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Abstract
In the context of stochastic choice, we introduce an individual decision model which
admits a cardinal notion of peer influence. The model presumes that individual choice is
not only determined by idiosyncratic evaluations of alternatives but also by the influence
from the observed behavior of others. We establish that the equilibrium defined by the
model is unique, stable and falsifiable. Moreover the underlying preference and influence
parameters as well as the structure of the underlying network are uniquely identified
from, arguably, limited data. The baseline model includes two individuals with conformity
motives. Generalizations to multi-individual settings and negative interactions are also
introduced and analyzed. (JEL: D01, D91)

Keywords: Identification of social interactions, social influence, peer effects, stochastic
choice, conformity.

1. Introduction

It is a well-established fact that individual choices are directly influenced by
the choices of one’s peers.1 Identification of peer influence out of observable
behavior has been a challenging problem for social scientists for decades.2 At the
heart of this issue lies Manski’s reflection problem (Manski, 1993): Behavioral
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1. There is an abundance of evidence corroborating peer influence in a variety of
social contexts: Peer behavior has a significant influence not only on a student’s school
achievement (Calvo-Armengol et al., 2009), but also on social behavior such as consumption
of recreational activities, drinking, smoking, etc. (Sacerdote, 2011). High productivity co-
workers are found to increase one’s own productivity (Mas and Moretti, 2009). Involvement
in crime (Glaeser et al., 1996), job search (Topa, 2001), adolescent pregnancy (Case and
Katz, 1991), college major choice (De Giorgi et al., 2010) are other prominent examples in
which social interactions are shown to be crucial constituents of individual behavior.

2. See Blume et al. (2011); Bramoullé et al. (2020) for early and recent reviews of literature,
respectively.
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similarities among peers can be caused by correlated unobserved or observed
characteristics as well as peer influence. Distinguishing between these effects
is not straightforward due to the simultaneity in the behavior of interacting
individuals. This paper provides a novel approach to the identification of
peer influence by focusing on the microfoundations of interaction, rather
than adopting ex-post estimation techniques. We introduce a simple model of
decision making for interacting individuals that enables inference of underlying
unobserved parameters out of observable behavior.

The novelty in our approach lies in the introduction of a new source of
variation for social interaction models. Specifically, we vary the set of available
options from which individuals choose. Without any variation in the choice set,
the reflection problem cannot be solved. However with minimal variation, such
as observations from two choice sets rather than one, it becomes possible to
identify the social influence. For instance consider two friends, Dan and Bob,
and their choices on daily exercise routines during a countrywide lockdown
due to a pandemic. Under strict government rules they can choose to either
exercise home or go for a walk outside. Let Dan choose to exercise home 71%
of the time and go for a walk for 29%, whereas these frequencies be 78%
and 22% for Bob, respectively. Reflection problem emerges exactly at this
point, where an outside observer cannot tell whether these friends are behaving
similarly because they are influencing each other or they indeed have similar
preferences (and/or backgrounds) and hence they would have also behaved the
same way without interaction. Without any further information, an outside
observer cannot differentiate between these two scenarios. In order to overcome
the reflection problem and identify peer effects out of observable behavior, our
methodology suggests to exploit the changes in these individuals’ behaviors
over a new choice set. For instance; when the lockdown is over and the updated
government regulations allow also for exercising in the gym. These individuals’
behaviors under these two scenarios, i.e., {exercise home, go for a walk} and
{exercise home, go for a walk, go to gym}, are sufficient for our identification
strategy to identify the peer effects as long as the observed choices are consistent
with our model, as we will illustrate after introducing the model briefly.3

Our main contribution is to provide an intuitive and tractable decision
model which affords a meaningful, and measurable, definition of “influence”
as derived from choice behavior alone. Our model consists of two
essential parameters: An individual preference parameter and an individual
influence parameter. The latter captures interdependence of behavior across
individuals and can accommodate different values for different peers, enabling
heterogeneity of peer effects. The individual preference parameter is more
standard. It can be interpreted as the intrinsic utility of the underlying

3. Although variation of choice sets is a standard tool for revelation in choice theory,
it has not been commonly adopted outside this literature. One exception would be the
identification of differentiated product models in IO as in Berry et al. (2004).
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alternatives; the subjective value of the alternatives absent any social
effects.4 Social influence transpires through the observed behavior of the other
individual(s), where subjective value of each alternative is adjusted by a
weighted version of the observed behavior of others regarding that alternative.
As a result of this weighted aggregation process, individual choice behavior
reflects the relative utility of each alternative in a given menu altered by social
influence. More precisely, the choice frequency of each alternative from a menu
is equal to the relative utility of this alternative under social influence, with
respect to all other available alternatives.

Our identification strategy exploits the change in choice frequencies when
a new alternative is introduced in order to pin down the peer influence and
the underlying preferences. Going back to the example on exercise behavior,
let us observe that once the government regulations allow for going to the gym,
Dan and Bob’s behaviors change as follows: Dan exercises home 60% of the
time, goes for a walk for 26% and goes to the gym for 14%, whereas these
frequencies are 70%, 19%, 11% for Bob, respectively. This pair of behaviors
are consistent with our model (as described in Subsection 2.3), hence we can
reveal the underlying preferences and the interaction parameters uniquely,
overcoming the reflection problem. Interestingly, our identification strategy
(as described in Subsection 2.2) implies that although Dan and Bob’s choice
frequencies are aligned over exercise options, their idiosyncratic preferences
are not aligned. For Bob, indeed the intrinsic utility of home exercise is
the highest and going for a walk is the lowest, whereas for Dan, the exact
opposite holds. However Bob’s behavior has great influence on Dan. To be
precise, conformity with Bob’s behavior is five times more important to Dan
than his own subjective evaluation, whereas for Bob his own evaluation and
Dan’s behavior are equivalently important.5 Thus thanks to our identification
strategy, we can deduce that strong conformity motives have resulted in the
observed behavior.

Our model is a stochastic choice model that assumes consistent behavior
across all budget sets. Critically, this menu variability grants us unique
identification (or point identification, as coined in the econometrics literature).
Moreover, our identification strategy does not suffer from a common handicap
of identification in revealed preference or decision-theoretic models: arguably
unrealistic data requirements. Many choice theoretic models require a

4. In social interactions literature, the non-influence parameters that affect individual
behavior are defined via types of variables such as predetermined social factors including
gender, age, race, etc. Our model abstracts away from these effects, classifying them under
the individual preference parameter.

5. Subsection 2.1 introduces our model formally, but as described above two critical
parameters constitute the primitives. In this example, the preference parameters, the
intrinsic utility weights of exercise home, go for a walk, go to gym, for Dan and Bob are
0.1, 0.3, 0.6 and 0.8, 0.08, 0.12, respectively, with corresponding interaction parameters 5 and
1.
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rich dataset, typically individual choices from all menus, for identification
purposes.6 As we show in Subsection 2.2, observations from only two menus
are sufficient for unique identification for our baseline model, involving two
individuals. For identification of influence networks involving more than two
individuals, observations from two menus can still be sufficient as long as there
are sufficiently many alternatives in the menus. We elaborate more on this in
Section 3.

We establish in Subsection 2.3 that our model is falsifiable, by providing its
empirical content in terms of choice. Three behavioral properties are sufficient
to characterize the model. All of these properties are built around a cross-
elasticity type parameter that evaluates the relative rate of change in the
individual choice frequency of an alternative as a response to a comparative
change in the behavior of the other individual(s). In contrast to standard
models of individual choice, this influence parameter is derived from the choice
behaviors of all of the individuals jointly as opposed to the behavior of only
one individual. Hence, these characterizing properties are entirely novel.

The parameters of our model define an “equilibrium,” where the choice
behavior of each individual is a function of idiosyncratic utility and influence
parameters; as well as the behavior of the other individual(s). Unlike many
other discrete choice models (Brock and Durlauf, 2001; Blume et al., 2011),
the equilibrium defined by our model is unique. Moreover, it is also stable, in
the sense that a dynamic adjustment procedure always tends to this unique
equilibrium. In other words, if we believe that each individual aggregates
behaviorally according to our procedure, we should expect their behavior to
conform to our model in the long-run. There are two critical implications of
this result. The first implication is more practical: if one individual mistakenly
chooses, or one of them misobserves the other’s choices at some period in
time, their behavior will still revert to the predictions of our model in the long
run. Second and more importantly, identification of the underlying parameters
from dynamic data is also possible. Then in the absence of equilibrium choice
behavior, we can use a similar identification strategy over consecutive choice
data. Subsection 2.4 elaborates on this.

Our baseline model involves two individuals with conformity motives, as
in the example above. An action’s choice probability increases as the action
is chosen more frequently by one’s peer. However our model easily adapts to
more individuals and accommodates other types of interaction. We present two
simple extensions. The first incorporates multi-individual interaction, where
individuals have different degrees of influence on the behaviors of their peers,
and second ‘negative’ influence, where the choice probability decreases as it is
chosen more frequently by some peers.

6. For a recent exception to this common trend as well as a discussion on the topic, see
Dardanoni et al. (2020).
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We provide three distinct and well-known social influence settings where the
behavior produced by our model can be reproduced under certain assumptions.
We refer to these as ’foundational justifications’ for our model since each
of them can be seen as an economic mechanism underlying our model of
influence. The first of those incorporates strategic interactions, introducing a
simultaneous game setting whose Quantal Response Equilibrium happens to
coincide with our model, whereas the second one is utility maximization in a
discrete choice setting with peer effects. The last mechanism is a basic naive
learning set up as in DeGroot (1974). All of these models are distinguished
from our model as we use menu variability in our setting.

The organization of the paper is as follows. The next subsection is devoted
to literature review. Section 2 presents a detailed analysis of the baseline
model with two individuals with conformity motives, including identification,
falsifiability and stability results, as well as the foundational justifications.
Section 3 introduces the generalization to multi-individual settings. Section
4 concludes. All proofs are left to an appendix. The incorporation of negative
influence to dual and multi individual models is left to an online appendix.

1.1. Related Literature

Economics research on identification of social interactions has mainly utilized
econometrics tools and techniques. Most of these studies employ linear social
interaction models (Manski, 1993; Blume et al., 2011; Jackson, 2011; Blume
et al., 2015), where individual utility of an action is defined as a linear additive
function with two components: an individual private utility and a social utility.
Blume et al. (2015) provide micro-foundations to these linear interaction models
by showing that under certain parametric assumptions they can be reproduced
as the Bayesian-Nash equilibrium of an incomplete information game where
individuals choose an action to maximize their expected utility given their
type and the public types of others.7 Calvo-Armengol et al. (2009) investigate
the effect of the structure of social network and show that an underlying peer
effects game rationalizes individual outcomes, where at the Nash equilibrium
each outcome is proportional to the centrality of the individual within the
network.

Linear social interaction models are defined for continuous choice variables.
An alternative to this is developed by incorporating the linear additive utility
function with interaction effects into a discrete choice setting (Blume, 1993;
Brock and Durlauf, 2001, 2006). Binary or multinomial discrete choice models
with social interactions make use of random fields models to study the
equilibrium. Three critical assumptions ensure tractability of the model. First,

7. For identification strategies without parametric assumptions, see Brock and Durlauf
(2007).
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the assumption of constant strategic complementarity: the cross-partial of social
utility is a positive constant that is the same for all individuals. Second, rational
expectations: the expected average behavior is simply the objective average
behavior. Finally, the error terms follow a relevant extreme value distribution.
These assumptions are sufficient to produce individual choice outcomes that
are consistent with logistic choice with multiple equilibria. The majority of
these papers assume large populations in order to justify the assumption that
each individual ignores the effect of their own choice on the average choice of
the society. An exception to this is Soetevent and Kooreman (2007), where
they consider interaction in small groups in which choices of other individuals
is fully observable. Thus, the choice of an individual directly depends on the
observed behavior of the others. Our model also uses this intuition. Indeed,
under certain assumptions the behavior produced by a multinomial discrete
choice model with social interactions coincides with the behavior produced by
our baseline model. This requires a different error distribution than the one
commonly assumed for those works. We clarify this connection in Subsection
2.5.

