Behavioral Influence

Christopher Chambers
Georgetown

Tugce Cuhadaroglu
St Andrews

Yusufcan Masatlioglu
Maryland

Decision Theory

Decision Theory

Decisions are made in isolation!!!

In reality:

- People sharing the same environment such as members of the same household, friends, colleagues, neighbors, etc.
- We influence each other's behavior through advice, inspiration, imitation, etc.

Social Interactions

- Huge (econometrical) literature on understanding the extent of social interactions in individual decisions:
- productivity at work (Mas and Moretti, 2009)
- job search (Topa, 2001)
- school-achievement (Calvo-Armengol, et al., 2009)
- teen smoking/drinking, recreational activities (Sacerdote, 2011)
- adolescent pregnancy (Case and Katz, 1991)
- crime (Glaser et al. 1996)

Identifying Network

Our Aim

- Propose a choice-theoretic approach to social influence
- Describe a simple model of interacting individuals
- Detect influence from observed choice behavior
- Quantify Influence and Identify Preference
- Minimal Data

Road Map

1 Baseline Model: Two individuals, conformity behavior (positive)
. General Model: Multi-individual interactions
3 Extension: Any type of influence (positive and/or negative)

Primitive

- Domain: $|X|>1$ finite set of alternatives
- Two individuals: 1 and 2

- Data: $p_{1}(x, S)$ and $p_{2}(x, S)$, where

$$
\begin{aligned}
p_{i}(x, S) & >0 \text { for all } x \in S \\
\sum_{x \in S} p_{i}(x, S) & =1
\end{aligned}
$$

Model

Model

choices $\equiv f$ (individual component, choices of other)

Model

choices $\equiv f$ (individual component, choices of other)

$$
p_{1} \equiv f\left(w_{1}, p_{2}\right)
$$

Model

$$
w_{1}(x)+\alpha_{1} p_{2}(x, S)
$$

Model

$$
w_{1}(x)+\alpha_{1} p_{2}(x, S)
$$

- α_{1} influence parameter for individual 1

Model

$$
w_{1}(x)+\alpha_{1} p_{2}(x, S)
$$

- α_{1} influence parameter for individual 1

$$
p_{1}(x, S)=\frac{w_{1}(x)+\alpha_{1} p_{2}(x, S)}{\sum_{y \in S}\left[w_{1}(y)+\alpha_{1} p_{2}(y, S)\right]}
$$

Isolation vs Society

$$
p_{1}(x, S)=\frac{w_{1}(x)}{\sum_{y \in S} w_{1}(y)}
$$

$$
p_{1}(x, S)=\frac{w_{1}(x)+\alpha_{1} p_{2}(x, S)}{\sum_{y \in S}\left[w_{1}(y)+\alpha_{1} p_{2}(y, S)\right]}
$$

A Hypothetical Example

- Two colleagues, Dan and Bob,
- Daily exercise routines during the pandemic
- exercise home or
- go for a walk outside.

A Hypothetical Example

- Two colleagues, Dan and Bob,
- Daily exercise routines during the pandemic
- exercise home or
- go for a walk outside.

	Dan	Bob
walk outside	0.71	0.78
exercise home	0.29	0.22

A Hypothetical Example

	Dan	Bob
walk outside	0.71	0.78
exercise home	0.29	0.22

A Hypothetical Example

	Dan	Bob
walk outside	0.71	0.78
exercise home	0.29	0.22

- Two Possible Explanations
- No influence and individual preferences are aligned
- Individual preferences are not aligned but a strong influence

A Hypothetical Example

	Dan	Bob
walk outside	0.71	0.78
exercise home	0.29	0.22

- Two Possible Explanations
- No influence and individual preferences are aligned
- Individual preferences are not aligned but a strong influence
- Reflection Problem (Manski, 1993)

A Hypothetical Example

■ Gyms are open NOW!!!

