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Abstract

We introduce a novel perspective by linking ordered probabilistic choice to cop-

ula theory, a mathematical framework for modeling dependencies in multivariate

distributions. Each representation of ordered probabilistic choice behavior can be

associated with a copula, enabling the analysis of representations through estab-

lished results from copula theory. The connection highlights extremal representa-

tions–associated with the Fréchet-Hoeffding bounds–and their distinctive structural

properties. Thus, we derive identification methods to uniquely determine the specific

heterogeneous choice types and their corresponding weights. The unified framework

elucidates the uniqueness of known representations while showcasing the potential

of copula-based methods to uncover new choice models and results. Our analysis

provides tools for inferring micro-level behavioral heterogeneity from macro-level

observable data.
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1 Introduction
Discrete choice modeling plays a crucial role in analyzing aggregate behaviors such as

grocery purchasing, financial investment, job search, labor force participation, environ-

mental conservation, and energy consumption. The workhorse model in this area is the

random utility model (RUM), which accounts for unobserved heterogeneity in prefer-

ences. Although individual choices are deterministic and rational, there is no restriction

on conceivable preferences, which makes RUM a highly flexible model. But, this flexi-

bility leads to undesirable identification issues in the form of multiple representations,

undermining the interpretability and prediction power of the model.

The model proposed by Apesteguia, Ballester & Lu (2017) addresses the issue of

multiple RUM representations. The single-crossing random utility model (SCRUM) re-

stricts preference heterogeneity while still accurately capturing individual choice behav-

ior. They showed that uniqueness is guaranteed under three main assumptions: i) choice

objects are ordered, ii) individuals are rational, and iii) individual types are ordered.

Building on SCRUM, Filiz-Ozbay & Masatlioglu (2023) investigated the implications of

ordered types for boundedly rational agents to capture factors like limited attention,

willpower, shortlisting constraints, loss aversion, and pro-social behavior. The resulting

model, called progressive random choice (PRC), accommodates any probabilistic choice

behavior while retaining a unique representation.

These findings suggest that it is the ordering of types, rather than rationality, that

forms the foundation of the uniqueness result. This naturally raises the question: could

other plausible heterogeneity restrictions also lead to unique representations? Further-

more, since SCRUM identifies a specific RUM representation as the unique characteri-

zation of the data, what sets SCRUM’s representation apart from other representations?

What distinct properties does it have compared to other RUM representations? Our aim

is to provide a novel framework to address these fundamental questions.

Our contribution is twofold. First, it turns out that the ordering of types itself is not

the main driver of the uniqueness result. We demonstrate this by first establishing that

there are wide-ranging models restricting heterogeneity to achieve a unique represen-

tation. These models do not require types to be ordered. To show this, we establish
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an intriguing connection between ordered probabilistic choice and copula theory. This

connection provides a robust framework in which each representation of ordered prob-

abilistic choice behavior corresponds to a copula. By leveraging established results from

copula theory, we systematically examine the structure of a vast class of representations

of ordered probabilistic choice behavior–a task that would otherwise be prohibitively

complex.

Second, we provide functional forms to describe the “extremal” representations of

an ordered probabilistic choice behavior. The resulting functional forms (copulas) act

as an “identification method,” that uniquely generates heterogeneous choice types and

their weights. These results provide valuable tools for analysts to identify micro-level

behavioral choice patterns from macro-level observable data.

We uncover a class of models that restrict heterogeneity to achieve a unique represen-

tation. To explore this, we first connect ordered probabilistic choice and copula theory.

Copulas in probability theory are initially developed by Sklar (1959), who shows that

any joint cumulative distribution over real numbers can be expressed as a copula com-

posed of the marginals’ distributions.1 Thus, a copula isolates the dependence among

random variables from the randomness of individual variables.

The key connection is that what we refer to as a representation of observed data in

discrete choice is closely linked to a copula. A representation is a distribution over choice

types, and must be consistent with the observed data, which is a set of probability distri-

butions for each available choice set, such as budgets. We call it a representation because

the joint distribution over choice types must reproduce the observed data as marginal

distributions. Then, it follows from Sklar (1959) that any representation of observed

data can be induced via a copula. Additionally, each copula provides a functional form

that uniquely determines the heterogeneous choice types and their associated weights

from given probabilistic choice dataset–a process we called an identification method.

To explore the implications of this connection, we first observe that SCRUM or PRC

representations (progressive representations) correspond to an extremal copula called

Fréchet-Hoeffding upper bound (the min-copula), which has a particularly tractable form.

1And uniquely so, given certain conditions on the supports of the marginals.
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This connection clarifies the uniqueness of progressive representations while providing

us an explicit functional form to describe the underlying distribution of choice types and

their weights, facilitating the identification.

The equivalence between the SCRUM and PRC representations and the Fréchet-

Hoeffding upper bound highlights what sets the progressive representation apart from

other RUM representations: For a given choice type t, the progressive representation

assigns a higher total probability to types dominating t compared to any other repre-

sentation for the same probabilistic data.2 Consequently, the probability assigned to the

choice type maximizing the underlying reference order is maximized under the progres-

sive representation.

The uniqueness result holds as long as the probabilistic model is based on a cop-

ula. One might question if the connection between plausible probabilistic choice models

and well-known copulas is merely coincidental. We suggest that many more connec-

tions remain to be discovered. For illustration, we focus on the Fréchet-Hoeffding lower

bound. Unlike the upper bound, the lower bound is generally not a copula for more than

two marginal distributions, meaning that the lower bound cannot always generate joint

distributions from given marginals. Therefore, a model identified by the lower bound

inherently possesses empirical content. However, like the upper bound, the correspond-

ing representation is unique when it exists. We uncover the full empirical content of the

Fréchet-Hoeffding lower bound.

To demonstrate how copula theory can uncover plausible and intriguing probabilistic

choice models, we introduce the 1-mistake model identified by the Fréchet-Hoeffding

lower bound. Consider a group of individuals aiming to maximize a common reference

order. Occasionally, they fail to choose the optimal alternative. We term these deviations

“mistakes,” which may occur due to cognitive limitations or the use of various decision-

making heuristics. In an 1-mistake model, agents are allowed to make a single mistake.

