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“All organisms assign objects and events in the environment to separate
classes or categories... Any species lacking this ability would quickly
become extinct.” –Ashby & Maddox [2005]

1. Introduction

Categories shape how people perceive and react to the world. A real estate agent
shows clients a house in a worse neighborhood before showing them the one the agent
wants to sell, so that they categorize the target’s neighborhood as a gain rather than
a loss. A worker may reject a higher paying job offer in a different city because the
worker does not categorize it as unambiguously better than the status quo. A fan
categorizes a $5 soda as a bargain at their favorite team’s home stadium but a rip-
off in a grocery store. A negotiator rejects, and refuses to make, offers categorized as
unfair. An experimental subject is willing to wait an extra week to turn a reward of $100
into $110 only when both rewards are categorized as long term. This paper develops
a model that generates these behaviors through a common underlying mechanism:
categorization.

We propose and axiomatize the Categorical Thinking Model (CTM) based on two
key features of these examples: categorization depends on the context and affects how
the decision maker (DM) evaluates alternatives. A DM conforming to CTM first groups
objects into categories based on a reference point, and then maximizes a category- and
reference-dependent utility function over alternatives. While the reference point does
not affect her ranking within a given category, it may affect comparisons across cate-
gories. We show that a number of important models across different choice environ-
ments are special cases of CTM. Our analysis suggests categorization as their common
cognitive underpinning and reveals their common behavior as well as the behavior that
distinguishes them.

Prominent models of loss-aversion, status quo bias, salience, inequality aversion,
present bias, and others all fit under the umbrella of CTM. A loss-averse DM [Tversky
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& Kahneman, 1991] categorizes alternatives according to which attributes are gains
and which are losses, then treats the two very differently. A DM subject to status
quo bias [Masatlioglu & Ok, 2005] categorizes alternatives according to whether they
unambiguously improve on the status quo, then penalizes the ones that do not. A
salient-thinking DM [Bordalo et al., 2013] categorizes alternatives according to which
attribute stands out most, then overweights that attribute. An inequality-averse DM
[Fehr & Schmidt, 1999] categorizes social allocations according to whether she feels
envy or guilt towards each of the others, then evaluates the allocation accordingly. A
quasi-hyperbolic DM [Phelps & Pollak, 1968] categorizes dated rewards as short- or
long-term, then discounts the former at a higher rate.

We show that a family of reference-dependent preference relations conforms to
CTM if, and only if, the ranking between alternatives belonging to the same category
does not depend on the reference point and satisfies some standard axioms. Within
CTM, a large latitude of models is allowed, yet they share the important commonal-
ities identified by our result. For instance, the salient-thinking model [Bordalo et al.,
2013] (BGS) and the constant loss-aversion model [Tversky & Kahneman, 1991] (TK)
both fall under CTM, so our result establishes their common foundations and that
categorization can serve as their common psychological underpinning. The result for-
malizes the behavioral implications separating models in CTM from those outside it.
For example, the context shifts weight between attributes in both the focus-weighted
utility model [Kőszegi & Szeidl, 2013] and BGS. The former necessarily violates refer-
ence irrelevance and so is not a special case of CTM, while BGS satisfies it, as well as
the other axioms.

While we initially consider exogenously-specified categories, our framework has
the advantage of allowing categories to be derived endogenously from choice behavior.1

We provide a method to identify the categorization based on the changes in trade-
offs between attributes. This allows our model to consider phenomena for which the

1Non-choice data is an additional source of identification and can be used in conjunction with or in
lieu of our methods.
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psychology makes only partial category predictions, like salience. By endogenously
identifying categories, the result extends the model’s applicability beyond cases with
unambiguous categorization, such as gains and losses.

In economics, the most prominent model of salience, BGS, accounts for a number of
empirical anomalies, but because its new components are unobservable, understanding
all of its implications for behavior can be difficult. We apply our results to provide the
first complete characterization of the observable choice behavior equivalent to BGS,
clarifying and identifying the nature of the assumptions used by it.2 The first crucial
step towards understanding the model is understanding its novel salience function that
determines which attribute stands out for a given reference point. While the salience
function influences which attribute is salient, the weight given to each attribute is
independent of its magnitude, so BGS is a special case of CTM. We identify properties
that its categories must satisfy and the regularities that distinguish it from other CTMs.

In some models, the set of available options endogenously determines the reference
point. For instance, the reference point is the average of the available alternatives in
BGS, so varying the budget set affects the salience of, and so the DM’s evaluation
of, a given alternative. Our final contribution addresses this challenge by extending
our characterization of CTM and the identification of categories to accommodate an
endogenous reference point. We take a choice correspondence describing the DM’s
behavior, and assume each menu is mapped to a reference point, such as the average
alternative in it. As long as the reference point varies systematically with the choice
problem, we characterize the properties of a choice correspondence that conforms to
CTM. Specifically, we show that if the DM’s choices obey the natural analogs of our
axioms in the exogenous-reference setting, then CTM rationalizes her behavior. To-
gether, the results admit a characterization of BGS with both an endogenous reference
point and endogenous identification of categories, unlike our previous results that relied
on exogeneity of at least one of the two.

2In a recent paper, Lanzani [2020] provides a characterization of the related model for risk. This paper
provides complimentary insights on the role of salience in different environments. For instance, the only
objects in both environments are sure-monetary payments on which both predict x � y ⇐⇒ x > y.
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The paper proceeds as follows. The next subsection provides a brief overview of
the relevant psychology literature on categorization. In Section 2, we introduce the
CTM and discuss the models covered under its umbrella. In Section 3, we axiomatize
the CTM and compare and contrast the models of riskless choice discussed in Section 2.
Section 4 contains our analysis of the salient thinking model. In Section 5 we introduce
the endogenous reference point setting and apply our axiomatizations of the CTM to
it. Section 6 concludes by comparing our results with the related economics literature.

1.1. Psychology of Categorization. There is a long literature in psychology and
marketing discussing categorization. Recent review articles include Ashby & Maddox
[2005], Loken [2006], Loken et al. [2008], and Cosmides & Tooby [2013]. Much of the
literature focuses on how subjects form categories and how they add new alternatives
to existing categories. The two properties on which CTM is based are well-documented
by this literature.

First, categories are context dependent. Tversky [1977], Tversky & Gati [1978]
present evidence that replacing one item in a set of objects can drastically alter how
people categorize the remaining objects. Tversky & Gati [1978] argue that categoriza-
tion “is generally not invariant with respect to changes in context or frame of reference.”
For example, they show that subjects put East Germany and West Germany into the
same category when the salient feature is geography or cultural background, but cat-
egorize the two differently when politics are salient. Similarly, Choi & Kim [2016]
posit that depending on the context, a person may categorize an Apple Watch as a
tech product, a fashion product, a fitness product, or just as a watch. Ratneshwar &
Shocker [1991] show that subjects categorize ice cream and cookies together in terms
of similarity (e.g., they are both desserts), but categorize ice cream and hot dogs to-
gether in terms of usage (e.g., both are good snacks to have at the pool). Stewart et al.
[2002] present evidence that information about the relative magnitude of sounds that
is derived from a comparison with a reference point is used to categorize them.
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Second, how a person categorizes an object affects its final valuation. In a classic
series of experiments, Rosch [1975] shows that subjects perceptually encode differently
categorized but physically identical stimuli as distinct objects. Wanke et al. [1999]
demonstrate that people evaluate wine more positively when it is in the same category
as lobster instead of with cigarettes. Mogilner et al. [2008] show that categorizing goods
differently results in varying levels of satisfaction. Chernev [2011] shows that bundling
a healthy food item with a junk food item reduces the reported caloric content beyond
that of the junk food alone.

Moreover, CTM models categories as regions in the alternative space. This closely
tracks psychology’s decision bound theory. As Ashby & Maddox [2005, p. 152] de-
scribe, the subject “partition[s] the stimulus space into response regions... determines
which region the percept is in, and then emits the associated response.” Ashby & Gott
[1988] show it can accommodate examples incompatible with other theories of cate-
gory formation, such as prototype theory. Moreover, there is substantial experimental
support for it, such as Ashby & Waldron [1999], Anderson [1991], Love et al. [2004].

2. Model

The DM makes a choice of an alternative in X = Rn
++, and we focus on n = 2 when

not otherwise noted.3 The next subsections explore three different interpretations of X
in different contexts: as a riskless object with different attributes, as a dated reward or
consumption stream, and as an allocation of consumption across individuals. We often
use the convention of writing x ∈ X as (xi, x−i) with x−i denoting the components of
x different from i.

3We note when there is a distinction between general n and n = 2. Theorem 5 and the results that
rely on it use the full structure of R2

++. The remaining results all generalize to any X that is a
finite Cartesian product of open, linearly ordered, separable, connected sets endowed with the order
topology, where X itself has the product topology.
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The DM maximizes a complete and transitive preference relation %r over X when
her reference point is r ∈ X. As usual, �r denotes strict preference and ∼r indif-
ference. In Sections 2-4, we assume that the reference point is exogenously given, so
our primitive is a family {%r}r∈X . This isolates the effects of categorization from that
of reference point formation and allows easier comparison with the existing literature
like Tversky & Kahneman [1991]. We relax this assumption in Section 5 to allow
endogenous reference point formation.

2.1. Categorical Thinking Model. We model category formation via a function
that maps reference points to subsets of alternatives belonging to each category. We
allow categories to have a very general structure.

Definition 1. A vector-valued function K = (K1, K2, . . . , Km) is a category function
if each Kk : X → 2X satisfies the following properties:

(1) Kk(r) is a non-empty, regular open set, and cl(Kk(r)) is connected,4

(2) ⋃mk=1K
k(r) is dense,

(3) Kk(r)⋂K l(r) = ∅ for all k 6= l, and
(4) Kk(·) is continuous.5

We interpret the properties of the category function as follows. Every category
contains some alternative for every reference point. If a particular product, say x,
belongs to the category k, then so do all products that are close enough to x. For any
two points in the same category, we can find a path in its closure, so categories cannot
be the union of “islands.” Almost every alternative is in at least one category, and none
are in two categories. Further, if the reference point does not change too much, then
neither do the categories.

Categories arise from the psychology of the phenomenon to be modeled. For CTM
to be applicable, one must know or infer the category function. Often the psychology

4A set A is regular open if A = int(cl(A)).
5That is, each Kk is both upper and lower hemicontinuous when viewed as a correspondence.



8

makes unambiguous predictions about categorization. For instance, with gain-loss util-
ity, a DM treats alternatives that dominate the reference point differently than those
better in only one dimension. Other times, non-choice data such as hypothetical ques-
tions, subjective valuations, reaction times, physiological reactions, and neurological
responses combine with the psychology to make unambiguous predictions. When only
partial predictions are possible even after adjusting for other sources of information,
the modeler must infer the categorization (see Propositions 1, 2, and 5).

Say that a function Uk : X → R is additively separable and monotonic if Uk(x) =∑n
i=1 U

k
i (xi) where each Uk

i (·) is strictly monotone and continuous.6 We can now state
the formal representation.

Definition 2. The family {%r}r∈X conforms to the Categorical Thinking Model (CTM)
under category function K = (K1, K2, . . . , Km) if for each category k there is an addi-
tively separable and monotonic Uk : X → R and a family {Uk(·|r)}r∈X of continuous,
increasing transformations of Uk(·) so that for any r ∈ X

if x ∈ Kk(r) and y ∈ K l(r), then x %r y ⇐⇒ Uk(x|r) ≥ U l(y|r).

A DM conforming to CTM values each alternative in a way that depends not
only on its attributes but also on the category to which it belongs. She values x at
Uk(x|r) when x is categorized as k for r, and since Uk(·|r) typically does not equal
U l(·|r), her categorization affects her valuation.7 On the one hand, the DM evaluates
alternatives in the category independently of the reference point because each Uk(·|r)
is an increasing transformation of Uk(·) for any r. Consequently, the category utility
function Uk(·) governs the trade-off between attributes within category k. On the other
hand, the reference point may affect the DM’s choice between alternatives belong to
different categories since Uk(x|r) need not equal Uk(x|r′).
6That is, each Uk

i either strictly increases or strictly decreases.
7When Uk(x|r) 6= U l(x|r) for some x ∈ X, discontinuities may occur but only on the boundary
between categories. This is consistent with a number of findings in the psychology literature. As
observed by Rosch [1978, p. 6], “In the perceived world, information-rich bundles of perceptual and
functional attributes occur that form natural discontinuities, and ... cuts in categorization are made
at these discontinuities.”
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The following subclasses are of particular interest. A DM conforms to Increasing
CTM if Uk

i increases with xi for every category k and dimension i. She conforms to
Affine CTM if Uk(·|r) is an affine transformation of Uk for each r, and to Strong CTM
if Uk(·|r) = Uk(·) for each r.

Remarks on the model. A reference point is a specific instance of the general concept of
framing. Our framework extends to cover other forms of framing, such as the intensity
of advertising, the amount of light in a supermarket, and expectations in the form of
lotteries (as in Köszegi & Rabin [2006]). Our definition of a category function extends
naturally to mappings from frames to categories, and most of our results continue to
hold when behavior is described by a family of complete and transitive preferences
indexed by a sufficiently well-behaved set of frames.8

Not every reference-dependent model is a CTM. For example, the general loss-
aversion model of Tversky & Kahneman [1991] and the reference-dependent CES model
of Munro & Sugden [2003] do not fall into the class of CTMs since the reference point
affects the marginal rate of substitution between attributes. Nor does it encompass all
models in which the framing distorts the indifference curves: the models of Kőszegi &
Szeidl [2013], Bhatia & Golman [2013], and Bushong et al. [2020] all fall outside of the
CTM umbrella for the same reason.

CTM treats categories as stark and does not allow the framing to change how
the DM makes trade-offs within a category. It rules out related models in which the
weight on a dimension changes continuously with the reference point. Nevertheless,
such models can be approximated by CTM with a large number of categories when
weights depend on the position of the alternative relative to the frame, as in Bordalo
et al. [2020]. In contrast, when the weighting depends on the frame alone as in Kőszegi
& Szeidl [2013], the indifference curves shift in the same way at each point. If this model
could be approximated by CTM, then every category would have the same indifference
curves, which would in turn imply that the frame does not affect the DM’s choice.

8Specifically, a non-empty, compact, path-connected subset of a metric space.
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2.2. Riskless Consumer Choice. In this subsection, we consider our primary appli-
cation: riskless consumer choice. To show how different models fit into our framework,
we first define psychologically relevant categories for each model and then map them
to a category function. For the purpose of illustration, Figure 1 plots their indifference
curves and categories, with darker lines indicating higher utility.

Figure 1. CTM for Riskless Choice

Constant Loss Aversion Model (TK). One of the first and most broadly adopted eco-
nomic insights from psychologists is that subjects treat gains and losses differently
[Kahneman & Tversky, 1979]. Accordingly, people categorize alternatives according to
whether each of their attributes (or possible outcomes in the case of risk) are gains or
losses. Typically, losses loom larger than gains. Tversky & Kahneman [1991] provide
foundations for a reference-dependent model that captures loss aversion among riskless
objects.

In the model, the DM determines gains and losses relative to a reference point r.
Given that we have two attributes, there are four different categories: (i) gain in both
dimensions, (ii) loss in the first dimension and gain in the second dimension, (iii) gain in
the first dimension and loss in the second dimension, and (iv) loss in both dimensions.9

The gain-loss category function KGL = (K1, K2, K3, K4) where K1(r) = {x : x � r},
K2(r) = {x : x1 < r1 and x2 > r2}, K3(r) = {x : x1 > r1 and x2 < r2}, and
K4(r) = {x : x� r} formally defines the four categories described above.
9With n attributes, there are 2n categories.
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In the absence of losses, the DM values each alternative with an additive utility
function, u(x1)− u(r1) + v(x2)− v(r2), which attaches equal weight to each attribute.
If she experiences a loss in attribute i, then she inflates the weight attached to that
attribute by λi. Then, the utility function is:

VTK(x|r) =



u1(x1)− u1(r1) + u2(x2)− u2(r2) if x ∈ K1(r)
λ1(u1(x1)− u1(r1)) + u2(x2)− u2(r2) if x ∈ K2(r)
u1(x1)− u1(r1) + λ2(u2(x2)− u2(r2)) if x ∈ K3(r)
λ1(u1(x1)− u1(r1)) + λ2(u2(x2)− u2(r2)) if x ∈ K4(r)

where λ1, λ2 > 0 (> 1 if loss averse) and each ui strictly increases. TK is a special case
of Affine CTM with four categories defined by a gain-loss category function.

Status Quo Bias Model (MO). Particularly for difficult decisions, rejecting the status
quo for another alternative causes psychological discomfort, unless that alternative is
unambiguously superior to it (see Fleming et al. [2010]). People categorize alternatives
according to whether they are obvious improvements, and tend to stick to a suboptimal
status quo, particularly when the trade-off is unfamiliar and unclear. Masatlioglu &
Ok [2005] introduce this concept to economics by modeling individuals who incur an
additional utility cost when they abandon the status quo for something not obviously
better.