	Dan	Bob		Dan
Bob				
walk outside	0.71	0.78		0.60
0.70				
exercise home	0.29	0.22		0.26
0.19				
go to the gym			0.14	0.11

A Hypothetical Example

■ Gyms are open NOW!!!

	Dan	Bob	Dan	Bob
walk outside	0.71	0.78		0.60
0.70				
exercise home	0.29	0.22		0.26
0.19				
go to the gym			0.14	0.11

- Observe that $\frac{0.71}{0.29} \approx 2.5 \neq 2.3 \approx \frac{0.60}{0.26}$

A Hypothetical Example

■ Gyms are open NOW!!!

	Dan	Bob	Dan	Bob
walk outside	0.71	0.78		0.60
0.70				
exercise home	0.29	0.22		0.26
0.19				
go to the gym			0.14	0.11

- Observe that $\frac{0.71}{0.29} \approx 2.5 \neq 2.3 \approx \frac{0.60}{0.26}$
- !!!Existence of Influence!!!

A Hypothetical Example

- Gyms are open NOW!!!

	Dan	Bob		Dan
Bob				
walk outside	0.71	0.78		0.60
0.70				
exercise home	0.29	0.22		0.26
0.19				
go to the gym			0.14	0.11

■ !!!Existence of Influence!!!

- We can uniquely identify
- Dan and Bob have opposite rankings
- Dan is strongly influenced by Bob

Model

$$
\begin{aligned}
& p_{1}(x, S)=\frac{w_{1}(x)+\alpha_{1} p_{2}(x, S)}{\sum_{y \in S}\left[w_{1}(y)+\alpha_{1} p_{2}(y, S)\right]} \\
& p_{2}(x, S)=\frac{w_{2}(x)+\alpha_{2} p_{1}(x, S)}{\sum_{y \in S}\left[w_{2}(y)+\alpha_{2} p_{1}(y, S)\right]}
\end{aligned}
$$

Comment \# 1

$$
p_{i}(x, S)=\frac{w_{i}(x)+\alpha_{i} p_{j}(x, S)}{\sum_{y \in S}\left[w_{i}(y)+\alpha_{i} p_{j}(y, S)\right]}
$$

Comment \# 1

$$
p_{i}(x, S)=\frac{w_{i}(x)+\alpha_{i} p_{j}(x, S)}{\sum_{y \in S}\left[w_{i}(y)+\alpha_{i} p_{j}(y, S)\right]}
$$

Alternatively, we can express the model:

$$
p_{i}(x, S)=\frac{\mu_{i} w_{i}(x)+\left(1-\mu_{i}\right) p_{j}(x, S)}{\sum_{y \in S}\left[\mu_{i} w_{i}(y)+\left(1-\mu_{i}\right) p_{j}(y, S)\right]}
$$

where

$$
\mu_{i}=\frac{1}{1+\alpha_{i}} \text { and } 1-\mu_{i}=\frac{\alpha_{i}}{1+\alpha_{i}}
$$

Comment \# 2

Observing Deterministic or Probabilistic Choice?

Comment \# 2

Observing Deterministic or Probabilistic Choice?

Comment \# 2

Observing Deterministic or Probabilistic Choice?

$$
p_{1}(x,\{x, y\})=p_{2}(x,\{x, y\}) \frac{w_{1}(x)+\alpha_{1}}{w_{1}(x)+w_{1}(y)+\alpha_{1}}+p_{2}(y,\{x, y\}) \frac{w_{1}(x)}{w_{1}(x)+w_{1}(y)+\alpha_{1}}
$$

Comment \# 2

Observing Deterministic or Probabilistic Choice?

