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Random Choice

Think of a stochastic choice coming from a heterogeneous population (or repeated choices of a single
person).

S π(·|S)

Decision Problem

Unobservable

Choice

π(x|S) = frequency of types choosing x from S

2



Random Utility Model (RUM)

RUM
▶ each type is a utility maximizer

▶ µ: probability distribution over all preference relations

π(x|S) =
∑

x is ≻−best in S

µ(≻)

▶ a single individual vs a group of individuals

▶ an important tool across fields 3



Limitations of RUM

Each type must be “rational”
Distribution of types is not unique
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Motivation

Random Utility Model
▶ RUM: rational types ⇒ non-unique

Apesteguia, Ballester, Lu (ECMA, 2017)
▶ SCRUM: rational types + “one dimensional heterogeneity” ⇒ unique

Filiz-Ozbay and Masatlioglu (JPE, 2023)
▶ PRC: all types + “one dimensional heterogeneity” ⇒ unique
▶ L-PRC: less-is-more + “one dimensional heterogeneity” ⇒ unique
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Today’s Talk

??? ⇒ unique

what makes “one dimensional heterogeneity” special?

some random observations
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Ordered Types aka “one dimensional heterogeneity”

▷: the reference order
▶ e.g., policies ordered by being environmental friendly

{ct}: Ordered types
▶ choice types ordered based on being environmentally conscious

less environmental ... more environmental
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Progressive

Definition
A collection of choice functions is progressive with respect to ▷ if it can be sorted {c1, c2, . . . , cT }
such that ct(S) ⊵ cs(S) for all S and for any t ≥ s.
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How to Construct a Joint Distribution

How to construct joint distribution from marginals?
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How to Construct a Joint Distribution

c1 c2 c3 c4 c5

S1 z y y y x

S2 z′ z′ y′ x′ x′

0.3 0.1 0.2 0.2 0.2
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How to Construct a Joint Distribution
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How to Construct a Joint Distribution
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Copula



Copula

C(u, 0) = 0 = C(0, v)

C(u, 1) = u and C(1, v) = v

For any u1 ≤ u2 and v1 ≤ v2,

C (u2, v2) − C (u2, v1) − C (u1, v2) + C (u1, v1) ≥ 0
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Special Ones

M(u, v) = min{u, v}

Π(u, v) = uv

W (u, v) = max{u + v − 1, 0}
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Min Copula
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Min Copula
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Min Copula

c1 c2 c3 c4 c5

S1 z y y x x

S2 z′ z′ y′ y′ x′

0.2 0.2 0.1 0.25 0.25
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Copula

Define a function C : [0, 1]n → R
Three properties
▶ C(u1, u2, · · · , un) = 0 whenever any ui = 0
▶ C(1, . . . , 1, ui, 1, . . . , 1) = ui any i
▶ any n− dimensional cube [a1, b1] × [a2, b2] × · · · × [an, bn], C must be non-negative

Special ones
▶ M(u1, u2, · · · , un) = min{u1, u2, · · · , un}
▶ Π(u1, u2, · · · , un) =

∏
ui

▶ W (u1, u2, · · · , un) = max{
∑

ui + 1 − n, 0}
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Observation #1

M(u1, u2, · · · , un) = min{u1, u2, · · · , un} is the identification method for
▶ SCRUM
▶ L-PRC
▶ PRC
▶ any kind of restriction + “one dimensional heterogeneity”

Functional form!!!
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Observation #2

Take any stochastic choice rule, π, within SCRUM
Let µ∗ be the SCRUM representation.
Since SCRUM ⊂ RUM, π might have other RUM representations {µi}

How {µi} and µ∗ are related?
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How to Compare Representations
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Dominance
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Observation #2

SCRUM assigns the highest weight to the choice type consistent with the underlying order.
Given a particular “rational” choice type c, SCRUM assigns the highest weight to all “rational”
choice types dominating c
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Observation #3

Take any stochastic choice rule, π, within RUM but outside of SCRUM
PRC representation assigns the highest weight to the choice type consistent with the underlying
order.
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Observation #3

Proposition
Let π be a stochastic choice and µ be a probability distribution over choice types that generates π.
Then, for each choice type c, the PRC representation of π assigns a higher probability to the set of
types dominating c compared to µ.
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Frechet-Hoeffding bounds

Frechet-Hoeffding Bounds
Consider a copula C. Then

max{
n∑

i=1

ui + 1 − n, 0} ≤ C(u1, u2, · · · , un) ≤ min{u1, u2, · · · , un}
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What is next

So what?
the FH-upper bound gives us “one-dimensional heterogeneity”
what about the FH-lower bound?
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HF-Lower Bound

What about W (u1, u2, · · · , un) = max{
∑n

i=1 ui + 1 − n, 0}?
W (u1, u2, · · · , un) is not a copula in general
The corresponding model must have empirical content!!!
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1-mistake model

Consider a set of individuals tries to maximize the reference order, ▷,
Each deterministic type is
▶ either completely rational (free of mistakes) or
▶ makes one mistake in only one choice problem.
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An example

let S1 = {x, y, z}, S2 = {x, y}, and S3 = {x, z}

the underlying order is x ▷ y ▷ z

nearly ▷-optimal choice functions

c1 c2 c3 c4 c5

{x, y, z} x x x y z

{x, y} x x y x x

{x, z} x z x x x
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1-mistake model

Definition
A probabilistic choice function π has a 1-mistake representation with respect to ▷ if there exits a
probability distribution µ over nearly ▷-optimal choice functions such that

π(x, S) =
∑

c:c(S)=x

µ(c)
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1-mistake model

Axiom Let s̄ be the ▷-best element in S. Then we have∑
S

(1 − π(s̄, S)) ≤ 1

Characterization
Let π be a stochastic choice and s̄ be the ▷-best element in S for all S. Then, π has 1-mistake
representation if and only if

∑
S

(1 − π(s̄, S)) ≤ 1.

If ρ is a 1-mistake model, then ρ is identified by the FH-lower bound.
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Observation #3

W (u1, u2, · · · , un) is the identification method for 1-mistake model
Representation is unique
Given a particular choice type c, µ∗ assigns the lowest weight to all choice types dominated by c
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What next?
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Other Identifying Methods

Cα(u1, u2, · · · , un) := αM(u1, u2, · · · , un) + (1 − α)W (u1, u2, · · · , un)

Ct(u1, u2, · · · , un) :=
{

max{
∑n

i=1 ui + 1 − n, t} if ui ≥ t ∀i

M(u1, u2, · · · , un) otherwise

Ck(u1, u2, · · · , un) := W (M(u1, u2, · · · , uk), M(uk+1, · · · , uk))

C(u1, u2, · · · , un) := W (· · · W (W (u1, u2), u3), · · · ), un)

Ck(u1, u2, · · · , un) := M(W (u1, u2, · · · , uk), W (uk+1, · · · , uk))
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Some Answers

??? ⇒ unique
Copula is the key

what makes single-crossing/progressive special?
Frechet-Hoeffding upper bound

some random observations
we had some
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the end
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