
2,1 (x

I
i ) ⇔ bundle I1,1 is preferred to I2,1 with utility Uωi(·),

ωi ≤ W1,1
1,2 (x

II
i ) ⇔ bundle I1,1 is preferred to I1,2 with utility Uωi(·).

From the above definitions, type-ν decisions makers will choose bundle I1,1 if and only if

νi ≤ V1,1
2,1 (x

I
i ) and νi ≤ V1,1

1,2 (x
II
i ), and similarly for type-ω decision makers. In other words, the

choice probability satisfies the following:

P
[
I1,1 chosen

∣∣∣xIi , xIIi ] = αP
[
νi ≤ V1,1

2,1 (x
I
i ) ∧ V1,1

1,2 (x
II
i )
∣∣∣xIi , xIIi ]

+ (1− α)P
[
ωi ≤ W1,1

2,1 (x
I
i ) ∧W1,1

1,2 (x
II
i )
∣∣∣xIi , xIIi ]

= αF
(
V1,1
2,1 (x

I
i ) ∧ V1,1

1,2 (x
II
i )
)
+ (1− α)G

(
W1,1

2,1 (x
I
i ) ∧W1,1

1,2 (x
II
i )
)
, (1)

where a ∧ b = min{a, b}. See Panel (a) and (b) of Figure 1 for an illustration. Barseghyan and

Molinari (2023) establish point identification of (α, F,G) as follows. Take some v in the support of

F , and assume we can find a price combination (xIi , x
II
i ) such that

v = V1,1
2,1 (x

I
i ) < V1,1

1,2 (x
II
i ) and W1,1

2,1 (x
I
i ) > W1,1

1,2 (x
II
i ). (2)

Then, combining (1) and (2),

P
[
I1,1 chosen

∣∣∣xIi , xIIi ] = αF
(
V1,1
2,1 (x

I
i )
)
+ (1− α)G

(
W1,1

1,2 (x
II
i )
)
.

Since an infinitesimal change in xIi will not alter the inequalities in (2), the following derivative is

identifiable at v:

∂

∂V1,1
2,1 (x

I
i )
P
[
I1,1chosen

∣∣∣xIi , xIIi ] = αf(v),

where f is the Lebesgue density of F . The equality above is intuitive: under (2), type-ν marginal

decision makers will be more sensitive to price changes in context I, while type-ω marginal decision
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makers react to prices changes in context II. Therefore, a change in xIi will affect the threshold

V1,1
2,1 (x

I
i ), which in turn affects the fraction of type-ν decision makers who will choose the I1,1 bundle.

Another key observation is that the threshold function, xIi 7→ V1,1
2,1 (x

I
i ), can be computed once the

analyst has chosen the utility function class {Uν : ν ∈ [0, ν̄]}; that is, we can directly exploit the

variation in the threshold V1,1
2,1 (x

I
i ).

If the conditions in (2) are met for all v ∈ [0, ν̄], then f(·) and the mixing probability α are

identifiable. An analogous argument can be used to identify g(·) (the density of G). This result is

formally established in Theorem 3.1 of Barseghyan and Molinari (2023).

2.2 Context-Dependent Risk Assessment

As an attempt to allow the preference to depend on the context (choice problem), assume the

population consists of three types:

(i) type-ν individuals always employ the utility function Uνi for decision making, where νi ∼ F ;

(ii) type-ω individuals always employ the utility function Uωi for decision making, where ωi ∼ G;

(iii) individuals of the last type employ context-dependent risk assessment, that is, they use dif-

ferent utility functions, Uνi and Uωi for decision making in context I and II, respectively.

The unknown proportions of the three types are α, β, and 1− α− β, respectively. This extension

can also be understood as context-dependent mixing probabilities, since now the fraction of decision

makers employing the utility function Uνi will be context specific: 1 − β for context I and α for

context II.

Since decision makers of the third type are equipped with two (random) utility functions, we

have to specify how the random utilities are generated. This is done in the following assumption.

Assumption 1. For decision makers employing different utility functions for the two contexts,

their random utilities are generated from some joint distribution C(F (ν), G(ω)), where F and

G are the marginal distribution of νi and ωi and C(·, ·) is a continuously differentiable copula

function.

The choice behaviors of the first two groups have been analyzed previously. For individuals of

the third type that we just introduced, they will pick bundle I1,1 if νi ≤ V1,1
2,1 (x

I
i ) and ωi ≤ W1,1

1,2 (x
II
i ).