In this strand of literature social interactions has typically been taken to
be generated by group specific averages. Incorporating network theory in the
study of identification of social interactions has enabled a much richer analysis
of the microstructure of interactions. Early works on this assumed a known
network structure, based on common observables or self-reported, elicited data
(Bramoullé et al., 2009; Lee et al., 2010; De Giorgi et al., 2010). However
both of these methods bear shortcomings for econometric methods or practical
reasons related to collecting data (De Paula, 2017). A first improvement on this
was suggested by Blume et al. (2015) by assuming only partial information on
the structure of the underlying network. De Paula et al. (2019) advances on
this by assuming no a priori information on the network structure and provides
sufficient conditions for full identification of social interactions with panel data.
Our paper is complementary to this literature since our general model also
encompasses an influence network, where the structure of the relations do not
need to be known a priori. Instead it is fully revealed by the behaviors thanks
to our identification strategy.

It is important to note that many theoretical models for identification
of peer influence are restricted by strategic complementarity (Blume, 1993;
Brock and Durlauf, 2001, 2006; Blume et al., 2011):8 individual utility over an
action increases with the number of peers taking the action, explaining mostly
conformity-type behavior. However empirical evidence points out to negative
interactions as well. For instance, Glaeser et al. (1996) suggests the existence

8. Exemptions to this include structural models to identification such as Bramoullé et al.
(2009); Cohen-Cole et al. (2018). Bramoullé (2007) studies the effect of the structure of the
network on equilibrium behavior for games of anti-coordination, where there are incentives
to anti-coordinate.
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of negative interactions among criminals due to competition for resources.
Bhatia and Wang (2011) study peer effects in physicians’ prescription behavior
and find a significantly negative effect on each other’s prescription behavior,
partly explained by observational learning and congestion effects. Foster and
Rosenzweig (1995) find evidence of negative relation between experimental
technology adoption rates of farmers and their neighbors. As we show in an
extension in Online Appendix D, our model can accommodate certain type of
negative interactions.

The use of choice theoretic tools to study social interactions is quite
recent. As far as we know the first choice-theoretic work investigating influence
across individuals is Cuhadaroglu (2017). This work introduces a deterministic
model of two stage optimization where the first stage involves maximization
of own preferences (transitive but not necessarily complete), and the second
stage accommodates social influence to further refine first stage outcomes.
Recently, two contemporaneous studies incorporate choice theoretic analysis to
identification of peer effects. Borah and Kops (2018) and Kashaev and Lazzati
(2021) both propose decision procedures in group settings that makes use of
‘a consideration set’ approach. Borah and Kops (2018) proposes a two stage
mechanism, where the first stage is devoted to the formation of consideration
sets with those alternatives that are chosen sufficiently enough by the members
of peers and the second stage is devoted to preference maximization. Kashaev
and Lazzati (2021) incorporate random consideration sets to the dynamic model
of social interactions of Blume (1993). The main difference of our work from
these models is about the channel through which others’ behavior influence the
individual. Our model presumes that social influence alters one’s behavior via
preferences, whereas those two papers assume a limitation of the choice set due
to social influence.9

Fershtman and Segal (2018) also consider a social interaction set up where
individual behavior not only depends on one’s own preferences but also on
the behavior of other agents in an expected utility framework. A social
influence function converts the private utility of the agent and the observable
utilities of everyone else to an observable utility for the agent. They study
certain properties of social influence functions and their implications for the
equilibrium without proposing an explicit behavioral model.

Finally, our work is related to the literature discussing the revealed
preference implications of solution concepts in games; for example, Sprumont

9. Many findings from social psychology or experimental economics literatures support the
notion that social influence alters one’s preferences. For instance, Kremer and Levy (2008)
show that alcohol consumption by one roommate is more likely to influence the alcohol
consumption of another roommate via a preference change rather than a modification of
the choice set. According to the notion of (mis)identification in social psychology, when
some alternatives become identified with certain identities, they become more likely to be
preferred by aspiring individuals, whereas despising individuals avoid them in order not to
be misindentified (Berger, 2016).
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(2000); Lee (2012). One interpretation of the mathematics of our model is
formalizing, for each choice set, a game and a solution concept. Thus, our
model provides observable predictions of our concept as strategy sets vary. The
aforementioned papers also study the predictions of game theory as strategy
sets vary. In a similar fashion, our work is also linked to the literature on
estimation and inference in discrete games; with the main difference being
that rather than relying on parametric or structural estimation techniques, our
main tool of inference is revealed preference. For early works on estimation in
discrete games see Bresnahan and Reiss (1991), Kooreman (1994); for inference
in large discrete games see Menzel (2016); for non-parametric estimation in
non-cooperative games see Haile and Tamer (2003).

2. Behavioral Influence

2.1. The Model

Let X be a finite set of alternatives with |X| > 2. A stochastic choice rule is a
map p : 2X \ {∅} → ∪S⊆X∆++(S) such that for all S ⊆ X, p(S) ∈ ∆++(S).10

We propose a simple model of influence. There are two individuals, 1 and
2. Each individual is influenced by the choices of the other individual. The
observable behavior is a pair of stochastic choice rules (p1, p2) where pi stands
for individual i’s choices. We use the notation i, j ∈ {1, 2} with i 6= j for the
individuals in general. Then pi(x,S) stands for the probability of individual i
choosing alternative x from S, certainly with

∑
x∈S pi(x,S) = 1.

The primitives of our setting are idiosyncratic weights and influence
parameters. Let wi ∈ ∆++(X), so that wi(x) measures the idiosyncratic
weight of the available alternatives for individual i. These can be interpreted
as intrinsic utilities of the alternatives absent any social influence effects as
in the Luce model.11 We postulate that the choice behavior of individual j
regarding an alternative x ∈ S directly influences individual i’s evaluation of
that alternative for the same choice set. Specifically we assume the utility of
agent i from choosing alternative x from budget S is given by:

wi(x) + αipj(x,S)

where αi measures the degree of influence of j on i. For the baseline model, we
assume that αi ≥ 0, hence αi acts as a conformity parameter. The higher the

10. The notation ∆++ refers to the set of probability distributions with full support. We
denote

∑
x∈S f(x) by f(S) for any function f on X.

11. A stochastic choice rule p has a Luce representation (Luce, 1959), if there exists a weight
distribution w ∈∆++(X) such that p(x,S) = w(x)/

∑
y∈S

w(y) for all x ∈ S,S ∈ 2X \ ∅ . This

ratio of relative weights is known as the “Luce ratio.”
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probability that j chooses x from S, the higher is i’s evaluation of x in S. The
value of x is influenced by the choice probability of others in a linear fashion.
Hence, our formulation is in line with the classical linear interaction models
such as Manski (1993); Blume et al. (2011, 2015). The choice probabilities are
given by the normalized utility values as in the Luce model. Formally,

Definition 1. (p1, p2) has a dual interaction representation if there exist
w1, w2 ∈ ∆++ and α1, α2 ∈ <+ such that

pi(x,S) =
wi(x) + αipj(x,S)∑

y∈S
[wi(y) + αipj(y, S)]

(1)

for all x ∈ S,S ∈ 2X \ ∅ and i, j ∈ {1, 2} with j 6= i.

When (p1, p2) has a dual interaction representation with parameters
(w1, w2, α1, α2), we say that (w1, w2, α1, α2) represent (p1, p2).

Dual interaction model defines an equilibrium, where the stochastic choice
behavior of the agents ends up being contingent on each other in a particular
way.12 Different cognitive and/or interactive mechanisms may lead to the
equilibrium granted by this model. For now, we abstract away from these
underlying processes, and instead focus on identification and characterization.13

In our model, each pi is only defined implicitly by the procedure in equation
(1). p2 needs to be known in order to determine p1 and vice versa. However,
given (w1, w2, α1, α2), we can obtain an explicit representation by solving the
system of simultaneous equations, arriving at:

pi(x,S) ≡ λi(S)
wi(x)∑

x∈S
wi(x)

+ (1− λi(S))
wj(x)∑

x∈S
wj(x)

(2)

for λi(S) ∈ (0, 1) defined as,

λi(S) =
wi(S)[wj(S) + αj ]

wi(S)wj(S) + αiwj(S) + αjwi(S)

where wi(S) stands for
∑
x∈S wi(x). Equation 2 helps to explain why we

think of αi as a measure of influence. The stochastic choice of i from choice
set S is, geometrically, a convex combination of i’s Luce choices and j’s Luce

12. It is also possible to think of individuals as if adjusting their behavior according to their
beliefs about the behavior of their peer, rather than the behavior itself. Under an assumption
of rational expectations, as it is common in social interactions literature (Blume et al., 2011),
the beliefs happen to coincide with actual behavior. This interpretation is entirely in line
with our model. However, since our main goal is to focus on the identification of underlying
unobservable parameters out of the observable behavior, we choose not to include this
additional dimension.

13. Subsection 2.5 introduces several prominent examples to these underlying mechanisms.
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choices. As αi increases, this combination tends to be closer to j’s Luce choices.
In other words, the more the peer influence is, the higher is the weight attached
to the peer’s Luce ratio. In the extreme case, when αi = 0, λi(S) is equal
to 1, independent of the budget set, and the model boils down to standard
Luce model.14 In general, each pi can be expressed as a linear combination
of the Luce ratios, where, crucially, the weights in the combination depend
on S. Observe this is “as if” each individual knows exactly not only her own
intrinsic utilities but also those of the other individual, which are not necessarily
observable. Notice that in our original formulation, each individual utilizes each
others’ observable choice behavior rather than their unobservable Luce weights.
We believe influence based on observed behavior rather than an unobserved
parameter is behaviorally and procedurally more plausible.15

Another important implication of this formulation is about uniqueness of
the behavior produced, which is not obvious from the equilibrium description
of the model. Since (p1, p2) can explicitly be expressed as functions of the
parameters, for a given (w1, w2, α1, α2), there is a unique pair (p1, p2) consistent
with the dual interaction model. In other words, our model corresponds to a
unique equilibrium.16

2.2. Identification

Assume we observe (p1, p2) that has a dual interaction representation. How can
we identify the underlying preference and interaction parameters? A powerful
feature of our model is that our identification strategy requires observation of
behavior from only two menus: The universal set X and any menu S that has
at least two distinct alternatives, say x and y. To see how, first define for each
i = 1, 2, for any pair (x,S) with x ∈ S, di : (x,S) 7→ <, by

di(x,S) := pi(x,S)− pi(x,X).

14. It is worth noting that pi consistent with dual interaction model does not satisfy IIA,
the characterizing property of Luce model, (pi(x,S)/pi(y, S) = pi(x, T )/pi(y, T ) for all S,T
and x, y ∈ (S ∩ T )) in general; it only does so when αi = 0 or αi →∞. In the former, there
is no influence, hence i behaves according to wi, whereas in the latter, i fully mimics j. For
an example to the violation of IIA by the dual interaction model, see the example given in
the introduction:

pDan(home, {home,walk})
pDan(walk, {home,walk})

=
0.71

0.29
6=

0.60

0.26
=
pDan(home, {home,walk, gym})
pDan(walk, {home,walk, gym})

.

