A Theory of Reference Point Formation

Ozgur Kibris Sabanci Yusufcan Masatlioglu Maryland Elchin Suleymanov Michigan

Reference Dependence

- Markowitz [1952], Kahneman and Tversky [1979], and Tversky and Kahneman [1991]
 - The idea of reference-dependence has played a very significant role in economics

Reference Dependence

Explain observed behavior such as

- pension and insurance choice, selection of internet privacy, organ donation
- Attitudes towards risk, equity premium puzzle, annuitization puzzle, disposition effect in financial markets and in housing markets
- golf players, poker players, cab drivers, physicians, fishermen, deer hunters, drivers....
- Samuelson and Zeckhauser [1988], Kahneman Tversky [1984], Banford et al. [1979], Heberlein and Bishop [1985], Raymond and Hartman [1991], Boyce et al. [1992], Duborg et al. [1994], Kahneman et.al. [1990], Knetsch and Sinden [1984], Singh, [1991], Shogren et al. [1994], Morrison [1997], Coursey et al. [1987], Bateman et al. [1997], Johnson et al. [1993], Madrian and Shea [2001], Johnson et al. [2000], Johnson and Goldstein [2003],....
- Thaler and Benartzi [2004], Sydnor [2010], Johnson et al [2002], Johnson-Goldstein [2003], Pope and Schweitzer [2011], Eil and Lien [2014], Camerer et al [1997], Rizzo and Zeckhauser [2003], Rabin [2000], Wakker [2010], Benartzi and Thaler [1995], Benartzi et al. [2011], Odean [1998], Genesove and Mayer [2001]...

What is the reference point?

What is the reference point?

o Markowitz [1952]

It would be convenient if I had a formula [for the reference point].... But I do not have such a rule and formula.

o Tversky and Kahneman [1991]

The question of the origin and the determinants of the reference state lies beyond the scope of the present article.

What is the issue?

o Wakker [2010] argues that

If too much liberty is left concerning the choice of reference points, then the theory becomes too general and is almost impossible to refute empirically.

A General Model

$$S \rightarrow r(S) \rightarrow \max_{x \in S} U_{r(S)}(x) \rightarrow c(S)$$

- \blacksquare S and c(S) are observable
- ightharpoonup r(S) and $\{U_{\rho}\}$ are not observable

A General Model

$$S \rightarrow r(S) \rightarrow \max_{x \in S} U_{r(S)}(x) \rightarrow c(S)$$

- \blacksquare S and c(S) are observable
- ightharpoonup r(S) and $\{U_{\rho}\}$ are not observable

- Take r(S) = c(S) and $U_{\rho}(\rho) > U_{\rho}(x)$ for all $x \in X \setminus \rho$
- any choice can be rationalizable
- without any structure, there is no empirical content!!!
- reference point formation is the key

Most Salient Alternative

o "Most salient alternative" as the reference point

Brickman, Coates, and Janoff-Bulman [1978], Samuelson and Zeckhauser [1988], Pratkanis [2007], DellaVigna [2009], Larrick and Wu [2012], Bhatia and Golman [2015], Bhatia [2017]

o Bhatia and Golman [2015]

...reference points are merely options that are especially salient to the decision maker.

Our Aim

- We provide a simple theory of reference point formation
 - How the reference point endogenously determined
 - How it affects choices
- Based on the idea of most salient alternative

Our Model

$$S \to r(S) \to \max_{x \in S} \ U_{r(S)}(x) \to c(S)$$
 Choice Most Salient Reference-Dependent Choice Set Alternative Utility Maximization

Our Model

$$S o r(S) o \max_{x \in S} \ U_{r(S)}(x) o c(S)$$
Choice Most Salient Reference-Dependent Choice Set Alternative Utility Maximization

- ≫: salience ranking
- r(S): the highest ranked alternative in S w.r.t. \gg

Salience based Endogenous Reference Model (SER)

Salience Ranking

Salience ranking

- a reflection of what grabs the decision maker's attention
- subjective
- unobservable

An Illustration

Consider a decision maker with a salient ranking

$$z \gg x \gg y$$

and reference-dependent utility functions

$$U_z(y) > U_z(z) > U_z(x)$$
 and $U_x(x) > U_x(y)$

An Illustration

Consider a decision maker with a salient ranking

$$z \gg x \gg y$$

and reference-dependent utility functions

$$U_z(y) > U_z(z) > U_z(x)$$
 and $U_x(x) > U_x(y)$

Implied choices

An Illustration

Consider a decision maker with a salient ranking

$$z \gg x \gg y$$

and reference-dependent utility functions

$$U_z(y) > U_z(z) > U_z(x)$$
 and $U_x(x) > U_x(y)$

Implied choices

S	\rightarrow	r(S)	\rightarrow	c(S)
$\{x,y,z\}$		z		y
$\{x,y\}$		\boldsymbol{x}		\boldsymbol{x}
$\{y,z\}$		z		y
$\{x,z\}$		z		z

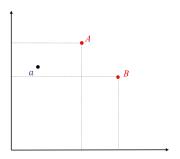
Behavioral Patterns

SER accommodates

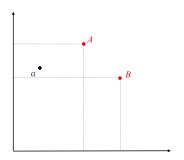
- Cyclical behavior
- Attraction Effect
- Compromise Effect
- More...