$$
\begin{gathered}
p_{1}(x,\{x, y\})=p_{2}(x,\{x, y\}) \frac{w_{1}(x)+\alpha_{1}}{w_{1}(x)+w_{1}(y)+\alpha_{1}}+p_{2}(y,\{x, y\}) \frac{w_{1}(x)}{w_{1}(x)+w_{1}(y)+\alpha_{1}} \\
p_{1}(x,\{x, y\})=\frac{w_{1}(x)+\alpha_{1} p_{2}(x,\{x, y\})}{w_{1}(x)+w_{1}(y)+\alpha_{1}}
\end{gathered}
$$

Dynamic Adjustment

$$
\begin{aligned}
& p_{1}^{0} \\
& p_{2}^{0} \\
& t=0
\end{aligned}
$$

Dynamic Adjustment

$$
\begin{aligned}
& p_{1}^{0} \\
& p_{2}^{0}
\end{aligned} p_{1}^{1}=f\left(w_{1}, p_{2}^{0}\right)
$$

Dynamic Adjustment

$$
\begin{aligned}
& 3 \\
& p_{1}^{0} \\
& p_{1}^{1}=f\left(w_{1}, p_{2}^{0}\right) \\
& p_{1}^{2}=f\left(w_{1}, p_{2}^{1}\right) \\
& p_{2}^{0} \\
& p_{2}^{1}=f\left(w_{2}, p_{1}^{0}\right) \\
& p_{2}^{2}=f\left(w_{2}, p_{1}^{1}\right) \\
& t=0 \\
& t=1 \\
& t=2
\end{aligned}
$$

Dynamic Adjustment

$$
\begin{array}{lcc}
p_{1}^{0} & p_{1}^{1}=f\left(w_{1}, p_{2}^{0}\right) & p_{1}^{2}=f\left(w_{1}, p_{2}^{1}\right)
\end{array} \quad p_{1}^{\infty}=p_{1}
$$

Story behind our formulation

$$
p_{1}(x, S)=\frac{w_{1}(x)+\alpha_{1} p_{2}(x, S)}{\sum_{y \in S}\left[w_{1}(y)+\alpha_{1} p_{2}(y, S)\right]}
$$

1 Random utility with social interactions
2. Quantal response equilibrium

B 3 Naive learning

Story 1: Random Utility

- Linear social interaction models: Manski (1993), Blume et al. (2011), Jackson (2011), Blume et al. (2015)
- $U_{i}(x)=$ individual private utility + social utility
- Social utility depends on the expected behaviors of one's peers.
- Discrete choice models with social interactions: Blume (1993), Brock and Durlauf (2001, 2003)
- Constant strategic complementarity
- Rational expectations
- Errors follow a relevant extreme value distribution

Story 1: Random Utility

- $V_{i}(x, S)=w_{i}(x)+\alpha_{i} p_{j}(x, S)$

Story 1: Random Utility

- $V_{i}(x, S)=w_{i}(x)+\alpha_{i} p_{j}(x, S)$
- $U_{i}(x, S)=V_{i}(x, S) \varepsilon_{i}(x)$
- i.i.d. errors with a Log-logistic distribution, $f\left(\log \varepsilon_{i}\right)=e^{-\log \varepsilon_{i}} e^{-e^{-\log \varepsilon_{i}}}$

Story 1: Random Utility

- $V_{i}(x, S)=w_{i}(x)+\alpha_{i} p_{j}(x, S)$
- $U_{i}(x, S)=V_{i}(x, S) \varepsilon_{i}(x)$

■ i.i.d. errors with a Log-logistic distribution, $f\left(\log \varepsilon_{i}\right)=e^{-\log \varepsilon_{i}} e^{-e^{-\log \varepsilon_{i}}}$

$$
\begin{aligned}
p_{i}(x, S) & =\operatorname{Prob}\left(\log U_{i}(x, S)>\log U_{i}(y, S) \forall y \neq x\right) \\
& =\operatorname{Prob}\left(\log \varepsilon_{i}(y)<\log \left(\frac{V_{i}(x, S) \varepsilon_{i}(x)}{V_{i}(y, S)}\right), \forall y \neq x\right) \\
& \cdots \\
& =\frac{w_{i}(x)+\alpha_{i} p_{j}(x, S)}{\sum_{y \in S}\left(w_{i}(y)+\alpha_{i} p_{j}(y, S)\right)}
\end{aligned}
$$