15. See Section 4 for further discussion on an alternative model that refers to a convex
combination of Luce choices with set independent weights.

16. Let us also finally note that although we restrict our attention to strictly positive
stochastic choice rules (hence considered wi(·) ∈ (0, 1)), it is possible to extend the model
to allow wi(·) ∈ [0, 1]. In this case two additional properties dealing with 0 probabilities
are required for characterization of the model. Although this is a rather straightforward
extension, the proof becomes tedious, hence we choose the restricted setting. The proof is
available upon request.
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The quantity di(x,S) is simply the change in the probability of i’s choosing
x as the set X shrinks to S. With αi ≥ 0, this change is always nonnegative,
with the interpretation that in a larger set, there are more alternatives from
which to choose.17 In the dual interaction model, this change is governed by
two separate effects. First, there is the individual effect. A larger set includes
more alternatives, rendering any given alternative relatively less attractive. In
addition, there is also a social influence effect imposed by the change of the
other individual’s choice probability, dj(x,S). With αi > 0, as the set enlarges,
this indirect effect contributes to the loss in choice probability of any given
alternative. Let us decompose di(x,S) into these two effects explicitly for the
model:

di(x,S) =pi(x,S)− pi(x,X)

=
1−wi(S)

1 + αi
pi(x,S) +

wi(S) + αi
1 + αi

pi(x,S)− 1 + αi
1 + αi

pi(x,X)

=
1−wi(S)

1 + αi
pi(x,S) +

wi(x) + αipj(x,S)

1 + αi
− wi(x) + αipj(x,X)

1 + αi

=
1−wi(S)

1 + αi
pi(x,S)︸ ︷︷ ︸

individual

+
αi

1 + αi
dj(x,S)︸ ︷︷ ︸

social influence

,

where the pi(·)s in the second and third components in the second line are
replaced with the corresponding descriptions of the model in the third line.
Notice what is captured by the individual counterpart. In Luce’s model, this
loss is equal to

d(x,S) = p̂(x,S)− p̂(x,X) =
w(x)

w(S)
−w(x) = (1−w(S))p̂(x,S),

where p̂(x,S) is the corresponding Luce probability. In our decomposition the
individual counterpart captures a similar effect, but weighted by 1/(1 + αi).

We make use of this decomposition to infer αi. One way of achieving this is
to make use of a normalization and the decomposition of di(y, S) to cancel out
the individual counterparts. To this end, take an alternative y ∈ S \ {x} and
normalize both of the decompositions by the respective observed probabilities
as follows and take the difference:

di(x,S)

pi(x,S)
=

1−wi(S)
1+αi

pi(x,S)

pi(x,S)
+

αi
1+αi

dj(x,S)

pi(x,S)

di(y, S)

pi(y, S)
=

1−wi(S)
1+αi

pi(y, S)

pi(y, S)
+

αi
1+αi

dj(y, S)

pi(y, S)

di(x,S)

pi(x,S)
− di(y, S)

pi(y, S)
=

αi
1 + αi

[
dj(x,S)

pi(x,S)
− dj(y, S)

pi(y, S)

]
(3)

17. Indeed this refers to the well-known Regularity property (Block and Marschak, 1960).
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Equation 3 reveals αi uniquely whenever there exists (x, y, S) such that
dj(x,S)/pi(x,S) − dj(y, S)/pi(y, S) 6= 0. Within the proof of Theorem 1, we
show that there always exist (x, y, S) such that this condition holds, as long as
p1 6= p2. For the inference of wi(x), we simply make use of the description of the
model for choices from X, yielding: wi(x) = pi(x,X) +αi(pi(x,X)− pj(x,X)).
Obviously each wi(x) is identified uniquely with

∑
X wi(x) = 1. Let us state

these results in a proposition for completeness purposes.

Proposition 1. Let p1 6= p2 and (p1, p2) have a dual interaction
representation. Then (w1, w2, α1, α2) that represent (p1, p2) are identified
uniquely.

Identification above relies on the availability of data from two sets, the
universal set X and any other menu S with at least two alternatives. This begs
the question whether it is possible to do any inference when choices from X are
not available? Indeed it is possible to recover the parameters from pairs of sets
as long as they have at least two common elements, although the identification
strategy gets slightly more complicated. To see how, let any two distinct sets
S,T with x, y ∈ S ∩ T and S ∪ T = X and reproduce equation (3) for any two
such S,T , as di(x,S, T ) = pi(x,S)− pi(x, T ) =

=
wi(T )−wi(S)

wi(T ) + αi
pi(x,S) +

wi(x) + αipj(x,S)

wi(T ) + αi
− wi(x) + αipj(x, T )

wi(T ) + αi

=
wi(T )−wi(S)

wi(T ) + αi
pi(x,S)︸ ︷︷ ︸

individual

+
αi

wi(T ) + αi
dj(x,S, T )︸ ︷︷ ︸

social influence

Normalizing the decompositions for distinct x, y ∈ S and taking the
difference will result in:

di(x,S, T )

pi(x,S)
− di(y, S, T )

pi(y, S)
=

αi
wi(T ) + αi︸ ︷︷ ︸
γi(x,y,S,T )

[
dj(x,S, T )

pi(x,S)
− dj(y, S, T )

pi(y, S)

]

Thus two identifying equations are:

γi(x, y, S, T ) =
αi

wi(T ) + αi
and γi(x, y, T, S) =

αi
wi(S) + αi

. (4)

Unlike the case with data from X, we now have one too many parameters
for unique identification only from γis. The third identity we need comes
from the normalization assumption wi(X) = 1. Yet as the behavior from X
is not observed, we need to decompose it consistently over S and T . Since
wi(S) +wi(T \S) = 1, by definition of the model wi(x) = [αi +wi(T )]pi(x, T )−
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αipj(x, T ) yields:

wi(T \ S) = [αi +wi(T )]
∑

x∈T\S

pi(x, T )− αi
∑

x∈T\S

pj(x, T ) = 1−wi(S),

resulting in the last equation sufficient for unique identification combined with
the two above.

We shall note that the requirement S ∪ T = X is not strictly necessary for
identification without choice data from X. Since we cannot speculate about
underlying parameters without observing some data involving all variables, the
identification requires some observations covering X. Specifically, in addition
to identification equations (4), more data revealing wi(S ∪ T ) is required.
Whenever S ∪ T = X, the normalization wi(X) = 1 comes to aid. Whenever
S ∪ T 6= X, any additional observation revealing wi(X \ (S ∪ T )) should be
sufficient for identification of α1 and α2.

2.3. Falsifiability

For identification we assumed a pair of choice behaviors (p1, p2) consistent
with the dual interaction model. We now need to express explicitly how one
can detect the consistency of the data with the model. In other words for given
(p1, p2), which properties of these behaviors ensure that these two individuals
are behaving as if they are choosing according to dual interaction model?

We have three falsifiable characterizing properties built around the
decomposition of di(x,S) into individual and social counterparts as we have
used in Subsection 2.2. Specifically, for any S 6= X and x ∈ S, di(x,S) is
composed of two counterparts: the individual effect (as there are more options
in X than S for i’s attraction) and the social influence effect (same goes for j’s
attraction).

Our characterizing properties build on the premise that one can eliminate
the unobserved individual effects for x ∈ S by cancelling them out with those
of di(y, S) for some distinct y ∈ S. The remainder will then be a function of the
social influence effect. Specifically, it will be a linear function. Formally, take
any S and x, y ∈ S with dj(x,S)/pi(x,S) − dj(y, S)/pi(y, S) 6= 0 and define
βi(x, y, S) as follows:

di(x,S)

pi(x,S)
− di(y, S)

pi(y, S)
= βi(x, y, S)

[
dj(x,S)

pi(x,S)
− dj(y, S)

pi(y, S)

]
(5)

Three properties that impose conditions on these two variables β1(x, y, S)
and β2(x, y, S) are sufficient for the characterization of the dual interaction
model.

Independence [I ]. βi(x, y, S)(:= βi) is independent of S, x, y. Moreover
βi satisfies (5) for all S 6= X and distinct x, y ∈ S.
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Uniform Boundedness [UB ]. βi(x, y, S) < minz∈X

{
pi(z,X)
pj(z,X)

}
for all S,

and distinct x, y ∈ S.
Non-negativeness [Nn]. βi(x, y, S) ≥ 0 for all S, and distinct x, y ∈ S.

Independence is the property that restores the additive linear influence
structure among individuals. βi(x, y, S) is defined for all those observations with
a non-zero dj(x,S)/pi(x,S)− dj(y, S)/pi(y, S). The first part of Independence
ensures that βi(x, y, S) is indeed constant across observations, hence defining
βi. The second part of Independence guarantees that this βi satifies equation
(5) even for those observations with dj(x,S)/pi(x,S)− dj(y, S)/pi(y, S) = 0.
Uniform Boundedness guarantees that idiosyncratic evaluations of alternatives,
wi are positive. This is due to the choice of αi := βi/(1 − βi) and wi(x) :=
pi(x,X) + αi(pi(x,X) − pj(x,X)), as revealed in Subsection 2.2. These two
equations jointly imply:

pi(x,X)

pj(x,X)
=
wi(x) + αipj(x,X)

(1 + αi)pj(x,X)
=

wi(x)

(1 + αi)pj(x,X)
+

αi
1 + αi

.

Hence, by UB,

βi =
αi

1 + αi
< min
x∈X

{ wi(x)

(1 + αi)pj(x,X)
+

αi
1 + αi

}
ensures that wi(x) > 0 for all x. And finally, Non-negativeness restricts
the interaction among individuals to conformity behavior rather than
diversification.

The characterization result is stated for pairs of stochastic choice rules with
some variation in the overall behavior, i.e., p1 6= p2. This is because having
exactly the same behavior in any choice set might be due to identical preferences
of 1 and 2, i.e, w1 = w2; or it might be because one of the individuals only cares
about imitating the other individual. It is not possible to distinguish between
these cases without any additional information, such as their choice behavior
in isolation.

Theorem 1. Let p1 6= p2. Then (p1, p2) has a dual interaction
representation if and only if it satisfies Independence, Uniform Boundedness,
and Non-negativeness.

The proof constructs the model thanks to the structure granted by
Independence and by the help of restrictions imposed by the remaining two
axioms. We take αi(x, y, S) := αi = βi/(1 − βi) (well-defined by the first
two properties and non-negative by the latter two) and wi(x) := pi(x,X) +
αi(pi(x,X)− pj(x,X)) (positive by Uniform Boundedness). We then show that
for any S and x, y ∈ S, Independence builds up to

pi(x,S)

pi(y, S)
=
wi(x) + αipj(x,S)

wi(y) + αipj(y, S)
.
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The fact that this holds for each pair of alternatives immediately gives us the
dual interaction model.

Theorem 1 is a strong result. Three properties over βi(·) are necessary and
sufficient to confirm if two individuals are choosing consistently with the dual
interaction model. This becomes a straightforward falsification exercise for an
observable pair of choice behaviors, (p1, p2), as βi(·) is merely derived from
data. Independence is a property very much in the spirit of ‘constant ratio’
properties such as Luce’s IIA. IIA requires that the ratio of choice frequencies
of any two alternatives is constant across sets. Similarly, Independence requires
that the ratio given by βi(·) for any two alternatives is constant across sets.
Certainly what is captured by βi is not as straightforward to see as Luce’s ratio,
however we argue that there is subtle behavioral content to βi. Observe that,
di(x,S)/pi(x,S) is the percentage decrease in agent i’s choice probability of x
in expanding S to X. So, di(x,S)/pi(x,S)− di(y, S)/pi(y, S) is a differential in
percentage changes. On the other hand, dj(x,S)/pi(x,S) − dj(y, S)/pi(y, S)
reflects a differential in percentage changes for agent j, normalized by the
choice probabilities of i. Thus, the ratio of these two differentials in percentage
changes, i.e., βi(x, y, S), acts like a differential cross-elasticity of choice
probabilities in expanding the set S to X. Independence fixes this differential
cross-elasticity for different menus, while the other two properties bound it.