Masatlioglu & Ok [2005] derive a closed set Q(r) that denotes the alternatives
that are unambiguously superior to the default option r which include but are not
limited to those that exceed r in all attributes (Figure 1). This set formally maps
to a category function KMO = (K1, K2) where K1(r) = {x| x ∈ int(Q(r))} and
K2(r) = {x| x /∈ Q(r)}. The former contains all those bundles obviously better than
the status quo, and the latter contains those that are not. Here, we consider a special
case of their model. If an alternative is not obviously better than the status quo, then
the DM pays a cost c(r) > 0 to move away from the status quo, which may depend on
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the reference point. For any x 6= r, we have:

VMO(x|r) =

 u1(x1) + u2(x2) if x ∈ K1(r)
u1(x1) + u2(x2)− c(r) if x ∈ K2(r)

.

This is an example of an Affine CTM for general c, and a Strong CTM when c(r) is
constant.

Salient Thinking Model (BGS). The context in which a decision takes place causes
some features of an alternative to stand out, making them more salient than oth-
ers. When a portion of the alternative is more salient, psychologists have found that
“the information contained in that portion will receive disproportionate weighing in
subsequent judgments” [Taylor & Thompson, 1982]. That is, people unconsciously
categorize goods according to which of their features is most salient. Bordalo et al.
[2013] propose a behavioral model based on salience and show that it has a number of
important consequences.

In the model, a salience function σ : R++ ×R++ → R+ determines the salience of
a given attribute of an alternative.10 Formally, the salience category function KBGS =
(K1, K2) when K1(r) = {x : σ(x1, r1) > σ(x2, r2)} and K2(r) = {x : σ(x1, r1) <

σ(x2, r2)}. This function indicates which alternatives have each salient attribute. In
words, the DM categorizes objects according to the attribute that differs the most from
the reference point according to the salience function, and Ki(r) is the set of those for
which attribute i stands out the most. That is, given a reference (r1, r2), attribute 1
is salient for good x if σ(x1, r1) > σ(x2, r2), and attribute 2 is salient for good x if
σ(x1, r1) < σ(x2, r2). BGS propose the salience function σ(xk, rk) = |xk−rk|

xk+rk
, and we

illustrate the indifference curves based on this function in Figure 1.

An attribute receives more weight when it is salient than when it is not. The
family {%r}r∈X has a BGS (σ;w1, w2, u1, u2) representation if each %r is represented

10We describe the properties of σ more fully in Section 4.
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by

VBGS(x|r) =

 w1
1u1(x1) + w1

2u2(x2) if x ∈ K1(r)
w2

1u1(x1) + w2
2u2(x2) if x ∈ K2(r)

for a salience function σ with strictly positive weights with w1
1

w1
2
>

w2
1

w2
2
, and each ui

strictly increases. Because w1
1

w1
2
>

w2
1

w2
2
, the DM is less willing to trade-off less of attribute

1 for more of attribute 2 when attribute 1 is salient than when it is not. Consequently,
alternatives relatively strong in the first dimension improve when categorized as 1-
salient, but those relatively strong in the second are hurt.

Prototype Theory (PT). A key role of categorization is to simplify the representation of
a complex environment. People evaluate objects categorized in the same way according
to similar criteria, and one way in which psychologists explain category formation is
through prototype theory [Posner & Keele, 1970]. It argues that people categorize a
stimulus according to how similar it is to a prototype that is the “most typical” member
of the category. As Rosch [1978, p. 36] argues, “Categories can be viewed in terms
of their clear cases if the perceiver places emphasis on the correlational structure of
perceived attributes.” We propose a model of choice based on these ideas. The DM
compares each alternative to each prototype and categorizes it accordingly. Then, she
evaluates it according to how it differs from the prototype.

In the model, there are m prototypes, p1, . . . , pm, and the DM categorizes each
alternative according to how close it is to a prototype. Then, category Ki(r) is the set
of alternatives most similar to pi and, as suggested by Tversky & Gati [1978], similarity
may depend on the reference point. Formally, there is a family of metrics indexed by
r so that dr(x, y) indicates how far away the DM perceives x to be from y given r;
each is continuous with respect to the usual metric on X.11 The category function
KP = (K1, . . . , Km) where Ki(r) = {x : i = arg minj dr(pj, x)}. The DM evaluates

11This metric could be replaced by similarity function, as proposed byTversky [1977], without changing
any of the key insights.
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alternatives in category i according to:

VPT (x|r) = U(pi) + λi1(x1 − pi1) + λi2(x2 − pi2) if x ∈ Ki(r)

where U(·) is a hedonic utility function and λij > 0. A particularly interesting specifi-
cation is when λij = ∂

∂pij
U(pi). Then, the DM approximates the utility of x according

to a first-order Taylor expansion around the prototype most similar to it (Figure 1).12

This is an example of a Strong CTM.

2.3. Time Preference. We can apply our framework to time preference where each
alternative corresponds to an amount of consumption at a given point in time. People
treat future outcomes differently than immediate outcomes [Frederick et al., 2002].
[McClure et al., 2004] documents physiological reasons for this distinction: decisions
involving immediate trade-offs are associated with the limbic system, but the prefrontal
and parietal regions are active in decisions involving future trade-offs. Consequently,
people categorize rewards as being short-term or long-term, and many suffer from
present-bias; that is, they are less patient for those in the former category than those
in the latter. Economists have employed quasi-hyperbolic discounting [Phelps & Pollak,
1968] to capture this behavior. In Appendix A.6, we formally illustrate that this model
is a special case of CTM when what is “present” depends on a reference outcome.

2.4. Social preferences. Our final application is to other-regarding preferences where
alternatives represent allocations of consumption to each of n individuals. Two leading
models of social preferences, the inequity aversion model of Fehr & Schmidt [1999] and
the distributional preferences model of Charness & Rabin [2002], fit under the umbrella
of CTM. These models implicitly depend on the outcomes that the DM expects for
herself and others, which we model as a social reference point. While most take the
equitable outcome as the social reference point, Fehr and Schmidt note that “[t]he
determination of the relevant reference group and the relevant reference outcome for
a given class of individuals is ultimately an empirical question” (page 821), and that

12In Figure 1, we use dr(pj , x) = r1|x1 − pj
1|+ r2|x2 − pj

2| to illustrate this model.
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it may depend on, among other things, the social context. In the inequity aversion
model, people categorize social allocations according to whether their inequities are
advantageous or disadvantageous; the former causes them to experience envy of an
individual’s allocation, while the latter experiences guilt. The distributional preferences
model focuses on people’s trade-off between their own material payoff and overall social
welfare, where welfare includes both a utilitarian component and one that focuses on
the utility of the worst-treated person. Consequently, individuals categorize social
allocations according to the identity of the worst-treated individual. In the appendix,
we discuss these models with a general reference point and show that they fall under
the umbrella of CTM.

3. Behavioral Foundation for CTM

In this section, we provide a set of behavioral postulates characterizing increasing
CTM. These postulates represents the key features of the model. We show that they
hold if and only if the data is representable by increasing CTM, rendering the model
behaviorally testable. In subsequent subsections, we explore the various strengthenings
of the model and provide axiomatizations of these as well.

Our axioms apply to the family {%r}r∈X , an observable object, and are stated in
terms of K, a component of the model. They inform us whether that family is CTM
with category function K. In other words, the axioms answer the question “Given K,
are there category utilities for which {%r}r∈X is CTM under K?” Since the categories
themselves convey much of the psychology captured by CTM, they tie the behavior
of the DM, as reflected by {%r}r∈X , to the phenomenon to be captured. Of course,
this leaves open the possibility that the family {%r}r∈X violates the axioms for one
category function K but satisfies them for K′. Since K and K′ would presumably be
derived under different theories of behavior, the axioms inform which, if either, of the
two describes the DM’s choices.
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Another important question is “Are there category utilities and a K for which
{%r}r∈X is CTM?” In Section 3.5, we discuss how to answer this question. We show
that under mild conditions, one can first infer the DM’s endogenous category function
K̂. One could then test the axioms on {%r}r∈X for K̂. Proposition 2 and Corollary 1
illustrate how to do so for BGS.

Define the revealed ranking within category k as the binary relation %k for which
x %k y if and only if there exists r such that x, y ∈ Kk(r) and x %r y. The sub-relations
�k and ∼k are defined in the usual way. The ranking %k captures preference within
category k. The following axiom states that the within-category revealed preference
has no cycles.

Axiom 1 (Weak Reference Irrelevance). The relation %k is acyclic. That is, if x1 %k

x2 %k · · · %k xm, then xm 6�k x1.

Weak Reference Irrelevance ensures that the DM reacts consistently to alternatives
when they are categorized the same way. That is, the categories reflect the DM’s
psychological treatment of the alternative. Although she may have choice cycles, these
cycles occur only when the context changes how the DM categorizes alternatives. Since
%k is acyclic, we can take its transitive closure to derive full comparisons. Let %k∗ be
is transitive closure, with �k∗ and ∼k∗ the asymmetric and symmetric parts.

Within a category, preference has an additive structure. The next axiom implies
that each %r satisfies Cancellation when restricted to a given category.

Axiom 2 (Category Cancellation). For all x1, y1, z1, x2, y2, z2 ∈ R++, r ∈ X, and
category j so that (x1, z2), (z1, y2), (z1, x2), (y1, z2), (x1, x2), (y1, y2) ∈ Kj(r):
If (x1, z2) %r (z1, y2) and (z1, x2) %r (y1, z2), then (x1, x2) %r (y1, y2).

Category Cancellation adapts the well-known Cancellation axiom to our setting,
differing in its requirement that the alternatives belong to the same category. Without
the qualifiers on how alternatives are categorized, the axiom is a well-known necessary
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condition for an additive representation that appears in Krantz et al. [1971] and Tversky
& Kahneman [1991], among others. If X has strictly more than two dimensions, then
we can replace it with the analog of P2 [Savage, 1954]; see Debreu [1959].13

The next axiom requires that Monotonicity holds between objects categorized the
same way.

Axiom 3 (Category Monotonicity (CM)). For any x, y, r ∈ X: if x ≥ y and x 6= y,
then y 6%k∗ x for any category k; in particular, if x, y ∈ Kk(r), then x �r y.

Since both attributes are “goods” as opposed to “bads,” Monotonicity means that
if a product x contains more of some or all attributes, but no less of any, than another
product y, then x is preferred to y. The postulate requires that choice respects Mono-
tonicity for alternatives within the same category. However, it does not require that
this comparison holds when the goods belong to different categories, and we shall see
later that salience can distort comparisons enough to cause Monotonicity violations.

Finally, the family of preference relations is suitably continuous.

Axiom 4 (Category Continuity). For any r ∈ X, x ∈ ⋃iKi(r), and category j, the
sets UCj(x) = {y ∈ Kj(r) : y �r x} and LCj(x) = {y ∈ Kj(r) : x �r y} are open.
Moreover, the set{
x ∈

⋃
i

Ki(r) : UCj(x)
⋃
LCj(x) = Kj(r) and UCj(x) 6= Kj(r) and LCj(x) 6= Kj(r)

}

has an empty interior.

Category continuity adapts the usual continuity condition to apply only within
a category. It says that when y is preferred to x in a given context and y′ is close
enough to y, then y′ is also preferred to x, provided that y′ belongs to the same
category as y. The final condition requires that if an alternative x is neither better
13Formally, for any x, y, x′, y′ ∈ Kk(r) and subset of indexes E, if xi = x′i and yi = y′i for i ∈ E,
xi = yi and x′i = y′i for all i /∈ E, and x %r y, then x′ %r y

′. This is implied by Category Monotonicity
when n = 2, so a stronger condition is necessary.
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than everything within category j nor worse than everything within category j, then
there exists something in category j that is as good as x, or as good as something
arbitrarily close to x. For such an x, the category must intersect almost all indifference
curves close to x’s since each category is almost connected.

Finally, we make a structural assumption.

Assumption (Structure). The category function K is such that for any category k, the
following sets are connected: Ek = ⋃

r∈X K
k(r), {x ∈ Ek : xi = s} for all dimensions i

and scalars s, and {y ∈ Ek : x ∼k∗ y} for all x ∈ Ek.

The Structure Assumption is satisfied for all the models we discussed in the pre-
vious section. Indeed, Ek = Rn

++ for every category k in each of these models, except
prototype theory.14 These conditions establish that the objects categorized in the same
way have enough topological structure so that “local” properties can be extended to
global ones. Chateauneuf & Wakker [1993] show that the structure assumption, ap-
plied to a single preference relation and domain, is needed to guarantee that a local
additive representation implies a global one.

Theorem 1. Assume the Structure Assumption holds. The family {%r}r∈X satisfies
Weak Reference Irrelevance, Category Cancellation, Category Monotonicity, and Cat-
egory Continuity for K if and only if it conforms to increasing CTM under K.

Increasing CTM captures the behavior implied by the axioms, so we call Axioms
1-4 the CTM axioms. Taken together, they establish that the DM acts rationally when
restricting attention to alternatives categorized in the same way for a given reference
point. That is, CTM captures a DM who differs from the neoclassical model only when
alternatives are categorized differently. The theorem reveals that a number of other
reference dependent models have been studied by the literature fall outside the scope
of our analysis. For instance, Bhatia & Golman [2013], Munro & Sugden [2003], the
non-constant loss averse version of Tversky & Kahneman [1991], and the continuous
14For instance, pk /∈ Ej for every j 6= k. We thank a referee for pointing this out.
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version of the salient thinking model (see online appendix of Bordalo et al. [2013]
and the related Bordalo et al. [2020]) all violate weak reference irrelevance for any
specification of the category function. We provide the details in Appendix A.7.

We provide a brief outline of how the proof works, and all omitted proofs can be
found in the appendix. The axioms are sufficient for a “local” additive representation
of %r (and thus %k) on an open ball around each alternative within category k. The
Structure Assumption allows us to apply Theorem 2.2 of Chateauneuf & Wakker [1993]
to aggregate the local additive representation of %k into a global one. To do so, we must
establish that the global preference is complete, transitive, monotone, and continuous.
We establish these properties for preference within each category by showing that the
transitive closure of each %k is complete and suitably continuous. The remainder of
the proof shows that Categorical Continuity allows us to stitch the different within-
category representations together into an overall utility function.

3.1. Reweighting. In all of the models discussed in Section 2.2, the DM evaluates
the difference between alternatives categorized in the same way similarly. That is,
regardless of the category, the DM agrees on how much better a value of x versus
y is in dimension i. Categorization affects only how much weight she puts on each
dimension. This is captured by the following axiom.

Axiom 5 (Reference Interlocking). For any a, b, a′, b′, x′, y′, x, y ∈ X and categories
k, j with x−i = a−i, y−i = b−i, x′−i = a′−i, y′−i = b′−i, xi = x′i, yi = y′i, ai = a′i, bi = b′i:
if x ∼k y, a %k b, and x′ ∼j y′, then it does not hold that b′ �j a′.

The term “Reference Interlocking” comes from Tversky & Kahneman [1991]. If
each %k is complete, then their statement of it is equivalent given the other axioms.
Roughly, the DM agrees on the difference in utilities along a given dimension regard-
less of how an alternative is categorized. To interpret, observe that the first pair of
comparisons reveals that the difference between ai and bi exceeds that between xi and
yi when the alternatives belong to category k. For alternatives categorized in j, the
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DM should not reveal the opposite ranking. We defer to the above paper for a detailed
discussion.

Theorem 2. Suppose that {%r}r∈X conforms to increasing CTM under K and each Ek

is connected. For each dimension i, there exist a utility index ui and a weight wki > 0
for each category k so that each category utility Uk is cardinally equivalent to one that
maps each x ∈ Ek to ∑iw

k
i ui(xi) if and only if Reference Interlocking holds.

All of the models in Section 2.2 satisfy the axiom, and are thus special cases
of increasing CTM satisfying Reference Interlocking. For instance, differences in the
salient dimension of BGS receive higher weight, but the relative size of two given
differences in the same dimension is the same regardless of whether both are salient or
both are not. The axiom implies that the utility index within each category must be
the same, up to an increasing, affine transformation.

3.2. Behavioral Foundation for Affine CTM. In this section, we explore when
an Affine CTM exists. That is, we provide conditions under which Uk(·|r) a positive
affine transformation of Uk(·|r′) for any r, r′. All of the models from Section 2.2 fall
into this class.15

Unsurprisingly, the key restriction relative to CTM is that tradeoffs across cate-
gories are affine. As is usual, this is captured by a form of linearity, or the “Indepen-
dence Axiom.” We require it to hold only when alternatives combined belong to the
same category, and adjust for the curvature of the utility index.

To state the key axiom, we define an operation ⊕k along similar lines as Ghirardato
et al. [2003]. For x, y ∈ R and a category k, 1

2x⊕
k
i

1
2y = z when there exists a, b such that

(xi, a−i) ∼k∗ (zi, b−i) and (zi, a−i) ∼k∗ (yi, b−i). If %k has an additive representation,
then 1

2U
k
i (x) + 1

2U
k
i (y) = Uk

i (z). Define ⊕k similarly for alternatives: 1
2x ⊕

k 1
2y = z

15For MO, this is true only when c(r) <∞.



21

if and only if zi = 1
2xi ⊕

k
i

1
2yi for each dimension i. Finally, define αx ⊕k (1 − α)y by

taking limits.16 We note that if Uk
i is linear, then αx⊕ki (1− α)y = αx+ (1− α)y.

Axiom 6 (Affine Across Categories (AAC)). For any r ∈ X, x, x′, αx ⊕j (1 − α)x′ ∈
Kj(r), and y, y′, αy⊕k (1−α)y′ ∈ Kk(r): if x %r y and x′ %r y′, then αx⊕j (1−α)x′ %r
αy ⊕k (1− α)y′.