- An inferior product increases the attractiveness of dominating another
- Huber, Payne, and Puto [1982]
- more than 7300 Google scholar articles

- An inferior product increases the attractiveness of dominating another
- Huber, Payne, and Puto [1982]
- more than 7300 Google scholar articles



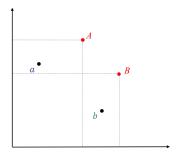
- An inferior product increases the attractiveness of dominating another
- Huber, Payne, and Puto [1982]
- more than 7300 Google scholar articles



$$c(A, B) = B$$
 and $c(A, B, a) = A$

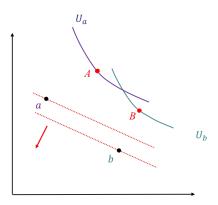
4-alternative version of AE

$$c(A,B,a)=A$$
 and $c(A,B,b)=B$



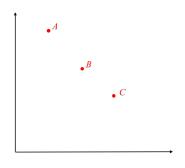
4-alternative version of AE

$$c(A, B, a) = A$$
 and $c(A, B, b) = B$



- Tendency to choose the middle option
- Simonson [1989], Simonson and Tversky [1992]
- more than 2200 Google scholar articles

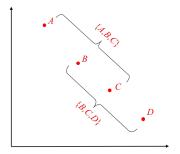
- Tendency to choose the middle option
- Simonson [1989], Simonson and Tversky [1992]
- more than 2200 Google scholar articles



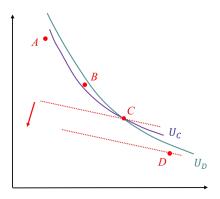
$$c(A, B, C) = B$$

4-alternative version of CE

$$c(A, B, C) = B$$
 and $c(B, C, D) = C$



$$c(A, B, C) = B$$
 and $c(B, C, D) = C$



Prediction Power

■ Is the model too general?

Prediction Power

- Is the model too general?
- SER can be falsified.

Prediction Power

- Is the model too general?
- SER can be falsified.
 - ullet For example, the following c is outside of the model.

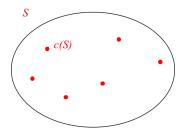
S	c(S)
$\{x,y,z\}$	y
$\{x,y\}$	\boldsymbol{x}
$\{y,z\}$	z
$\{x,z\}$	\boldsymbol{x}

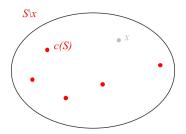
Behavioral Foundation

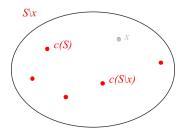
Behavioral Foundation

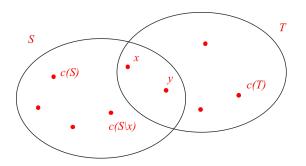
Single Reversal Axiom: For each S,T and distinct x,y with $\{x,y\}\subseteq S\cap T$,

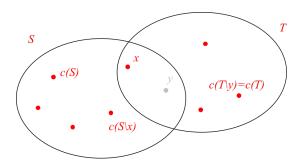
if
$$x \neq c(S) \neq c(S \setminus x)$$
 and $c(T) \neq y$ then $c(T \setminus y) = c(T)$.











THEOREM

A choice function c admits a SER representation if and only if it satisfies Single Reversal.

a choice reversal \Rightarrow the reference point

a choice reversal \Rightarrow the reference point

 $x\gg_R y$ if there is $S\supseteq\{x,y\}$ such that $x\neq c(S)\neq c(S\setminus x)$

a choice reversal \Rightarrow the reference point

$$x\gg_R y$$
 if there is $S\supseteq\{x,y\}$ such that $x\neq c(S)\neq c(S\setminus x)$

PROPOSITION

(Revealed Salience) Suppose c admits a SER representation. Then x is revealed to be more salient than y if and only if $x \gg_R y$.

 \blacksquare How to reveal preference between x and y when the reference point is z?

 \blacksquare How to reveal preference between x and y when the reference point is z?