2.4. Stability

The dual interaction model involves an adjustment procedure where an
individual’s evaluation of an alternative is adjusted by the other’s behavior as
well as the level of susceptibility to influence. We now embed this adjustment
procedure in a dynamic setting, where individuals start interaction from
possibly unrelated behaviors. Specifically let (pt1, p

t
2) denote the behaviors of 1

and 2 at period t > 0 and assume that their initial behaviors (p1
1, p

1
2) are given.

One can think of new roommates or teenagers just enrolled in a new school as
examples. Below we show that although these individuals start interacting from
possibly unrelated behaviors, as long as they adjust consistently, eventually
they converge to (p∗1, p

∗
2), the unique pair of behaviors that the model yields

for the given set of parameters. In other words, the behavior produced by the
dual interaction model constitutes a stable equilibrium when embedded in a
dynamic environment.

Theorem 2. Take wi ∈ ∆++(X), αi ≥ 0, p∗i (S) ∈ ∆++(S) for all S ∈
2X \ {∅} and for each i ∈ {1, 2} and let (w1, w2, α1, α2) represent (p∗1, p

∗
2).

Further, let (p1
1, p

1
2) ∈ ∆(S) × ∆(S). Define for each i ∈ {1, 2} and t ≥ 2,

pti(·, S) ∈ ∆(S) via

pti(x,S) ≡
wi(x) + αip

t−1
j (x,S)∑

y∈S wi(y) + αip
t−1
j (y, S)

.
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Then for each i ∈ {1, 2}, limt→∞ p
t
i = p∗i .

An interesting implication of this dynamic environment involves
identification. Although the observed behavior changes over time, because
it changes in a consistent way, our identification strategy still holds for the
underlying preference and interaction parameters (w1, w2, α1, α2). Similar to
the static setting, the data requirement is minimal: only choice behavior from
two different sets need be observed. However, since now observations are
from different time periods, inference of αi demands data from two successive
periods.

Proposition 2. Let (pt−1
1 , pt−1

2 , pt1, p
t
2) such that for each i ∈ {1, 2} and

pti(·, S) ∈ ∆(S)

pti(x,S) ≡
wi(x) + αip

t−1
j (x,S)∑

y∈S wi(y) + αip
t−1
j (y, S)

.

Then (w1, w2, α1, α2) that represent (p1, p2) are identified uniquely.

2.5. Foundations

Why does the dual interaction model make sense as a decision procedure
that incorporates social influence? We provide three different foundational
justifications, three different mechanisms that produce behavior consistent
with the dual interaction model. Each environment differs from the classical
stochastic choice setting. To this end, we strip the menu-richness of the choice
argument away and focus on a single budget set, say X. We suppress the
menu dependence in the notation of this subsection. All of the following can
be reproduced for any menu S.

The first mechanism we introduce reproduces dual interaction as the
equilibrium of a game, whereas the second one incorporates individual utility
maximization in a discrete choice setting with peer effects. The main link
between these two and our model is built around the use of a logistic
distribution. However as we show in the third mechanism, the logistic set-up is
dispensable. This last part introduces a simple naive learning mechanism that
also reproduces dual interaction behavior in the limit.

2.5.1. Game theoretic foundations: Dual interaction model envisions individ-
ual behavior contingent on peer behavior, which naturally relates to a game
set-up. Thus the first question we investigate is whether the pair of behaviors
produced by the dual interaction model could also be rationalized by an
underlying game. Indeed we show that, a very specific solution concept for
normal form games, Quantal Response Equilibrium (McKelvey and Palfrey,
1995), also reproduces the behavior granted by our model. To see this, consider
a normal form game with two players 1 and 2, with S = S1 × S2 = X ×X as
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the set of strategy profiles and si represents a pure strategy for player i. Let
Σi denote the set of probability distributions over Si and an element σi ∈ Σi
is a mixed strategy, and σi(si) is the probability that player i chooses pure
strategy si with Σ as the set of mixed strategy profiles. The pay-off functions
ui : S → < are such that ui(x, y) represents the utility of player i when player
1 consumes x and player 2 consumes y. In particular, assume that u1(s) =
u1(x, y) = w1(x) + α11{x = y} and u2(s) = u2(x, y) = w2(y) + α21{y = x}.
In other words each player receives a consumption utility wi(x) and additional
utility αi when their consumptions match. With positive α, this corresponds
to a very simple form of pay-off function for conformity games. For instance,
consider classroom behavior of students: Asking a question ‘feels easier’ when
someone else does so (Alessio and Kilgour, 2011) or negative behavior such
as aggression becomes more rewarding in presence of aggressive peers (Hanish
et al., 2005).

Hence, for each mixed-strategy profile σ ∈ Σ, player i’s expected payoff is
ui(σ) =

∑
s∈S

σi(si)σj(sj)ui(s) and the expected payoff for adopting the pure

strategy si when the other player uses σj is ui(si, σj) =
∑

sj∈Sj
σj(sj)ui(si, sj) =

σj(si)(wi(si) + αi) + (1 − σj(si))wi(si) = wi(si) + αiσj(si). Under the
assumption that Ui(si, σj) = ui(si, σj)εis with i.i.d. Log-logistic errors (i.e.,
log εi follows a Type 1 extreme value distribution), the QRE outcome coincides
with (p1, p2) of the dual interaction model. The standard stochastic derivation
is provided in the Online Appendix B.

Two caveats must be mentioned: first, QRE is a prediction for a single
game, whereas the testable implications of our model derive their power from
the ability to observe behavior across choice sets. Indeed, QRE affords basically
no predictions on a single-game (much like classical choice theory generates no
predictions from a single budget). See for example, Haile et al. (2008). Thus, a
suitable extension of the notion of QRE across game forms must be described.18

Second, our model results from a very specific choice of error distribution (one
of the parameters of the QRE model) and a very specific choice of utility (the
other main parameter). To sum up, the behavior produced by our model may
be viewed as being rationalized by a particular choice of game forms and the
logit QRE solution concept, suitably extended to across games. We believe
exploration of similar results for generic games of peer influence with standard
equilibrium concepts remains as an interesting open question outside the scope
of this paper.19

18. In particular one must take care to ensure the error distributions across game forms
coincide in a natural way.

19. The extensive literature on peer influence games over social networks (Ballester et al.,
2006; Calvo-Armengol et al., 2009) does not provide an immediate answer to this question,
mostly because the multivariate discrete nature of our setting and the assumption that main
observables are stochastic choice outcomes over different menus.
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2.5.2. Random utility with linear social interactions: The standard economet-
ric tools to study social interactions include discrete choice models with peer
effects (Blume, 1993; Brock and Durlauf, 2001, 2006). These models regard
individual utility as a linear additive function of observed and unobserved indi-
vidual characteristics as well as social influence. Under the assumption of i.i.d
extreme value unobserved characteristics, utility maximization yields choice
frequencies as a function of individual characteristics and social influence. The
dual interaction model can also be reproduced in a multinomial discrete choice
setting. Two specific assumptions are sufficient to achieve this: a logarithmic
transformation of the utility and a relevant extreme value distribution. To see
how this works, assume a multiplicative form for individual utility as follows:

Ui(x) = Vi(x)εi(x) where Vi(x) = wi(x) + αipj(x)

Similar to the previous subsection (and as by step by step derivation
provided in Online Appendix B), under the assumption that εi follows a
log-logistic distribution, maximization of logUi(x) results in pi(x), exactly as
given by the dual interaction model. Thus, a logarithmic transformation of
the individual utility and a relevant extreme value distribution for the error
terms in a discrete choice setting with social interactions lead to the behavior
described by the dual interaction model.

According to Blume et al. (2011) empirical challenges to identification of
social interactions are broadly grouped under three categories: (i) simultaneous
equations problem: how to differentiate the direct interdependencies between
choices from the effects of predetermined social factors; (ii) unobserved group-
level characteristics; (iii) endogeneity of reference groups and self-selection.
The primary aim of our social interaction model for identification purposes
is the revelation of the direct interdependencies between choices. Those are
captured by the interaction parameter, αi. Since our model lives in a two-
parameter world, all other effects are left to be captured by the preference
parameter wi. This approach enables us to tackle the simultaneous equation
problem of (i), ‘the reflection problem’, by identifying the endogenous effects
and abstracting away from observed or unobserved group level characteristics,
namely contextual and correlated effects.20

In order to address challenges belonging to (ii) or (iii) and investigate the
effects of predetermined social factors, one approach could be further exploring
heterogeneities over wi (and/or αi). For instance, take the issue of homophily,
the tendency to create social ties with people who are similar to one’s self
(McPherson et al., 2001; Blackwell and Lichter, 2004; Currarini et al., 2009).
This is an endogenous reference group formation problem and is not immediate

20. See Brock and Durlauf (2007) for identification of correlated effects in discrete choice
social interaction models and Bramoullé et al. (2020) for a recent survey of the methods
developed to address it.
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to identify out of observable behavior. However our model reduces homophily
to the similarity of underlying wi parameters for people with high αi values. In
other words, our identification strategy can be helpful to identify homophilic
interactions by comparing the revealed wi’s. Certainly this becomes a more
interesting question in a multi individual setting, as we explore in Section 3.

One final potential challenge that may arise in our setting but not listed
explicitly within the above categories is due to the exogenous menu variation
across individuals. We assume that individuals choose from the same menus of
alternatives, and our entire identification strategy is based on menu variation.
However in cases the menus available to individuals are correlated with the
idiosyncratic unobservables, this critical assumption fails. Hence the dual
interaction representation will not be useful for identification with endogenous
menu variation.

2.5.3. Naive learning with anchors: The previous two subsections have
explored the rational and/or strategic motivations underlying dual interaction
mechanism. However adopting the behavior dictated by the dual interaction
model does not necessitate adopting standard notions of full rationality. Indeed,
dual interaction model can also be reproduced in a particular boundedly
rational learning setting. The most well-known model of naive learning over
social networks, the DeGroot model, envisions a non-Bayesian updating of
individual beliefs by repeatedly taking weighted averages of one’s neighbors’
beliefs (DeGroot, 1974; Golub and Jackson, 2010). The behavior produced
by the dual interaction model is observationally equivalent to the limit of a
DeGroot updating process with anchors. In this setting, w1 and w2 act as
anchors, as innate preferences/beliefs that do not change over time. At each
point in time, the individuals update their behavior by taking a weighted
average of their peers’ behavior and their own anchor, with time invariant
weighting. In the limit, this updating converges to the behavior produced by
the dual interaction model. We leave the detailed derivation of this mechanism
to Online Appendix C.

Overall, these three settings indicate that behavior postulated by our
model can be justified by an underlying utility maximization as well as a
naive learning mechanism. The main difference of our model lies in the menu
variability of our setting. Our model is a stochastic choice model that assumes
consistent behavior across menus. Critically this menu variability grants us
unique identification of the underlying unobserved parameters.