This axiom is a natural adaptation of the linearity axiom, a close relative of the
independence axiom. If we strengthened Affine Across Categories to be stated using
the traditional linearity condition, then we would obtain a representation where each
Uk(·|r) is itself an affine function. Otherwise, it requires that the⊕k operation preserves
indifference.

The second axiom deals with a technical issue.

Axiom 7 (Unbounded). For any r ∈ X: if Kk(r) contains a sequence xn so that
Uk(xn) → ∞ (−∞), then for any x ∈ X there exists x∗ ∈ Kk(r) so that x∗ �r x
(x �r x∗).

We note that Uk is unique up to a positive affine transformation. Hence whenever
the utility of some sequence goes to infinity for some representation of %k, it must
also converge to infinity for any other representation as well. While the axiom can be
stated in terms of primitives, we instead state it in terms of the Uk.17 It ensures that a
category containing alternatives whose utility goes to positive (negative) infinity must
contain an alternative better (worse) than any other given alternative. If it failed, then
no affine transformation of the category utility would represent the preference.

16In general, αx⊕k (1−α)y need not exist. However, it does exist “locally,” which is all we require in
the proof. That is, if x ∈ Kk(r), then there exists an open set O with x ∈ O on which αy⊕k (1−α)z
exists for every α ∈ [0, 1] and y, z ∈ O.
17The statement in terms of primitives involves standard sequences and does not reveal key aspects of
behavior, so we instead present the simpler and easier to interpret one above. In special cases, this is
easy to do. For instance, if Uk is linear, then the axiom simply states that if Kk(r) is an unbounded
set, then the conclusion of the above axiom holds.
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Theorem 3. Assume the Structure Assumption holds. Then, {%r}r∈X satisfies the
CTM axioms, Affine Across Categories, and Unbounded for K if and only if it conforms
to Affine Increasing CTM under K.

All the models discussed in Section 2 fall into the class of Affine CTM, so the
result reveals the behavior all have in common. Relative to CTM, Affine Across Cat-
egories imposes stronger requirements on how the DM relates alternatives in different
categories. Not only does the DM evaluate utility within a category using an addi-
tive function, but the additive structure persists across categories. Moreover, this aids
with interpreting utility differences. If every pair of categories contains alternatives
indifferent to one another, the entire representation is unique up to a common positive
affine transformation. We call the combination of Axioms 1-4 and 6-7 the Affine CTM
axioms.

3.3. Behavioral Foundation for Strong CTM. For a Strong CTM, changing the
reference point does not reverse the ranking of two products unless it also changes their
categorization. The following axiom imposes this.

Axiom 8 (Reference Irrelevance). For any x, y, r, r′ ∈ X:
if x ∈ Kk(r)⋂Kk(r′) and y ∈ K l(r)⋂K l(r′), then x %r y if and only if x %r′ y.

For the general CTM, the reference point influences choice trough two channels:
the category to which it belongs and its valuation. The axiom eliminates the latter.
When comparing two alternatives across different reference points, the DM’s relative
ranking does not change when neither’s category changes. This property greatly limits
the effect of the reference point. In fact, a sufficiently small change in the reference
never leads to a preference reversal.

Theorem 4. Assume the Structure Assumption holds and for any categories i, j and
any r ∈ X, there exists x ∈ Ki(r) and y ∈ Kj(r) with x ∼r y. Then, {%r}r∈X satisfies
the Affine CTM axioms and Reference Irrelevance for K if and only if conforms to
Strong, Increasing CTM under K.
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Since BGS, MO, and PT are Strong CTM, Theorem 4 characterizes the behavior
they have in common. While the reference plays a role in categorization, it plays no
role in choice after categorization is taken into account. TK, which belongs to Affine
CTM but not Strong CTM, must therefore violate reference irrelevance.

3.4. Comparing Models of Riskless Choice. TK, BGS, MO, PT, and the neo-
classical model all conform to Affine CTM, so Theorems 1 and 3 describe the behavior
that they have in common. However, the analysis so far, as well as the functional
forms of the models, leaves open the question of what behavior distinguishes them.
Of course, they differ in how alternatives are categorized, but the models also reflect
distinct behavior within and across categories.

In addition to Reference Irrelevance, they are distinguished by whether they satisfy
two classic axioms: Monotonicity and Cancellation, the unrestricted versions of Cat-
egory Monotonicity and Category Cancellation.18 The first requires that a dominant
bundle is chosen, and the latter that an additive structure obtains. The representa-
tion theorem of Tversky & Kahneman [1991] imposes those two axioms in addition to
continuity. In Appendix A.11, we show that an Affine CTM with a Gain-Loss cate-
gory function satisfies the two classic axioms and continuity if and only if it has a TK
representation. We provide a detailed examination of the BGS model in Section 4.

Table 1 compares the four models in terms of Reference Irrelevance, Monotonicity
and Cancellation, when BGS, TK, MO, and PT do not coincide with the neoclassical
model. Only the neoclassical model satisfies all conditions; none of the other four do.
On the one hand, BGS and PT satisfy Reference Irrelevance but violate Monotonicity
and Cancellation. On the other, TK maintains Monotonicity and Cancellation but
violates Reference Irrelevance. Finally, MO satisfies all but Cancellation.19

18The formal statements are obtained by dropping the requirement in those two axioms that the
alternatives belong to the same category.
19Propositions 3 and 7 give the 3’s of the table for BGS and TK. It is routine to verify that MO
satisfies Monotonicity and Reference Irrelevance and the PT satisfies RI. We provide examples showing
the other properties are violated in Appendix A.5.
20Whenever c(r) = c(r′) for every r, r′ ∈ X.
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Neoclassical BGS TK MO PT
CTM 3 3 3 3 3
Monotonicity 3 7 3 3 7
Reference Irrelevance 3 3 7 320 3
Cancellation 3 7 3 7 7

Table 1. Comparisons of Models

We provide a plausible example violating the Cancellation axiom, and hence be-
havior inconsistent with TK. Then, we illustrate BGS can accommodate this example
even without requiring a shift in the reference point. While the example is one simple
test to distinguish BGS from TK, it is also powerful as it works for a fixed reference
point.

Example 1. Consider a consumer who visits the same wine bar regularly. The bar-
tender occasionally offers promotions. The customer prefers to pay $8 for a glass of
French Syrah rather than $2 for a glass of Australian Shiraz. At the same time, she
prefers to pay $2 for a bottle of water rather than $10 for the glass of French Syrah.
However, without any promotion in the store, she prefers paying $10 for Australian
Shiraz to paying $8 for water.

The behavior in this example is both intuitively and formally consistent with the
salient thinking model of BGS.21 Without any promotion, the consumer expects to pay
a high price for a relatively low quality selection. When choosing between Syrah or
Shiraz, the consumer focuses on the French wine’s sublime quality, and she is willing
to pay at least $6 more for it. When choosing between water and Syrah, the low price
of water stands out and she reveals that the gap between wine and water is less than
$8. However, when there is no promotion, she focuses again on the quality, and she is
willing to pay an additional $2 for even her less-preferred Australian Shiraz over water.
21Implicitly, the example reveals that the quality of French Syrah is higher than Australian Shiraz
which is in turn higher than water. The numerical value of quality assigned to each beverage is irrele-
vant to the violation of Cancellation. For examples of qualities so that choice can be represented by the
BGS model, one can calculate that (−8, qfs) �r (−2, qas), (−2, qw) �r (−10, qfs) and (−10, qas) �r

(−8, qw) for qfs = 8, qas = 6.9, qw = 5.1, and the reference point r = ( 1
2 (−10 + −8), 1

2 (qw + qas))
when w = 0.6.
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Notice that this explanation does not require that the reference points are different.
Since the consumer visits this bar regularly, intuitively, her reference point should be
fixed and stable.

3.5. Revealing categories. Up to now, we have taken the category function as
known. This subsection explores the extent to which one can infer categories directly
from choices. We first show this can be done when the categorization of the object
alters the trade-offs between attributes, so local behavior directly reveals how an object
is categorized. Finally, we outline an alternative approach applicable in the presence of
discontinuities across categories, even when trade-offs are unaffected by categorization.

Our identification of the categories is based on local indifference sets (LIS). For a
CTM with categories k and l, we write LISk(x) = LISl(x) if there exists a neighbor-
hood O of x so that

Uk(y) = Uk(x) ⇐⇒ U l(y) = U l(x) for all y ∈ O;

otherwise, LISk(x) 6= LISl(x). If LISk(x) = LISl(x), then any alternative indifferent
to x when x is categorized as k is also indifferent to x when it is categorized as l,
provided that it is not too far away from x. In neoclassical consumer theory with
sufficiently differentiable utility, this is equivalent to the marginal rate of substitution
at the bundle x being equal across categories. Put another way, the trade-off between
the attributes does not depend on how the alternative is categorized. If LISk(x) 6=
LISl(x), then categorization affects trade-offs between attributes. We require the
latter, i.e., a different pattern of substitution within each category.

Proposition 1. Let {%r}r∈X be a CTM. For any category k such that LISk(x) 6=
LISl(x) for every x ∈ X and category l 6= k, category k is uniquely identified.

The result shows that categories are uniquely identified whenever the DM makes
different trade-offs at every alternative for different categories. Moreover, if the as-
sumption of Proposition 1 holds for all categories, we can reveal all the categories.
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Proposition 2 shows the result is always applicable to the salient thinking model. More-
over, it applies to prototype theory whenever λk is not a rescaling of λl for any k 6= l,
and to TK for the gain-loss and loss-gain regions whenever λ1, λ2 6= 1.

For an intuition, suppose that the category utilities are affine (i.e., Uk(x) =∑
i u

k
i xi + βk), so indifference curves are (piecewise) straight lines. Then, LISk(x) 6=

LISl(x) whenever their slope within category k differs from the slope within l are
different. Examining the DM’s choices between alternatives close to x allows us to
identify the slope of the indifference curve at that point, and hence whether x belongs
to category k or to l.

While almost all CTM satisfy the hypothesis of Proposition 1, some do not, such
as MO (see Figure 1). Although we cannot apply the above result to identify their
categories, one can also identify the categories by utilizing discontinuities at the border.
To illustrate, in the MO model the utility of an alternative sharply drops when it is
no longer unambiguously better than the status quo. This leads to a discontinuity
in the indifference curve, and these discontinuities trace out the boundary between
the categories. We discuss how this argument generalizes in Appendix A.9, and also
provide an example where distinguishing categories from choice is impossible.

4. BGS Model and Categories

The salient-thinking model accounts for a number of empirical anomalies for the
neoclassical model with a single, intuitive mechanism. Despite its popularity, it can be
difficult to understand all of the model’s implications for choice: its new components, in
particular the salience that determines which attribute stands out for a given reference
point, are unobservable. This section uses CTM to provide a characterization of the
choice behavior implied by BGS. We begin by studying the properties of the categories
generated by the salience function.
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We say σ is a salience function if it satisfies four basic properties: i) it increases
in contrast: for ε > 0 and a > b, σ(a + ε, b) > σ(a, b) and σ(a, b − ε) > σ(a, b); ii) it
is continuous in both arguments; iii) it is symmetric: σ(a, b) = σ(b, a); and iv) it is
grounded: σ(r, r) = σ(r′, r′) for all r, r′ ∈ X. Two other properties are often imposed:
σ is Homogeneous of Degree Zero (HOD) if for all α > 0, σ(αa, αb) = σ(a, b), and
σ has diminishing sensitivity if for all ε > 0 and a, b > 0, σ(a + ε, b + ε) ≤ σ(a, b).22

The first three properties of the salience function are explicitly stated by Bordalo et al.
[2013], and the fourth is satisfied by all of the specifications in the literature. It is a
necessary condition for an attribute to be salient for a good only if it differs from the
reference good in it.

Consider the following properties of categories.

S0: (Basic) For any r ∈ X: K1(r)⋂K2(r) = ∅, K1(r)⋃K2(r) is dense in X, K1

and K2 are continuous in r, and K1(r) and K2(r) are regular open sets.
S1: (Moderation) For any λ ∈ [0, 1] and r ∈ X: if x ∈ Kk(r), yk = xk, and
y−k = λx−k + (1− λ)r−k, then y ∈ Kk(r).

S2: (Symmetry) If (a, b) ∈ Kk(c, d), then (c, d) ∈ Kk(a, b) and (b, a) ∈ K−k(d, c).
S3: (Transitivity) If (a1, a2) /∈ K2(r1, r2) and (a2, a3) /∈ K2(r2, r3) then (a1, a3) /∈
K2(r1, r3).

S4: (Difference) For any x, y, z with y 6= z, (x, y) ∈ K2(x, z) and (y, x) ∈ K1(z, x).
S5: (Diminishing Sensitivity) For any x, y,K1, K2, ε > 0, if (x, y) /∈ K1(r1, r2),

then (x+ ε, y) /∈ K1(r1 + ε, r2).
S6: (Equal Salience) For any x, r ∈ X: if x1

r1
= x2

r2
or x1

r1
= r2

x2
, then x /∈ Kk(r) for

k = 1, 2.

The properties have natural interpretations. Any category function satisfies S0 by
definition; we include it for completeness. S1 indicates that making a bundle’s less
salient attribute closer to the reference point does not change the salience of the bundle.
That is, when x and y differ only in attribute l, and y is closer to the reference in that
22Requiring a strict inequality is problematic. If, as usually assumed, σ is HOD, then σ(r, r) =
σ(αr, αr) = σ(r + ε, r + ε) for α > 1 and ε = (α− 1)r, a contradiction.
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Figure 2. Properties S0-S6 Illustrated

attribute, if x is k-salient, then so is y. S2 requires that the same ranking is used for
each attribute. S3 adapts transitivity to the salience ranking. It says that if a1 stands
out more relative to r1 than a2 does to r2, and a2 stands out more relative to r2 than
a3 does to r3, then a1 stands out more relative to r1 than a3 does to r3. S4 says simply
that any difference stands out more than no difference. S5 implies that increasing both
the good and the reference by the same amount in the same dimension does not move
the good from one category to another. S6 reads that if every attribute of x differs
from the reference point by the same percentage, then none of the attributes stands
out. More formally, if the percentage difference between xk and rk is the same across
attributes, then x is not k-salient for any k ∈ {0, 1}.

Figure 2 provides examples of categories that satisfy some but not all of the proper-
ties. Their formal definition and a verification that they satisfy the claimed properties
can be found in Example 4 in the Appendix.

We say that categories are generated by a salience function σ if x ∈ Ki(r) if and
only if σ(xi, ri) > σ(xj, rj) for all j 6= i. Thoerem 5 shows that category functions
satisfying S0-S4 are so generated. S5 and S6 impose diminishing sensitivity and
homogeneity of degree zero, respectively.

Theorem 5. The category function satisfies:
(1) S0-S4 if and only if there exists a salience function σ that generates it;
(2) S0-S5 if and only if the σ that generates it has diminishing sensitivity; and
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(3) S0, S1, and S6 if and only if it satisfies S0-S6 if and only if it is generated by
an HOD salience function σ. Any HOD salience function generates the same
categories.

The result characterizes categories generated by a salience function.23 It translates
the functional form assumptions on the salience function in terms properties of cate-
gories. The most common specifications of the salience function are all HOD, and so
satisfy all of the above properties. Surprisingly, the result shows that there is a unique
category function satisfying all the properties. Hence, any two HOD salience functions
lead to exactly the same behavior.

We now turn to the question of identifying the salience of alternatives from choice
behavior alone.

Proposition 2. Given that {%r}r∈X has a BGS representation, the categories are
uniquely identified. The category function is K̂ = (K̂1, K̂2) with

K̂i(r) = int
{
x ∈ X : ∃ε > 0 s.t. ∀y ∈ Bε(x), y ∼r x ⇐⇒ y ∼rix x

}
for every r, where r1

x = (x1/2, x2) and r2
x = (x1, x2/2).

Given a family {%r}r∈X , the result identifies which alternatives have what salience.
As BGS necessarily satisfies the LIS condition, Proposition 1 ensures that the categories
are identified. This result improves on the previous one by providing an expression,
solely in terms of the primitives, for the set of alternatives in each category. This
ensures that the modeler can identify the categorization, and so the salience function,
endogenously, i.e. from the DM’s behavior alone. This facilitates a full answer to the
question of when a DM has a BGS representation for some salience function.

23Theorem 5 relies on the full structure of R2 for the last two results, as noted in Footnote 3. Di-
minishing sensitivity and Homogeneity are both cardinal properties, and so are undefined without
cardinal structure on X. Properties S0-S4 are defined. Subsequent results that rely on Theorem 5,
such as Propositions 3 and 4, remain true when imposing only S0-S4 in this setting.
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In addition to the particular form of categories, BGS satisfies two properties that
distinguish it from other CTMs. The most general of these is Reference Irrelevance,
above, making BGS a Strong CTM. The other follows.

Axiom 9 (Salient Dimension Overweighted, SDO). For any x, y, r, r′ ∈ X:
if x, y ∈ Kk(r) ∩K l(r′), x %r y, xl > yl, and yk > xk, then x �r′ y.

This axiom requires that categories correspond to the dimension that gets the
most weight. That is, the DM is more willing to choose an alternative whose “best”
attribute is k when it is k-salient. To illustrate, consider alternatives x, y with x1 > y1

and y2 > x2. Because x is relatively strong in attribute 1, x should benefit more than
y from a focus on it. If x is chosen over y when attribute 2 stands out for both, then
this advantage in the first dimension is so strong that even a focus on the other one
does not offset it. Hence, the DM should surely choose x over y for sure when attribute
1 stands out for it.