- Find a choice problem such that
 - x, y, z are feasible
 - ullet z is the reference point
 - x is chosen

How to reveal preference between x and y when the reference point z?

 xP_zy if there are $S \supseteq T \supseteq \{x, y, z\}$ s.t.

(i)
$$z \neq c(S) \neq c(S \setminus z)$$

(ii)
$$x = c(T)$$
.

How to reveal preference between x and y when the reference point z?

$$xP_zy$$
 if there are $S\supseteq T\supseteq \{x,y,z\}$ s.t.
$$(i)\quad z\neq c(S)\neq c(S\setminus z)$$

$$(ii)\quad x=c(T).$$

PROPOSITION

(Revealed Preference) Suppose c admits a SER representation. Then x is revealed to be preferred to y under reference point z if and only if xP_zy .

Summary

$$S \to r(S) \to \max_{x \in S} \ U_{r(S)}(x) \to c(S)$$
 Choice Most Salient Reference-Dependent Choice Set Alternative Utility Maximization

- an intuitive reference formation
- simple model
- simple axiomatization

Psychological Constrained Model

Psychological Constrained Model

A new underlying reference dependent choice (Masatlioglu and Ok [2014])

$$S \rightarrow r(S) \rightarrow \max_{x \in S \cap \mathcal{Q}(r(S))} U(x) \rightarrow c(S)$$

Psychological Constrained Model

A new underlying reference dependent choice (Masatlioglu and Ok [2014])

$$S \rightarrow r(S) \rightarrow \max_{x \in S \cap \mathcal{Q}(r(S))} U(x) \rightarrow c(S)$$

- \blacksquare r(S): the most salient alternative in S
- $\blacksquare U$: reference-free
- Enable welfare analysis

Psychological Constrained SER (**PC-SER**)

Consistency: For each $S \in \mathcal{X}$, there is $x \in S$ such that if $\{x, z\} \subseteq T \subseteq T'$, $z \neq c(T') \neq c(T' \setminus z)$ and x = c(x, z), then either c(T) = x or $c(T) \notin S$.

THEOREM

A choice function c admits a PC-SER representation if and only if it satisfies Single Reversal and Consistency.

For any x, y, z such that $x \neq y$, we define

xPy if $\exists S, T$ with $\{x, y, z\} \subseteq T \subseteq S$ such that

(i)
$$z \neq c(S) \neq c(S \setminus z)$$
,

$$(ii) \quad c(y,z)=y, \ and$$

$$(iii) \quad x = c(T).$$

For any x, y, z such that $x \neq y$, we define

$$xPy$$
 if $\exists S, T$ with $\{x, y, z\} \subseteq T \subseteq S$ such that

(i)
$$z \neq c(S) \neq c(S \setminus z)$$
,

$$(ii)$$
 $c(y,z) = y$, and

(iii)
$$x = c(T)$$
.

Let P^T be the transitive closure of P.

PROPOSITION

(Revealed Preference) Suppose c admits a PC-SER representation. Then x is revealed to be preferred to y if and only if xP^Ty .

$$Q_M(x) = \{ y \in X \mid \exists S \supseteq T \supseteq \{x, y\} \text{ s.t. } x \neq c(S) \neq c(S \setminus x) \text{ and } y = c(T) \}$$

$$Q_M(x) = \{ y \in X \mid \exists S \supseteq T \supseteq \{x, y\} \text{ s.t. } x \neq c(S) \neq c(S \setminus x) \text{ and } y = c(T) \}$$

PROPOSITION

(Revealed Psychological Constraint) Suppose c admits a PC-SER representation. Then

- (i) x is revealed to be in the psychological constraint set of y iff $x \in Q_M(y)$,
- (ii) x is revealed to be outside the psychological constraint set of y if and only if xP^Ty and c(x,y)=y.

For any $x \neq y$

$$x\gg_R y$$
 if (i) $\exists S\supseteq\{x,y\}$ such that $x\neq c(S)\neq c(S\setminus x),$ or
$$(ii) \quad yP^Tx \text{ and } x=c(x,y).$$

Let \gg_R^T stand for the transitive closure of \gg_R .