3. Multi-agent Interaction

One of the strengths of our model is that it is easily generalizable to multi
individual setting with more intricate forms of social interactions. We can
easily capture the heterogeneities that drive different behavioral outcomes
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in a social context. Not only individuals have different preferences but they
also have different levels of susceptibility to influence. Or similarly, different
people might influence an individual in different ways. The generalization of
our model to multi individual setting allow for these variations, by providing a
complementary approach to the identification of social interactions over social
networks. In particular, it allows the identification of a weighted social network
from choice behavior.

Early works on social networks have assumed known network structure,
based on common observables or self-reported, elicited data (Bramoullé et al.,
2009; Lee et al., 2010; De Giorgi et al., 2010), that is rather costly to collect
(De Paula, 2017). A first improvement on this was suggested by Blume et al.
(2015) by assuming only partial information on the structure of the underlying
network. De Paula et al. (2019) advances on this by assuming no a priori
information on the network structure and provides sufficient conditions for full
identification of social interactions with panel data. Similarly, our generalized
model do not require any exogenous network structure. On the contrary, our
representation theorem reveals the unknown network of social influence in
addition to individual preferences and influence patterns. Specifically, given
the behavior of a group of individuals that is consistent with our characterizing
properties, we can uniquely identify the underlying preferences, represented by
wi, and the interaction pattern, represented by αij , capturing how individual i
is influenced by the behavior of individual j for all pairs of individuals i and j.
Note that the interaction between i and j might be asymmetric, i.e., αij need
not be equal to αji.

Let us now formally introduce the multi individual model. Let N denote
a set of n < +∞ individuals interacting. As before, for each choice problem,
S ∈ 2X \ ∅, we observe agent i’s stochastic choice, pi(x,S). Let p−i(x,S) ∈ <n−1

denote the vector of pj(x,S) and d−i(x,S) ∈ <n−1 the vector of dj(x,S) for
all j 6= i.

Definition 2. (p1, p2, ..., pn) has a social interaction representation if for
each i ∈ N there exist wi ∈ ∆++(X) and αi ∈ <n−1

+ such that

pi(x,S) =
wi(x) +αi · p−i(x,S)∑
y∈S [wi(y) +αi · p−i(y, S)]

for all x ∈ S and for all S.

The parameter αi captures different levels of susceptibility to influence from
different individuals, i.e., agent i can be influenced differently by different j’s.
Let αij denote the entry of αi relating to the influence of individual j on i. If
αij = 0 for all j 6= i, once again i’s choice behavior reduces down to Luce.

The identification strategy and the characterizing properties are similar to
those of the baseline model. Notice that for any S 6= X, and any two distinct
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x, y ∈ S, now there might be multiple vectors γi ∈ <n−1 satisfying the following
equation:

γi ·
(
d−i(x,S)

pi(x,S)
− d−i(y, S)

pi(y, S)

)
=
di(x,S)

pi(x,S)
− di(y, S)

pi(y, S)
. (6)

We will be interested in the ones that satisfy it for all observations.

Bi = {γi ∈ <n−1 |γi solves (6) for any S and distinct x, y ∈ S}

The first characterizing property ensures that Bi is nonempty, hence there
is at least one solution to the system of equations given by (6) for all S and
x, y ∈ S. The last one puts bounds on it.

N-Independence [N-I ]. Bi is nonempty.
N-Positive Uniform Boundedness. [N-PUB ] pi(z,X)> γi ·p−i(z,X)

for some γi ∈ Bi with γi ∈ <n−1
+ , for all z ∈ X.

N-Independence implies that there exists a vector, say βi, that satisfies (6)
independent of S, x, y. As before, αi is to be identified from βi. Specifically,
αij = βij/(1−

∑
j 6=i

βij). However, unique identification requires more than two

observations this time, simply because there are more unknowns now. Indeed,
equation (6) has (n− 1) unknowns, αij for each j 6= i. Hence, the number of
linearly independent equations required to solve the system is (n− 1). Notice
that this does not mean we necessarily need data from (n− 1) different menus.
All that is required is (n− 1) observations; data from two different menus is
sufficient as long as there are at least (n− 1) common pairs of alternatives in
these two menus.21

Unique identification of the underlying preferences is then achieved via

wi(x) = pi(x,X) +
∑
j 6=i

αij [pi(x,X)− pj(x,X)]. (7)

Theorem 3. Let {pi}i∈N . Then, {pi}i∈N has a social interaction
representation if and only if N-Independence and N-Positive Uniform
Boundedness hold.

21. Notice that with n individuals, there are n(n − 1) unknown interaction parameters.
Full identification of these requires (n − 1) independent identification equations given by
equation 6, which corresponds to observations of (n− 1) pairs of alternatives from at least 2
different menus. For instance with 4 individuals, to point identify 12 interaction parameters,
observations from pi({x, y, z}) and pi(X) with |X| ≥ 4 is sufficient (conditional on linear
independence). When number of alternatives in X is not high enough to consider different
pairs, it is possible to use the same pairs of alternatives from a larger number of menus. With
10 individuals, to identify 90 interaction parameters, observations from pi({x, y, z, t, u} and
pi(X) with |X| ≥ 6 is sufficient as well as pi({x, y, z}), pi({x, y, t}), pi({x, z, t}) and pi(X)
with |X| ≥ 4.
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As before, the equilibrium defined by the model always exists and is unique.
Moreover, when embedded in a dynamic adjustment process, as in Subsection
2.4, the limit behavior happens to be the equilibrium defined by our model.
The following theorem formalizes these.

Theorem 4. Take wi ∈ ∆++(X), αij ≥ 0 for all i, j ∈ {1, 2, ..., n} with i 6= j.
Then, there is a unique (p∗1, . . . , p

∗
N ) ∈ ∆++(S)N for which

p∗i (x,S) =
wi(x) +αi · p∗−i(x,S)∑
y∈S [wi(y) +αi · p∗−i(y, S)]

and for any (p1
1(·, S), . . . , p1

N (·, S)) ∈ ∆++(S)N , the iterative map

pti(x,S) =
wi(x) +αi · pt−1

−i (x,S)∑
y∈S [wi(y) +αi · pt−1

−i (y, S)]

converges to (p∗1, . . . , p
∗
N ).

4. Concluding Remarks

The identification of social interactions from observable behavior is an
important and highly topical agenda for economists. We believe that the use of
choice theoretic tools to study social interactions introduces a new perspective
to this problem that has traditionally been dealt with mostly econometrics
tools.

Exploiting standard choice theoretic tools, this model, and others, should
prove useful for the identification of unobservable underlying interaction
structures and parameters out of observable behavior. The strength of our
identification strategy relies on the novel source of variation we have introduced:
the variation of the choice sets. Whether the same insight can be applied to more
general settings of interaction constitutes an interesting future research avenue.
One potential way to generalize our model is via more flexible definitions of
individual utilities a la Luce:

pi(x,S) =
Ui(x|S,αi, pj)∑
y∈S Ui(y|S,αi, pj)

where Ui(x|S,αi, pj) represents agent i’s utility when she chooses alternative
x from budget S. In this paper, we aimed to come up with a particular Ui(·)
that produces (p1, p2) (i) that is unique for a given set of parameters, (ii) out
of which the underlying parameters can be revealed uniquely with an arguably
small amount of data, (iii) that is axiomatizable, hence falsifiable, (iv) that
is stable when accommodated within a dynamic adjustment process, and (v)
that can be produced as the outcome of well-known interaction mechanisms
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such as a game, parametric social interaction models or social learning, under
appropriate assumptions. Our model assumes that Ui(x|S,αi, pj) is a linear
combination of the intrinsic utility and the choice probability of the other.
This linearity, combined with the asymmetric role played by the self vs influence
over different menus grants us the unique identification. One interesting close
alternative would be

U∗i (x|S,αi, pj) = wi(x) +
αiwi(S)

1− αi
pj(x,S).

According to this formulation, the decision maker inherently places different
weights on the choice probability of others across different menus. What makes
this formulation interesting is that it boils down to a convex combination of
two Luce models as follows:

pi(x,S) = λi
wi(x)∑
y∈S wi(y)

+ (1− λi)
wj(x)∑
y∈S wj(y)

where λi = (1 − αi)/(1 − αiαj). However, this model does not always lend
itself to unique identification of the underlying parameters out of observable
behavior. We hope that similar results can be obtained by studying different
forms of utility, which extends the insights of this paper.

Appendix A: Proofs

Proof of Theorem 1. (⇒) Let (p1, p2) with p1 6= p2 have a dual interaction
representation with (w1, w2, α1, α2).

First we assume that βi is well-defined and show that Equation 5 holds
for all x, y and S. Define βi :≡ (αi)/(1 + αi). Then βi[dj(x,S)/pi(x,S) −
dj(y, S)/pi(y, S)] is equal to

=
αi

1 + αi

(
pj(x,S)− pj(x,X)

pi(x,S)
− pj(y, S)− pj(y,X)

pi(y, S)

)
=
wi(x) + αipj(x,S)−wi(x)− αipj(x,X)

(1 + αi)pi(x,S)
− wi(y) + αipj(y, S)−wi(x)− αipj(y,X)

(1 + αi)pi(y, S)

=
(wi(S) + αi)pi(x,S)− (1 + αi)pi(x,X)

(1 + αi)pi(x,S)
− (wi(S) + αi)pi(y, S)− (1 + αi)pi(y,X)

(1 + αi)pi(y, S)

=
pi(y,X)

pi(y, S)
− pi(x,X)

pi(x,S)

=
di(x,S)

pi(x,S)
− di(y, S)

pi(y, S)
.

Since this holds for all S 6= X and distinct x, y ∈ S, Equation 5 holds for
all x, y and S.
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Now we show that βi is indeed well-defined. We have three exhaustive cases.
Fix i, j ∈ {1, 2} with i 6= j and first let αi 6= 0. We will show that for some
S 6= X and distinct x, y, we have dj(x,S)/pi(x,S) − dj(y, S)/pi(y, S) 6= 0,
hence, βi(x, y, S) exists. Assume for a contradiction that dj(x,S)/pi(x,S) −
dj(y, S)/pi(y, S) = 0 for all S and distinct x, y. Then,

dj(x,S)

pi(x,S)
− dj(y, S)

pi(y, S)
= 0⇒ pj(x,S)− pj(x,X)

pi(x,S)
=
pj(y, S)− pj(y,X)

pi(y, S)

⇒ αipj(x,S)− αipj(x,X)

pi(x,S)
=
αipj(y, S)− αipj(y,X)

pi(y, S)

⇒ wi(x) + αipj(x,S)−wi(x)− αipj(x,X)

pi(x,S)
=
wi(y) + αipj(y, S)−wi(y)− αipj(y,X)

pi(y, S)

⇒ [wi(S) + αi]pi(x,S)− [1 + αi]pi(x,X)

pi(x,S)
=

[wi(S) + αi]pi(y, S)− [1 + αi]pi(y,X)

pi(y, S)

⇒ pi(x,X)

pi(x,S)
=
pi(y,X)

pi(y, S)
.