This model posits that each choice type is either entirely rational (free of mistakes)

or makes a mistake in a single choice set. Unlike PRC, the 1-mistake model possesses

empirical content characterized by a single axiom. Unlike RUM, the 1-mistake model

2A choice type dominates another if, in all choice sets, it consistently selects an alternative that is the

same as or ranked higher than the alternative chosen by the other type according to the reference order.
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provides an interpretation that avoids unrealistically large behavioral heterogeneity in

the population. In Section 5, we present several other examples of copulas with empirical

content that may be useful in applications.

Related literature

We aim to bridge the fields of ordered probabilistic choice and copula theory, offering a

novel perspective on key concepts in discrete choice such as representation and identifi-

cation. Ordered probabilistic choice has a long history, with roots in discrete choice (e.g,

Amemiya 1981, Small 1987, Agresti 1984). Main objective is to examine how individu-

als make probabilistic choices among ordered alternatives. Apesteguia et al. (2017) has

reinvigorated interest in this area (Barseghyan et al. 2021, Tserenjigmid 2021, Turan-

sick 2022, Yildiz 2022, Filiz-Ozbay & Masatlioglu 2023, Apesteguia & Ballester 2023a,b,

Petri 2023, Masatlioglu & Vu 2024). This resurgence in interest stems from the growing

availability of detailed choice data and theoretical models, which enables researchers to

investigate these models more rigorously.

The literature on copulas in statistics is vast to survey here, but we emphasize that

nearly every result we discuss here has a continuous counterpart in this literature. An

excellent textbook treatment is provided by Nelsen (2006); Schweizer & Sklar (2005)

is also a standard reference. The bounds we refer to seem to be named after the con-

tributions by Fréchet (1935, 1951), Hoeffding (1940). Sklar’s theorem appears in Sklar

(1959). The results related to our one-mistake model are understood in statistics as

results on negative dependence; fundamental results are due to Dall’Aglio (1972), see

Lauzier, Lin & Wang (2023) for a modern treatment. Of course, copulas find heavy use in

econometrics and finance as well—Fan & Patton (2014) provides a systematic treatment.

Copula has been used in other areas of economic theory, for example, in bargaining Bas-

tianello & LiCalzi (2019), in auction Gresik (2011), in behavioral game theory Frick,

Iijima & Ishii (2022).
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2 Ordered Probabilistic Choice and Copulas

2.1 Preliminaries

Let X be a finite set of alternatives. We consider scenarios where the alternatives have

a natural order. Examples include selecting tax policy according to the total revenue

generated, choosing lotteries according to their expected monetary value, determining

the number of automobiles owned, choosing the time of day for commuting, comparing

insurance offers according to their deductibles, choosing public good provision, and

evaluating levels of labor force participation. We call this underlying order a reference

order, denoted by ▷, which is a complete, transitive, and asymmetric binary relation

over X. We write ⊵ for its union with the equality relation.

Let {Si}i∈N be a family of choice sets, where the cardinality of N is denoted by n.

Notably, we do not make the full domain assumption, hence {Si}i∈N could be a strict

subset of 2X . A (deterministic) choice type s is a list of alternatives [s1, s2, . . . , sn] such

that si ∈ Si for each i ∈ N . Let S and SR be the set of all choice types and all rational

types, respectively. The reference order ▷ allows us to naturally compare choice types:

A choice type s dominates another choice type s′ if si is ⊵-better than s′i for each i ∈ N .

With a slight abuse of notation, we also use the notation ⊵ to describe this dominance

relation on choices types: s ⊵ s′ if si ⊵ s′i for each i ∈ N .

A probabilistic choice function (pcf) ρ assigns to each choice set Si a probability

measure over Si. We denote by ρ(si, Si) the probability that alternative si is chosen from

the choice set Si. P denotes the set of all pcfs.

Given that our domain is ordered, these pcfs are referred to as ordered probabilistic

choices, enabling the definition of a cumulative choice function. Let Ω = {(si, Si) :

i ∈ N and si ∈ Si}. Then, the cumulative choice function (ccf) associated to ρ is

P ρ : Ω → [0, 1] such that

P ρ(si, Si) =
∑

ti∈Si:si⊵ti

ρ(ti, Si).

for each (si, Si) ∈ Ω. We will use P instead of P ρ when the context allows for clarity.

Notably, it is the order structure that enables the unique association of a cumulative

choice function with a probabilistic choice function.
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As mentioned before, there is a connection between cumulative choice functions and

copulas, which are flexible tools for modeling dependence among random variables. A

copula creates a multivariate distribution from a given set of random variables (Nelsen

(2006)). Formally, a copula is a function C : [0, 1]n → R that satisfies the following

three properties. It is grounded if C(u1, u2, . . . , un) = 0 when any ui = 0, and it has

uniform margins if C(1, . . . , 1, ui, 1, . . . , 1) = ui for any i ∈ N . Additionally, the rectangle

inequality requires C to induce a nonnegative distribution over any n-dimensional cube,

[a1, b1]× [a2, b2]× · · · × [an, bn], ensuring that C is a valid joint distribution.3

Sklar’s Theorem: Sklar (1959) shows that any joint cumulative distribution over the

real numbers can be expressed as a copula composed with the marginal distribution

functions of the joint distribution. Formally, let F be an n-dimensional cumulative dis-

tribution function (CDF) with marginal distribution functions F1, F2, . . . , Fn. Then, there

exists a copula C such that for each x1, x2, . . . , xn ∈ R,

F (x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)).

2.2 Connection to Ordered Probabilistic Choice

To establish this connection, we first formally define when a probability distribution

π ∈ ∆(S) over choice types represents a given pcf ρ.

Definition. Let ρ be an pcf and π be a probability distribution over choice types. Then,

π represents ρ if for each (x, Si) ∈ Ω we have

ρ(x, Si) =
∑
s:si=x

π(s).

Understanding of probability distributions over choice types that represent pcfs is at

the heart of many exercises in probabilistic choice. This motivates us to describe a choice

model as a set of ⟨ρ, π⟩ pairs where ρ is the observed data consistent with the model and

π is an unobservable representation of ρ.

Definition. A (choice) model M is a set of ⟨ρ, π⟩ pairs where ρ is an pcf and π ∈ ∆(S)
is a probability distribution over choice types that represents ρ.

