Ordered Probabilistic Choice

C. Chambers Y. Masatlioglu K. Yildiz

Cornell Oct, 2024

Random Choice

Think of a stochastic choice coming from a heterogeneous population (or repeated choices of a single person).

 $\pi(x|S) =$ frequency of types choosing x from S

Random Utility Model (RUM)

• RUM

each type is a utility maximizer

• μ : probability distribution over all preference relations

$$\pi(x|S) = \sum_{x ext{ is } \succ - ext{ best in } S} \mu(\succ)$$

- a single individual vs a group of individuals
- an important tool across fields

- Each type must be "rational"
- Distribution of types is not unique

• RUM: rational types \Rightarrow non-unique

Apesteguia, Ballester, Lu (ECMA, 2017)

► SCRUM: rational types + "one dimensional heterogeneity" ⇒ unique

• Filiz-Ozbay and Masatlioglu (JPE, 2023)

- PRC: all types + "one dimensional heterogeneity"
- L-PRC: less-is-more + "one dimensional heterogeneity"

 \Rightarrow unique

• RUM: rational types \Rightarrow non-unique

• Apesteguia, Ballester, Lu (ECMA, 2017)

► SCRUM: rational types + "one dimensional heterogeneity" ⇒ unique

• Filiz-Ozbay and Masatlioglu (JPE, 2023)

- PRC: all types + "one dimensional heterogeneity"
- L-PRC: less-is-more + "one dimensional heterogeneity"

 \Rightarrow unique \Rightarrow unique

- RUM: rational types \Rightarrow non-unique
- Apesteguia, Ballester, Lu (ECMA, 2017)
 - ► SCRUM: rational types + "one dimensional heterogeneity" ⇒ unique

• Filiz-Ozbay and Masatlioglu (JPE, 2023)

	PRC:	all types	+	 "one dimensional heterogeneity" 	
--	------	-----------	---	---	--

L-PRC: less-is-more + "one dimensional heterogeneity"

 \Rightarrow unique

- RUM: rational types \Rightarrow non-unique
- Apesteguia, Ballester, Lu (ECMA, 2017)
 - ► SCRUM: rational types + "one dimensional heterogeneity" ⇒ unique

• Filiz-Ozbay and Masatlioglu (JPE, 2023)

- ▶ PRC: all types + "one dimensional heterogeneity" \Rightarrow un
- L-PRC: less-is-more + "one dimensional heterogeneity"
- \Rightarrow unique \Rightarrow unique

• ??? \Rightarrow unique

• what makes "one dimensional heterogeneity" special?

some random observations

- ??? \Rightarrow unique
- what makes "one dimensional heterogeneity" special?

some random observations

- ??? \Rightarrow unique
- what makes "one dimensional heterogeneity" special?
- some random observations

Ordered Types aka "one dimensional heterogeneity"

 \triangleright : the reference order

- e.g., policies ordered by being environmental friendly
- $\{c_t\}$: Ordered types
 - choice types ordered based on being environmentally conscious

Definition

A collection of choice functions is progressive with respect to \triangleright if it can be sorted $\{c_1, c_2, \ldots, c_T\}$ such that $c_t(S) \supseteq c_s(S)$ for all S and for any $t \ge s$.

• How to construct joint distribution from marginals?

Copula

Copula

- C(u,0) = 0 = C(0,v)
- C(u,1) = u and C(1,v) = v
- For any $u_1 \leq u_2$ and $v_1 \leq v_2$,

 $C(u_2, v_2) - C(u_2, v_1) - C(u_1, v_2) + C(u_1, v_1) \ge 0$

Special Ones

- $M(u,v) = \min\{u,v\}$
- $\Pi(u,v) = uv$
- $W(u,v) = \max\{u+v-1,0\}$

Min Copula

Min Copula

Min Copula

24

- Define a function $C: [0,1]^n \to \mathbb{R}$
- Three properties
 - $C(u_1, u_2, \cdots, u_n) = 0$ whenever any $u_i = 0$
 - $\blacktriangleright \ C(1,\ldots,1,u_i,1,\ldots,1) = u_i \text{ any } i$
 - ▶ any n- dimensional cube $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n]$, C must be non-negative
- Special ones

$$\begin{array}{l} \blacktriangleright \ M(u_1, u_2, \cdots, u_n) = \min\{u_1, u_2, \cdots, u_n\} \\ \blacktriangleright \ \Pi(u_1, u_2, \cdots, u_n) = \prod u_i \\ \blacktriangleright \ W(u_1, u_2, \cdots, u_n) = \max\{\sum u_i + 1 - n, 0\} \end{array}$$

- $M(u_1, u_2, \cdots, u_n) = \min\{u_1, u_2, \cdots, u_n\}$ is the identification method for
 - SCRUM
 - L-PRC
 - PRC
 - any kind of restriction + "one dimensional heterogeneity"

• Functional form!!!