Story 2: Quantal response equilibrium

Story 2: Quantal response equilibrium

- A normal form game with two players Dan and Bob,

Story 2: Quantal response equilibrium

- A normal form game with two players Dan and Bob,
- The pay-off matrix

Bob

		x		
Dan		$\left(w_{1}(x)+\alpha_{1}, w_{2}(x)+\alpha_{2}\right)$	$\left(w_{1}(x), w_{2}(y)\right)$	
	y	$\left(w_{1}(y), w_{2}(x)\right)$		

Story 2: Quantal response equilibrium

Bob

			x		y
	Dan	x	$\left(w_{1}(x)+\alpha_{1}, w_{2}(x)+\alpha_{2}\right)$		
	y	$\left(w_{1}(y), w_{2}(x)\right)$	$\left(w_{1}(x), w_{2}(y)\right)$		

Story 2: Quantal response equilibrium

\[

\]

- s_{i} is a pure strategy, σ_{i} is a mixed strategy for player i.

Story 2: Quantal response equilibrium

- s_{i} is a pure strategy, σ_{i} is a mixed strategy for player i.
- Player i 's expected payoff from s when j plays σ_{j}
$u_{i}\left(s, \sigma_{j}\right)=\sigma_{j}(s)\left(w_{i}(s)+\alpha_{i}\right)+\left(1-\sigma_{j}(s)\right) w_{i}(s)=w_{i}(s)+\alpha_{i} \sigma_{j}(s)$.

Story 2: Quantal response equilibrium

- s_{i} is a pure strategy, σ_{i} is a mixed strategy for player i.
- Player i 's expected payoff from s when j plays σ_{j}
$u_{i}\left(s, \sigma_{j}\right)=\sigma_{j}(s)\left(w_{i}(s)+\alpha_{i}\right)+\left(1-\sigma_{j}(s)\right) w_{i}(s)=w_{i}(s)+\alpha_{i} \sigma_{j}(s)$.
■ Under the assumption that $U_{i}(s, \sigma)=u_{i}(s, \sigma) \varepsilon_{i s}$ with i.i.d. log-logistic errors $\varepsilon_{i s}$, the QRE outcome coincides with (p_{1}, p_{2}) of the dual interaction model.

A Graphical Representation

A Graphical Representation

- Consider $\mathbf{p}(\{x, y, z\})=(p(x,\{x, y, z\}), p(y,\{x, y, z\}), p(z,\{x, y, z\}))$
- $\mathbf{p}(\{x, y, z\})$ is a point in a simplex

A Graphical Representation

$\mathbf{p}(\{y, z\})$ is also a point in a simplex

No Influence
"No Influence" $p_{1}(x, A)=\frac{w_{1}(x)}{\sum_{y \in A} w_{1}(y)}$

No Influence

"No Influence" $p_{1}(x, A)=\frac{w_{1}(x)}{\sum_{y \in A} w_{1}(y)}$

- Luce's IIA: $\frac{p_{1}(x, A)}{p_{1}(y, A)}=\frac{p_{1}(x, B)}{p_{1}(y, B)}$

Graphical Representation

Graphical Representation

Graphical Representation

Graphical Representation

Graphical Representation

What about $p_{1}(\{x, y\})$?

Graphical Representation

What about $p_{1}(\{x, y\})$?

Graphical Representation

What about $p_{1}(\{x, y\})$?