Proposition 3. Assume that there exist x ∈ Kk(r) and y ∈ Kj(r) with x ∼r y for
any categories k, j and any r ∈ X. Then, the family {%r}r∈X satisfies the Affine
CTM axioms, Reference Interlocking, Reference Irrelevance, and Salient Dimension
Overweighted for a category function K satisfying S0-S5 if and only if it has a BGS
representation where σ has diminishing sensitivity.

This result characterizes the BGS model. It also provides guidance for comparing
it with other models in the CTM class (see Figure 1 and Table 1). By outlining the
model’s testable implications, the result provides guidance on how to design experi-
ments to test it.24

Bordalo et al. [2013] focus on a special case where the model is linear: w1
1 = w2

2 =
1 − w2

1 = 1 − w1
2 >

1
2 and u1(x) = u2(x) = x. In an earlier version of this paper, we

show this model is characterized by strengthening Affine Across Categories to require
24The assumption that alternatives indifferent to each other exist in each category for each reference
point is not strictly necessary. A sufficient condition for it to be necessary is that the utility indexes
are both unbounded above (or below).
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linearity and imposing a reflection axiom that requires permuting two alternatives and
the reference point in the same way not to reverse the DM’s choice between the two.25

Taken together Propositions 2 and 3 provide an outline for a fully subjective
axiomatization of a family of preferences with a BGS representation.

Corollary 1. Assume that there exist x ∈ K̂k(r) and y ∈ K̂j(r) with x ∼r y for
any categories k, j and any r ∈ X. Then, the family {%r}r∈X satisfies the Affine
CTM axioms, Reference Interlocking, Reference Irrelevance, and Salient Dimension
Overweighted for K̂ and K̂ satisfies S0-S5 if and only if it has a BGS representation
where σ has diminishing sensitivity.

We illustrate necessity of the result. When the family of preferences has a BGS
representation, Proposition 2 shows that the category function equals K̂. Moreover,
K̂ satisfies S0-S5 when σ has diminishing sensitivity by Theorem 5, and the family of
preferences satisfy the axioms in Proposition 3 for K̂. Thus, the result provides the
complete testable implications of BGS in terms of the family of preferences alone.

5. Choice Correspondence

In this section, the modeler observes the DM’s choice from finite subsets of alter-
natives but not her reference point. A model consists of both a theory of reference
formation and a theory of choice given categorization. In this setting, we can jointly
test the theory of choice given categorization, categorization given reference, and ref-
erence formation.

We model reference formation via a reference generator A that maps finite subsets
of alternatives to reference points, with the interpretation that A(S) is the reference
point when the menu is S. Examples include the BGS theory that A(S) is the average

25Formally, the first is that Affine Across Categories holds with ⊕k replaced by the usual + operation.
The second is that (a, b) %r1,r2 (c, d) if and only if (b, a) %r2,r1 (d, c). One can verify that these
additional assumptions imply that the ancillary assumption about indifference holds.
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alternative, that A(S) is the median bundle, that A(S) is the upper (or lower) bound of
S, and the Köszegi & Rabin [2006] theory that A(S) = c(S). If additional observable
data on the choice context is provided, then it is easy to extend our results to A being a
function of that as well. For instance, Masatlioglu & Ok [2005] theorize that the initial
endowment e is observable and that A(S, e) = e, and Bordalo et al. [2020] theorize that
past histories h of consumption are available and that A(S, h) is the average between
the bundles in S and those in h.

Fixing a categorization function K and a reference generator A, let X be the set of
finite and non-empty subsets of X such that every alternative is categorized. Formally,
S ∈ X only if S ⊂ ⋃mi=1K

i(A(S)). We call these categorized menus or menus for short.
The requirement ensures that each alternative in the choice set belongs to a category
given the reference point A(S). We leave open how the DM chooses when alternatives
that are uncategorized belong to the choice set. By leaving the choice from this small
set of menus ambiguous, we can more clearly state the properties of choice implied by
the model.26

We summarize the DM’s choices by a choice correspondence c : X ⇒ X with
c(S) ⊆ S and c(S) 6= ∅ for each S ∈ X .

Definition 3. The choice correspondence c conforms to Strong-CTM under (K, A) if
there exists a family of preference relations {%r}r∈X that conforms to Increasing Strong
CTM under K so that

c(S) =
{
x ∈ S : x %A(S) y for all y ∈ S

}
for every S ∈ X .

5.1. Reference point formation. Provided that the reference generator is responsive
enough to changes in the menu, there is the possibility of testing the properties required
by categorization on %r. One example of enough structure is that the reference point is
26One can, of course, extend the model to account for these choices. For instance, Bordalo et al.
[2013] hypothesize that these alternatives are evaluated according to their sum. Complications arise
because the uncategorized alternatives are “small:” its complement is open and dense.
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the average bundle. However, this is just one example. An even more general sufficient
condition is as follows.

Assumption. A function A is a generalized average if for any S = {x1, . . . , xm} ∈ X :
(i) the function x 7→ A([S \ {x1}]

⋃{x}) is continuous at x1, and
(ii) for any ε > 0 and any finite S ′ ⊂ ⋃

iK
i(A(S)), there exists S∗ ∈ X so that

S∗ ⊃ S
⋃
S ′, d (A (S∗) , A(S)) < ε, and for any x′ ∈ S∗ \ S ′, minx∈S d(x′, x) < ε2.

Examples of generalized average reference include the average bundle

Aa(S) =
(∑

x∈S x1

|S|
,

∑
x∈S x2

|S|

)
,

the median value of each attribute, and a weighted average

Awa(S) =
(∑

x∈S w(x)x1∑
x∈S w(x) ,

∑
x∈S w(x)x2∑
x∈S w(x)

)

for any continuous weight function w : X → [a, b] with b > a > 0. We sometimes
impose the additional requirement that A(S) ∈ co(S) \ ext(S) for all non-singleton
S; if so, we call A a strong generalized average. The first and last of these examples
satisfy this property. The supremum and infimum are not generalized averages, nor
(necessarily) is the choice acclimating reference generator, c(S) = A(S).27

5.2. Behavioral Foundations for Strong-CTM. We now consider the behavior
by a DM who conforms to Strong-CTM for a given category function and reference
generator. To do so, we make use of our earlier analysis by revealing how the DM
evaluates alternatives categorized in a given way. When A(S) is a generalized average,
this provides enough structure to identify enough of the family to apply our earlier
analysis.

The main behavioral content comes from the choice correspondence equivalent of
Reference Irrelevance. To state it, we introduce the following definition and notation.

27Recall supS = (maxx∈S x1,maxx∈S x2) and inf S is defined analogously.
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Definition 4. The alternative x in category k is indirectly revealed preferred to al-
ternative y in category j, written (x, k) %R (y, j), if there exists finite sequences of
pairs (xi, Si)ni=1 such that x = x1 ∈ Kk(A(S1)), y ∈ Kj(A(Sn))⋂Sn, and for each i:
xi ∈ c(Si), xi+1 ∈ Si, and xi+1 ∈ Kki(A(Si)) ∩Kki(A(Si+1)) for some ki.

To interpret the definition, consider menus S1, S2 and alternatives x1 ∈ c(S1) and
x2 ∈ c(S2)∩S1, where x2 is categorized in the same way for both menus. For example,
x1 is in category 1 for S1, and x2 is in category 2 for both. The observation x1 ∈ c(S1)
reveals that the valuation of x1 is at least as high as that of x2 when x1 belongs to the
first category and x2 to the second. Pick any y ∈ S2, and suppose the DM categorizes
it as j in S2. Since x2 is chosen from S2, the DM perceives that x2 has a higher value
than y, when she categorizes the first as 2 and the second as j. By transitivity, the DM
also perceives that x1 in 1 has a higher value than y in j. The relations %R captures
this and extends it to longer sequences.

We replace Reference Irrelevance with the following weakening of the Strong Axiom
of Revealed Preference (SARP).

Axiom (Category SARP). For any S ∈ X , if (x, k) %R (y, j), x ∈ Kk(A(S))⋂S,
y ∈ Kj(A(S))⋂S, and y ∈ c(S), then x ∈ c(S).

Consider menus S1, S2 that both contain x1 and x2 where x2 is in category k

for both S1 and S2. If x1 is chosen from and belongs to category 1 for S1, then
(x1, 1) %R (x2, k). If x1 belongs to category 1 in S2, then the DM values both it and
x2 the same in S1 as in S2 since neither’s categorization changed. If x2 is chosen from
S2, then x1 must be chosen as well. In particular, the DM obeys the Weak Axiom of
Revealed Preference (WARP) whenever she categorizes chosen alternatives in the same
way. However, the axiom leaves open the possibility of a WARP violation when either
is differentially categorized.

The axiom extends this logic to sequences of choices in much the same way that
SARP does to WARP. A finite sequence of choices, where the choice from the next
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menu is available in the current one and has the same salience in both, does not lead
to a choice reversal. Since salience does not change along the sequence of choices, the
choices do not exhibit a reversal.

Category SARP limits the effect of unchosen alternatives. Modifying them can
alter the DM’s choice, but only insofar as it changes the reference point and thus
the salience of alternatives. When comparing the same two alternatives in different
menus, the DM’s relative ranking does not change when neither’s salience changes.
This property greatly limits the effect of the reference point. In fact, a sufficiently
small change in the reference never leads to a preference reversal.

The remaining axioms are the natural generalizations to the choice correspondence
of Category Cancellation, Category Monotonicity, Category Continuity, Reference In-
terlocking, and Affine Across Categories. We denote these by appending a “*” to
distinguish from their reference-dependent-preference formulation. Appendix B.1 con-
tains their formal statement.

As before, we require some additional topological structure on the categories. For
a category k, let

ER,k = {x ∈ X : x ∈ Kk(A(S)), {x} = c(S)}

and
Dk =

⋃
S∈X

{
Kk(A(S))

⋂
S
}
.

The generalization of the structure assumption is as follows.

Assumption (Revealed Structure). For any category k, ER,k is open, ER,k is dense in
Dk, and the following sets are connected: ER,k, {x ∈ ER,k : xj = s} for all dimensions
j and scalars s ∈ R, and {y ∈ ER,k : (x, k) ∼R (y, k)} for all x ∈ ER,k.

In addition to what was imposed by the Structure Assumption, we require that
almost all objects categorized in a category are chosen in some menu. This can be
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weakened, but is typically satisfied by the models in which we are interested, such as
BGS.

We require one last assumption.

Axiom (Comparability Across Regions, CAR). If x ∈ ER,k, then for any j there exists
y ∈ ER,j so that (x, k) ∼R (y, j).

This is a version of the assumption in Theorem 4. It requires that every alternative
chosen when it belongs to category k is revealed to be equally good to some other
alternative when it is categorized in category j. With it, we can now state the result.

Theorem 6. Assume that Revealed Structure and CAR hold and that A is a generalized
average. A choice correspondence c conforms to strong-CTM under (K, A) if and only if
c satisfies Category-SARP, Category Monotonicity*, Category Cancellation*, Category
Continuity*, and Affine Across Categories*.

The result is the counterpart of Theorem 4 with an endogenous reference point.
The behavior corresponding to categorization does not fundamentally change across
settings. As long as the DM reacts consistently when alternatives are categorized in
the same way, then we can represent her choices as categorical thinking where the
reference point only affects how she categorizes each alternative. The key challenge in
the proof is to establish that the arguments we used to establish our earlier results still
hold. We adapt our earlier arguments to show that revealed preference within cate-
gory k is complete on ER,k. This relies on small changes in alternatives not changing
choice, a property implied by generalized average. Then, the remaining axioms estab-
lish that this within-category preference has an additive representation. CAR allows
us to extend across categories.

5.3. Behavioral Foundations for BGS. In this subsection, we provide a behavioral
foundation for BGS. The first step is to show that the Revealed Structure assumption
holds.
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Lemma 1. If A is a strong generalized average, K satisfies S0, S1, and S4, and c
satisfies Category Montonicity*, then ER,k = R2

++ for k = 1, 2.

Given the assumptions we have made so far, every alternative is chosen in some
menu when it is k-salient. Consequently, the revealed structure assumption must hold.
The result relies on the observation that the DM categorizes x as 1-salient when all
other available options have the same value in dimension 2 as x. If x has the highest
value in attribute 1 in such a choice set, then it must be chosen.

Now, we can apply Theorem 6 in combination with the insights gained from Propo-
sition 3 to understand the behavioral foundation of the BGS model.

Proposition 4. Assume that A is a strong generalized average and that CAR holds.
The choice correspondence c satisfies Category-SARP, Category Monotonicity*, Cat-
egory Cancellation*, Category Continuity*, Affine Across Categories*, Reference In-
terlocking*, and Salient Dimension Overweighted* for a category function K satisfying
S0-S5 if and only if c conforms to BGS where σ has diminishing sensitivity.

This proposition lays out the behavioral postulates that characterize the BGS
model with endogenous reference point formation. Most importantly, it connects the
(unobserved) components of the model to observed choice behavior. Fundamentally,
the properties that Proposition 3 characterized the model in our first setting still char-
acterize it. To do so, we note that Theorems 5 and 6 imply that there exists a Strong
CTM with categories generated by a salience function. We then establish that choice
within the k-salient alternatives overweights dimension k by using SDO and the struc-
ture of regions.

Finally, we ask the question of whether the choice correspondence with an endoge-
nous reference point provides enough leverage to identify salience.

Proposition 5. Given that c conforms to BGS with a strong generalized average, the
categories are uniquely identified.
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As with Propositions 2 and 3, Propositions 4 and 5 provide a roadmap for testing
BGS without a known salience function. However, it still requires that the reference
generator is a strong generalized average. Consequently, the axioms capture the full
testable implication of the model and allow for tight comparisons with other existing
work.

6. Related Literature

This paper is closely related to the literature which studies how a reference point
affects choices, (e.g. Tversky & Kahneman [1991], Munro & Sugden [2003], Sugden
[2003], Masatlioglu & Ok [2005], Sagi [2006], Salant & Rubinstein [2008], Apesteguia
& Ballester [2009], Masatlioglu & Nakajima [2013], Masatlioglu & Ok [2014], Dean,
Kıbrıs, & Masatlioglu [2017]). The papers focus on an exogenous reference point, as in
Section 3. While TK and MO are examples of CTM, the others are not. Nonetheless,
our analysis puts the models on an equal footing so their implications can be compared.

Our extension to endogenous reference point formation adopts the approach of a
number of recent papers, e.g. Bodner & Prelec [1994], Kivetz, Netzer, & Srinivasan
[2004], Orhun [2009], Bordalo, Gennaioli, & Shleifer [2012], Tserenjigmid [2015]. As
in Section 5, the reference point is a function of the context, and is identical for all
feasible alternatives. Finally, Köszegi & Rabin [2006], Ok, Ortoleva, & Riella [2015],
Freeman [2017] and Kıbrıs et al. [2018] study models where the endogenous reference
point is determined by what the agent chooses, but is otherwise independent of the
choice set. This represents a very different approach to reference formation, and our
approach does not easily generalize to accommodate it.28

One of our key contributions is to provide an axiomatization of the salient-thinking
model. Recent work by Lanzani [2020] introduces a model of risk preferences where the
correlation between outcomes affects the pair-wise ranking of monetary lotteries. The

28Maltz [2017] is the only model of which we are aware that combines an exogenous reference point
with endogenous reference-point formation.
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salient-thinking model under risk is a special case and an axiomatic characterization
is provided. Other than the domain, a key distinction with our result is that the DM
violates transitivity, which we avoid by considering reference-dependent preferences.

Interpreting salience as arising from differential attention to attributes, CTM has
a close relationship with the literature studying how limited attention affects decision
making. Masatlioglu et al. [2012] and Manzini & Mariotti [2014] study a DM who has
limited attention to the alternatives available. The DM maximizes a fixed preference
relation over the consideration set, a subset of the alternatives actually available. In
contrast, in CTM the DM the considers all available alternatives but maximizes a
preference relation distorted by her attention. Caplin & Dean [2015], de Oliveira et al.
[2017] and Ellis [2018] study a DM who has limited attention to information. In
contrast to CTM, attention is chosen rationally to maximize ex ante utility, rather
than determined by the framing of the decision, and choice varies across states of the
world. The most related interpretation considers attributes as payoffs in a fixed state.
In addition to choices varying across states, each alternative has the same weights
on each attribute, similar to Kőszegi & Szeidl [2013]. Taken together, these results
highlight the effects on behavior of different types of attention.

While we argue in this paper that a number of prominent behavioral economic
models can be thought of as resulting from categorization, few papers in econom-
ics explicitly address categorization. Mullainathan [2002] provides a model of belief
updating and shows how categorization can generate non-Bayesian effects. Fryer &
Jackson [2008] introduce a categorical model of cognition where a decision maker cat-
egorizes her past experiences. Since the number of categories is limited, the decision
maker must group distinct experiences in the same category. In this model, predic-
tion is based on the prototype from the category which matches closely the current
situation. Finally, Manzini & Mariotti [2012] introduce a two-stage decision-making
model. In the first stage, a decision maker eliminates some alternatives based on the
categories to which they belong, and in the second stage she maximizes her preference
among those that survived the first stage. Bordalo et al. [2020] provide a model of
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memory and attention, where the context’s similarity to past consumption opportuni-
ties affects the salience of the alternatives currently available. They show this leads
to endogenous categorization of the current opportunity set, and discuss the resulting
implications for choice.