3This is a variant of the inclusion-exclusion principle, namely that
∑

T⊆N C(aC , bN\C)| − 1||C| ≥ 0.
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We next describe two new objects associated to a model M. For each pcf ρ, let IM
be the set of all representations π such that ⟨ρ, π⟩ is contained in M, i.e., IM(ρ) :=

{π|⟨ρ, π⟩ ∈ M}. Note that if there is no representation π such that ⟨ρ, π⟩ ∈ M, then

IM(ρ) = ∅. Let PM be the set of pcfs such that IM(ρ) ̸= ∅. So, PM is the set of pcfs that

are consistent with a model M.4

A classical representation theorem in decision theory focuses on the properties satis-

fied by PM. When PM = P, where P represents the set of all pcfs, the model has no

empirical content, as it can account for every conceivable behavior. In contrast, a smaller

PM enhances the model’s predictive power by imposing constraints on the behaviors it

can explain, thereby making it empirically meaningful.

An identification theorem examines the size of IM(ρ), which is the set of representa-

tions in M consistent with the observed behavior ρ. A model M is uniquely identified

if |IM(ρ)| = 1 for every ρ ∈ M. This means that for any observed behavior ρ consistent

with M, there exists a single representation that explains ρ.

We use the Random Utility Model (RUM) to illustrate the notation introduced above.

RUM consists of pcfs that can be represented by a probability distribution over rational

types.It is well known that, in general, the distribution over choice types cannot be

uniquely identified from probabilistic choice data (e.g., Falmagne 1978, Fishburn 1998),

i.e, |IRUM(ρ)| ≠ 1 for some ρ ∈ RUM.5

A key question is: What is the structure of probability distributions over choice types

that represent a given pcf? Answering this question is crucial for understanding which

population interpretations can be legitimately derived from observed data.

To answer this question, we rely on a systematic method of associating a probabil-

ity distribution over choice types, a representation π, to a given pcf ρ. Determining

4It may be tempting to refer to PM as a model. However, two distinct models, M and M′, can satisfy

PM = PM′ even though M ̸= M′ (see footnote 5 for an example). This distinction enables a more

expressive framework for differentiation.
5 Suleymanov (2024) introduces the branch-independent RUM (BI-RUM), a model with the same

explanatory power as RUM, i.e., PRUM = PBRUM . However, BI-RUM has a unique identification property:

|IBI−RUM (ρ)| = 1 for all ρ ∈ PRUM . Additionally, IBI−RUM (ρ) is always a subset of IRUM (ρ). Thus, while

RUM and BI-RUM share the same explanatory power, they differ in their identification properties.
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π is, in general, a challenging task, often requiring intricate constructions. For certain

models, while the existence of such a representation is established, its precise structure

remains elusive. This raises the question of whether it is possible to define a functional

form–serving as an identification method–that uniquely determines π from a given pcf.

Definition. An identification method for a model M is a mapping I : PM → ∆(S) such

that I(ρ) ∈ IM(ρ) for every ρ ∈ PM.

If IM(ρ) contains exactly one representation for every ρ ∈ PM, then the identifica-

tion method I uniquely identifies the model M. The connection between copulas and

ordered probabilistic choice stems from the observation that copulas serve as concrete

examples of identification methods.

We first show that a copula C gives birth to a unique probability distri-

bution πρ
C that represents ρ. For each pcf ρ, the associated ccf P ρ specifies

P ρ
i (si) = ρ({ti ∈ Si : si ⊵ ti}, Si) for each (si, Si) ∈ Ω. Then, for a given copula C and

pcf ρ, we define the probability measure πρ
C ∈ ∆(S) where πρ

C(s) is the weight assigned

to the choice type s ∈ S such that the following identity holds.∑
s′:s⊵s′

πρ
C(s

′) = C(P ρ
1 (s1), . . . , P

ρ
n(sn)). (1)

Equation (1) defines the distribution πρ
C through its multivariate CDF, capturing the

distribution over choice types. As in classical statistics, this representation uniquely ex-

tends to a probability measure over choice types, thereby representing the given pcf ρ.

Consequently, each copula C defines an identification method for P such that IC(ρ) = πρ
C

for every pcf ρ. Thus, each copula has the potential to provide a functional form that

uniquely determines heterogeneous choice types and their associated weights from a

given probabilistic choice dataset.

2.3 Fréchet-Hoeffding Bounds

In this subsection, we provide a key discovery in copula theory, which we utilize for our

purposes later. Hoeffding (1940) and Fréchet (1935, 1951) independently showed that

a copula always lies between two specific bounds.
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Theorem: (Fréchet-Hoeffding bounds) For each copula C,

max{
n∑

i=1

ui + 1− n, 0} ≤ C(u1, u2, · · · , un) ≤ min{u1, u2, · · · , un}.

Moreover, these bounds are pointwise sharp, i.e. for each u ∈ [0, 1]n,

inf
C

C(u) = max{
n∑

i=1

ui + 1− n, 0} and sup
C

C(u) = min{u1, u2, · · · , un}.

Historically, the FH-lower bound and the FH-upper bound (min-copula) have been

denoted by W and M respectively, and we follow this notation here. While the upper

bound is itself always a copula, the lower bound is only a copula in the case of n = 2

. When n = 2, these two bounds correspond to distinct types of extreme dependen-

cies. In the case of the upper bound, the two random variables are perfectly aligned,

exhibiting what is known as comonotonicity. Conversely, in the case of the lower bound,

the two random variables move in opposite directions, exhibiting a property known as

countermonotonicity.

Next, we illustrate how W and M generate two distinct representations for the same

choice data. We consider two disjoint choice problems S1 = {x, y, z} and S2 = {x′, y′, z′}
with marginal choice probabilities ρ(z, S1) = 0.20, ρ(y, S1) = 0.30, ρ(z′, S2) = 0.40, and

ρ(y′, S2) = 0.35. We assume the reference order: x ▷ y ▷ z and x′ ▷ y′ ▷ z′.

Figure 1 provides two distinct cumulative representations generated by W and M , re-

spectively. We first calculate the cumulative marginal distributions: F1 and F2. We have

F1(z) = 0.20, F1(y) = 0.50, and F1(x) = 1.00. Similarly, F2(z
′) = 0.40, F2(y

′) = 0.75,

and F2(x
′) = 1.00. Note that F1 and F2 are the same cumulative marginal distri-

butions in both panels since they are based on the choice data. In the left panel,

we calculate the corresponding cumulative joint distribution using M . For example,

M(F1(y), F2(z
′)) = M(0.50, 0.40) = 0.40 and M(F1(z), F2(x

′)) = M(0.20, 1.00) = 0.20.