But since this holds for all S, x, y, then IIA would be satisfied, establishing
a contradiction with αi 6= 0. Now consider αi = 0 and αj 6= 0. Then pi
has a Luce representation and di(x,S)/pi(x,S) − di(y, S)/pi(y, S) = 0 for
all S and x, y ∈ S. We now show that for some S and distinct x, y ∈ S,
dj(x,S)/pi(x,S)− dj(y, S)/pi(y, S) 6= 0 so that I is satisfied for βi = αi/(1 +
αi) = 0. Assume for a contradiction that for all S and distinct x, y ∈ S,
dj(x,S)/pi(x,S)− dj(y, S)/pi(y, S) = 0. Since αj 6= 0, we have

αj
1 + αj

(
di(x,S)

pj(x,S)
− di(y, S)

pj(y, S)

)
=
dj(x,S)

pj(x,S)
− dj(y, S)

pj(y, S)
(A.1)

for all S and distinct x, y ∈ S, as we have shown above. Take S and
x, y ∈ S with di(x,S)/pj(x,S) 6= di(y, S)/pj(y, S) and substitute dj(x,S) by
dj(y, S)pi(x,S)/pi(y, S) in (A.1):

αj
1 + αj

(
di(x,S)

pj(x,S)
− di(y, S)

pj(y, S)

)
=
dj(y, S)pi(x,S)

pj(x,S)pi(y, S)
− dj(y, S)

pj(y, S)

αj
1 + αj

(
di(x,S)

pj(x,S)
− di(y, S)

pj(y, S)

)
=
dj(y, S)pi(x,S)pj(y, S)− dj(y, S)pj(x,S)pi(y, S)

pj(x,S)pi(y, S)pj(y, S)

αj
1 + αj

=
dj(y, S)[pi(x,S)pj(y, S)− pi(y, S)pj(x,S)]

pi(y, S)[di(x,S)pj(y, S)− di(y, S)pj(x,S)]

As pi has a Luce representation, di(x,S) = pi(x,S)(1−wi(S)). We can then
simplify the expression as follows:

αj
1 + αj

=
dj(y, S)

pi(y, S)(1−wi(S))
=
dj(y, S)

di(y, S)
.
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But then,

αj
1 + αj

=
dj(y, S)

di(y, S)
⇒ αjpi(y, S)− αjpi(y,X)

1 + αj
= pj(y, S)− pj(y,X)

⇒ wj(y) + αjpi(y, S)−wj(y)− αjpi(y,X)

1 + αj
= pj(y, S)− pj(y,X)

⇒ pj(y, S)[wj(S) + αj ]− pj(y,X)[1 + αj ]

1 + αj
= pj(y, S)− pj(y,X)

⇒ pj(y, S)[wj(S) + αj ]

1 + αj
− pj(y,X) = pj(y, S)− pj(y,X)

Contradiction since wj(S) 6= 1.
Finally, let αi = αj = 0. We claim that there exists S and distinct x, y ∈ S

such that dj(x,S)/pi(x,S)− dj(y, S)/pi(y, S) 6= 0 so that βi = αi/(1 + αi) = 0
solves (5) for all S and distinct x, y ∈ S. Assume for a contradiction not. Since
pj allows a Luce representation, dj(x,S) = (1−wj(S))pj(x,S). But then,

dj(x,S)

pi(x,S)
=
dj(y, S)

pi(y, S)
⇒ pj(x,S)

pi(x,S)
=
pj(y, S)

pi(y, S)
.

Since this would be the case for all S and x, y ∈ S, we would have pi = pj ,
contradiction. Thus, we have established I for all cases with βi ≡ βi(x, y, S) =
αi/(1 + αi).

Nn follows directly. UB follows from wi(x) > 0 for all x since wi(x) = (1 +
αi)pi(x,X) − αipj(x,X). Then we have pi(x,X)/pj(x,X) > βi, establishing
necessity.

(⇐) Let p1 6= p2 satisfy the axioms. Now define βi ≡ βi(x, y, S) by I.
UB implies βi 6= 1 since otherwise 1 < pi(x,X)/pj(x,X) for all x ∈ X
yields pi(x,X) > pj(x,X), from which it follows that 1 =

∑
x∈X pi(x,X) >∑

x∈X pj(x,X) = 1, a contradiction. Since βi 6= 1, define αi := βi/(1− βi).
We claim that αi ≥ 0. Observe that by UB, βi < 1. Joint with Nn, this

means βi ∈ [0, 1). Hence it follows that αi = βi/(1− βi) ≥ 0.
Next, we define weights for each alternative:

wi(x) ≡ pi(x,X) + αi(pi(x,X)− pj(x,X)).

Observe that
∑
x∈X wi(x) = 1.

Now take any S 6= X with distinct x, y ∈ S. Then:

di(x,S)

pi(x,S)
− di(y, S)

pi(y, S)
=

αi
1 + αi

[
dj(x,S)

pi(x,S)
− dj(y, S)

pi(y, S)

]
pi(y,X)

pi(y, S)
− pi(x,X)

pi(x,S)
= αi

[
dj(x,S)− di(x,S)

pi(x,S)
− dj(y, S)− di(y, S)

pi(y, S)

]
pi(x,X) + αidj(x,S)− αidi(x,S)

pi(x,S)
=
pi(y,X) + αidj(y, S)− αidi(y, S)

pi(y, S)
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Now add αi to both sides of this equality and notice that as −αidi(x,S) +
αipi(x,S) = αipi(x,X), the numerators of both of the sides are nonzero. Hence:

pi(x,S)

pi(y, S)
=
pi(x,X) + αidj(x,S)− αidi(x,S) + αipi(x,S)

pj(y,X) + αidj(y, S)− αidi(y, S) + αipi(y, S)

=
pi(x,X) + αi(pi(x,X)− pj(x,X)) + αipj(x,S)

pi(x,X) + αi(pi(x,X)− pj(x,X)) + αipj(x,S)

=
wi(x) + αipj(x,S)

wi(y) + αipj(y, S)
.

Observe in particular that this equality holds even in the case x = y. Now,
for any x, y ∈ S, we have

pi(y, S) = pi(x,S)
wi(y) + αipj(y, S)

wi(x) + αipj(x,S)

so that ∑
y∈S

pi(y, S) =
∑
y∈S

pi(x,S)
wi(y) + αipj(y, S)

wi(x) + αipj(x,S)
.

Conclude

1 = pi(x,S)

∑
y∈S(wi(y) + αipj(y, S))

wi(x) + αipj(x,S)
.

Consequently,

pi(x,S) =
wi(x) + αipj(x,S)∑

y∈S(wi(y) + αipj(y, S))
.

We finally show that wi(x) > 0 for all x ∈ X. For all x ∈ X,
pi(x,X)/pj(x,X) > βi = αi/(1 + αi). Here, we obtain (αi + 1)pi(x,X) >
αipj(x,X) for all x. Consequently, wi(x) = pi(x,X) +αi[pi(x,X)− pj(x,X)]>
0 for all x. �

Sketch of the Proof of Theorem 2. Theorem 2 is a special case of
Theorem 4 (and Theorem D.D.2), but there is an especially simple way to grasp
the argument, based on contraction mapping. Construct the map f : ∆(S)×
∆(S)→ ∆(S)×∆(S), defined by fi(p) ≡ (wi + αipj)/(wi(S) + αi). Under the
complete metric defined by d((p, p′), (q, q′)) = max{‖p− p′‖, ‖q− q′‖}, this map
is a contraction with modulus maxi(αi/(wi(S) +αi)) < 1, yielding convergence
to p∗i as defined. The detailed proof of a more general result is provided as the
proof of Theorem D.D.2 in Online Appendix D. �

Proof of Proposition 2 Let (pt−1
1 , pt−1

2 , pt1, p
t
2) as defined. Now let us

reproduce equation (3) for this dynamic environment. Take any S 6= X with
x, y ∈ S such that

dt−1
j (x,S)

pti(x,S)
−
dt−1
j (y, S)

pti(y, S)
6= 0
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and let:

βi(x, y, S) =

dti(x,S)

pti(x,S)
− dti(y, S)

pti(y, S)

dt−1
j (x,S)

pti(x,S)
−
dt−1
j (y, S)

pti(y, S)

.

(If there does not exist such S, then αi is revealed as equal to 0, as per
argumentation given in the proof of Theorem 1.)

Now, decompose dti(x,S) = pti(x,S)− pti(x,X) as before:

=
1−wi(S)

1 + αi
pti(x,S) +

wi(S) + αi
1 + αi

pti(x,S)− 1 + αi
1 + αi

pti(x,X)

=
1−wi(S)

1 + αi
pti(x,S) +

wi(x) + αip
t−1
j (x,S)

1 + αi
−
wi(x) + αip

t−1
j (x,X)

1 + αi

which finally leads to:

=
1−wi(S)

1 + αi
pti(x,S)︸ ︷︷ ︸

individual

+
αi

1 + αi
dt−1
j (x,S)︸ ︷︷ ︸

social influence

The difference between normalized decompositions for distinct x, y ∈ S
yields:

dti(x,S)

pti(x,S)
− dti(y, S)

pti(y, S)
=

αi
1 + αi

[
dt−1
j (x,S)

pti(x,S)
−
dt−1
j (y, S)

pti(y, S)

]

Hence, we have βi(x, y, S) = αi/(1 + αi) as before. Identification of wi(x)
is achieved via: wi(x) = (1 + αi)p

t
i(x,X)− αipt−1

j (x,X). �

Proof of Theorem 3. (⇒) Let (p1, p2, ..., pn) be a social interaction model.
For any i, define βi ∈ Rn−1 such that βij = αij/(1 +

∑
j 6=i

αij) for all j 6= i. We

will first show βi ∈ Bi.
First let αij = 0 for all i and j with i 6= j. Then, for all i, pi has

a Luce representation and hence di(x,S) = (1 − wi(S))pi(x,S). Moreover
di(x,S)/pi(x,S)− di(y, S)/pi(y, S) = 0 for all S and distinct x, y. Hence βi = 0
is an element in Bi.

Now let αi 6= 0 for some i. Take any S and any distinct x, y ∈ S. Then

βi ·
(
d−i(x,S)
pi(x,S) −

d−i(y,S)
pi(y,S)

)
is equal to:
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=
∑
j

βij(pj(x,S)− pj(x,X))

pi(x,S)
−
∑
j

βij(pj(y, S)− pj(y,X))

pi(y, S)

=
∑
j

αij(pj(x,S)− pj(x,X))

(1 +
∑
j
αij)pi(x,S)

−
∑
j

αij(pj(y, S)− pj(y,X))

(1 +
∑
j
αij)pi(y, S)

=

wi(x) +
∑
j
αijpj(x,S)−wi(x)−

∑
j
αijpj(x,X)

(1 +
∑
j
αij)pi(x,S)

−
wi(y) +

∑
j
αijpj(y, S)−wi(y)−

∑
j
αijpj(y,X)

(1 +
∑
j
αij)pi(y, S)

and hence

=

pi(x,S)[wi(S) +
∑
j
αij ]− pi(x,X)[1 +

∑
j
αij ]

(1 +
∑
j
αij)pi(x,S)

−
pi(y, S)[wi(S) +

∑
j
αij ]− pi(y,X)[1 +

∑
j
αij ]

(1 +
∑
j
αij)pi(y, S)

=

[wi(S) +
∑
j
αij ]

(1 +
∑
j
αij)

− pi(x,X)

pi(x,S)
−

[wi(S) +
∑
j
αij ]

(1 +
∑
j
αij)

+
pi(y,X)

pi(y, S)

=
pi(y,X)

pi(y, S)
− pi(x,X)

pi(x,S)
,

establishing βi ∈ Bi.
Certainly, βi ∈ Rn−1

+ as αij ≥ 0 for all i, j with i 6= j. N-PUB then follows
from wi(x)> 0 for all x, since wi(x) = pi(x,X) +

∑
j 6=i

αij(pi(x,X)− pj(x,X))>

0⇒ (1 +
∑
j 6=i

αij)pi(x,X) >
∑
j 6=i

αijpj(x,X)⇒ pi(x,X) > βi · p−i(x,X).