Appendix A. Proofs and Extras from Sections 2 - 4

A.1. Proof of Theorem 1.

Lemma 2. �k∗ has open upper and lower contour sets in Ek.

Proof. Suppose x �k∗ y. Then, there are x1, x2, . . . , xM ∈ Ek and r1, . . . , rM−1 with
x1 = x and xM = y so that xj %rj xj+1 and xj, xj+1 ∈ Kk(rj). Let εj > 0 be such that
Bεj(xj), Bεj(xj+1) ⊂ Kk(rj). Set ε = min{εj}j<M .

Now, xj �k xj+1 (and so xj �rj xj+1) for at least one j. Let m be an index for
which this is true. Since Bε(xm), Bε(xm+1) ⊂ Kk(rm), there exists 0 < ε∗m < ε be such
that B2ε∗m(xm) is a subset of {x ∈ Kk(rm) : x �rm xm+1} by Category Continuity.
Then, xm− ε∗m �rm xm+1, so xm− ε∗m �k xm+1 and, by definition of %k∗, it follows that
xm − ε∗m �k∗ y. Assume (IH) that there is ε∗m−j ∈ (0, ε) so that xm−j − ε∗m−j �k∗ y.
Then,

xm−j−1 �rm−j−1 xm−j − ε∗m−j
since xm−j �rm−j−1 xm−j − ε∗m−j by Category Monotonicity, xm−j−1 %rm−j−1 xm−j by
definition, and transitivity of %rm−j−1 . By Category Continuity and Monotonicity,
there then exists ε∗m−j−1 ∈ (0, ε) so that xm−j−1 − ε∗m−j−1 �rm−j−1 xm−j − ε∗m−j, and by
definition it follows that xm−j−1 − ε∗m−j−1 �k xm−j − ε∗m−j. By (IH), Weak Reference
Irrelevance, and the definition of %k∗, it follows that xm−j−1−ε∗m−j−1 �k∗ y. Therefore,
there is ε∗1 ∈ (0, ε) so that x1− ε∗1 �k∗ y, so by Category Monotonicity, Weak Reference
Irrelevance, and definition of %k∗, we have x′ �k∗ y for any x′ ∈ Bε∗1

(x). Conclude the
upper-contour set is open; similar arguments hold for the lower-contour set. �

Lemma 3. %k∗ is complete on Ek.

Proof. Pick any x, y ∈ Ek and let E∗ = Ek ⋂Bd(x,y)+1(x). As the intersection of two
intersecting connected sets, E∗ is connected, and as a subset of Rn, there is a continuous
path θ : [0, 1]→ E∗ so that θ(0) = x and θ(1) = y.

This θ can be chosen so that it crosses each %k∗ indifference curve at most once.
To see why, suppose that θ(a) ∼k∗ θ(b) and b > a. First, we show that IC = {b′ ∈
E∗ : b′ ∼k∗ θ(a)} is path-connected. Then, IC−n = {y−n : y ∈ IC} ⊂ Rn−1 is also
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connected as the projection of IC onto the first n− 1 coordinates. Moreover it is open
since y ∈ Ek implies there is a reference r and ε > 0 so that Bε(y) ⊂ Kk(r) and %r
is complete, transitive, monotone, and continuous when restricted to Bε(y). Conclude
IC−n is path-connected as a connected open subset of Rn−1. Now for any a′, b′ ∈ IC,
there is a path θ′′−n : [0, 1] → IC−n from a′−n to b′−n, and for each c−n ∈ I there is
a unique cn so that c = (c−n, cn) ∈ IC by category monotonicity. Let θ′′n(x) be such
that (θ′′−n(x), θ′′n(x)) ∈ IC. θ′′n is continuous since IC is closed in Ek. Then, θ′′ = x ∈
[0, 1] 7→ (θ′′−n(x), θ′′n(x)) ∈ IC is the desired path. Hence there is a path θ′ : [0, 1]→ IC
with θ′(0) = θ(a) and θ′(1) = θ(b). Then the path θ∗ given by θ∗(x) = θ(x) for x /∈ [a, b]
and θ∗(x) = θ′

(
x−a
b−a

)
for x ∈ [a, b] is also a continuous path from x to y. Constructing

this for a∗ = min{a′ : θ(a′) ∼k∗ θ(a)} and b∗ = max{a′ : θ(a′) ∼k∗ θ(a)} gives a path
that crosses IC at most once. These are well-defined since θ is continuous.

Now, let Y = θ−1([0, 1]). Y is closed since θ is continuous and so compact as a
subset of cl(Bd(x,y)+1(x)). For any z ∈ Y , there exists rz ∈ X and εz > 0 so that
Bz = Bεz(z) ⊂ Kk(rz). Since Bz ⊂ Kk(rz) and %k is a subrelation of %k∗, %k∗ is
complete and transitive when restricted to Bz. Then, the collection {Bz : z ∈ Y } is
an open cover of Y and hence has a finite subcover Bz1 , Bz2 , . . . , Bzm . W.L.O.G., Bzj

is not a subset of Bzj′
for any j, j′ and θ(zj) < θ(zj+1), so x ∈ Bz1 and y ∈ Bzm .

Moreover, since θ crosses each indifference curve only once, if zk �k∗ zk+1 (zk ≺k∗ zk+1)
for any k, then zj %k∗ zj′ (zk -k∗ zk+1) for any j′ > j. W.L.O.G. consider the former.
Pick a1 ∈ Bz1

⋂
Bz2

⋂
Y so that x %k a1 and then pick aj ∈ Bzj

⋂
Bzj+1

⋂
Y so that

aj−1 %k aj. Then,
x %k∗ a1 %k∗ a2 %∗ · · · %k∗ am %k∗ y.

Since %k∗ is transitive, we conclude x %k∗ y. Since x, y were arbitrary, %k∗ is complete.
�

Apply CW Theorem 2.2 to get an additive representation U i(x) on Ei. For any
x, y ∈ Ki(r), x %r y if and only if U i(x) ≥ U i(y) and U i(x) = ∑

j U
i
j(xj).

Lemma 4. For categories Ki(r) and Kj(r), either (i) there exists xi ∈ Ki(r) and
xj ∈ Kj(r) so that xi ∼r xj; or (ii) xi �r xj for all xi ∈ Ki(r) and xj ∈ Kj(r); or
(iii) xj �r xi for all xi ∈ Ki(r) and xj ∈ Kj(r).

Proof. If neither (ii) nor (iii) holds, then after relabeling categories if necessary, there
exist x ∈ Ki(r) and y, z ∈ Kj(r) such that y �r x �r z. Let UCj(x) and LCj(x)
be the strict upper and lower contour sets of x in category j for reference r. Any
point in Kj(r) \ [UCj(x)⋃LCj(x)] is indifferent to x, so either (i) holds or the set
is empty. There exists an ε > 0 such that for every x′ ∈ Bε(x), y �r x′ �r z by
Category Continuity and hence Kj(r) 6= Uj(x′) and Kj(r) 6= Lj(x′). By Category
Continuity, there exists x′ ∈ Bε(x) such thatKj(r)\[UCj(x′)

⋃
LCj(x′)] 6= ∅ (otherwise,
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Bε(x) is contained in the interior of the set considered), so we can take y′ ∈ Kj(r) \
[UCj(x′)

⋃
LCj(x′)] and conclude y′ ∼r x′. �

Definition 5. A finite sequence (Q1, . . . , Qm+1) with each Qi ∈ {K1(r), . . . , Kn(r)} is
an indifference sequence for r (IS) if there exists x1, . . . , xm, y1, . . . , ym with xk ∈ Qk,
yk ∈ Qk+1 and xk ∼r yk.

We omit the dependence on r when clear from context.

Define the relation ./r by x ./r y if there exists an indifference sequence of cate-
gories (Q1, . . . , Qm) with x ∈ Q1 and y ∈ Qm. It is easy to see that ./r is an equivalence
relation (reflexive, symmetric, and transitive). Let [x]r denote the ./r equivalence class
of x.
Lemma 5. If y /∈ [x]r and x �r y, then x′ �r y′ for all x′ ∈ [x]r and y′ ∈ [y]r.

Proof. Fix x, y, r ∈ X with y /∈ [x]r and x �r y, and assume x ∈ Kk. Pick any y′ ∈ [y]r.
By definition, there is an IS (Q1, . . . , Qm) with y′ ∈ Qm and y ∈ Q1. Let i = 1 and
y1 = y. If there exists y′′ ∈ Qi with y′′ %r x, then y′′ %r x �r yi, so by Lemma 4,
we can find z ∈ Qi and x′ ∈ Kk with z ∼r x′. If that occurs, then (Kk, Qi, . . . , Q1) is
an IS and y ∈ [x]r, a contradiction. Thus x �r y′′ for all y′′ ∈ Qi. Now, there exists
yi+1 ∈ Qi+1 with x �r yi+1 by transitivity and definition of IS. Hence, we can apply
above logic to Qi+1 as well: x �r y′′ for all y′′ ∈ Qi+1. Inductively, this extends all the
way to Qm, so x �r y′ in particular. Since y′ is arbitrary, this extends to any y′ ∈ [y]r.

Similar arguments show that x′ �r y for any x′ ∈ [x]r. Combining, x′ �r y′
whenever x′ ∈ [x]r and y′ ∈ [y]r. �

Fix a reference point r. Let A1, . . . , An be the distinct equivalence classes of ./r.
By Lemma 5, these sets can be completely ordered by �r, i.e. Ai �r Aj ⇐⇒ x �r y
for all x ∈ Ai and y ∈ Aj. Label so that A1 �r A2 �r · · · �r An.

Pick an indifference class Ai and an IS Q1, . . . , QM that contains points in every
region in Ai. We define Vi(·) on Ai as follows. Define Vi(x) on Q1 so that Vi(x) = U j(x)
for all x ∈ Kj(r) where Kj(r) = Q1. Clearly Vi represents �r when restricted to Q1.
There is no loss in assuming that Vi is bounded, and the closure of its range is an
interval.29

Now, assume inductively that, for a given m ≤ k, Vi represents �r when restricted
to ⋃m−1

j=1 Qj ≡ Qm−1, is bounded, is continuous on Qm−1, and is an increasing trans-
formation of Uk within Qj when Qj = Kk(r). Then, extend Vi to Qm as follows. By
29We can define V ′(x) = h(V (x)) for h(v) = −1/(1 + v) when v ≥ 0 and h(v) = −2 + 1/(1− v) when
v < 0.
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Lemma 5, it is impossible that y �r x for every x ∈ Qm−1 and every y ∈ Qm. It will
be convenient to relabel regions so that Qm = Km(r).

Pick a bounded, strictly increasing, continuous h : R→ R. For any x ∈ Km(r) so
that x �r y for all y ∈ Qm−1, set

Vi(x) = h(Um(x)) + β+

where
β+ = sup{Vi(x) : x ∈ Qm−1} − inf{h(Um(x)) : x ∈ Km(r), x �r y for all y ∈ Qm−1}.
For any x ∈ Km(r) for which there exists y, y′ ∈ Qm−1 so that y �r x �r y′, let

Vi(x) = inf{Vi(y) : y ∈ Qm−1 and y %r x}.
For all other x ∈ Km(r), let

Vi(x) = h(Um(x)) + β−

where
β− = inf{Vi(x) : x ∈ Qm−1} − sup{h(Um(x)) : x ∈ Km(r), y �r x for all y ∈ Qm−1}.
This Vi is bounded and continuous.

We now show that it represents �r on Qm. Pick x, y ∈ Qm. There are four cases:
Case 1: x, y ∈ Qm−1: then the claim follows by hypothesis.
Case 2: x ∈ Km(r) and either x �r y′ for all y′ ∈ Qm−1 or y′ �r x for all y′ ∈ Qm−1:
the claim is immediate.
Case 3: x ∈ Km(r) and y ∈ Qm−1: If y �r x, then y − ε �r x for some ε > 0 so
that y − ε belongs to the same region as y. If y ∼r x, then Vi(y) ≥ Vi(x). If this does
not hold with equality, then there is a y′ ∈ Qm−1 so that y′ %r x and y �r y′ (since
y′ 6%r y). But then y �r x, a contradiction. If x �r y but Vi(y) ≥ Vi(x), there exists
z ∈ Qm−1 so that Vi(z) ≤ Vi(y) and z %r x. But then by transitivity and hypothesis,
y %r z %r x.
Case 4: x, y ∈ Km(r) and Case 2 does not hold for either x or y: Suppose x %r y.
If not, then Vi(y) > Vi(x) so there exists a z ∈ Qm−1 so that z %r x and z 6%r y. By
weak order, y �r z and so y �r x, a contradiction.

Since it represents %r on Km(r), it also agrees with %m on Km(r). Hence it is an
increasing transformation of U i within Ki(r) for each i ≤ m. Renormalize Vi so that
its range is a subset of [−1

2 − i,−i].

For any x, y ∈ Ai, the above establishes that Vi(x) ≥ Vi(y) ⇐⇒ x %r y. For
any x ∈ Ai and y ∈ Aj where i < j, x �r y by Lemma 5 and construction. Since
Vi(x) > −1

2− i, Vj(y) < −j, and −1
2− i > −j, we have Vi(x) > Vj(y). Define Uk(·|r) to

agree with the appropriate restriction of Vi, and conclude {�r}r∈X conforms to CTM
under K. Since r was arbitrary, this completes the proof. �
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A.2. Proof for Theorem 2. Sufficiency is easy to verify. Suppose that Uk(x) =∑n
i=1 U

k
i (xi). We show that for every category j there exists a vector w � 0 so that

U j(x) = ∑n
i=1wiU

k
i (xi) represents �j on Ek ⋂Ej.

Consider dimension 1, and the rest follow the same arguments. The goal is to
show that Uk

1 (x)−Uk
1 (y) ≥ Uk

1 (a)−Uk
1 (b) if and only if U j

1 (x)−U j
1 (y) ≥ U j

1 (a)−U j
1 (b)

for any x, y, a, b ∈ Ek
1
⋂
Ej

1. If this is the case, then standard uniqueness results give
that U j

1 (x) = αUk
1 (x) + β. The β can be dropped completing the claim.

Let πi be the projection onto the i-coordinate. Then, Ek
1 = π1(Ek) is open and

connected for any category k. This follows from Ek connected and open and πi con-
tinuous. In R, connected implies convex.

Claim 1. For any z ∈ Ek
1
⋂
Ej

1, there exists a neighborhood Oz = Bεz(z) so that
Uk

1 (x)− Uk
1 (y) ≥ Uk

1 (a)− Uk
1 (b) if and only if U j

1 (x)− U j
1 (y) ≥ U j

1 (a)− U j
1 (b) for any

x, y, a, b ∈ Oz.

To see it is true, pick x ∈ Ek
1
⋂
Ej

1. Then there is an al ∈ El with al1 = x for
l = k, j. Let Uk

−i(y) = ∑
j 6=i U

k
j (yj) for any y ∈ X. Since each al ∈ K l(rl) for some

rl ∈ X, there exists an εl > 0 so that B2εl(al) ⊂ K l(rl) ⊂ El, where the distance is
given by the supnorm. Pick ε ∈ (0, εl) so that

U l
1(x+ ε)− U l

1(x− ε) < U l
−1(al + εl)− U l

−1(al − εl)
for l = k, j. Then, for any a, b ∈ [x−ε, x+ε] there exists ya−1, y

b
−1 so that (a, ya−1), (b, yb−1) ∈

B2εk(ak) and (a, ya−1) ∼rk (b, yb−1) by Category Continuity and CM. In particular,
Uk

1 (a) − Uk
1 (b) = Uk

−1(yb−1) − Uk
−1(ya−1). For any a′, b′ ∈ [x − ε, x + ε], it holds that

Uk
1 (a) − Uk

1 (b) ≥ Uk
1 (a′) − Uk

1 (b′) if and only if (b′, ya−1) %rk (a′, yb−1). Similarly,
there exist za−1, z

b
−1 so that (a, za−1), (b, zb−1) ∈ B2εj(aj) and (a, za−1) ∼rj (b, zb−1). Now,

(b′, zb−1) %rj (a′, za−1) if and only if U j
1 (a) − U j

1 (b) ≥ U j
1 (a′) − U j

1 (b′). By Reference
Interlocking and weak order, (b′, zb−1) %rj (a′, za−1) if and only if (b′, ya−1) %rk (a′, yb−1),
so we conclude that the claim holds with εx = ε.

We now extend to the entire domain (this follows similar arguments in CW). Pick
an arbitrary x∗ < x∗ ∈ Ek

1
⋂
Ej

1 and consider Z = (x∗, x∗]. If the claim is true, then
standard uniqueness results give that U j

1 (x) = αUk
1 (x) + β for all x ∈ Oz for some

α > 0. Let α∗, β∗ be the constants so that U j
1 (x) = α∗Uk

1 (x) + β∗ for all x in the
neighborhood of x∗, as guaranteed to exist by the claim.

Let
Z1 =

{
s ∈ Z : U j

1 (x) = α∗Uk
1 (x) + β∗ for all x ∈ (x∗, s]

}
.