Hence, the cumulative probabilities of the types below [y, z′] and [z, x′] are 0.40 and

0.20, respectively. On the other hand, W (F1(y), F2(z
′)) = W (0.50, 0.40) = 0 and

W (F1(z), F2(x
′)) = W (0.20, 1.00) = 0.20, displayed on the right panel. Then the cu-

mulative probabilities of the types below [y, z′] is zero. This implies that the probability

of the type [z, z′] is also zero.
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(a) M: The FH-upper bound (b) W: The FH-lower bound

Figure 1: Construction of cumulative distributions over deterministic choice functions for Fréchet-

Hoeffding bounds involving two choice sets: S1 = {x, y, z} and S2 = {x′, y′, z′}. The marginal choice

probabilities are ρ(z, S1) = 0.20, ρ(y, S1) = 0.30, ρ(z′, S2) = 0.40, and ρ(y′, S2) = 0.35. The left panel

presents the unique cumulative distribution for M . The cumulative probabilities of types below [z, z′] and

[y, y′] are 0.20 and 0.50, respectively. The right panel depicts the unique distribution for W . The cumula-

tive probabilities for types below [z, z′] and [y, y′] are now 0 and 0.25.

Figure 2 provides the unique weights associated with each type according to W and

M . This figure is based on the cumulative distributions provided in Figure 1. Since

M(F1(z), F2(z
′)) = M(F1(z), F2(x

′)) = 0.20, the representation of M assigns a proba-

bility of 0.20 for the type [z, z′], while [z, y′] and [z, x′] have probability of 0, which is

illustrated on the left panel. Given that the cumulative probability for [y, z′] is 0.40, we

assign a probability of 0.20 to [y, z′] by subtracting the weight of [z, z′].

M: The FH-upper bound

Types [z, z′] [y, z′] [y, y′] [x, y′] [x, x′]

Weights 0.20 0.20 0.10 0.25 0.25

W: The FH-lower bound

Types [z, x′] [y, x′] [y, y′] [x, y′] [x, z′]

Weights 0.20 0.05 0.25 0.10 0.40

Table 1: Representations based on the FH-upper bound and the FH-lower bound.
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Table 1 presents these two representations. Importantly, the types in the support of

M are arranged in a monotonic order, forming a path from [z, z′] to [x, x′]. In contrast,

the types in the support of W are ordered in a decreasing sequence. Additionally, while

M assigns a weight of 0.25 to the highest type [x, x′], W assigns it a weight of zero.

Figure 2: The representation of the distribution over deterministic choice functions for Fréchet-

Hoeffding bounds shows two panels. The left panel is based on the upper bound, illustrating the dis-

tribution using the min-copula. The right panel depicts the weights induced by the lower bound.

3 Progressive random choice and the FH-upper bound
In this section, we show that the min-copula M is the identification method for the

model of Filiz-Ozbay & Masatlioglu (2023) (FM). Then, we show that the connection to

copula theory reveals an interesting aspect of their model that was unknown.

FM introduces an ordered probabilistic choice model in which types are ranked based

on a fixed characteristic. For instance, consider a set of policies differing in their levels

of environmental friendliness. Types are indexed according to their degree of environ-

mental caution. Under this model, a type with a higher index will not choose a less en-

vironmentally friendly policy than the one chosen by a lower-indexed type when faced

with the same choice problem. This model is called the Progressive Random Choice.

Formally, a set of distinct choice types {s1, . . . , sT} is progressive with respect to ▷

if sti ⊵ st+1
i for each i ∈ N and t ∈ {1, . . . , T − 1}. The progressive structure reduces

the heterogeneity of types into a single dimension since choice types gradually become

more and more aligned with the choice induced by ▷. For a given reference order ▷, an

pcf ρ is a progressive random choice (PRC) if there exists a probability distribution π
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over ▷-progressive deterministic choice types such that π represents ρ. Formally,

PRC := {⟨ρ, π⟩ |π represents ρ and the support of π is progressive}.

In their main result, FM shows that every probabilistic choice has a unique PRC rep-

resentation denoted by πρ
PRC , i.e., PPRC = P and IPRC(ρ) = {πρ

PRC}. We now illustrate

one can establish their results by utilizing the min-copula. First note that the min-copula

only assigns positive weights to a set of deterministic choice types that are comonotonic,

and thus progressive. Furthermore, this representation is always unique. Therefore, the

min-copula is an identification method for PRC. Since the min-copula remains a copula

regardless of n, IM(ρ) is a probability distribution for any pcf ρ. Hence, PPRC = P. This

discussion establishes Theorem 1 of FM, highlighting the significant connection between

the progressive structure and the min-copula.

Additionally, the min-copula provides an explicit functional form for calculating the

weights assigned to each deterministic choice function. The connection between copula

theory and ordered probabilistic choice further reveals another unknown aspect of PRC:

For a given choice type s, the PRC representation assigns a higher probability to choice

types dominating s compared to any other probability distribution π over choice types

that generates ρ. It is also true that the PRC representation of ρ assigns a higher proba-

bility to the choice types weakly dominated by s compared to any representation π of ρ.

We next formally state and prove this result.

Proposition 1. Let ρ be an pcf, and let π be a probability distribution over choice types

that represents ρ. Then, for each choice type s ∈ S, the PRC representation of ρ, denoted by

πρ
PRC , satisfies the inequalities∑

t∈S:t⊵s

πρ
PRC(t) ≥

∑
t∈S:t⊵s

π(t) and
∑

t∈S:s⊵t

πρ
PRC(t) ≥

∑
t∈S:s⊵t

π(t).

Proof. For the second inequality, since the PRC representation corresponds to the min-

copula, it is sufficient to show that π({s′ : s ⊵ s′}) ≤ min{P ρ
1 (s1), . . . , P

ρ
n(sn)}. But for

any i, π({s′ : s ⊵ s′}) ≤ π({s′ : si ⊵ s′i}) = P ρi(si). So this establishes the result.