(⇐) Take (p1, p2, ..., pn) satisfying our axioms. Take any i ∈ N , x, y and S
and by N-I, take βi ∈ Bi, which also satisfies N-PUB. Further, define αi ∈Rn−1

such that αij = βij/(1 −
∑
j 6=i βij). We first show that αi is well-defined

and nonnegative since
∑
j 6=i βij < 1. This is because by N-PUB, pi(x,X) >

βi · p−i(x,X) for all x, we have 1 =
∑
x∈X pi(x,X) >

∑
x∈X βi · p−i(x,X) =∑

j 6=i βij . Hence, αi ∈ Rn−1
+ is well-defined for all βi as claimed.

Notice we then have [1/(1 +
∑
j 6=i αij)]αi = βi. Now define wi(x) :=

pi(x,X) +αi · [pi(x,X)1− p−i(x,X)] where 1 ∈ Rn−1 is a vector of ones and
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observe that∑
x∈X

wi(x) =
∑
x∈X

(pi(x,X) +αi · [pi(x,X)1− p−i(x,X)])

= 1 +αi ·

[∑
x∈X

pi(x,X)1−
∑
x∈X

p−i(x,X)

]
= 1 +αi(1− 1) = 1.

By N-I,

1

1 +
∑
j 6=i αij

αi ·
(
d−i(x,S)

pi(x,S)
− d−i(y, S)

pi(y, S)

)
=
pi(y,X)

pi(y, S)
− pi(x,X)

pi(x,S)

(1 +
∑
j 6=i αij)pi(x,X) +αi · p−i(x,S)−αi · p−i(x,X)

pi(x,S)
=

(1 +
∑
j 6=i αij)pi(y,X)

pi(y, S)

+
αi · p−i(y, S)−αi · p−i(y,X)

pi(y, S)
.

Notice that numerators in both of the sides are positive since pj(x,S) >
pj(x,X) for all j, x and S. Hence

pi(x,S)

pi(y, S)
=
pi(x,X) +αi · [pi(x,X)1− p−i(x,X)] +αi · p−i(x,S)

pi(y,X) +αi · [pi(y,X)1− p−i(y,X)] +αi · p−i(y, S)

=
wi(x) +αi · p−i(x,S)

wi(y) +αi · p−i(y, S)
.

But then, since this claim holds for all y ∈ S:

pi(y, S) = pi(x,S)
wi(y) +αi · p−i(y, S)

wi(x) +αi · p−i(x,S)∑
y∈S

pi(y, S) =
∑
y∈S

pi(x,S)
wi(y) +αi · p−i(y, S)

wi(x) +αi · p−i(x,S)

1 = pi(x,S)

∑
y∈S [(wi(y) +αi · p−i(y, S)]

wi(x) +αi · p−i(x,S)

pi(x,S) =
wi(x) +αi · p−i(x,S)∑
y∈S [wi(y) +αi · p−i(y, S)]

.

We finally show that wi(x) > 0 for all x ∈ X. This is established by
N-PUB. Since pi(x,X) > βip−i(x,X) and 1 +

∑
j 6=i αij > 0, then, (1 +∑

j 6=i αij)pi(x,X) > αip−i(x,X)⇒ wi(x) > 0. �

Sketch of the Proof of Theorem 4. Similar to Theorem 2, the proof
of this theorem follows from Theorem D.D.2 in Online Appendix D. Rather
than directly use a contraction mapping, the argument leverages results from
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the theory of matrices. A certain class of iterative linear matrix equations is
known to converge as required when the eigenvalues of the relevant matrix have
absolute value less than one. The argument is based on the generalization of
the function f constructed in the sketch of the proof of Theorem 2 to multiple
individuals: the proof verifies that we can write f :

∏
i∆(S)→

∏
i∆(S) in the

form f(p) = Ap+ b for some p ∈ R|N ||S|, A ∈ R|N ||S|×|N ||S|, and b ∈ R|N ||S|.
We then make use of the model assumptions to establish that all eigenvalues of
A have absolute value less than one, by a classical result on matrices sometimes
called the Gershgorin circle theorem. The extensive proof can be found as the
proof of Theorem D.D.2 in Online Appendix D. �

Online Appendices to Behavioral Influence

Appendix B: Derivation of stochastic choice function from utility
maximization with log-logistic errors

Let Ui(x) = Vi(x)εi(x) where Vi(x) = wi(x) + αipj(x). Under the assumption
that the disturbances are i.i.d. with a Log-logistic distribution (i.e., ηi =

log εi follows a Type 1 extreme value distribution) with g(ηi) = e−ηie−e
−ηi

,
maximization of log-utility, logUi(x) = logVi(x) + ηi(x), yields:

pi(x) = Prob (logVi(x) + ηi(x) > logVi(y) + ηi(y)), ∀y 6= x)

= Prob

(
ηi(y) < log

(
Vi(x)εi(x)

Vi(y)

)
, ∀y 6= x

)
Then for a given ηi(x), using the cdf G(ηi):

Prob (x|ηi(x)) =
∏
y 6=x

exp
{
− e− log

(
Vi(x)εi(x)

Vi(y)

)}
which leads to:

pi(x) =

∫
+∞

−∞

(∏
y 6=x

exp
{
− e− log

(
Vi(x)εi(x)

Vi(y)

)})
e−ηi exp{−e−ηi}dηi

pi(x) =

∫
+∞

−∞

(∏
y

exp
{
− e− log

(
Vi(x)εi(x)

Vi(y)

)})
e−ηidηi

The second line above is observed by collecting terms in the exponent of e

given that Vi(x)
Vi(x) = 1.
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pi(x) =

∫
+∞

−∞

exp
{
−
∑
y

e
− log

(
Vi(x)εi(x)

Vi(y)

)}
e−ηidηi

=

∫
+∞

−∞

exp
{
− e−ηi

∑
y

e
− log

(
Vi(x)

Vi(y)

)}
e−ηidηi

Apply a transformation of variables as t = e−ηi(x) such that dt =
−e−ηi(x)dηi. Note that as ηi approaches infinity, t approaches zero, and as
ηi approaches negative infinity, t becomes infinitely large.

pi(x) =

∫
0

∞

− exp
{
− t
∑
y

e
− log

(
Vi(x)

Vi(y)

)}
dt

=

∫
0

∞

− exp
{
− t
∑
y

Vi(y)

Vi(x)

}
dt

=
e
−t

∑
Vi(y)

Vi(x)∑
Vi(y)
Vi(x)

∣∣∣∣∣
0

∞

=
Vi(x)∑
y
Vi(y)

=
wi(x) + αipj(x)∑

y
(wi(y) + αipj(y))

�

Appendix C: Dual interaction model as naive learning with anchors

In a DeGroot setting, each agent n ∈ N has a belief pi(t) ∈ [0, 1] at time
t ∈ {0, 1, 2, ...}. These beliefs might be thought as the probability that a
statement is true, the likelihood of choosing an action or a measure of the
quality of a given product, etc (Jackson, 2010). Given the stochastic interaction
matrix Tn×n, where Tij captures the influence of agent j on i, the updating
rule is simply p(t) = Tp(t − 1) = T tp(0), where p(·) stands for the vector of
beliefs of all agents. Simply put, at each point in time, the individuals update
their beliefs by taking a weighted average of their peers’ and their own previous
beliefs, with time invariant weights.

DeGroot model is essentially a belief updating model, where dual interaction
model can be seen as a behavior adjustment model. In the following, we stick
to our terminology and interpret pi as stochastic behavior, rather then beliefs.
However, as noted in footnote 12, the mathematics of our model is entirely
consistent with a belief-based interpretation. Now, to see the relationship to our
model let N = 2 -although the extension to the n individual case is immediate.
Let,

p(0) =
(
w1(x) w2(x) p0

1(x) p0
2(x)

)′
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for some alternative x ∈X, where p0
i ∈ [0, 1] is any initial behavior, which might

or might not be the same with the anchor, wi.
22 In this setting, the anchors w1

and w2 can be seen as innate preferences/beliefs that do not change over time.
Note that we only focus on one alternative, x, to keep things simple. The same
can be done for all alternatives in the menu. Consider the following transition
matrix T : 

1 0 0 0
0 1 0 0
1

1+α1
0 0 α1

1+α1

0 1
1+α2

α2

1+α2
0

 .

The first two rows indicate the time-independency of the anchors, whereas the
last two rows correspond to the updating weights of the agents; for instance,
individual 1 is influenced by individual 2 with a weight of α1/(1 +α1), whereas
her own anchor has a weight of 1/(1 +α1) and so on. As before, the interaction
paramater αi captures the relative importance of social interaction effects. With
this transition matrix, period 1 behavior will be

p(1) = Tp(0) = p(1) =
(
w1(x) w2(x)

w1(x)+α1p
0
2(x)

1+α1

w2(x)+α2p
0
1(x)

1+α2

)
.

As we prove in Subsection 2.4, in the limit p(t) = T tp(0) indeed converges to a(
w1(x) w2(x) p∗1(x) p∗2(x)

)
with (p∗1(x), p∗2(x)) as defined by the dual

interaction model. In a nutshell, dual interaction model can also be reproduced
as the limit of a DeGroot updating process with anchors. �

Appendix D: Negative Interactions

Most of the theoretical tools developed to study social interactions are restricted
by strategic complementarity or conformity type assumptions. This is because
they only focus on positive interactions, where the individual payoff of an
action increases the more it is chosen by one’s peers. However in certain
contexts, where individuals especially do not want to behave similarly, negative
interactions are in play. An intuitive example to this is fashions and fads.
A trend setter happens to be the one that initially behaves differently than
everyone else. The choice of a fashion product not only signals which social
group you would like to identify with but also signals who you would like
to differentiate from (Pesendorfer, 1995). Among criminals competition for

22. Friedkin and Johnsen (1990) suggest a generalization of the DeGroot model where
updating at each period also involves agents’ initial beliefs. They also show convergence to
a non-consensus state. The slight difference with the dynamic version of our model, as we
examine in Subsection 2.4 is that, for their model the initial behavior is equal to the initial
belief. Instead we show convergence to the behavior dictated by our model for any p0.
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resources governs the need for negative interactions (Glaeser et al., 1996).
Bhatia and Wang (2011) study peer effects in physicians’ prescription behavior
and find significantly negative peer influence, partly explained by observational
learning and congestion effects. Foster and Rosenzweig (1995) find evidence of
negative relation between experimental technology adoption rates of farmers
and their neighbors. Other examples to settings with negative interactions
include market entry games (Rapoport et al., 2000; Duffy and Hopkins, 2005)
as well as anti-coordination games (Bramoullé, 2007; Bramoullé et al., 2004)
and games that bring both coordination and anti-coordination motives together
such as fashion games (Cao et al., 2013).23

Before generalizing our social interactions model to capture negative
interactions, we shall first point out that this is not as simple as allowing
for any negative αi. Let us explain: Consider our benchmark model, with
two individuals i and j, and a pair (x,S) with x ∈ S. We refer to a negative
interaction between i and j as the following phenomenon: Whenever j increases
their propensity to choose x from S, i decreases her propensity in response.
Formally, imagine two hypothetical behaviors from individual j, say pj(x,S)
and qj(x,S), where pj(x,S) > qj(x,S). Negative interaction refers to the
property that if

pi(x,S) =
wi(x) + αipj(x,S)

wi(S) + αi
and qi(x,S) =

wi(x) + αiqj(x,S)

wi(S) + αi
,

then pi(x,S) < qi(x,S).
First, notice that a negative αi does not necessarily imply negative

interaction. Crucially, for values of αi < 0, whenever wi(S) < |αi|, pi(x,S) puts
a negative weight on wi(x) and a positive weight on pj(x,S), quite contrary to
the essence of negative interactions.

