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Random Choice

Think of a stochastic choice coming from repeated choices of a single person or from a

heterogeneous population.

S π(·, S)

Decision Problem

Unobservable

Choice

π(x, S) = frequency of types choosing x from S
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Limited and heterogeneous attention

Each type has limited attention and attention is heterogeneous.
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Growing Attention Property

Put a structure (an order) on heterogeneous attention

Γ1(S) ⊆ Γ2(S) ⊆ · · · ⊆ Γm(S)
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Growing Attention: A classic example

More sleep, better attention: Attention is ordered by the number of hours of sleep

(Durmer and Dinges, 2005)
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Growing Attention Property

• Satisficing (Simon 1955; Aguiar et al., 2016)

Γi(S) = {x ∈ S : v(x) ≥ vi}, with vi ∈ R is a crude measure of values (salience, utilities, etc.)

If v1 ≥ v2 ≥ · · · ≥ vm then Γ1(S) ⊆ Γ2(S) ⊆ ... ⊆ Γm(S).

• Rationalization (Cherepanov et al., 2013)

Γ(S) = {x ∈ S : ∃i s.t. xPiy ∀y ̸= x, y ∈ S}

• Suppose each rationale is a linear order.

• Let Ri be the set of rationales used by type i. Suppose higher-indexed types use more rationales:

Ri ⊆ Rj when i < j,

• Then Γ1(S) ⊆ Γ2(S) ⊆ ... ⊆ Γm(S) for all S ∈ X .
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Growing Attention Property

Generally, expansion of consideration sets can result from:

1. Inner motivation of strategic consideration (sequential search model of Fershtman and Pavan,

2023; rational inattention, Caplin et al., 2019); or

2. Interactions with external contents like advertising (competitive marketing, Eliaz and Spiegler,

2011) or recommendation (Cheung and Masatlioglu, 2023).
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Main Contribution

We develop a model that allows for

• limited attention of each type.

• unobserved heterogeneous attention of types.

• unobserved types distribution.

• (possibly) unobserved endogenous preferences.

where we can

1. uniquely identify consideration sets and types distribution.

2. (partly) identify unobserved preferences.

3. test implications of the model by simple predictions.
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Structure of the presentation

1. Model

2. Behavioral characterization

3. Endogenous preference

4. Identification of consideration sets and type distributions

5. An application to optimal list design
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Notations

• X is a finite set of alternatives.

• X is the set of non-empty subsets of X.

• S ∈ X is a menu or a choice set.

• Random choice function (RCF) π : X ×X → [0, 1] such that
∑

x: x∈S

π(x, S) = 1 and π(x, S) = 0 if

x ̸∈ S.

• Consideration set: Γi : X → X with Γi(S) ⊆ S for all S ∈ X .

• Limited attention: A consideration set is an attention filter if (Masatlioglu et al., 2012)

Γi(S) = Γi(S \ x), ∀x ∈ S but x ̸∈ Γi(S)
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Model

Definition

RCF π has a GAM(≻) if ∃ a collection of consideration sets Γ = {Γ1,Γ2, . . . ,Γm} and a

probability measure µ over Γ such that

π(x, S) =
∑

i: x=max(≻,Γi(S))

µ(Γi), ∀x ∈ S and S ∈ X

where each Γi is an attention filter and collection Γ has the growing attention property

Γ1(S) ⊆ Γ2(S) ⊆ · · · ⊆ Γm(S), ∀S ∈ X .
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Behavioral Characterization

Classic Monotonicity (Regularity): π(y, S) ≤ π(y, S \ x) for all x, y ∈ S, x ̸= y.

Axiom (weak-MON):

π(y, S) ≤ π(y, S \ x) if x ≻ y.

GAM can allow for monotonicity violations.
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Behavioral Characterization (cont.)

Axiom (Independence):

π(z, S) = π(z, S \ x) if {x, y, z} ⊆ S and π(y, S) > 0 and x ≻ y ≻ z.

• π(y, S) > 0 implies that y is minimally attractive at S.

• Then y is also attractive at S \ x.

• Because of y ≻ z and y is attractive, y absorbs any changes when removing x from the choice set.

• Probability of choosing z remains unchanged.
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Behavioral Characterization (cont.)

Theorem

RCF π has a GAM(≻) representation iff π satisfies w-MON and independence.

Sketch of the proof:

1. Identify max(Γi(S),≻) using a technique in Filiz-Ozbay and Masatlioglu (2023).

2. Define consideration sets as:

Γi(S) = max(Γi(S),≻) ∪ {x : x ∈ S s.t.max(Γi(S),≻) ≻ x}.

3. Prove by induction that Γi is attention filter and Γi(S) ⊆ Γj(S) when i ≤ j.
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Endogenous Preference

What happens if preference ≻ is unknown?