To show the statement about π({s′ : s′ ⊵ s}), (the first inequality), we first introduce

a piece of notation. For i ∈ N and si, we let P ρ
i (si − 1) =

∑
ti∈Si:si▷ti

ρ(ti, Si). So, if si is

the ▷ initial element P ρ
i (si − 1) = 0, for example.
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Then according to the min-copula, we see that for PRC, the probability of {s′ : s′ ⊵ s}
is given by 1−

∑
∅̸=C⊆N mini∈C{P ρ

i (si− 1)}|− 1||C|, by inclusion-exclusion. Without loss,

let us assume temporarily that i ≤ j implies P ρ
i (si− 1) ≤ P ρ

j (sj − 1). We rewrite the sum

as: 1−
∑n

i=1

∑
C:i∈C⊆N\{1,...,i−1} 1− {P ρ

i (si − 1)}| − 1||C|, where {1, . . . , i− 1} = ∅ when

i = 1. Observe then that for each i < n,
∑

C:i∈C⊆N\{1,...,i−1} |−1||C| =
∑n−i

k=0

(
n−i
k

)
|−1|1+k =

(−1)
∑n−i

k=0

(
n−i
k

)
| − 1|k = (−1)(1− 1)n−i = 0 by the binomial formula. On the other hand

for i = n, the only C in the sum is C = {n} and so in this case
∑

C:n∈C⊆N\{1,...,n−1} | −
1||C| = −1 (this also follows from the binomial formula). So overall the expression

evaluates as 1−P ρ
n(sn − 1). The same argument establishes that the probability given to

{s′ : s′ ⊵ s} is always 1 − maxi∈N P ρ
i (si − 1) = mini∈N(1 − P ρ

i (si − 1)) even absent the

assumption that i ≤ j implies P ρ
i (si − 1) ≤ P ρ

j (sj − 1). We now observe that for any π,

π({s′ : s′ ⊵ s}) ≤ π({s′ : s′i ⊵ si}) = 1− P ρ
i (si − 1), again establishing the result.

An immediate implication is that the probability assigned to the choice type maximiz-

ing the underlying reference order is maximized by PRC. Similarly, PRC also maximizes

the probability assigned to the choice type minimizing the underlying reference order.

To get an intuition, recall that the PRC implies has the property that for all s, s′ in the

support of π, we have either s ⊵ s′ or s′ ⊵ s. Proposition 1 strengthens this intuition

to require that for any s, the probability of obtaining an s′ comparable to it (in either

direction) according to ⊵ is maximized.

As noted in the introduction, SCRUM identifies a specific RUM representation as its

unique form. Let us formally define SCRUM as follows:

SCRUM := {⟨ρ, π⟩ | π ∈ ∆(SR) represents ρ and the support of π is progressive}.

The distinction between PRC and SCRUM lies in the support of their representations.

While PRC can accommodate any probabilistic choice, SCRUM imposes an additional

restriction where each type must be rational, providing empirical content for SCRUM.

This restriction gives SCRUM its predictive power: PSCRUM ⊂ PRUM ⊂ PPRC . Indeed,

Apesteguia et al. (2017) shows that data satisfies both centrality and regularity if and

only if it has a SCRUM representation.6 This implies that the min-copula assigns positive

6Regularity: If B ⊂ A, then ρ(x,A) ≤ ρ(x,B). Centrality: If x ▷ y ▷ z and ρ(y, {x, y, z}) > 0, then

ρ(x, {x, y}) = ρ(x, {x, y, z}) and ρ(z, {z, y}) = ρ(z, {x, y, z}).
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weights only to the rational types if and only if centrality and regularity are satisfied.

On the other hand, for each ρ ∈ PSCRUM , IM(ρ) = IPRC(ρ) = ISCRUM(ρ). Thus, the

min-copula serves as an identification method for SCRUM.

With the above observation in hand, we can now examine what sets the SCRUM

representation apart from other RUM representations. Proposition 1 provides answers

to these questions. SCRUM selects a representation from the set of RUM representa-

tions in which the probability assigned to the choice type that maximizes the underlying

reference order is maximized.

Finally, the min-copula acts as an identification method for any model that incor-

porates a progressive structure along with certain additional support conditions. FM

introduces two special cases of PRC: (i) “less-is-more” and (ii) “no-simple-mistakes.”

These special cases, like SCRUM, introduce additional restrictions on choice types. The

less-is-more model allows only types that make fewer mistakes with smaller sets. The

no-simple-mistakes model ensures that each type does not choose an option in ternary

comparisons that has never been chosen in binary comparisons. FM provides behavioral

postulates that characterize them. The min-copula can be used to identify the weights in

all these models. Overall, copula theory helps us link plausible restrictions on underlying

heterogeneity to a functional form that identifies unique weights.

4 Probabilistic choice induced by the FH-lower bound
We have shown that the min-copula uniquely identifies all special cases of PRC. At first

glance, the connection between probabilistic choice and a well-known copula might

appear unexpectedly coincidental. However, we now contend that copula theory can

serve as a powerful tool for uncovering plausible models. To illustrate this, we first

introduce a choice model identified by the FH-lower bound. Then, we explore the full

empirical implications of the FH-lower bound.

We first remind you that the FH-lower bound W is generally not a copula for n > 2.

This means that naively applying W to an pcf may not result in a probability distri-

bution over choice types. To cover such cases, we leverage the concept of quasi-copula

formulated by Alsina, Nelsen & Schweizer (1993) in the bivariate case, and Nelsen,
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Quesada-Molina, Schweizer & Sempi (1996) for the general case. Quasi-copulas gen-

eralizes copulas, relaxing some of their strict requirements while still preserving key

properties that make them useful in modeling dependence structures. Namely, the rect-

angular inequality requirement of a copula is replaced by a Lipschitz condition.7 While

every copula is a quasi-copula, there exist quasi-copulas that are not copulas. Now, we

define when an pcf is identified by a quasi-copula.

Definition. A quasi-copula Q identifies an pcf ρ if πρ
Q is a probability measure over

∆(S) and represents ρ, where for each choice type s,

πρ
Q({s

′ : si ⊵ s′i for each i ∈ N}) = Q(P ρ
1 (s1), . . . , P

ρ
n(sn)). (2)

As with copulas, the corresponding representation is unique when it exists. Let PQ

denote the set of all pcfs identified by Q. Note that if Q is a copula, then PQ = P. That

is why we have P = PPRC = PM . Given a quasi-copula Q, each pair ⟨ρ, πρ
Q⟩ where Q

identifies ρ constitutes a model. Formally, a quasi-copula Q induces a model

MQ := {⟨ρ, πρ
Q⟩ | π

ρ
Q is a probability measure and represents ρ}.

We interpret an pcf for which the application of Q does not result in a probability

distribution as being ruled out by MQ (or simply by Q). Note that MQ is uniquely

identified and Q is always the identification method for MQ.

4.1 A model identified by the FH-lower bound

As illustrated in the last section, the model induced by M corresponds to PRC. We argue

that copula theory can uncover plausible and intriguing probabilistic choice models. We

first introduce the 1-mistake model, and show that it is identified by the FH-lower bound.