Z1 is not empty by the claim. We show that it is both open and closed by picking
any s1 ∈ cl(Z1) and showing s1 ∈ int(Z1). Since [x∗, s1] is compact and O = {Oz :
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z ∈ [x∗, s1]} is an open covering, there exists {O1, . . . , On} ⊂ O with x∗ ∈ O1, s1 ∈ On

and Om
⋂
Om′ = ∅ for all m′ ≥ m + 2. On each Om, there exists αm, βm so that the

utility indexes agree by the claim. Also, Om and Om+1 have non-empty intersections
with more than two points, so (αm+1, βm+1) = (αm, βm). In particular, O1 intersects
Ox∗ so αm = α∗ for all m. Then On

⋂
Z ⊂ Z1, i.e. s1 ∈ int(Z1), so cl(Z1) ⊂ int(Z1) ⊂

Z1 ⊂ cl(Z1), i.e. Z1 is both closed and open relative to Z. Conclude Z1 = Z since Z
connected.

Since U j
1 (x) = αUk

1 (x) + β for all x ∈ (x∗, x∗] for any interval in the domain, it
holds for the whole domain as well. Extend to other categories that intersect Ei

1
⋃
Ej

1
inductively. If there is no intersecting category, we can start again and obtain a (dis-
joint) interval, the values of U i

1 (and U
j
1 ) on which have no bearing on the DM’s choices.

Similar arguments obtain for the other dimensions. Moreover, there is no loss in setting
each β = 0. This completes the proof. �

A.3. Proof of Theorem 3. To save notation, until after Lemma 10, we fix r and
write Kk instead of Kk(r) and % instead of %r. We also identify xαky with the
alternative αx ⊕k (1 − α)y. Let (U1, . . . , Un) be the additive functions that represent
%1, . . . ,%n. Observe that Uk(xαky) = αUk(x) + (1−α)Uk(y) for any α, provided that
x, y, xαky ∈ Ek.

Recall from Definition 5 that an indifference sequence is a finite sequence of cate-
gories with indifference between each succeeding members.

Definition 6. The function v is a utility for the indifference sequence (Q1, . . . , Qm) if
v is an increasing additive utility function on each Qk and for all k, x, y ∈ Qk

⋃
Qk+1:

x % y ⇐⇒ v(x) ≥ v(y).

Lemma 6. If xk ∈ Kk, xl ∈ K l, and xk ∼ xl, then there is a > 0, b ∈ R such that for
x ∈ Kk and y ∈ K l, x % y ⇐⇒ Uk(x) ≥ αU l(y) + β.

Proof. W.L.O.G., take Uk(xk) = 0. There is εk > 0 such that B2εk(xk) ⊂ Kk. By CM
and Category Continuity, there is εl > 0 such that Bεl(xl) ⊂ K l and for all y ∈ Bεl(xl),
x∗ = xk+εk � y � xk−εk = x∗. For any y ∈ K l and α such that yαlxl ∈ Bεl(xl), there
exists β ∈ (0, 1) such that x∗βkx∗ ∼ yαlxl by Category Continuity, CM, and that % is
a weak order. Let V l(y) = α−1Uk(x∗βkx∗). This is well defined, additive, increasing,
and ranks alternatives in the same way as U l. Thus, V l(y) = aU l(y)+ b for some a > 0
and b ∈ R.

For any x ∈ Kk and y ∈ K l, pick α ∈ [0, 1] such that xαkxk ∈ Bεk(xk) and yαlxl ∈
Bεl(xl). By construction, yαlxl ∼ y′ when y′ ∈ Bεk(xk) and Uk(y′) = αVl(y). Thus,
xαkxk % y′ ∼ yαlxl holds if and only if Uk(x) ≥ Vl(y) and x % y ⇐⇒ xαkxk % yαlxl

by AAC since xk ∼ xl, completing the proof. �
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For an indifference sequence (Q1, . . . , Qm) with utility v, we label the range of
utilities as cl(v(Qk)) = [lk, uk] where lk ≤ uk. Note that we allow Qk = Ql for k 6= l.

Lemma 7. For an indifference sequence (Q1, . . . , Qm), there is an affine, increasing
utility v for it.

Proof. The proof is by induction. We claim that there is a utility vk : X → R that
is a utility for the IS (Q1, . . . , Qk) for any k. When k = 1 or k = 2, this is true by
the above lemmas. The induction hypothesis (IH) is that the claim is true for k = N .
Consider k = N + 1. Let vN be the utility for (Q1, . . . , QN) be index that exists by the
IH. If QN+1 ⊆

⋃N
i=1Qi, then we are done. If not, then for QN = K l, there is no loss

in normalizing vN so that it equals U l on K l(r). Suppose QN+1 = Kj(r), and let α, β
be the scalars claimed to exist by Lemma 6, so that U j(x) ≥ αU l(y) + β ⇐⇒ x %r y
for x ∈ Kk(r) and y ∈ K l(r). Restricted to QN , vN = U l, so we can define vN+1(x) =
αvN(x) + β if x ∈ ⋃Ni=1Qi and

vN+1(x) = U j(x)
if x ∈ QN+1. Then, if l < N and x, y ∈ Ql

⋃
Ql+1, then we are done by the IH, since

vN+1(x) ≥ vN+1(y) ⇐⇒ vN(x) ≥ vN(y). If x, y ∈ QN
⋃
QN+1, then Lemma 6 and

construction implies the result. The claim then holds by induction. �

Lemma 8. Fix an indifference sequence (Q1, . . . , Qn) with utility v. If xk ∈ Qk for
k = i, i+1, i+2 with xi ∼ xi+1 ∼ xi+2, then (Q1, . . . , Qi, Qi+2, . . . , Qn) is an indifference
sequence (after relabeling) with utility v.

Proof. The Lemma is vacuously true for any 1 or 2-element IS. Fix an IS (Q1, . . . , Qn)
with n ≥ 3 and v as above, and suppose xk ∈ Qk for k = i, i+ 1, i+ 2 with xi ∼ xi+1 ∼
xi+2. By transitivity xi ∼ xi+2, so (Q1, . . . , Qi, Qi+2, . . . , Qn) is an IS; it remains to be
shown that v is a utility for it. There is an ε > 0 s.t. B = Bε(v(xi)) ⊂ (lk, uk) for k =
i, i+1, i+2. Let v−1(u) : B → Qi+1 be an arbitrary point in Qi+1 such that v[v−1(u)] =
u. Now, fix x ∈ Qi and y ∈ Qi+2. For α small enough, v(xαixi), v(yαi+2xi+2) ∈ B.
Then xαixi ∼ v−1(v(xαixi)) and yαi+2xi+2 ∼ v−1(v(yαi+2xi+2)). So

x % y ⇐⇒ xαixi % yαi+2xi+2

⇐⇒ v−1(v(xαixi)) % v−1(v(yαi+2xi+2))
⇐⇒ v[v−1(v(xαixi))] ≥ v[v−1(v(yαi+2xi+2))]
⇐⇒ αv(x) + (1− α)v(xi) ≥ αv(y) + (1− α)v(xi+2)
⇐⇒ v(x) ≥ v(y)

This establishes the Lemma. �

Lemma 9. Fix an indifference sequence (Q1, . . . , Qn) with utility v. If (l1, u1)⋂(ln, un) 6=
∅, then there exists i and xk ∈ Qk for k = i, i+ 1, i+ 2 with xi ∼ xi+1 ∼ xi+2.
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Proof. If there is i with (li, ui)
⋂(li+2, ui+2) 6= ∅, then there is u ∈ ⋂j=i,i+1,i+2(lj, uj) so

there exists xj ∈ Qj with v(xj) = u for j = i, i + 1, i + 2 and thus by the hypothesis,
xi ∼ xi+1 ∼ xi+2. We show there exists such an i by contradiction. If li+2 > ui for all
i or li > ui+2 for all i, then (l1, u1)⋂(ln, un) = ∅, a contradiction. So there must exist
i such that [li+2 > ui and li+2 > ui+4] or [ui+2 < li and ui+2 < li+4]. In the first case,
li+2 ∈ (li+1, ui+1)⋂(li+3, ui+3); in the second, ui+2 ∈ (li+1, ui+1)⋂(li+3, ui+3). In either
case, we have a contradiction. �

Lemma 10. Fix an indifference sequence (Q1, . . . , Qn) with utility v. Then for all
x, y ∈ ⋃iQi, x % y ⇐⇒ v(x) ≥ v(y).

Proof. This is clearly true if n = 1. (IH) Suppose the claim is true for any IS with
m < n elements. Fix an IS (Q1, . . . , Qn) with utility v. If x /∈ Q1

⋃
Qn or y /∈ Q1

⋃
Qn,

then the claim immediately follows from the IH, and clearly holds if x, y ∈ Qi for some
i. So it suffices to consider arbitrary x ∈ Q1 and y ∈ Qn. By Lemmas 8 and 9, if
(u1, l1)⋂(ln, un) 6= ∅, we can form a shorter IS from Q1 to Qn and the claim then
follows from the IH.

There are two cases to consider: ln > u1 and un < l1. Consider ln > u1. The
range of v restricted to ⋃n−1

i=1 Qi is dense in ⋃n−1
i=1 (li, ui) = (l̄, ū). Note ln ∈ (l̄, ū) since

xn−1 ∼ yn, so (ln−1, un−1)⋂(ln, un) 6= ∅. Then (ln, v(y)) is an open interval having a
non-empty intersection with (l̄, ū). Since the range of v is dense in (l̄, ū), there exists
y′ ∈ Qn′ with ln < v(y′) < v(y). Since ln > u1, n′ > 1. Then (Q1, . . . , Qn′) and
(Qn′ , . . . , Qn) are both ISes with strictly less than n elements. Applying the IH, y′ � x
and y � y′. Conclude using transitivity that y � x. Similar arguments obtain the
desired conclusion when un < l1. �

Define ./r as in the proof of Theorem 1, and let A1, . . . , An be the distinct indiffer-
ence classes of ./r. Again using Lemma 5, we can relabel so that x ∈ Ai and y ∈ Ai+1
implies x �r y. By Lemma 10, there is vi on Ai so that vi is additive and increasing
within categories and x % y ⇐⇒ vi(x) ≥ vi(y) for all x, y ∈ Ai.

By Unbounded and Lemma 5, every positive unbounded region (if any) is a subset
of A1, and every negative unbounded region (if any) is a subset of An. If one region is
both positive and negative unbounded, then n = 1. Therefore, vi(Ai) is bounded for
all i ∈ (1, n), and vn(An) is bounded above whenever n > 1. Define V (x) = v1(x) for
all x ∈ A1. For x ∈ Ai with i > 1, define V (x) recursively by

V (x) = vi(x)− sup
y∈Ai

vi(y) + inf
y∈Ai−1

V (y)− 1.

Observe V (·) is a positive affine transformation of vi(·) when restricted to Ai, and if
x ∈ Ai, y ∈ Aj and i > j, then V (x) > V (y). Thus V represents %r and, when
restricted to any given region, is affine and increasing.
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Defining Uk(·|r) as the (unique) affine transformation of Uk so it agrees with V
on Kk(r) establishes that %r is an Affine CTM. Since r was arbitrary, this establishes
that each %r has such a representation. Conclude that {%r} conforms to Affine CTM,
completing the proof. �

A.4. Proof of Theorem 4. Without loss of generality, normalize so that U1(·|r) =
U1(·|r′) for all r, r′. Suppose Uk(·|r) 6= Uk(·|r′) for some r, r′ and some k. Then, let
ε̄ = d(r, r′) and pick a sequence r̂n → r̂ such that: Uk(·|r̂n) 6= Uk(·|r), r̂n ∈ Bε̄(r) for
all n, and d(r̂n, r)→ inf{d(r′, r) : Uk(·|r) 6= Uk(·|r′)}. Since r̂n ∈ cl(Bε̄(r)), there is no
loss in assuming this sequence converges. Similarly, let rn be a sequence in Bε̄(r) such
that rn → r̂ and Uk(·|r) = Uk(·|rn).

By hypothesis and that each Kk(r) is open, there exists ε > 0, xk and x1 such that
B2ε(xk) ⊂ Kk(r̂), B2ε(x1) ⊂ K1(r̂), and xk ∼r̂ x1. By continuity of the region functions,
Bε(xk) ⊆ Ki(r̂n) ∩ Ki(rn) and Bε(x1) ⊆ K1(r̂n) ∩ K1(rn) for n large enough. For z
close enough to xk, there exists y(z) ∈ Bε(x1) such that z ∼r̂ y(z). But then by SC,
z ∼rn y(z) and z ∼r̂n y(z). Thus Uk(z|rn) = U1(y(z)|rn) = U1(y(z)|r̂n) = Uk(z|r̂n) for
all z close enough to xk, implying that Uk(·|rn) = Uk(·|r̂n), a contradiction. Conclude
Uk(·|r) = Uk(·|r′) for all r, r′. �

A.5. Examples from Table 1. Example 1 shows that BGS violates Cancellation and
inspecting Figure 1 shows it violates Monotonicity. It remains to show that TK violates
Reference Irrelevance and that MO violates Cancellation. This is established by the
following two examples.

Example 2 (TK violates Reference Irrelevance). Consider a TK model with λ1 =
λ2 = 2. Then, for r = (10, 10), x = (12, 12) and y = (9, 16), y %r x since (12 − 10) +
(12−10) = 2(9−10)+(16−10). For r′ = (11, 11), x �r y since (12−11)+(12−11) >
2(9 − 11) + (16 − 11). But x ∈ RGL

1 (r)⋂RGL
1 (r′) and r ∈ RGL

2 (r)⋂RGL
2 (r′), so the

family violates Reference Irrelevance.

Example 3 (MO violates Cancellation). Let Q(r) = {x ∈ X : x1/2 + x2 > r1/2 + r2}
and c(r) = 1. Then, let x = (2, 1), y = (1, 2), z = (4, 4), and r = (0.9, 1.9). Since
(x1, z2) = (2, 4) %r (4, 2) = (z1, y2) and (z1, x2) = (4, 1) %r (1, 4) = (y1, z2) because all
four points belong to Q(r), cancellation requires that x %r y. However, x /∈ Q(r), so
y �r x, so cancellation does not hold.

A.6. Other CTM.

A.6.1. Quasi-Hyperbolic Model. Let the pair (c, t) represent consumption of c at time t.
Formally, we define categories according toKQH = (Kshort, K long) whereKshort(rc, rt) =
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{(c, t)|t < rt} and K long(r) = {(c, t)|t > rt}. The utility function is

VQH(c, t|r) =
{

(βδ)tu(c) if (c, t) ∈ Kshort(r)
βrtδtu(c) if (c, t) ∈ K long(r)

where 0 < δ < 1 and 0 < β ≤ 1. The model is additively separable after taking logs,
so it is a special case of CTM. It exhibits present bias when β < 1: there exist values
c > c′ > 0 so that the DM prefers (c, τ) %r (c′, τ + 1) if and only if τ < rt− 1.30 Figure
3 plots its indifference curves.
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𝑇𝑖𝑚𝑒	𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝐾𝑙𝑜𝑛𝑔(	𝑟	)

𝐾𝑠ℎ𝑜𝑟𝑡(	𝑟	)

Figure 3. CTM for Dated Rewards

A.6.2. Inequality Aversion Model. The category function is KRIA = (KE, KG) where
KG(r) = {x ∈ X : x1 − r1 > x2 − r2} and KE(r) = {x ∈ X : x1 − r1 < x2 − r2}

The set KG(r) contains all allocations where individual 1 is advantaged relative to the
individual 2, and KE(r) all those where she is disadvantaged.31

The DM feels guilty if her own relative gain is higher than the other’s relative gain.
Otherwise, the DM is envious of the other. Hence, a social allocation x is evaluated
according to

VRIA(x|r) =
{
x1 − α[(x1 − r1)− (x2 − r2)] if x ∈ KE(r)
x1 − β[(x2 − r2)− (x1 − r1)] if x ∈ KG(r)

where α ≥ β ≥ 0 and β < 1. Observe that when ri = rj for all i and j (the equitable
outcome), the utility function reduces to that of Fehr & Schmidt [1999]. Also, the
model is an Affine CTM, and a Strong CTM for the restricted set of reference points
with r1 = r2.

30For instance u(c) = 1 and u(c′) = (βδ)−1.
31In general there are 2n−1 categories, corresponding to envy or guilt for each binary comparison with
every other individual. For instance, there are 4 categories with n = 3: EE, EG, GE, and GG.
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Figure 4. Left: Relative Inequality Aversion and Right: Reference-
Dependent Distributional Preferences

A.6.3. Distributional Preferences: Charness & Rabin [2002] argue that people care
about both their own utility and social welfare as a whole. They maximize a weighted
average of the two. Social welfare is a weighted average of society’s total utility and
the utility of worst-off individual. We propose a natural extension of their model
with an exogenously given reference point. We call this model Reference-Dependent
Distributional Preferences (RDDP). Formally, categories are given by KCR = (K1, K2)
where

Kj(r) =
{
x ∈ X : j = arg min

i
(xi − ri)

}
.