By Assumption 1,

P
[
I1,1 chosen

∣∣∣xIi , xIIi ] = αF
(
V1,1
2,1 (x

I
i ) ∧ V1,1

1,2 (x
II
i )
)
+ βG

(
W1,1

2,1 (x
I
i ) ∧W1,1

1,2 (x
II
i )
)

+ (1− α− β)C
(
F
(
V1,1
2,1 (x

I
i )
)
, G
(
W1,1

1,2 (x
II
i )
))

. (3)

See Panel (c) of Figure 1 for an illustration.
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0 ν̄

ν̄

V1,1
2,1 (x

I
i )

V1,1
1,2 (x

II
i )

ν i
∼
F
(·)

(a) Type-ν

0 ω̄

ω̄

W1,1
2,1 (x

I
i )

W1,1
1,2 (x

II
i )

ω i
∼
G
(·)

(b) Type-ω

0 ν̄

ω̄

V1,1
2,1 (x

I
i )

W1,1
1,2 (x

II
i )

(νi, ωi) ∼ C(F (·), G(·))

(c) Context-dependent preference

Figure 1: Choice behavior of different types of decision makers.

Panel (a): Type-ν decision makers employ Uνi for risk assessments in both contexts (context I
along the horizontal axis and II along the vertical axis). They will choose the bundle I1,1 if the

parameter νi is below both V1,1
2,1 (x

I
i ) and V1,1

1,2 (x
II
i ), as illustrated by the dark gray segment of the

45-degree line. Panel (b): Type-ω decision makers employ Uωi for risk assessments in both
contexts. They will choose the bundle I1,1 if the parameter ωi is below both W1,1

2,1 (x
I
i ) and

W1,1
1,2 (x

II
i ), as illustrated by the dark gray segment of the 45-degree line. Panel (c): With

context-dependent preference, the decision maker will choose I1,1 if νi is below V1,1
2,1 (x

I
i ) and ωi is

below W1,1
1,2 (x

II
i ), as illustrated by the dark gray rectangular area.

In this model of context-dependent risk assessment, we can point identify the mixing probabili-

ties and the distribution of the risk parameters, (α, β, F,G,C), following the core idea in Barseghyan

and Molinari (2023). Consider some v in the support of F where one can find price combinations
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such that the following holds:

v = V1,1
2,1 (x

I
i ) = V1,1

1,2 (x
II
i ) and W1,1

2,1 (x
I
i ) > W1,1

1,2 (x
II
i ). (4)

Since the threshold functions, Vℓ,q
k,r(·) and Wℓ,q

k,r(·) are continuous, it is possible to break the equality

V1,1
2,1 (x

I
i ) = V1,1

1,2 (x
II
i ) by slight variation in xIIi without affecting the second constraint in (4). That

is,

lim
V1,1
1,2 (x

II
i )↓v

∂

∂V1,1
2,1 (x

I
i )
P
[
I1,1 chosen

∣∣∣xIi , xIIi ] =
{
α+(1− α− β)C1

(
F (v), G

(
W1,1

1,2 (x
II
i )
))}

f(v),

lim
V1,1
1,2 (x

II
i )↑v

∂

∂V1,1
2,1 (x

I
i )
P
[
I1,1 chosen

∣∣∣xIi , xIIi ] =
{

(1− α− β)C1

(
F (v), G

(
W1,1

1,2 (x
II
i )
))}

f(v),

where C1(·, ·) is the derivative of the copula function with respect to its first argument. Therefore,

the discontinuity-in-derivative formula gives

lim
V1,1
1,2 (x

II
i )↓v

∂

∂V1,1
2,1 (x

I
i )
P
[
I1,1 chosen

∣∣∣xIi , xIIi ]− lim
V1,1
1,2 (x

II
i )↑v

∂

∂V1,1
2,1 (x

I
i )
P
[
I1,1 chosen

∣∣∣xIi , xIIi ] = αf(v),

which provides identification of f(·) and the mixing probability α if there is enough variation in

prices such that (4) can be constructed for all v in the support. We summarize our findings in the

following theorem.

Theorem 1. Let Assumptions 2.1, 2.3, and 2.4 in Barseghyan and Molinari (2023) and our As-

sumption 1 hold. In addition, assume there is enough variation in prices, xIi and xIIi , such that (4)

is feasible for all v in the support of F . Then α and F are identified.

By symmetry, the same argument applied to W1,1
2,1 (·) and W1,1

1,2 (·) can be used to point identify

(β,G), and subsequently the copula function C.

3 Context-Dependent Risk Assessment with Limited Considera-

tion

To allow for context-dependent risk assessments with limited consideration is a nontrivial task. In

particular, the notation quickly becomes cumbersome. In this section, we thus make a simplifying

assumption on the support of the consideration sets.