Graphical Representation

Existing of Influence \Rightarrow IIA fails

Identification

- Assume the model is correct
- How can we identify parameters of the model $\left(w_{i}, \alpha_{i}\right)$?
- Take two sets X and S (Minimal Data)

Identification

- Assume the model is correct
- How can we identify parameters of the model $\left(w_{i}, \alpha_{i}\right)$?
- Take two sets X and S (Minimal Data)
- Observe that $\frac{0.71}{0.29} \approx 2.5 \neq 2.3 \approx \frac{0.60}{0.26}$

Identification

- Assume the model is correct
- How can we identify parameters of the model $\left(w_{i}, \alpha_{i}\right)$?
- Take two sets X and S (Minimal Data)
- Observe that $\frac{0.71}{0.29} \approx 2.5 \neq 2.3 \approx \frac{0.60}{0.26}$
- Key: Luce's IIA violation

Identification

First assume no influence and consider

$$
\begin{aligned}
& p_{i}(x, S)=\frac{w_{i}(x)}{w_{i}(S)} \text { and } p_{i}(x, X)=w_{i}(x) \\
& \begin{aligned}
d_{i}(x, S) & =p_{i}(x, S)-p_{i}(x, X) \\
& =p_{i}(x, S)+w_{i}(S) p_{i}(x, S) \\
& =\left(1-w_{i}(S)\right) p_{i}(x, S)>0
\end{aligned}
\end{aligned}
$$

Identification

In our model,

$$
d_{i}(x, S)=\underbrace{\frac{1-w_{i}(S)}{1+\alpha_{i}} p_{i}(x, S)}_{\text {individual }}+\underbrace{\frac{\alpha_{i}}{1+\alpha_{i}} d_{j}(x, S)}_{\text {social influence }}
$$

Identification

$$
\frac{d_{i}(x, S)}{p_{i}(x, S)}-\frac{d_{i}(y, S)}{p_{i}(y, S)}=\frac{\alpha_{i}}{1+\alpha_{i}}\left[\frac{d_{j}(x, S)}{p_{i}(x, S)}-\frac{d_{j}(y, S)}{p_{i}(y, S)}\right]
$$

Identification

$$
\frac{\alpha_{i}}{1+\alpha_{i}}=\frac{\frac{d_{i}(x, S)}{p_{i}(x, S)}-\frac{d_{i}(y, S)}{p_{i}(y, S)}}{\frac{d_{j}(x, S)}{p_{i}(x, S)}-\frac{d_{j}(y, S)}{p_{i}(y, S)}}
$$

Identification

$$
\frac{\alpha_{i}}{1+\alpha_{i}}=\frac{\frac{d_{i}(x, S)}{p_{i}(x, S)}-\frac{d_{i}(y, S)}{p_{i}(y, S)}}{\frac{d_{j}(x, S)}{p_{i}(x, S)}-\frac{d_{j}(y, S)}{p_{i}(y, S)}}
$$

- What about w_{i} ?

Identification

$$
\frac{\alpha_{i}}{1+\alpha_{i}}=\frac{\frac{d_{i}(x, S)}{p_{i}(x, S)}-\frac{d_{i}(y, S)}{p_{i}(y, S)}}{\frac{d_{j}(x, S)}{p_{i}(x, S)}-\frac{d_{j}(y, S)}{p_{i}(y, S)}}
$$

- What about w_{i} ?

$$
w_{i}(x)=p_{i}(x, X)+\alpha_{i}\left(p_{i}(x, X)-p_{j}(x, X)\right)
$$

Revisit Example

	Dan	Bob		Dan
Bob				
walk outside	0.71	0.78		0.60
0.70				
exercise home	0.29	0.22		0.26
go to the gym			0.19	
g.14	0.11			

Revisit Example

	Dan	Bob		Dan
Bob				
walk outside	0.71	0.78		0.60
0.70				
exercise home	0.29	0.22		0.26
go to the gym			0.19	
			0.14	0.11

$$
\frac{\alpha_{1}}{1+\alpha_{1}}=\frac{\frac{d_{i}(w, S)}{p_{i}(w, S)}-\frac{d_{i}(e, S)}{p_{i}(e, S)}}{\frac{d_{j}(w, S)}{p_{i}(w, S)}-\frac{d_{j}(e, S)}{p_{i}(e, S)}}=\frac{\frac{0.11}{0.71}-\frac{0.03}{0.29}}{\frac{0.08}{0.71}-\frac{0.03}{0.29}}=\frac{5}{6}
$$