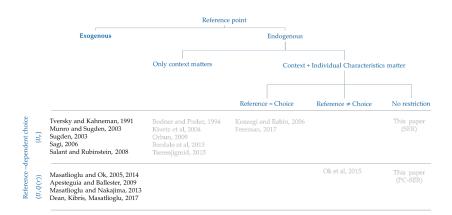
For any $x \neq y$

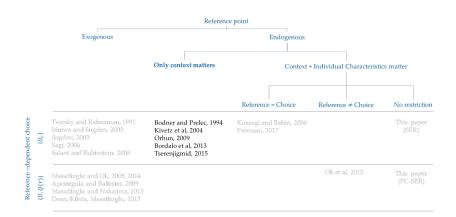
$$x\gg_R y$$
 if (i) $\exists S\supseteq\{x,y\}$ such that $x\neq c(S)\neq c(S\setminus x),$ or
 (ii) yP^Tx and $x=c(x,y).$

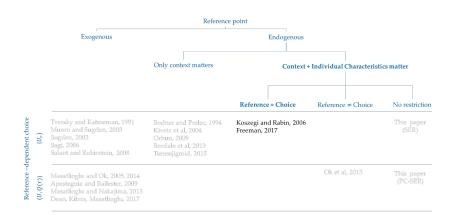
Let \gg_R^T stand for the transitive closure of \gg_R .

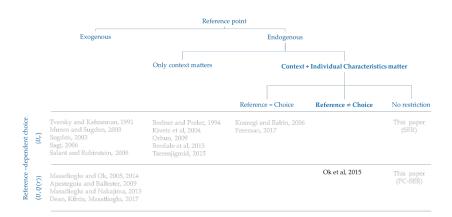
PROPOSITION

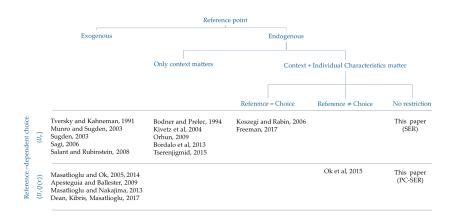
(Revealed Salience) Suppose c admits a PC-SER representation. If $x \gg_R^T y$ then x is revealed to be more salient than y.











- Consider riskless outcomes
- The constant loss aversion as the underlying reference-dependent model
- Consider two different reference point formations:
 - PPE (Koszegi and Rabin 2006)
 - Salience Based (This paper)

- The constant loss aversion model as the underlying reference-dependent model
- Consider two different reference point formations:
 - PPE (Koszegi and Rabin 2006)
 - Salience Based (This paper)

- The constant loss aversion model as the underlying reference-dependent model
- Consider two different reference point formations:
 - PPE (Koszegi and Rabin 2006)
 - Salience Based (This paper)

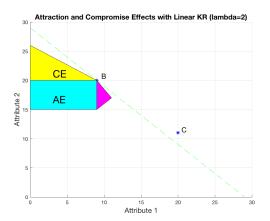
Answers

• WARP (hence No Compromise or Attraction Effects) (KR, 2006 Prop. 3)

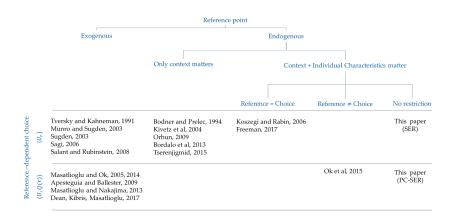
- The constant loss aversion model as the underlying reference-dependent model
- Consider two different reference point formations:
 - PPE (Koszegi and Rabin 2006)
 - Salience Based (This paper)

Answers

- WARP (hence No Compromise or Attraction Effects) (KR, 2006 Prop. 3)
- accommodates both Compromise and Attraction Effects



Conclusion



THANK YOU

- S. Bhatia. Comparing theories of reference-dependent choice. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 43(9):1490, 2017.
- S. Bhatia and R. Golman. Attention and reference dependence. Working Paper, 2015.
- P. Brickman, D. Coates, and R. Janoff-Bulman. Lottery winners and accident victims: Is happiness relative?. Journal of Personality and Social Psychology, 36(8):917 – 927, 1978. ISSN 0022-3514.
- S. DellaVigna. Psychology and economics: Evidence from the field. *Journal of Economic Literature*, 47(2):315–72, 2009.
- D. Kahneman and A. Tversky. Prospect theory: An analysis of decision under risk. *Econometrica*, 47(2):263–292, 1979.
- R. P. Larrick and G. Wu. Risk in negotiation: Judgments of likelihood and value. *Oxford University Press*, 2012.
- H. Markowitz. The utility of wealth. Journal of Political Economy, 60(2): 151–158, 1952.
- A. R. Pratkanis. Social influence analysis: An index of tactics. *The Science of Social Influence: Advances and Future Progress*, pages 17–82, 2007.
- W. Samuelson and R. Zeckhauser. Status quo bias in decision making.

 Journal of Risk and Uncertainty, 1(1):7–59, 1988.

- A. Tversky and D. Kahneman. Loss aversion in riskless choice: A reference-dependent model. *Quarterly Journal of Economics*, 106(4): 1039–1061, 1991.
- P. P. Wakker. Prospect Theory: For Risk and Ambiguity. Cambridge University Press, 2010.