Each category corresponds to the individual with the worst relative payoff. If j = 1,
then the DM is behind and wants to catch up. If j = 2, then the DM is ahead and is
more willing to help the other to catch up.32

In RDDP, the DM puts extra weight on the consumption of the individual who is
furthest behind. Formally, she evaluates a social allocation x with reference r according
to

VCR(x|r) =
{

(1− λ)(x1 − r1) + λ[δ(x1 − r1) + (1− δ)∑k(xk − rk)] if x ∈ K1(r)
(1− λ)(x1 − r1) + λ[δ(x2 − r2) + (1− δ)∑k(xk − rk)] if x ∈ K2(r)

where δ, λ ∈ (0, 1). Utility is increasing in the DM’s own consumption, the minimum of
all individuals’ payoffs, and the total of all individuals’ payoffs. Hence, the DM is willing
to give up more of her own consumption to increase that of the worst-off individual than
that of one of others. The parameter δ measures the degree of concern for helping the
worst-off individual (Rawlsian) versus maximizing the total social payoffs (Utilitarian),
and λ measures how the DM balances social welfare with her own material payoff. Note
32With n individuals, there are n categories, each corresponding to the identity of the worst-treated
individual in terms of relative consumption, (xi − ri). The utility function reduce to VCR(x|r) =
(1− λ)(x1 − r1) + λ[δmin{x1 − r1, . . . , xn − rn}+ (1− δ)

∑
k(xk − rk)]. While RDDP and RIA have

category functions that coincide with n = 2 individuals, their category functions diverge for all other
n. Figure 4 reveals that the behavior necessarily differs even with n = 2.
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that if ri = rj for all i and j, the utility function is cardinally equivalent to that of
Charness & Rabin [2002].33 The model is an Affine CTM.

A.7. Other models and CTM. In this subsection, we present the functional forms
of the other models we discussed, and show that they are not CTM.

• Gabaix [2014] assumes a rational DM would maximize u(a, w) but actually
maximizes

u (a, (w1m
∗
1, . . . , wnm

∗
n))

where

m∗ ∈ arg min
m∈[0,1]n

1
2
∑
i,j

(1−mi)Λij(1−mj) + κ
∑
i

mα
i

where Λij incorporates the “variance” in the marginal utility of dimensions i
and j. When n is large, m∗i is often zero, so (w1m

∗
1, . . . , wnm

∗
n) is a “sparse”

vector.
• Tversky & Kahneman [1991] refer in general to

VCTK(x|r) =
∑
i

vi(ui(xi)− ui(ri))

where vi is concave above 0 and convex below
• Bordalo et al. [2020] and the continuous form of the salient thinking model has

VCBGS(x|r) = w(x1, r1)x1 + w(x2, r2)x2

where w has the same properties as a salience function.
• Munro & Sugden [2003] use the functional from

VMS(x|r) = A(r)
(∑

i

γir
ρ−β
i xβi

) 1
β

• Bhatia & Golman [2013] assume that the DM chooses the bundle x that maxi-
mizes

U(x|r) = α1(r1)[V (x1)− V (r1)] + α2(r2)[V (x2)− V (r2)]
given that a reference point r, where each αi is increasing and positive.

The first fails to be CTM, as the indifference curves have the same slope every-
where for a fixed context. If they were CTM, then they would necessarily have only

33The authors assume U(x) = (1 − λ)x1 + λ[δmin{x1, . . . , xn} + (1 − δ)
∑

k xk] (see their Appendix
1). Pick any allocation x and reference point r so that rj = rk = r∗ for every j and k. Let i∗ ∈
arg minj xj . Subtracting the same constant from each element in a set does not change the minimizer,
so VCR(x|r) = (1−λ)(x1−r1)+λδ(xi∗−ri∗)+λ(1−δ)

∑
k(xk−rk) = U(x)−λδri∗−(1−λ)r1−λ

∑
k rk.

Since rj = r∗ for all j, VCR(x|r) = U(x)− (λn+ (1− λ(1− δ)))r∗, i.e. it is an affine transformation
of U(x) and this tranformation does not depend on x.
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a single region. Single region CTM coincides with the neoclassical model. The final
four explicitly take into account a reference point. In all four, it is easy to see that
the reference point affects the marginal rate of substitution between attributes. This
implies a violation of weak reference irrelevance for any given category function: any
two points in the same category that are indifferent to each other necessarily remain
so for a sufficiently small change in the reference point.

A.7.1. Non-increasing CTM. For simplicity, we have so far focused on increasing CTM.
This is a desirable feature in consumer choice, but models of social preference often
violate this property. For instance, inequality-averse individual 1 prefers to increase
the allocation to individual 2 from x to y when she feels guilty but not when she is
envious. However, she always prefers increasing the allocation to 2 in an allocation
categorized as guilty, and to decrease in any categorized as envious. This contradicts
Category Montonicity, suggesting the following weakening.
Axiom (Consistent Preference within Category, CPC). For each category k, there
exists a set of attributes P k so that if xj ≥ yj for all j ∈ P k, yi ≥ xi for all i /∈ P k,
and x 6= y, then y 6%k∗ x.

The set P k contains the attributes for which an increase positively affects the
DM’s evaluation. CPC requires that the set of positive attributes in a category does
not depend on the reference point. For the two-person-RIA model, the set for the
“guilty” category is {1, 2} since she strictly prefers increasing everyone’s allocation,
but the set for the “envious” one is {1} – she prefers more for herself but dislikes
others having even more. Note that CM is the special case of CPC where P k includes
every dimension for every category.

A CTM is characterized by all the properties of an increasing CTM, except where
CM is replaced by CPC. The proof is a straightforward generalization of earlier one,
so it is omitted.

A.8. Proof of Proposition 1. Suppose that {%r}r∈X has a CTM and fix a category
k with LISk(x) 6= LISl(x) for every x ∈ X and category l 6= k. Consider a category k
and reference r. Define

K = {x ∈ X : ∃ε > 0 s.t. ∀y ∈ Bε(x), y ∼r x ⇐⇒ Uk(x) = Uk(y)}.
We show int(K) = Kk(r). Let x ∈ Kk(r). Then, there exists a neighborhood O 3 x
with O ⊂ Kk(r) since Kk(r) open. By the representation, for any y ∈ O, x ∼r y if
and only if Uk(y) = Uk(x), so picking any ε > 0 so that Bε(x) ⊂ O shows that x ∈ K.
Since Kk(r) is open and Kk(r) ⊂ K, Kk(r) ⊂ int(K).

To show the reverse inclusion, suppose that x ∈ K l(r) for category l 6= k. Since
LISk(x) 6= LISl(x), for any neighborhood O 3 x there exists y ∈ O so that either
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Uk(y) 6= Uk(x) and U l(x) = U l(y) or Uk(y) = Uk(x) and U l(x) 6= U l(y). In particular
this applies to O′ = O ∩ K l(r), so either there exists y ∈ O′ so that either y ∼r x
and Uk(y) 6= Uk(x) (in the first case) or y 6∼r x and Uk(y) = Uk(x) (in the second).
Hence, x /∈ K. Since x is arbitrary, we have K l(r) ∩ K = ∅. Since K l is open,
we have int(K) ∩ cl(K l(r)) = ∅. Since l was arbitrary, cl(⋃l 6=kK l(r)) ∩ int(K) =⋃
l 6=k cl(K l(r))∩int(K) = ∅ since there are finitely many categories. Since the categories

are dense, int(K) ⊂ cl(Kk(r)), and it follows that int(K) ⊂ int(cl(Kk(r))) = Kk(r)
since Kk(r) is a regular open set. Conclude int(K) = Kk(r), and that we can identify
Kk(r) for any k and r.

A.9. Proofs and extra material from Section 3.5.

Proof of Proposition 2. Suppose that {%r}r∈X has a BGS representation. From Propo-
sition 1, we need to show that LIS1(x) 6= LIS2(x) for all x. Fix any x and take r1

x =
(x1/2, x2) and r2

x = (x1, x2/2). By S4, x ∈ Ki(rix) for i = 1, 2. Since K1(r1
x)∩K2(r2

x) is
open and contains x, there exists a neighborhood Ox of x contained in it. For y ∈ Ox,
y ∼rix x if and only if wi1/wi2[u1(y1) − u1(x1)] = u2(x2) − u2(y2). Since u1 and u2 are
strictly increasing and w1

1/w
1
2 > w2

1/w
2
2, LIS1(x) 6= LIS2(x). Hence, Proposition 1 is

applicable and the categories are uniquely identified. Moreover,
Ki(r) = K̂i(r) = int

{
x ∈ X : ∃ε > 0 s.t. ∀y ∈ Bε(x), y ∼r x ⇐⇒ y ∼rix x

}
using the above arguments and taking ε so that Bε(x) ⊂ Ox. �

Proposition 6. Let {%r}r∈X be a CTM where each category is connected. For any
reference r such that Uk(x|r) 6= U l(x|r) for every x ∈ X and categories l, k with l 6= k,
the category function is uniquely identified for r.

Proof. For any x∗, let O be the ⊆-largest connected, open set connected so that for
every x ∈ O there is an ε > 0 so that {y ∈ Bε(x) : y %r z} and {y ∈ Bε(x) : z %r y} are
closed for each z ∈ Bε(x). A maximal set with this property exists by Zorn’s Lemma,
and is unique since any two such maximal sets contain x∗, so their union is also a
maximal set. If x∗ ∈ Kk(r), we claim that O = Kk(r).

First, note O ⊂ ⋃n
l=1K

l(r), where n is the number of categories. For x ∈ X so
that x /∈ ⋃nl=1K

l(r), there are categories i, j so that x ∈ bdKi(r) and x ∈ bdKj(r).
WLOG, U i(x|r) > U j(x|r). For any ε > 0, there exists x′ ∈ Ki(r) ∩ Bε(x) with
U i(x|r) > U i(x′|r) > U j(x|r), x′′ ∈ Kj(r) ∩ Bε(x) with U i(x|r) > U j(x′′|r) > U j(x|r),
and sequences x′n ∈ Ki(r)∩Bε(x) and x′′n ∈ Kj(r)∩Bε(x) so that x′n → x and x′′n → x.
Since x′ �r x′′, either x′ �r x or x �r x′′. In the former case, x′n %r x′ for all n large
enough but x′ �r x; in the latter, x′′ %r x′′n for all n large enough but x �r x′′. In
either case we obtain a contradiction.
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Now, Kk(r) and K−k(r) = ⋃
l 6=kK

l(r) are disjoint, open sets whose union contains
O. Hence either Kk(r) ∩ O = ∅ or K−k(r) ∩ O = ∅. The former is impossible, so
Kk(r) ⊇ O. But clearly Kk(r) is a connected, open set satisfying the condition of O,
so Kk(r) ⊆ O. Conclude Kk(r) = O. �

Consider the following category utility functions. U1(x1, x2|r) = x1 + x2 and

U2(x1, x2|r) =
{

x1 + x2 if x1 + x2 ≤ 1
2(x1 + x2)− 1 if x1 + x2 > 1

For any category function, the boundary between the categories can be identified on
the set {x : x1 + x2 > 1} but not on the other points. Intuitively, the DM evaluates
objects in this set the same regardless of their categorization and so we cannot hope
to identify their category. When the category does not affect the DM’s choice, the
revealed preference approach cannot distinguish the two and non-choice data must be
used.

A.10. Proof of Proposition 3. K satisfying S0-S4 implies that E1 = E2 = Rn
++, so

the structure assumption is satisfied. Moreover, Theorem 5 gives that the categories
are generated by a salience function. The axioms allow us to apply Theorems 2 and
4 to get a Strong CTM representation of the family with reweighted utility indexes.
Hence,

Uk(x) = wk1u1(x1) + wk2u2(x2) + βk

for each x ∈ X.

There is no loss in normalizing so that β1 = 0. Pick x ∈ X with x1 > x2, and by
S4 observe that x ∈ K1(r) for r = (x1, x2/2) and x ∈ K2(r′) for r′ = (x1/2, x2). Since
K1(r) and K2(r′) are open, there exists ε > 0 so that Bε(x) ⊂ K1(r)⋂K2(r). Since U1

is continuous and increasing, there is y ∈ Bε(x) with y1 < x1 so that U1(y) = U1(x),
i.e. y ∼r x; this y necessarily has y2 > x2 by CM. Then, SDO implies y �r′ x, i.e.
U2(y) > U2(x), which requires w1

2/w
2
2 < w1

1 > w2
1. We can incorporate β2 into u2 by

replacing it with u2 + β2/(w2
2 − w1

2) or into u1 by replacing β2 into u1 by replacing it
with u1 + β2/(w2

1 − w1
1). At least one does not involve dividing by zero, as otherwise

w2
i = w1

i for i = 1, 2. �

A.11. TK. This subsection states and proves a characterization theorem for TK.
Proposition 7. A family of preferences {%r}r∈X has a TK representation if and only
if it is an Affine CTM with a gain-loss regional function that satisfies Reference Inter-
locking, Monotonicity, Cancellation, and continuity of each %r.

Tversky & Kahneman [1991, p. 1053] provide an alternative axiomatic character-
ization of the model, and our result makes heavy use of their theorem.
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Proof. Necessity follows from the discussion above and TK’s theorem. To show suffi-
ciency, we rely on TK’s theorem, which states that any monotone, continuous family
of preference relations that satisfies cancellation, sign-dependence and reference inter-
locking has a TK representation. Given our assumptions, we need to show that {%r}
satisfies sign-dependence and reference interlocking.

TK say that {%r} satisfies sign-dependence if “for any x, y, r, s ∈ X, x %r y ⇐⇒
x %s y whenever x and y belong to the same quadrant with respect to r and with
respect to s, and r and s belong to the same quadrant with respect to x and with
respect to y.” This happens if and only if x ∈ Kk(r)

⋂
Kk(s) and y ∈ Kk(r)⋂Kk(s)

for some k ∈ {1, 2, 3, 4}. Then, sign-dependence is exactly an implication of Affine
CTM, since Uk(·|r) = αUk(·|s) + β for α > 0.

TK say that {%r} satisfies reference interlocking if “for any w,w′, x, x′, y, y′, z, z′
that belong to the same quadrant with respect to r as well as with respect to s,
w1 = w′1, x1 = x′1, y1 = y′1, z1 = z′1 and x2 = z2, w2 = y2, x

′
2 = z′2, w

′
2 = y′2, if w ∼r x,

y ∼r z, and w′ ∼s x′ then y′ ∼s z′.” The assumptions on quadrants imply that
w,w′, x, x′, y, y′, z, z′ ∈ Kk(r)⋂K l(s) for some k, l ∈ {1, 2, 3, 4}. Since y′, z′ ∈ K l(s),
the conclusion follows immediately from RI. �

A.12. Example 4.
Example 4. The categories plotted in Figure 2 are described formally below. They
all satisfy S0-S3, but only a subset of the other properties.

(1) The category function
K1(r) = {x : s1(x1, r1) > s1(x2, r2)} and K2(r) = {x : s1(x1, r1) < s1(x2, r2)}

where s1(x, r) = max{x,r}2

min{x,r} violates S4-S6. Note s1 is not a salience function since
it is not grounded: s(a, a) = a for a > 0. Then (a, b + ε), (a, b) ∈ K1(a, b) for
all a > b and small enough ε > 0, contradicting S4 and S6, respectively. Also
note s1(a, a) = s1(

√
a, 1) for a > 0. Hence, (a,

√
a) /∈ K1(a, 1) but (a+ ε,

√
a) ∈

K1(a+ ε, 1) for every ε > 0, violating S5.
(2) The salience function s2(x, r) = |x2 − r2| generates regions that satisfy S0-

S4 but violate S5 and S6. Observe that (2,
√

5) /∈ K1(1,
√

2) since s2(2, 1) =
σ(
√

5,
√

2) = 3, but (2 + ε,
√

5) ∈ K1(1 + ε,
√

2) for any ε > 0 since s2(2 + ε, 1 +
ε) = 3 + 2ε > 3, contradicting S5. It is routine to verify S4 by differentiating.
Also, x = (2, 2) and r = (4, 1) have x1x2 = r1r2, but s2(2, 4) > s2(2, 1) =, so
x ∈ K1(r), contradicting S6.

(3) The salience function s3(x, r) = |
√
x −
√
r| generates regions that satisfy S0-

S5 but violate S6. Also, x = (2, 2) and r = (4, 1) have x1x2 = r1r2, but
s3(2, 4) > s3(2, 1), so x ∈ K1(r), contradicting S6. Differentiating establishes
S4 and S5.
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(4) The salience function s4(x, r) = max{x,r}
min{x,r} generates regions that satisfy S0-S6.

A.13. Proof of Theorem 5. We first prove the following lemma.
Lemma 11. If K is a category function, then for any ε > 0 and x so that Bε(x) ⊂
Ki(r), there exists δ > 0 so that Bε/2(x) ⊂ Ki(r′) for all r′ ∈ Bδ(r).

Proof. Let K is a category function, ε > 0 and x be given so that Bε(x) ⊂ Ki(r).
Set B = Bε/2(x). For each j 6= i, d(Kj(r), B) > ε/2, where d(·) is the Hausdorff
metric,34 and continuity of Kj implies that there exists a neighborhood Oj of r so
that d(Kj(r′), B) > ε/4 for all r′ ∈ Oj. Let O = ⋂

j 6=iOj. Then, for any r′ ∈ O,
B ∩ cl(⋃j 6=iKj(r′)) = ∅. Since cl(⋃iKi(r′)) = X, B ⊂ cl(Ki(r′)). But since B is open,
B ⊂ int(cl(Ki(r′))) = Ki(r′) since Ki(r′) is regular open. �

For sufficiency, define a binary relation S by (a, b)S(c, d) if and only if (a, c) /∈
K2(b, d). S is clearly complete. It is also transitive by S3. We show it has an open
contour sets. Let S∗ be the strict part of S. If (a, b)S∗(c, d), then x ∈ K1(r) for
x = (a, c) and r = (b, d). K1(r) is open by S0 so there exists ε > 0 so that Bε(x) ⊂
K1(r). By Lemma 11, x ∈ K1(r′) for all r′ in a neighborhood O′ of r. Conclude
(a′, b′)S∗(c′, d′) for all (a′, b′), (c′, d′) ∈ Bε(x)×O′. Standard results then show existence
of a continuous function σ so that (a, b)S(c, d) if and only if σ(a, b) ≥ σ(c, d). σ is
symmetric by S2 and increasing in contrast by S1 and S4. Hence x ∈ K1(y) if and only
if σ(x1, y1) > σ(x2, y2), and by S2, x ∈ K2(y) if and only if y′ ∈ K1(x′) where x′, y′ are
the reflections of x, y. Hence, x ∈ K2(y) if and only if σ(x1, y1) < σ(x2, y2).