Revisit Example

	Dan	Bob		Dan
Bob				
walk outside	0.71	0.78		0.60
0.70				
exercise home	0.29	0.22		0.26
0.19				
go to the gym				0.14

$$
\frac{\alpha_{1}}{1+\alpha_{1}}=\frac{\frac{d_{i}(w, S)}{p_{i}(w, S)}-\frac{d_{i}(e, S)}{p_{i}(e, S)}}{\frac{d_{j}(w, S)}{p_{i}(w, S)}-\frac{d_{j}(e, S)}{p_{i}(e, S)}}=\frac{\frac{0.11}{0.71}-\frac{0.03}{0.29}}{\frac{0.08}{0.71}-\frac{0.03}{0.29}}=\frac{5}{6}
$$

■ $\alpha_{1}: 5$ and $\alpha_{2}: 1$

Revisit Example

	Dan	Bob		Dan
Bob				
walk outside	0.71	0.78		0.60
0.70				
exercise home	0.29	0.22		0.26
go to the gym			0.19	
g.14	0.11			

$$
\frac{\alpha_{1}}{1+\alpha_{1}}=\frac{\frac{d_{i}(w, S)}{p_{i}(w, S)}-\frac{d_{i}(e, S)}{p_{i}(e, S)}}{\frac{d_{j}(w, S)}{p_{i}(w, S)}-\frac{d_{j}(e, S)}{p_{i}(e, S)}}=\frac{\frac{0.11}{0.71}-\frac{0.03}{0.29}}{\frac{0.08}{0.71}-\frac{0.03}{0.29}}=\frac{5}{6}
$$

- $\alpha_{1}: 5$ and $\alpha_{2}: 1$
- $w_{1}: 0.1,0.6,0.3$ and $w_{2}: 0.8,0.12,0.08$

Identification

- Quantify Influence and Identify Preference
- Minimal Data
- Can we falsify this model?

Characterization

Define $\beta_{i}(x, y, S)$ for all distinct $x, y \in S \neq X$ with $\frac{d_{j}(x, S)}{p_{i}(x, S)}-\frac{d_{j}(y, S)}{p_{i}(y, S)} \neq 0$ as follows:

$$
\begin{equation*}
\frac{d_{i}(x, S)}{p_{i}(x, S)}-\frac{d_{i}(y, S)}{p_{i}(y, S)}=\beta_{i}(x, y, S)\left[\frac{d_{j}(x, S)}{p_{i}(x, S)}-\frac{d_{j}(y, S)}{p_{i}(y, S)}\right] \tag{1}
\end{equation*}
$$

Characterization

Define $\beta_{i}(x, y, S)$ for all distinct $x, y \in S \neq X$ with $\frac{d_{j}(x, S)}{p_{i}(x, S)}-\frac{d_{j}(y, S)}{p_{i}(y, S)} \neq 0$ as follows:

$$
\begin{equation*}
\frac{d_{i}(x, S)}{p_{i}(x, S)}-\frac{d_{i}(y, S)}{p_{i}(y, S)}=\beta_{i}(x, y, S)\left[\frac{d_{j}(x, S)}{p_{i}(x, S)}-\frac{d_{j}(y, S)}{p_{i}(y, S)}\right] \tag{1}
\end{equation*}
$$

Independence [I].

i) $\beta_{i}(x, y, S)\left(:=\beta_{i}\right)$ is independent of S, x, y, and
ii) β_{i} satisfies (1) for all $S \neq X$ and distinct $x, y \in S$.