- $M(u_1, u_2, \cdots, u_n) = \min\{u_1, u_2, \cdots, u_n\}$ is the identification method for
 - SCRUM
 - L-PRC
 - PRC
 - ▶ any kind of restriction + "one dimensional heterogeneity"
- Functional form!!!

- Take any stochastic choice rule, π , within SCRUM
- $\bullet~ {\rm Let}~ \mu^*$ be the SCRUM representation.
- Since SCRUM \subset RUM, π might have other RUM representations $\{\mu_i\}$
- How $\{\mu_i\}$ and μ^* are related?

How to Compare Representations

Dominance

Observation #2

- SCRUM assigns the highest weight to the choice type consistent with the underlying order.
- Given a particular "rational" choice type c, SCRUM assigns the highest weight to all "rational" choice types dominating c

$\bullet\,$ Take any stochastic choice rule, $\pi,$ within RUM but outside of SCRUM

 PRC representation assigns the highest weight to the choice type consistent with the underlying order.

- $\bullet\,$ Take any stochastic choice rule, $\pi,$ within RUM but outside of SCRUM
- PRC representation assigns the highest weight to the choice type consistent with the underlying order.

Proposition

Let π be a stochastic choice and μ be a probability distribution over choice types that generates π . Then, for each choice type c, the PRC representation of π assigns a higher probability to the set of types dominating c compared to μ .

Frechet-Hoeffding Bounds

Consider a copula C. Then

$$\max\{\sum_{i=1}^{n} u_i + 1 - n, 0\} \le C(u_1, u_2, \cdots, u_n) \le \min\{u_1, u_2, \cdots, u_n\}$$

• So what?

• the FH-upper bound gives us "one-dimensional heterogeneity"

• what about the FH-lower bound?

- So what?
- the FH-upper bound gives us "one-dimensional heterogeneity"
- what about the FH-lower bound?

- What about $W(u_1, u_2, \cdots, u_n) = \max\{\sum_{i=1}^n u_i + 1 n, 0\}$?
- $W(u_1, u_2, \cdots, u_n)$ is not a copula in general
- The corresponding model must have empirical content!!!

- Consider a set of individuals tries to maximize the reference order, ▷,
- Each deterministic type is
 - either completely rational (free of mistakes) or
 - makes one mistake in only one choice problem.

- let $S_1 = \{x, y, z\}$, $S_2 = \{x, y\}$, and $S_3 = \{x, z\}$
- the underlying order is $x \rhd y \rhd z$
- nearly \triangleright -optimal choice functions

	c_1	c_2	c_3	c_4	c_5
$\{x, y, z\}$	x	x	x	y	z
$\{x, y\}$	x	x	y	x	x
$\{x, z\}$	x	z	x	x	x

Definition

A probabilistic choice function π has a 1-mistake representation with respect to \triangleright if there exits a probability distribution μ over nearly \triangleright -optimal choice functions such that

$$\pi(x,S) = \sum_{c:c(S)=x} \mu(c)$$

Axiom Let \bar{s} be the \triangleright -best element in S. Then we have

$$\sum_{S} (1 - \pi(\bar{s}, S)) \le 1$$

Characterization

Let π be a stochastic choice and \bar{s} be the \triangleright -best element in S for all S. Then, π has 1-mistake representation if and only if $\sum_{S} (1 - \pi(\bar{s}, S)) \leq 1$.

• If ρ is a 1-mistake model, then ρ is identified by the FH-lower bound.

- $W(u_1, u_2, \cdots, u_n)$ is the identification method for 1-mistake model
- Representation is unique
- Given a particular choice type c, μ^* assigns the lowest weight to all choice types dominated by c

What next?

$$C_{\alpha}(u_1, u_2, \cdots, u_n) := \alpha M(u_1, u_2, \cdots, u_n) + (1 - \alpha) W(u_1, u_2, \cdots, u_n)$$

$$C_t(u_1, u_2, \cdots, u_n) := \begin{cases} \max\{\sum_{i=1}^n u_i + 1 - n, t\} & \text{if } u_i \ge t \ \forall i \\ M(u_1, u_2, \cdots, u_n) & \text{otherwise} \end{cases}$$

$$C_k(u_1, u_2, \cdots, u_n) := W(M(u_1, u_2, \cdots, u_k), M(u_{k+1}, \cdots, u_k))$$

$$C(u_1, u_2, \cdots, u_n) := W(\cdots W(W(u_1, u_2), u_3), \cdots), u_n)$$

$$C_k(u_1, u_2, \cdots, u_n) := M(W(u_1, u_2, \cdots, u_k), W(u_{k+1}, \cdots, u_k))$$

- ??? ⇒ unique Copula is the key
- what makes single-crossing/progressive special? Frechet-Hoeffding upper bound
- some random observations we had some

the end

References