Pick any x, y > 0. We claim that (x, y) /∈ K1(x, y)∪K2(x, y), and hence σ(x, x) =
σ(y, y). Observe that (x+ε, y) ∈ K1(x, y) and (x, y+ε) ∈ K2(x, y) by S4 for ε 6= 0. By
S0, K1(x, y), K2(x, y) are open, so (x, y) /∈ K1(x, y) and (x, y) /∈ K2(x, y). Conclude
σ is grounded.

Pick any a, b. By S3, σ(a, b) = σ(b, a) so (a, b) /∈ K1(b, a) for any a, b. By S5,
(a+ ε, b) /∈ K1(b+ ε, a). Then, (b, a)S(a+ ε, b+ ε) so σ(a, b) = σ(b, a) ≥ σ(a+ ε, b+ ε).
Since a, b were arbitrary, diminishing sensitivity holds.

For necessity, verifying that S0-S5 hold are trivial, except that eachKi(r) is regular
open. To see this, pick r and x ∈ int(cl(K1(r))) (symmetric arguments hold for K2).
Suppose x � r (the other cases follow by changing the signs). Then, there are ε1, ε2
such that (x1 − r1)/2 > ε1 > 0, ε2 > 0 so that x̄ = (x1 − ε1, x2 + ε2) ∈ cl(K1(r)).
Since there exists x′ ∈ K1(r) that is arbitrarily close to x̄, we can find x′ ∈ K1(r)
so that |x′1 − x1| < ε1/2 and |x′2 − x2| < ε2/2. In particular, r1 < x′1 < x1 and
r2 < x2 < x′2. Then, σ(x1, r1) > σ(x′1, r1) and σ(x′2, r2) > σ(x2, r2) since σ is increasing
34In this case it is actually a pseudo metric.
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in contrast. Moreover, σ(x′1, r1) > σ(x′2, r2) since x′ ∈ K1(r). These inequalities imply
σ(x1, r1) > σ(x2, r2), hence x ∈ K1(r). Since x was arbitrary, int(cl(K1(r))) ⊂ K1(r).
Clearly, K1(r) ⊂ int(cl(K1(r))).

Now we show the following are equivalent:

(i) The functions K1 and K2 satisfy S0, S1, and S6,

(ii) There exists a salience function σ s.t. x ∈ Kk(r) ⇐⇒ σ(xk, rk) > σ(x−k, r−k)

That (ii) implies (i) follows from the first part, and that S6 is implied by sym-
metry and homogeneity of degree zero. Now, we show (i) implies (ii). Set σ(a, b) =
max{a/b, b/a}. Clearly σ is a salience function, and we show that σ generates K1 and
K2. Fix r ∈ X and set A = {x : σ(x1, r1) > σ(x2, r2)}. We show A = K1(r).

Claim A
⋂
K2(r) = ∅. If not, pick x ∈ A

⋂
K2(r). x ∈ A implies either (a)

x1/r1 > x2/r2 and x1/r1 > r2/x2 or (b) r1/x1 > x2/r2 and r1/x1 > r2/x2. If (a) and
x2 ≤ r2, then

x1/r1 > r2/x2 ≥ x2/r2 implies x1 > r1r2/x2 ≥ r1,

so there exists λ ∈ [0, 1) such that (λx1 + (1−λ)r1, x2) = (r1r2/x2, x2) = x′. If (a) and
x2 > r2, then

x1 > r1x2/r2 > r1,

so there exists λ ∈ (0, 1) such that (λx1 + (1 − λ)r1, x2) = (r1x2/r2, x2) = x′. By S1
and x ∈ K2(r), x′ ∈ K2(r). However, we have either x′1x′2 = r1r2 or x′1/x′2 = r1/r2 so
x′ /∈ K2(r) by S6, a contradiction. A similar contradiction obtains if (b) holds.

Now, since A⋂K2(r) = ∅ and K1(r)⋃K2(r) is dense, A ⊂ cl(K1(r)). By S0,
K1(r) = int(cl(K1(r)). Since A is an open set contained in cl(K1(r)), A ⊆ K1(r).
Similarly, for B = {x : σ(x1, r1) < σ(x2, r2)}, B ⊆ K2(r). But

(A
⋃
B)c = {x : x1x2 = r1r2 or x1/x2 = r1/r2},

and by S6, (A⋃B)c ⋂Kk(r) = ∅ for k = 1, 2. Thus A = K1(r) and B = K2(r),
completing the proof.

Finally, fix any HOD salience function s. Observe s(a, b) > s(c, d) if and only if
s(a/b, 1) > s(c/d, 1) by homogeneity if and only if s(max(a/b, b/a), 1) > s(max(c/d, d/c), 1)
by symmetry if and only if max(a/b, b/a) > max(c/d, d/c) by ordering. Thus if one
salience function generates the regions, every other salience function does as well. �

Appendix B. Proofs and Extras from Section 5



58

B.1. Axioms for c. This subsection formally states the adaptations of the axioms
for reference dependent preferences {%r}r∈X in terms of the choice correspondence c.
Interpretation is identical to that of those axioms.

Axiom (Category Cancellation*). For all x1, y1, z1, x2, y2, z2 ∈ R++ and category k: if
(x1, z2) ∈ c(S1), (z1, y2) ∈ S1, (z1, x2) ∈ c(S2), (y1, z2) ∈ S2, (x1, x2), (y1, y2) ∈ S3 and
Si ⊂ Kk(A(Si)) for i ∈ {1, 2, 3}, then (x1, x2) ∈ c(S3) whenever (y1, y2) ∈ c(S3).

Axiom (Category Monotonicity*). For any x, y ∈ X: if x ≥ y and x 6= y, then
(y, k) 6%R (x, k) for any category k.

Axiom (Category Continuity*). and any ε > 0 so that E ⋂S \ c(S) = ∅ where E ≡⋃
x∈c(S) Bε(x) there exists δ > 0 so that if S ′ ∈ X , d(A(S ′), A(S)) < δ, and for any

y′ ∈ S ′, there is y ∈ S so that y′ ∈ Bδ(y), then c(S ′) ⊂ E whenever S ′⋂E 6= ∅.
Define %R,k by x %R,k y if and only if (x, k) %R (y, k). Using this relation, we can

define ⊕k for each category as we did with preference relations.

Axiom (Affine Across Categories*). For any S1, S2, S3 ∈ X , xi ∈ Kj(A(Si)), yi ∈
Kk(A(Si)) for i = 1, 2, 3, and any α ∈ (0, 1) so that (x3, j) %R (αx1 ⊕j (1 − α)x2, j)
and (αy1 ⊕k (1− α)y2, k) %R (y3, k):
if x1 ∈ c(S1) and x2 ∈ c(S2), then y3 /∈ c(S3).

Axiom (Salient Dimension Overvalued*). For x, y ∈ S ⋂S ′ with xk > yk and y−k >
x−k, if x, y ∈ Kk(A(S)), x, y ∈ R−k(A(S ′)), and y ∈ c(S), then x /∈ c(S ′).

Axiom (Reference Interlocking*). For any a, b, a′, b′, x′, y′, x, y ∈ X with x−i = a−i,
y−i = b−i, x′−i = a′−i, y′−i = b′−i, xi = x′i, yi = y′i, ai = a′i, bi = b′i:
if x ∼R∗k y, a %R∗k b, and x′ ∼R∗j y′, then it does not hold that b′ �R∗j a′.

B.2. Proof of Theorem 6.

Lemma 12. Assume that Revealed Structure holds, and that A is a generalized average.
If Category-SARP, Category Monotonicity*, Category Cancellation*, and Category
Continuity* hold, then for any category k there exists a Category utility Uk so that for
any x, y ∈ ER,k,

(x, k) %R (y, k) ⇐⇒ Uk(x) ≥ Uk(y).

Proof. Fix a category i and pick any x, y ∈ ER,i. Let E∗ = ER,i ⋂Bd(x,y)+1(x). As in
proof of Lemma 3, there is a continuous path θ : [0, 1] → E∗ so that θ(0) = x and
θ(1) = y that crosses each %R,i indifference curve at most once, and Y = θ−1([0, 1]) is
compact. We will show that for any z ∈ Y , there exists an open set z ∈ Bz ⊂ E∗ so
that %R,i is complete on Bz. If this is the case, we can mimic the rest of the proof of
Lemma 3 to show that either x %R,i y or y %R,i x.
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By definition of E∗, for any z ∈ E∗, there exists S ∈ X with A(S) = r so that
c(S) = z. Since Ki(r) is open, there exists ε1 > 0 so that B2ε1(z) ⊂ Ki(r). By
Lemma 11, there exists ε2 > 0 so that r′ ∈ Bε2(r) implies Bε1(z) ⊂ Ki(r′). Pick
ζ ∈ (0, 1

2) so that Bζ(z) ∩ S = z. By Category Continuity*, there exists ε3 > 0 so
that for any S ′ ∈ X with d(A(S ′), A(S)) < ε3, for any y′ ∈ S ′, there is y ∈ S so that
y′ ∈ Bε3(y), and S ′⋂Bζ(x) 6= ∅, then c(S ′) ⊂ Bζ(x). By Generalized Average, there
exists ε4 > 0 so that z′ ∈ Bε4(z) implies d(A(S \ {z} ∪ {z′}), A(S)) < min{ε2, ε3}/2.
Let ε∗ = min{ε1, ε2, ε3, ε4, ζ}.

Pick any x′, y′ ∈ Bε∗/4(z) and let z∗ = z − 1
2ε
∗. Set S0 = S \ {z} ∪ {z∗}, not-

ing d(r, A(S0)) < ε2/2. By Generalized Average, there exists S∗ with {x′, y′}⋃S0 ⊂
S∗ so that d(A(S∗), A(S0)) < ε∗/2 and d(S0, S

∗ \ [{x′, y′}⋃S0]) < (ε∗/2)2. Since
d(A(S∗), r) ≤ d(A(S∗), A(S0)) + d(A(S0), r) < ε2, x′, y′ ∈ Ki(A(S∗)). Since every
member of S∗ is no more than ε∗ away from a member of S, Category Continuity* im-
plies that c(S∗) ⊂ Bζ(z). CM* gives that either x′ ∈ c(S∗) or y′ ∈ c(S∗), so x′ %R,i y′
or y′ %R,i x′.

Continuity follows along the same lines as Lemma 2. CM* gives that it is also
monotone, and Category Cancellation* that it is locally additive. Apply Theorem 2.2
of Chateauneuf & Wakker [1993] to get a globally additive representation Uk. �

By Lemma 12, there exists a category utility Uk for each category. Since ER,k is
dense in Dk, we can extend Uk to Dk uniquely. By Generalized Average and Category
Continuity*, for any S ∈ X with z ∈ [Dk\ERk ]∩S, there is a z′ ∈ ER,k arbitrarily close
to z so that c(S) = c([S \ {z}] ∪ {z′}), so it is sufficient to establish a representation
when all alternatives categorized as k in S belong ER,k for each k and S.

Fix two regions k and j. By CAR, for any x ∈ ER,k there exists x′ ∈ ER,k,
y ∈ ER,j, and S ∈ X so that x′, y ∈ c(S) and x ∼R,k x′. This implies there exists a
strictly increasing function H so that V (x|r) = Uk(x) when x ∈ Kk(r) and V (x|r) =
H(U j(x)) when x ∈ Kj(r) represents choice (when S ⊂ Kk ⋃Kj). This is well-defined
and represents choice by Category SARP. By AAC*, H is an affine function. The
argument are readily seen to extend inductively to all regions, which complete the
proof. �

B.3. Proof of Lemma 1. Pick any x ∈ X and set S = {x, x′} where x′ = (1
2x1, x2).

Then, A(S)2 = x2 by strong generalized average, so both x and x′ are 1-salient by S4.
By CM*, x ∈ c(S), and so x ∈ ER,1. x was arbitrary, so X = ER,1. Similar for K2. �

B.4. Proof of Proposition 4. By Lemma 1, the structure assumption is satisfied.
By Theorem 5, the category function is generated by a salience function. By Theorem
6, c conforms to Strong CTM. Mimicking the arguments of Theorem 2, Reference
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Interlocking implies Uk(x) = wk1u1(x1) + wk2u2(x2) + βk. The rest follows from the
arguments that establish Proposition 3. �

B.5. Proof of Proposition 5. Suppose that c has two BGS representations, (U1, U2, σ)
and (U ′1, U ′2, σ′). We first show that σ and σ′ categorize all alternatives y � r the
same for every r. Then, we use symmetry to show this implies they agree everywhere.
Finally, we show that we can also directly reveal the category of y.

For contradiction, assume that σ and σ′ disagree on the category of y for reference
r when y � r: σ′(yk, rk) ≤ σ′(y−k, r−k) and σ(yk, rk) > σ(y−k, r−k). By continuity
and increasing differences, we can take both inequalities to be strict by lowering yk.
Interchanging the role of the two representations if necessary, there is no loss in assum-
ing that Uk(r) ≥ U−k(r). By continuity, there exists ε > 0 so that if d(r′, r) < ε and
d(y, y′) < ε, then

σ(y′k, r′k) > σ(y′−k, r′−k) and σ′(y′k, r′k) < σ′(y′−k, r′−k).
Pick S so its convex hull is contained in Bε′(r) and Uk(y) > Uk(z), U−k(z) for all
z ∈ Bε′+ε′2(r) for some ε′ < ε/2; ε′ exists by continuity of Uk and U−k. Since A is a
strong generalized average, d(A(S), r) < ε/2. For any y′, generalized average implies
there exists S ′ so that d(A(S ′), A(S)) < ε′, d(S ′ \{y′, y}, S) < ε′2, and y, y′ ∈ S ′. Label
it S(y′) and note d(A(S(y′)), r) < ε.

Pick y′ with d(y, y′) < ε so that Uk(y′) = Uk(y) and y 6= y′. As above, U−k(y) 6=
U−k(y′). By Lemma 1 and Theorem 2.2 of Chateauneuf & Wakker [1993], U ′j and U j

agree up to an affine transformation for j = 1, 2, so U ′k(y′) = U ′k(y) and U ′−k(y) 6=
U ′−k(y′) also. Since (U ′1, U ′2, σ′) represents c, y, y′ ∈ Kk(A(S(y′))) and c(S(y′)) =
{y, y′}. However, (U ′1, U ′2, σ′) also represents c, so y, y′ ∈ K−k(A(S(y′))). Hence, it is
impossible that c(S(y′)) = {y′, y}; one has strictly higher utility than the other. This is
a contradiction of both representing c, so conclude the categories coincide when y � r.

We show that σ and σ′ agree on the category of all alternatives whenever they
agree whenever y � r. Pick any x, y, a, b > 0. We show that σ(x, a) > σ(y, a) if and
only if x′ ∈ K1(r) for an appropriately chosen alternatives x′, r so that x′ � r. This is
impossible if x = a and always true if y = b and x 6= a. For any other values, it follows
from symmetry of σ that σ(x, a) > σ(y, b) if and only if either (x, y) ∈ K1(a, b), x > a
and y > b; (x, b) ∈ K1(a, y), x > a, and b > y; (a, y) ∈ K1(x, b), x < a, and y > b; or
(a, b) ∈ K1(x, y), x < a, and b > y.

We finally turn to directly revealing the salience of each alternative. As above, it
suffices to consider y � r and identify the categories of each alternative in U(r) = {x :
x� r}. Again, pick k so that Uk(r) ≥ U−k(r) and define S(y′) as above. If y ∈ Kk(r),
then there exists ε′ > 0 so that y, y′ ∈ Kk(A(S(y′)) whenever y′ ∈ Bε′(y). It follows
that c(S(y′)) = {y, y′} when Uk(y) = Uk(y′). If y ∈ K−k(r), then there exists ε′′ > 0
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so that y, y′ ∈ K−k(A(S(y′))) for all y′ ∈ Bε′′(y). For any such y′ with Uk(y) = Uk(y′)
and y′ 6= y, c(S(y′)) 6= {y, y′}: U−k(y) 6= U−k(y′), so either y′ is not chosen, y is
not chosen, or both are not chosen, in which case one of the alternatives close to r is
chosen. Since Kk(r) ∪K−k(r) is dense in U(r), Kk(r) ∩ U(r) is the interior of the set
of y � r for which there exists an ε′ so that c(S(y′)) = {y, y′} when Uk(y) = Uk(y′)
and y′ ∈ Bε′(y), and K−k(r) ∩ U(r) is the interior of the set of y � r for which there
exists an ε′ so that c(S(y′)) 6= {y, y′} when Uk(y) = Uk(y′) and y′ ∈ Bε′(y). �
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