We then investigate the behavioral content of MW .

Consider a set of individuals aiming to maximize their reference order ▷. However,

at times, they may deviate from selecting the best available alternative. We refer to these

deviations as “mistakes” that reflect cognitive limitations or the use of different decision

heuristics by individuals. In our 1-mistake model, individuals are allowed to make a

single mistake, getting the choice incorrect for at most one choice set. This model posits
7C satisfies the Lipschitz condition if |C(u)− C(u′)| ≤

∑
i |ui − u′

i| for every u and u′ in [0, 1]n.
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that each type is either entirely rational (free of mistakes) or makes a mistake in a

single-choice set. Formally, a choice type c is near ▷-optimal if there exists at most one

choice set Si such that c(Si) differs from the ▷-best element in Si. Let N▷ denote all

near ▷-optimal choice types.

To provide a simple example, let S = S1 × S2 × S3 where S1 = {x, y, z}, S2 = {x, y},

and S3 = {x, z}. We assume that the reference order is x ▷ y ▷ z. Then, for example,

[z, y, x] represents the choice function choosing z, y, and x from S1, S2, and S3. Each of

[x, x, x], [y, x, x], [z, x, x], [x, x, z], and [x, y, x] are nearly ▷-optimal choice types. Now we

can define the 1-mistake model. An pcf ρ has a 1-mistake representation with respect

to ▷ if there exits a probability distribution π over near ▷-optimal choice functions that

generates ρ, i.e., 1-mistake := {⟨ρ, π⟩ |π ∈ ∆(N▷) represents ρ}.

Unlike PRC, 1-mistake model possesses empirical content, i.e., P1-mistake ̸= P. In the

first part of the following result, we present a postulate that encapsulates the behaviors

induced by this model (describes P1-mistake). This postulate asserts that the total proba-

bility of mistakes must be less than 1. The second part of the result establishes that the

1-mistake model is identified by the FH-lower bound.

Proposition 2. Let ρ be an pcf and s̄i be the ▷-best element in Si. Then,

i. ρ ∈ P1-mistake if and only if
∑

i∈N(1− ρ(s̄i, Si)) ≤ 1.

ii. If ρ ∈ P1-mistake , then ρ is identified by the FH-lower bound.

Proof. i. If ρ is a 1-mistake model then it immediately follows that
∑

i∈N(1− ρ(s̄i, Si)) ≤
1. Conversely, let ρ be an RCF such that

∑
i∈N(1 − ρ(s̄i, Si)) ≤ 1. Then, for each i ∈ N

and si ̸= s̄i, define the choice type si such that sii = si and sij = s̄j for each j ̸= i. Let

s̄ be the choice type such that si = s̄i and for each i ∈ N . Now, define a distribution π

over choice types such that π(si) = ρ(si, Si) and π(s̄) = 1 −
∑

i∈N(1 − ρ(s̄i, Si)), which

is nonnegative by our assumption. Thus, π generates ρ, and has a support consisting of

near ⊵-optimal choice types.

ii. Let ρ be a 1-mistake model, and let s be a choice type such that si is the alternative

chosen from Si for each i ∈ N . Suppose that s = s̄. Then, max{
∑n

i=1 P
ρ
i (s̄i) + 1 −
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n, 0} = max{1, 0} = 1. Suppose that there exists unique i ∈ N such that si < s̄i . Then,

max{P ρ
i (si) +

∑
j ̸=i P

ρ
j (s̄j) + 1 − n, 0} = max{P ρ

i (si), 0} = P ρ
i (si). Finally, suppose that

there exist at least two i, j ∈ N with si < s̄i and sj < s̄j. Let s̄i − 1 be the element that is

immediately >-worse than si. Recall that by Part i,
∑n

i=1(1−ρ(s̄i, Si)) ≤ 1. Then, we have∑
i P

ρ
i (s̄i− 1) ≤ 1. It follows that

∑n
i=1 P

ρ
i (si) ≤

∑n
i=1 P

ρ
i (s̄i− 1)+ (n− 2) ≤ 1+n− 2, as

there are at most (n− 2) components with si = s̄i, each of which put at most probability

1 on s̄i. Thus,
∑

i P
ρ
i (si) + 1− n ≤ 0 and max{

∑
i P

ρ
i (si) + 1− n, 0} = 0.

4.2 The Full Empirical Content of the FH-lower Bound

An intriguing question is whether the FH-lower bound can identify additional models

beyond the 1-mistake model. To address this, we examine the full empirical implications

of the FH-lower bound and characterize the class of choice models it encompasses. This

analysis allows us to establish a counterpart to the equivalence between progressive

random choice and the FH-upper bound for the FH-lower bound. The notion of being

1-mistake away from a given choice type is critical for our result.

Definition. A choice type s is 1-mistake away from s∗ if there exists at most one i ∈ N

such that si ̸= s∗i .

In the 1-mistake model, each admissible choice type is one mistake away from the

rational type that maximizes the reference relation. In contrast, our next result shows

that a model identified by the FH-lower bound permit choice types that are one mistake

away from two specific choice types. Moreover, any pcf identified by the FH-lower bound

belongs to this class, provided that the pcf selects at least two alternatives in at least

three choice sets with positive probability.

We need to establish a few notations to present our result. Let ρ be an RCF. Then, for

each i ∈ N , let S+
i = {si ∈ Si : p(si, Si) > 0} and s̄ρi (sρi ) be the ▷-best(worst) element

in S+
i . Let s̄p = [s̄ρ1, . . . , s̄

ρ
n] and sp = [sρ1, . . . , s

ρ
n].

Proposition 3. An pcf ρ is identified by the FH-lower bound W if and only if

I. there exists a probability distribution over choice types that are 1-mistake away from

either s̄p or sp that generates ρ, or

II. there exist i, j ∈ N such that if k ∈ N \ {i, j}, then p(sk, Sk) = 1 for some sk ∈ Sk.
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Proof. Please see Section 7.

To interpret this result, consider a population of agents whose choices are centered

around a salient choice type s∗, meaning that each type differs from s∗ in at most one

choice set. This indicates a relatively homogeneous population. Our characterization

reveals that, under mild conditions (specifically when condition II fails to hold), being

identifiable by the FH-lower bound necessitates that the salient choice type s∗ be an

extreme choice type based on the underlying ordering.

An earlier study Dall’Aglio (1972) establishes the counterpart of our Proposition 3 for

continuous random variables. In Section 7, we provide a distinct self-contained proof.