Characterization

Positive Uniform Boundedness: $\beta_{i}(x, y, S)<\min _{z \in X}\left\{\frac{p_{i}(z, X)}{p_{j}(z, X)}\right\}$, for all S and $x, y \in S$.

Characterization

Positive Uniform Boundedness: $\beta_{i}(x, y, S)<\min _{z \in X}\left\{\frac{p_{i}(z, X)}{p_{j}(z, X)}\right\}$, for all S and $x, y \in S$.

Non-negativeness: $\beta_{i}(x, y, S) \geq 0$, for all S and $x, y \in S$.

Characterization

Theorem

Suppose p_{i} does not satisfy IIA at least for one individual. Then (p_{1}, p_{2}) has a dual interaction representation with $\alpha_{1}, \alpha_{2} \in \mathbb{R}_{+}$if and only if Axiom 1-3 hold. Moreover, $\left(w_{1}, w_{2}, \alpha_{1}, \alpha_{2}\right)$ is uniquely identified.

Summary

- Our aim was
- propose a simple and intuitive model
- detect interaction from observed choice behavior
- quantify influence and identify preference
- minimal data requirement (one menu variation)

Generalization

$$
p_{i}(x, S)=\frac{U_{i}\left(x \mid S, \alpha_{i}, p_{j}\right)}{\sum_{y \in S} U_{i}\left(y \mid S, \alpha_{i}, p_{j}\right)}
$$

- The current paper: $U_{i}\left(x \mid S, \alpha_{i}, p_{j}\right)=w_{i}(x)+\alpha_{i} p_{j}(x, S)$
$\square U_{i}^{*}\left(x \mid S, \alpha_{i}, p_{j}\right)=\left(1-\alpha_{i}\right) \frac{w_{i}(x)}{w_{i}(S)}+\alpha_{i} p_{j}(x, S)$
- Many more...

Uniqueness and Stability

- Uniqueness of "equilibrium"
- Stability of the "equilibrium"

Uniqueness and Stability

- Uniqueness of "equilibrium":
- For any $\left(w_{1}, w_{2}, \alpha_{1}, \alpha_{2}\right)$, is there a unique pair of $\left(p_{1}^{*}, p_{2}^{*}\right)$ consistent with the model?

Uniqueness and Stability

- Uniqueness of "equilibrium":
- For any $\left(w_{1}, w_{2}, \alpha_{1}, \alpha_{2}\right)$, is there a unique pair of $\left(p_{1}^{*}, p_{2}^{*}\right)$ consistent with the model?
- Stability of the equilibrium:
- Let $\left(p_{1}^{0}, p_{2}^{0}\right)$ be the initial behavior
- Assume the dual interaction model
- What happens in the long run?

Proof by Picture

Uniqueness and Stability

Theorem

Let $w_{i} \gg 0$ and $\alpha_{i} \geq 0$ for each $i \in\{1,2\}$. Let $S \in 2^{X} \backslash\{\varnothing\}$. Then there are unique $p_{i}^{*}(S) \in \Delta_{++}(S)$ for which for all $x \in S$,

$$
p_{i}^{*}(x, S)=\frac{w_{i}(x)+\alpha_{i} p_{j}^{*}(x, S)}{\sum_{y \in S} w_{i}(y)+\alpha_{i} p_{j}^{*}(y, S)} .
$$

Further, let $\left(p_{1}^{0}, p_{2}^{0}\right) \in \Delta(S) \times \Delta(S)$. Define for each $i \in\{1,2\}$ and $t \geq 1$, $p_{i}^{t}(\cdot, S) \in \Delta(S)$ via

$$
p_{i}^{t}(x, S) \equiv \frac{w_{i}(x)+\alpha_{i} p_{j}^{t-1}(x, S)}{\sum_{y \in S} w_{i}(y)+\alpha_{i} p_{j}^{t-1}(y, S)} .
$$

Then for each $i \in\{1,2\}, \lim _{t \rightarrow \infty} p_{i}^{t}=p_{i}^{*}$.