Definition: Endogenous GAM

An RCF π has an endogenous GAM representation if ∃ a preference order ≻ such that π has a

GAM(≻) representation.
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Endogenous Preference

Definition [Revealed Preference]

x is revealed to be preferred to y if x is preferred to y in every preference representing π.

w-MON axiom: π(y, S) ≤ π(y, S \ x) if x ≻ y.

Prop (Revealed Preference 1)

Suppose RCF π has an endogenous GAM representation. If π(y, S) > π(y, S \ x) for some

S ⊇ {x, y} then y is revealed to be preferred to x.
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Endogenous Preference

Independence axiom: π(z, S) = π(z, S \ x) if {x, y, z} ⊆ S and π(y, S) > 0 and x ≻ y ≻ z.

A positive (or full-support) RCF: π(x, S) > 0 for all x ∈ S.

Prop (Revealed Preference 2)

Suppose a positive RCF π has an endogenous GAM representation. If ∃z such that one of the

following occurs

i) π(x, {x, y, z}) ̸= π(x, {x, y})and π(x, {x, y}) < π(x, {x, z}) < π(y, {y, z}); or

ii) π(x, {x, y, z}) ̸= π(x, {x, z})and π(x, {x, z}) < min{π(y, {y, z}), π(x, {x, y})},

then x is revealed to be preferred to y.
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Endogenous Preference

For x ̸= y, define:

xPy if i) ∃S ⊇ {x, y} s.t. π(x, S) > π(x, S \ y) or;

ii) ∃z s.t. π(x, {x, y, z}) ̸= π(x, {x, y}) < π(x, {x, z}) < π(y, {y, z}) or;

iii) ∃z s.t. π(x, {x, y, z}) ̸= π(x, {x, z}) < min{π(y, {y, z}), π(x, {x, y})}.

Then xPy implies x is revealed to be preferred to y.
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Endogenous Preference

Independence axiom: π(z, S) = π(z, S \ x) if {x, y, z} ⊆ S and π(y, S) > 0 and x ≻ y ≻ z.

Independence axiom says that x, y ≻ z imply π(z, {x, y, z}) ∈ {π(z, {x, z}), π(z, {y, z})}.

Prop (Revealed Preference 3)

Suppose a positive RCF π has an endogenous GAM representation. Then xPz and

π(z, {x, y, z}) ̸∈ {π(z, {x, z}), π(z, {y, z})} imply that z is revealed to be preferred to y.
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Endogenous Preference: An Example

πα {x, y, z} {x, y} {x, z} {y, z}
x α 0.30 0.50 −
y 0.60− α 0.70 − 0.60

z 0.40 − 0.50 0.40

Table 1: Probabilistic choice functions with α ∈ (0, 0.5).

Prop. 1 Prop. 2 Prop. 3 Possible candidates Identified preferences

α ∈ (0.3, 0.5) x ≻ z x ≻ y y ≻ z x ≻ y ≻ z x ≻ y ≻ z

α ∈ (0, 0.3) - x ≻ y y ≻ z x ≻ y ≻ z x ≻ y ≻ z

α = 0.3 - - - All orders x ≻ y ≻ z

z ≻ y ≻ x
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Identification of consideration sets

• Identifying consideration sets provides valuable insights into decision-making processes.

• Insights are crucial for managerial decisions.

Theorem (Identification)

Suppose a positive RCF π has a GAM(≻) representation. Then (Γ, µ) is unique.

Three sources of variation in GAM (≻):

1. Vary type distribution µ.

2. Vary observed characteristics of the collection of consideration sets Γ.

3. Vary unobserved characteristics of the collection of consideration sets Γ.

When RCF π has full support, no variation is admissible.
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Identification of consideration sets (cont.)

Collection Γ has a special structure: Suppose x ≻ y ≻ z ≻ t and S = {x, y, z, t}. Then
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Identification of consideration sets (cont.)

When α ∈ (0, 0.3): πα has full support and has an unique GAM(≻) representation with x ≻ y ≻ z.

πα {x, y, z} {x, y} {x, z} {y, z}

x α 0.30 0.50 −
y 0.60− α 0.70 − 0.60

z 0.40 − 0.50 0.40

22



Identification of consideration sets (cont.)

S Γ1(S) Γ2(S) Γ3(S) Γ4(S) Γ5(S)

{x, y, z} {z} {y, z} {y, z} {y, z} {x, y, z}
{x, y} {y} {y} {y} {x, y} {x, y}
{x, z} {z} {z} {x, z} {x, z} {x, z}
{y, z} {z} {y, z} {y, z} {y, z} {y, z}

µ 0.4 0.1 0.2 0.3− α α
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An Application: Optimal list design

Purchasing fabric softener on Amazon

Third-party item Amazon’s item

• Online platforms are functioning in a dual role: as a marketplace and as a seller.