Assumption 2. Let O(·) be the probability measure representing random consideration. Let

O{1,2}×{1,2} := O({Iℓ,q : ℓ, q = 1, 2}),

O{ℓ}×{1,2} := O({Iℓ,q : q = 1, 2}), ℓ = 1, 2,

O{1,2}×{q} := O({Iℓ,q : ℓ = 1, 2}), q = 1, 2,
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O{ℓ}×{q} := O({Iℓ,q}), ℓ, q = 1, 2.

Then,

O{1,2}×{1,2} +
∑
ℓ=1,2

O{ℓ}×{1,2} +
∑
q=1,2

O{1,2}×{q} +
∑∑
ℓ,q=1,2

O{ℓ}×{q} = 1.

For example, O{1,2}×{1,2} is the probability of full attention (i.e., the chance that the decision

maker pays attention to both options, 1 and 2, in both contexts). Similarly, O{1,2}×{2} is the

probability that she pays attention to both 1 and 2 in I but only 2 in II. The assumption rules out

consideration sets such as {I1,1, I2,2}, which simplifies the notation and presentation. Assumption

2 is not necessary for our identification results. In particular, if consideration bundles such as

{I1,1, I2,2} were allowed, then we would only need to specify how individuals of the third type (see

Section 2.2) make decisions.

Under Assumption 2, the choice probability for bundle I1,1 can be written as

P
[
I1,1 chosen

∣∣∣xIi , xIIi ] = α

{
O{1,2}×{1,2}F

(
V1,1
2,1 (x

I
i ) ∧ V1,1

1,2 (x
II
i )
)

+ O{1,2}×{1}F
(
V1,1
2,1 (x

I
i )
)

+ O{1}×{1,2}F
(
V1,1
1,2 (x

II
i )
)

+ O{1}×{1}

}

+β

{
O{1,2}×{1,2}G

(
W1,1

2,1 (x
I
i ) ∧W1,1

1,2 (x
II
i )
)

+ O{1,2}×{1}G
(
W1,1

2,1 (x
I
i )
)

+ O{1}×{1,2}G
(
W1,1

1,2 (x
II
i )
)

+ O{1}×{1}

}

+(1− α− β)

{
O{1,2}×{1,2}C

(
F
(
V1,1
2,1 (x

I
i )
)
, G
(
W1,1

1,2 (x
II
i )
))

+ O{1,2}×{1}F
(
V1,1
2,1 (x

I
i )
)

+ O{1}×{1,2}G
(
W1,1

1,2 (x
II
i )
)

+ O{1}×{1}

}
.

As in Barseghyan and Molinari (2023), it is also possible to allow the random consideration, O(·),
to depend on the type of decision makers. In other words, the three types of decision makers

(Section 2.2) will be equipped with different random consideration measures, say O(i)(·), O(ii)(·),
and O(iii)(·). We abstract away from this generalization to save notation.

Now assume (4) is possible for some v in the support of F , then the discontinuity-in-derivative

formula yields:

lim
V1,1
1,2 (x

II
i )↓v

∂

∂V1,1
2,1 (x

I
i )
P
[
I1,1 chosen

∣∣∣xIi , xIIi ]− lim
V1,1
1,2 (x

II
i )↑v

∂

∂V1,1
2,1 (x

I
i )
P
[
I1,1 chosen

∣∣∣xIi , xIIi ] = αO{1,2}×{1,2}f(v).

We summarize the identification result in the following theorem.
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Theorem 2. Let Assumptions 2.1, 2.3, and 2.4 in Barseghyan and Molinari (2023) and our As-

sumptions 1 and 2 hold. In addition, assume there is enough variation in prices, xIi and xIIi , such

that (4) is feasible for all v in the support of F . Then αO{1,2}×{1,2} and F are identified.

4 Conclusion

Barseghyan and Molinari (2023) introduced and studied an interesting model of decision-making

under risk, allowing for unobserved heterogeneity in utility functions and consideration set forma-

tion, where the mixing probability parameter determining the risk profile for each decision maker

is unknown but context-independent. They provided insightful identification results of parameters

of interest (the distribution of the random coefficient distributions and the context-independent

mixing probability). Motivated by the abundant theoretical and empirical behavioral literature,

we enhanced Barseghyan and Molinari (2023)’s model to allow for context-dependent random util-

ity. More precisely, we allowed for the mixing probability entering the finite mixture of preference

types to be context-dependent. We then built on their identification approach to establish semi-

nonparametric point identification of parameters of interest.
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