5 Other examples
The set of possible copulas is very rich (Nelsen (2006)). Hence it is beyond the scope of

this paper to list them here. Instead, we provide several interesting copulas, which could

be useful for generating and identifying new models of ordered probabilistic choice.

Example 1 (Independent Copula). The Independent copula is the copula that results

from a dependency structure in which each individual variable is independent of each

other. Probably it is the simplest and most straightforward copula, where:

Π(u1, u2, · · · , un) := Πi ui

The independent copula is independent of the reference order. Independent copulas are

used in various fields, including statistical modeling, finance, and machine learning.

Example 2 (Fréchet Copula Family). Suppose that {Cα} is a one-parameter family of

quasi-copulas, which is a version of Fréchet copula family (Fréchet (1958)). Cα is a

linear combination of the FH-lower and the FH-upper bounds such that C0 = W and

C1 = M . Cα is not a copula in general. For α ∈ (0, 1), the support of Cα consists of the

union of progressive and near-optimal choice types.

Cα(u1, u2, · · · , un) := αM(u1, u2, · · · , un) + (1− α)W (u1, u2, · · · , un).

As W , one can find conditions on the marginal distribution such that Cα delivers a joint

distribution. As we know from the last section, the condition in Axiom 1 makes W deliv-

ering non-negative weights. Since Cα is a combination of W and M , the condition for Cα
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should be weaker than the condition for W . Indeed, the condition must be monotonic

with respect to α.

Example 3 (Threshold Copula Family). This family is based on an example in Nelsen

(2006). Ct is a mixture of W and M given a threshold level t. While Ct behaves according

to M for lower probabilities, it acts as W for higher probabilities. Formally,

Ct(u1, u2, · · · , un) :=

{
max{

∑n
i=1 ui + 1− n, t} if ui ⊵ t ∀i

M(u1, u2, · · · , un) otherwise.

Similar to Example 2, Ct is a combination of W and M such that C0 = W and C1 = M .

Again, Ct is not a copula in general. The support of Ct could be outside of the union of

progressive and near-optimal choice types.

One can also construct new copulas by using existing copulas. A straight approach to

constructing new multidimensional copulas would be to use 2-copulas to join or couple

other 2-copulas, as the following examples illustrate:

Example 4. New quasi-copulas can also be constructed by grouping choice problems

into clusters and applying distinct aggregation functions for within-group and between-

group interactions, such as:

C(u1, u2, · · · , un) := M(· · ·W (W (u1, u2), u3), · · · ), un).

Example 5. Suppose that there are three groups of choice problems: G1 = {1, · · · , k1},

G2 = {k1 + 1, · · · , k2}, G3 = {k2 + 1, · · · , n}, representing easy, medium, and high diffi-

culty levels of choice problems, respectively. Then the function W is applied across these

groups as follows. Note that this might not be a copula.

C(u1, u2, · · · , un) := W (M(u1, · · · , uk1),M(uk1+1, · · · , uk2),M(uk2+1, · · · , un)).

6 Conclusion
We demonstrated that the min-copula serves as an identification method for various

models. This approach is particularly beneficial for identification, as it eliminates the
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need for complex constructions by providing an exact formula to calculate the unique

weights assigned to choice types in the support.

Additionally, we showed that copula theory serves as a powerful tool for uncovering

plausible probabilistic choice models. The 1-mistake model exemplifies such a model,

combining both novelty and practical relevance. We believe this paper merely scratches

the surface of the vast potential offered by copula theory. We strongly encourage other

researchers to explore and expand the frontiers of this promising research area.

7 Proof of Proposition 3
For each si ∈ Si, we denote the element that is immediately ▷-worse (better) than si

by si − 1 (si + 1) whenever it exists (e.g., for x ▷ a ▷ b ▷ c ▷ y, if si = b, then

si + 1 = a, si − 1 = c). We denote the set of all choice types by S, where S =
∏

i∈N Si,

and S−j =
∏

i∈N\{j} Si for each j ∈ N . Let s̄ (s) be the choice type such that si = s̄i

(si = si) for each i ∈ N . For each s, s′ ∈ S and M ⊂ N , let sMs′ be the element of S

that copies s for the components in M , and s′ for the components in N \M .

Let ρ be an pcf that is identified by the W . The next lemma establishes that there is

no strictly dominated choice type in the support of πρ
W , denoted by πρ

W
+. That is, there

exist no two choice types s, s′ ∈ πρ
W

+ such that si ▷ s′i for each i ∈ N .

Lemma 7.1. Let ρ be an RCF that is identified by W . Then, the set of choice functions that

appear in the support of πρ
W is an ▷-antichain.

Proof. By contradiction, suppose that there exist s, s′ ∈ πρ
W

+ such that si ▷ s′i for each i ∈
N . Let F ρ

W be the CDF associated with W and ρ. That is, F ρ
W (s) = W (P ρ

1 (s1), . . . , P
ρ
n(sn))

for each s ∈ S (equivalently F ρ
W (s) =

∑
t:s⊵t π

ρ
W (t)). Now, let [s− 1] be the element of S

such that [s− 1]i = si − 1 for each i ∈ N .8 Then,

πρ
W (s) =

∑
M⊆N

(−1)|M | F ρ
W ([s− 1]Ms). (3)

8We will use the notation [s− 1]Ms for the element of S for which when i ∈ M , ([s− 1]Ms)i = [s− 1],

and otherwise for i /∈ M , ([s− 1]Ms)i = s.
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Since s′ is in the support of πρ
W , for each t ∈ S such that s ⊵ t ⊵ s′, we have FW (t) =∑

i P
ρ
i (ti)− n+ 1 > 0. Note that s ⊵ [s− 1]Ms ⊵ s′ for every M ⊆ N . It follows that

πρ
W (s) =

∑
M⊆N

(−1)|M |

∑
i∈M

P ρ
i (si) +

∑
i∈N\M

P ρ
i (si − 1)− n+ 1

 (4)

which can be decomposed into two components each of which equals zero by the prin-

ciple of inclusion and exclusion.

The following result improves Lemma 7.1 by stating that any two choice functions in

πρ
W

+ can differ at most in two choice sets. Moreover, if they deviate at two choice sets,

say Si and Sj, then we must have si ▷ s′i and s′j ▷ sj.

Lemma 7.2. If s and s′ are in the support of πρ
W , then

i. |{i : si ̸= s′i}| ≤ 2, and

ii. if |{i : si ̸= s′i}| = 2, then sj ▷ s′j and s′k ▷ sk for some j, k ∈ N .