• Platforms have incentives to manipulate the list of search results: “Self-preferencing” phenomenon (Hagiu

et al., 2022; Padilla et al., 2022; Farronato et al., 2023; Motta, 2023)

• Farronato et al. (2023): “Amazon-branded products are ranked higher than observably similar products in

consumer search results”.

• The phenomenon has attracted growing attention recently: antitrust violation + customer welfare concerns 24



An Application: Setup

Motivated by the “self-preferencing” phenomenon:

• Denote a list L as L = [x1, x2, . . . , xn].

• A designer wants to construct a list to maximize an objective function.

• The designer has a pairwise distinct weight w(x) > 0 to each item x ∈ L (Manzini et al., 2023).

• Customers have the same preference ≻, facing an ordered list of items.

• Customers type i consider the first i options in the list (Honka, 2014; Cattaneo et al., 2023;

Manzini et al., 2023):

Γi(S) = {x1, x2, . . . , xi}

• All types have positive measures.
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The designer’s objective function

The designer’s objective function W (L) has three properties:

1. W (L) depends on the weights of items and their probabilities of being selected.

2. W (L) does not depend on an unchosen option.

3. (monotonicity) For two lists L and L′ that only differ in the chosen probabilities of x and y

(π(z, L) = π(z, L′) for all z ̸= x, y)

W (L) > W (L′) if w(x) > w(y) and π(x, L) > π(x, L′)

Example: The well-known family of functions with constant elasticity of substitution (σ > 1)

W (L) =

(∑
x∈L

π(x, L)w(x)
σ−1
σ

) σ
σ−1

26



L-algorithm

Definition (optimal list)

The list is optimal if it solves max
L∈L

W (L), where L is the set of all possible lists.

• Step 1: Start the list from the item with the highest weight: x1 = argmax
x∈L

w(x).

• Step 2: Construct lower contour set of x1: L≻(x1). Then xt ∈ L≻(x1) for all t = 2, 3, . . . , k + 1

with k = |L≻(x1)|.

• Step 3: Choose xk+2 = argmax
x: x ̸∈L≻(x1)

w(x); xk+2 has the highest weight among those in upper

contour set of x1.

• Step 4: Follow step 2 but construct the lower contour set of xk+2; restricting to items that have

not been positioned.

• Step 5: Repeat steps 3-4 until every position in the list is occupied.
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L-algorithm: An example

An example: Six items labeled as z1, z2, . . . , z6 with weights w(zi) = i for all i. The customer’s

preference is z4 ≻ z5 ≻ z1 ≻ z6 ≻ z2 ≻ z3.

• Step 1: L∗ = [z6, ., ., ., ., ., ] because z6 = argmax
z∈L

w(z).

• Step 2: L≻(z6) = {z2, z3}. Two possible optimal lists: L∗ = [z6, z2, z3, ., ., ., ] and

L∗∗ = [z6, z3, z2, ., ., ., ., ].

• Step 3: Since z5 = argmax
z: z ̸∈L≻(z6)

w(z), the list is updated with z5. Hence, L∗ = [z6, z2, z3, z5, ., ., ]

and L∗∗ = [z6, z3, z2, z5, ., ., ].

• Step 4: Among those have not positioned, L≻(z5) = {z1}. The list is updated with z1:

L∗ = [z6, z2, z3, z5, z1, .] and L∗∗ = [z6, z3, z2, z5, z1, .].

• Step 5: Position z4

L∗ = [z6, z2, z3, z5, z1, z4] and L∗∗ = [z6, z3, z2, z5, z1, z4].
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Main result

Theorem (Optimal list)

The list is optimal iff it results from running the L-algorithm.

• Simple algorithm to identify all optimal lists.

• The list order may not correspond to the designer’s priority order; items with less values to the

designer may appear near the top of the list.

• In previous example: z1, z2, . . . , z6 with weights w(zi) = i for all i, but the optimal lists are

L∗ = [z6, z2, z3, z5, z1, z4] and L∗∗ = [z6, z3, z2, z5, z1, z4],
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Additional results

1. Characterize GAM when introducing a direction of consideration sets following a list.

2. Provide simple conditions, supported by empirical evidence, for at most two preferences in

identifying endogenous GAM.

3. Characterize GAM with heterogeneous preferences.
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Relationship to other models

• GAM nests SCRUM of Apesteguia et al. (2017).

• GAM is nested in RAM of Cattaneo et al. (2020).

• GAM is independent of RUM; MM (Manzini and Mariotti, 2014); BR (Brady and Rehbeck, 2016);

the additive perturbed utility model of Fudenberg et al. (2015); fixed distribution satisficing

model of Aguiar et al. (2016); attribute rule model of Gul et al. (2014); less-is-more PRC of

Filiz-Ozbay and Masatlioglu (2023); etc.
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Conclusion

• We study probabilistic choice where each type exhibits limited and heterogeneous attention.

• Types have the growing attention structure.

• Consideration sets and type distributions are uniquely identified.

THANK YOU!
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