In order to avoid this and keep the premise that wi remains a “weight of
choice” absent any influence, a first requirement is that wi(S) +αi > 0 for all S.
Notice that this implies αi >−1. The second restriction stems from the fact that
pi is a probability and this will be ensured whenever wi(x) +αi ≥ 0.24 Observe
that this already implies the first condition, hence making it redundant. Thus

23. In network literature, negative ties are mostly interpreted as the conceptualization
of dislike, opposition, antagonism and avoidance. For instance Bonacich and Lloyd (2004)
investigate the effects of negative ties on status formation where being disliked by popular
individuals deters status. Everett and Borgatti (2014) examine how standard measures could
be extended to networks including negative ties. Kaur and Singh (2016) survey the literature
on online social networks that include negative ties. Our interpretation of negative influence
is different than this literature, mainly because we focus on the influence from observed
behavior.

24. In order to see why first suppose that pj(x,S) = 0. It follows that pi(x,S) =
wi(x)/(wi(S) + αi). This term will be non-negative and well-defined exactly when wi(S) +
αi > 0. Now, suppose that pj(x,S) = 1. It follows that pi(x,S) = (wi(x) +αi)/(wi(S) +αi).
Given that wi(S) + αi > 0, this term will be nonnegative exactly when wi(x) + αi ≥ 0.
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with two agents, as long as wi(x) + αi ≥ 0 for all x, pi remains a well-defined
probability.

Now let n > 2 and consider the general social interactions model. Similar
to the two agent case, wi(S) +

∑
j 6=i αij > 0 is required to ensure a meaningful

representation with negative influence. In order to ensure, no matter what
p−i(x,S) is, pi(x,S) is a well-defined probability, the condition we require is

wi(x) +
∑
j 6=i

min{0, αij} ≥ 0

for all x, and in particular, for every S, that there exists some x for which
the inequality is strict.25 In particular, it is only a slight loss of generality to
assume that the inequality is strict for every x. Thus, for all x, we have:

wi(x) +
∑
j 6=i

min{0, αij} > 0. (D.D.1)

Equation (D.D.1) ensures that every profile of probability measures of the other
agents is mapped to one with full support. Hence, it is a sufficient and almost
necessary condition for the dynamic adjustment procedure to always result in a
probability measure, providing existence. It is necessary and sufficient to always
map any probability measure into a full-support probability measure. As we
establish in Theorem D.D.2, it also provides the convergence of the dynamic
adjustment process.

Definition D.D.1. (p1, p2, ..., pn) has a general social interaction
representation if for each i ∈ N there exist wi ∈ ∆++(X), and αi ∈ <n−1

such that for every x, wi(x) +
∑
j 6=imin{0, αij} > 0 and

pi(x,S) =
wi(x) +αi · p−i(x,S)

wi(S) +αi · 1

for all S and all x ∈ S.

D.1. Identification, Falsifiability and Stability:

The identification strategy and the characterization of the general model
is very similar to that of the social interaction model. The identification

25. To see the reasoning under this condition, first imagine that p−i(x,S) = 0. Then
pi(x,S) = wi(x)/(wi(S) +

∑
j 6=i αij), which is nonnegative by the previous condition.

Second, suppose that pj(x,S) = 1 for all j with αij < 0 and 0 otherwise. This then
implies that pi(x,S) = (wi(x) +

∑
j 6=i min{0, αij})/(wi(S) +

∑
j 6=i αij). Hence to have a

well-defined probability, we must ensure that wi(x) +
∑

j 6=i min{0, αij} ≥ 0 for all x, and
in particular, for every S, that there exists some x for which the inequality is strict.
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equation, equation (6) remains the same, hence N-Independence functions as
the main characterizing property. Since the main difference between these two
models is the set of admissible values for the interaction coefficients, a general
boundedness property, that takes care of the bounds on the revealed γi is
required.

GN-Uniform Boundedness. [GN-UB ] For all z ∈ X, pi(z,X) > γi ·
p−i(z,X)−

∑
j 6=imin{0, γij} for some γi ∈ Bi.

Theorem D.D.1. Let {pi}i∈N . Then, {pi}i∈N has a general social
interaction representation if and only if N-Independence and GN-Uniform
Boundedness hold.

Proof of Theorem D.D.1. (⇒) Let (p1, p2, ..., pn) be a general social
interaction model. For any i, define βi ∈ Rn−1 such that βij = αij/(1 +

∑
j 6=i

αij)

for all j 6= i. Notice that wi(x) +
∑
j 6=imin{0, αij} > 0 implies

∑
j 6=i αij < −1.

The proof that N-I is satisfied follows from proof of the same statement in the
proof of Theorem 3. Since wi(x) = pi(x,X) +

∑
j 6=i αij(pi(x,X) − pj(x,X)),

GN-UB follows from wi(x) +
∑
j 6=imin{0, αij} > 0 for all x as follows:

(1 +
∑
j 6=i

αij)pi(x,X)−
∑
j 6=i

αijpj(x,X) +
∑
j 6=i

min{0, αij} > 0

⇒ pi(x,X) > βi · p−i(x,X)−
∑
j 6=imin{0, αij}
1 +

∑
j 6=i αij

⇒ pi(x,X) > βi · p−i(x,X)−
∑
j 6=i

min{0, βij}.

(⇐) Take (p1, p2, ..., pn) satisfying our axioms. Take any i ∈ N , x, y and S
and by N-I, take βi ∈ Bi, which also satisfies GN-UB. Further, define αi ∈Rn−1

such that αij = βij/(1 −
∑
j 6=i βij). We first show that αi is well-defined

since
∑
j 6=i βij < 1. This is because by GN-UB, pi(x,X) > βi · p−i(x,X) −∑

j 6=imin{0, βij} ⇒ pi(x,X) > βi · p−i(x,X) for all x, and hence we have 1 =∑
x∈X pi(x,X) >

∑
x∈X βi · p−i(x,X) =

∑
j 6=i βij . Hence, αi ∈ Rn−1 is well-

defined for all βi as claimed. Notice we then have [1/(1 +
∑
j 6=i αij)]αi = βi.

Now define wi(x) := pi(x,X) +αi · [pi(x,X)1−p−i(x,X)] where 1 ∈Rn−1 is a
vector of ones and observe that

∑
x∈X wi(x) = 1 as in the proof of Theorem 3.

GN-UB then ensures that wi(x) +
∑
j 6=imin{0, αij} > 0 and hence wi(x) > 0

for all x ∈ X.
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By N-I,

βi ·
(
d−i(x,S)

pi(x,S)
− d−i(y, S)

pi(y, S)

)
=
pi(y,X)

pi(y, S)
− pi(x,X)

pi(x,S)

pi(x,X) + βi · p−i(x,S)− βi · p−i(x,X)

pi(x,S)
=
pi(y,X) + βi · p−i(y, S)− βi · p−i(y,X)

pi(y, S)
.

Notice that numerators in both of the sides are positive by GN-UB. Hence

pi(x,S)

pi(y, S)
=
pi(x,X) + βi · p−i(x,S)− βi · p−i(x,X)

pi(y,X) + βi · p−i(y, S)− βi · p−i(y,X)

=
(1 +

∑
αij)pi(x,X) +αi · p−i(x,S)−αi · p−i(x,X)

(1 +
∑
αij)pi(y,X) +αi · p−i(y, S)−αi · p−i(y,X)

=
wi(x) +αi · p−i(x,S)

wi(y) +αi · p−i(y, S)
.

But then, since this claim holds for all y ∈ S, as before, we arrive at

pi(x,S) =
wi(x) +αi · p−i(x,S)∑
y∈S [wi(y) +αi · p−i(y, S)]

establishing the proof. �

Unique identification of αi and wi is the same with Section 3, as long
as there are sufficient number of linearly independent equations as elaborated
before.

We conclude with our most general stability result, that ensures convergence
and uniqueness of equilibrium for the general social interaction model. All other
stability results in the paper are corollaries of this.

Theorem D.D.2. Take wi ∈ ∆++(x), and αi ∈ <n−1 such that for every x,
wi(x) +

∑
j 6=imin{0, αij} > 0.

Then, there is a unique (p∗1, . . . , p
∗
N ) ∈ ∆++(S)N for which

p∗i (x,S) =
wi(x) +αi · p∗−i(x,S)∑
y∈S [wi(y) +αi · p∗−i(y, S)]

and for any (p1
1(·, S), . . . , p1

N (·, S)) ∈ ∆++(S)N , the iterative map

pti(x,S) =
wi(x) +αi · pt−1

−i (x,S)∑
y∈S [wi(y) +αi · pt−1

−i (y, S)]

converges to (p∗1, . . . , p
∗
N ).

Proof of Theorem D.D.2 (and Theorems 2 and 4). Let us suppose
without loss that |S| ≥ 2.
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Given any affine function f(x) = Ax + b, where x ∈ R|N ||S|, A ∈
R|N ||S|×|N ||S|, and b ∈ R|N ||S|. It is well-known that there is a unique x∗ ∈
R|N ||S| for which for any x1, the process xt = f(xt−1) converges to x∗ if the
maximal absolute value of an eigenvalue of A has value less than 1. See for
example, Varga (1962), Theorem 1.4. We will show that, in our case, this unique
fixed point will be a member of ∆(S)N , because f(∆(S)N ) ⊆ ∆(S)N .

To this end, let us describe the matrix A and vector b in which we take
interest. To ease the exposition, let α̂ij = αij/(wi(S) +

∑
j 6=i αij) for j 6= i, and

ŵi(x) = wi(x)/(wi(S) +
∑
j 6=i αij). Here, each 0 is the S × S matrix of zeroes,

and I denotes the identity matrix in S × S.

Now, we let the matrix A =


0 α̂12I . . . α̂1nI

α̂21I 0 . . . α̂2nI
...

...
...

α̂n1I α̂n2I . . . 0

 and let b =


ŵ1

ŵ2

...
ŵn

, so that the iterated vector is of the form pt =


pt1
pt2
...
ptn

.

Finally, by Corollary 1 on p. 17 of Varga (1962), we conclude that the
maximal absolute value of an eigenvalue is bounded above by maxi

∑
j 6=i |α̂ij |.

But for each i, we know that
∑
j 6=i |α̂ij |=

∑
j 6=i |αij |/(wi(S) +

∑
j 6=i αij). Now,

by assumption, and since |S| ≥ 2, 0 < wi(S) + 2
∑
j 6=imin{0, αij}.26 Observe

then that, by adding to each side of this strict inequality
∑
j 6=i |αij | we obtain∑

j 6=i |αij | < wi(S) +
∑
j 6=i αij . Therefore, by definition of α̂, we conclude∑

j 6=i |α̂ij | < 1, which is what we wanted to show.
As a last point, we observe that the solution p∗ is the unique vector

satisfying p∗ = Ap∗ + b, or in other words, p∗ = (I −A)−1b. �

Given the w and α parameters, an explicit representation for this unique
representation is possible in terms of inverses of matrices. This expression
is standard, and appears in the proof of Theorem D.D.2. This expression
demonstrates, for example, that (p∗1, . . . , p

∗
N ) ∈ ∆++(X)N is an affine function

of (w1, . . . , wN ).27

26. Let x, y ∈ S for which x 6= y. Then wi(x) +
∑

j 6=i min{0, αij} > 0 and wi(y) +∑
j 6=i min{0, αij} > 0, so that 0 < wi(x) + wi(y) + 2

∑
j 6=i min{0, αij} ≤ wi(S) +

2
∑

j 6=i min{0, αij}.
27. The same does not hold true for S ⊂ X, S 6= X in general.
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