Proof. For clarity, we replace πρ
W with π and F ρ

W with F . Then, since π generates ρ, we

can rewrite F (s) = 1− n+
∑

i∈N P ρ
i (si) as

F (s) = 1− n+
∑
i∈N

∑
si⊵yi

∑
z−i∈S−i

π(yi, z−i). (5)

Next, for each k ∈ {1, . . . , n}, let Sk = {t ∈ S : k = |{i : si ⊵ ti}|}. Since, by Lemma 7.1,

there is no element t∗ ∈ πρ
W

+ with s▷ t∗, we get

F (s) = 1− n+ n
∑
t∈Sn

π(t) +
n−1∑
k=1

k
∑
t∈Sk

π(t). (6)

Since, by definition, F (s) =
∑

t∈Sn π(t), it follows that

n− 1 = (n− 1)
∑

t∈Sn∪Sn−1

π(t) +
n−2∑
k=1

k
∑
t∈Sk

π(t). (7)

Now, if π(t) > 0 for some t ∈ Sk where k < n − 1, then this equality fails to hold.

Therefore, π(t) > 0 only if |{i : si ⊵ ti}| ≥ n − 1. It follows that |{i : si ⊵ s′i}| ≥ n − 1.

Symmetrically, |{i : s′i ⊵ si}| ≥ n− 1. Thus, we conclude that i. and ii. hold.

Our next lemma provides the last stepping stone to prove Proposition 3.
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Lemma 7.3. Let ρ be an RCF that is identified by W . Suppose that ρ fails to satisfy part II

of Proposition 3. Let α, β ∈ πρ
W

+ such that αi > βi and βj > αj. Then, there exists γ ∈ πρ
W

+

and k∗ ∈ N such that

1. γk∗ ̸= αk∗ = βk∗, and

2. If αk∗ > γk∗ then α and β are 1-mistake away from s̄p; if αk∗ < γk∗ then α and β are

1-mistake away from sp.

Proof. Note that, by Lemma 7.2 part i, we have αk = βk for each k ∈ N \ {i, j}. Since II

fails to hold, there exists k∗ ∈ N \ {i, j} such that p(αk∗ , Sk∗) < 1. It follows that there

exists γ ∈ πρ
W

+ such that γk∗ ̸= αk∗ = βk∗. Thus, 1 holds. Next, suppose w.l.o.g. that

αk∗ > γk∗. Then, by Lemma 7.2 part ii, for each s ∈ {β, α}, it must be that γi ≥ si and

γj ≥ sj. Therefore, γi ≥ αi > βi and γj ≥ βj > αj. Then, by Lemma 7.2 part i, for γ not

to differ from α and β on more than two components, we must have γi = αi, γj = βj,

and βk = αk = γk for each k ∈ N \ {i, j, k∗}.

In what follows, we show that α and β are 1-mistake away from s̄p (had we supposed

that γk∗ < βk∗ = αk∗, we would be showing that α and β are 1-mistake away from sp).

That is, we claim that αi = s̄ρi , βj = s̄ρj , and s̄ρk = αk = βk for each k ∈ N \ {i, j}. By

contradiction, suppose that this fails to hold for some l ∈ N.

Case 1: Suppose that l ∈ N \ {i, j}. It follows that there exists δ ∈ πρ
W

+ such that

δl > βl = αl. By Lemma 7.2 part ii, for each s ∈ {α, β}, it must be that δi ≤ si and

δj ≤ sj. It follows that δi ≤ βi < αi ≤ γi and δj ≤ αj < βj ≤ γj. Thus, δ is dominated by

γ on components i and j, contradicting to Lemma 7.2 part ii.

Case 2: Suppose that l ∈ {i, j}. Suppose w.l.o.g. that l = i. It follows that there exists

δ ∈ πρ
W

+ such that δi > αi. Since αi = γi, we already have δi > γi. Next, we show that

δk∗ > γk∗, and thus obtain a contradiction to Lemma 7.2 part ii. Since δi > αi > βi, by

Lemma 7.2 part ii, for each s ∈ {α, β}, we have δj ≤ sj and δk ≤ sk for each k ∈ N\{i, j}.

It follows that δj ≤ αj < βj. Since δi > βi and δj < βj, by Lemma 7.2 part i, δk = βk for

each k ∈ N \ {i, j}. Since βk∗ > γk∗, it follows that δk∗ > γk∗.
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Proof of Proposition 3. Since the if part is clear, we prooceed with the only if part. Sup-

pose that II fails to hold. Then, we show that I holds. If each distinct α, β ∈ πρ
W

+ differ

on a single component, then II holds. Since we suppose that this is not the case, let

α, β ∈ πρ
W

+ such that αi > βi and βj > αj. Then, let γ and k∗ be as described in Lemma

7.3. Suppose w.l.o.g that γk∗ > αk∗, and thus α and β are both 1-mistake away from s̄p.

It follows that αi = s̄ρi and βj = s̄ρj .

Now, let θ ∈ πρ
W

+. If θ differs from α on two components, then since α is 1-mistake

away from s̄p, it follows from Lemma 7.3 that θ is also 1-mistake away from s̄p. If θ

differs from α on a single component l ∈ N , then there are three cases.

Case 1: Suppose that l ∈ N \ {i, j}. Then, we have αl = βl = s̄ρl > θl, and by Lemma

7.2 part ii, θj ≥ βj = s̄ρj > αj. It follows that θ differs from α on components j and l,

contradicting that θ differs from α on a single component.

Case 2: Suppose that l = j. Then, since θk = αk = s̄ρk for each k ∈ N \ {j}, it directly

follows that θ is 1-mistake away from s̄p.

Case 3: Suppose that l = i. Then, consider γ. Since γk∗ < βk∗ = αk∗, by Lemma 7.2 part

ii, for each s ∈ {β, α}, it must be that γi ≥ si and γj ≥ sj. Therefore, γi ≥ αi > βi and

γj ≥ βj > αj. Then, since αi = s̄ρi and θi ̸= αi, we have γi > θi. Moreover, since θj = αj,

we have γj > θj. Therefore, θ is dominated by γ on components i and j, contradicting

to Lemma 7.2 part ii. Thus, we conclude that l ̸= i.
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Fréchet, M. (1935), ‘Généralisation du théoreme des probabilités totales’, Fundamenta

mathematicae 25(1), 379–387. 5, 9
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