Dynamic Identification

- What about identification in this dynamic setting? Any inference if we were to observe $\ldots p_{1}^{t-1}, p_{1}^{t} \ldots$?

Dynamic Identification

- What about identification in this dynamic setting? Any inference if we were to observe $\ldots p_{1}^{t-1}, p_{1}^{t} \ldots$?
- Yes! Although the behavior changes every period, it changes consistently. Same identification strategy:

$$
\begin{gathered}
\beta_{i}(x, y, S)=\frac{\frac{d_{i}^{t}(x, S)}{p_{i}^{t}(x, S)}-\frac{d_{i}^{t}(y, S)}{p_{i}^{t}(y, S)}}{\frac{d_{j}^{t-1}(x, S)}{p_{i}^{t}(x, S)}-\frac{d_{j}^{t-1}(y, S)}{p_{i}^{t}(y, S)}}=\frac{\alpha_{i}}{1+\alpha_{i}} \\
w_{i}(x)=p_{i}^{t}(x, X)+\alpha_{i}\left(p_{i}^{t}(x, X)-p_{j}^{t-1}(x, X)\right)
\end{gathered}
$$

Extensions

- Multi-agent Interaction
- Negative Interaction

Multi-agent Interaction

Multi-agent Interaction

Let N finite set of agents with $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$.

Multi-agent Interaction

Let N finite set of agents with $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$.

Definition

($p_{1}, p_{2}, \ldots, p_{n}$) has a social interaction representation if for each $i \in N$ there exist $w_{i}: X \rightarrow(0,1)$ with $\sum_{x \in X} w_{i}(x)=1$ and $\boldsymbol{\alpha}_{i} \in \mathbb{R}^{n-1}$ such that

$$
p_{i}(x, S)=\frac{w_{i}(x)+\boldsymbol{\alpha}_{i} \cdot \mathbf{p}_{-i}(x, S)}{\sum_{y \in S}\left[w_{i}(y)+\boldsymbol{\alpha}_{i} \cdot \mathbf{p}_{-i}(y, S)\right]}
$$

for all $x \in S$ and for all S.

Multi-agent Interaction

Characterization

$$
\begin{gathered}
\boldsymbol{\gamma}_{i} \cdot\left(\frac{\mathbf{d}_{-i}(x, S)}{p_{i}(x, S)}-\frac{\mathbf{d}_{-i}(y, S)}{p_{i}(y, S)}\right)=\frac{d_{i}(x, S)}{p_{i}(x, S)}-\frac{d_{i}(y, S)}{p_{i}(y, S)} . \\
\mathcal{B}_{i}=\left\{\boldsymbol{\gamma}_{i} \in R^{n-1} \mid \boldsymbol{\gamma}_{i} \text { solves (2) for any } S \text { and distinct } x, y \in S\right\}
\end{gathered}
$$

N-Independence $[N-I] . \mathcal{B}_{i}$ is nonempty.

Characterization

N-Independence $[N-I] . \mathcal{B}_{i}$ is nonempty.

N-Uniform Boundedness. [$\boldsymbol{N}-\boldsymbol{U B}$] For all $z \in X$, $p_{i}(z, X)>\boldsymbol{\gamma}_{i} \cdot \boldsymbol{p}_{-i}(z, X)$ for some $\boldsymbol{\gamma}_{i} \in \mathcal{B}_{i}$ with $\boldsymbol{\gamma}_{i} \in R_{+}^{n-1}$.

Characterization

Theorem

Let distinct p_{i}. Then $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ has a social interaction representation if and only if n-independence, n-uniform boundedness, and n-nonnegativeness hold. Moreover, $\left\{w_{i}, \boldsymbol{\alpha}_{i} \geq 0\right\}_{i \in N}$ are uniquely identified.

Negative Interactions

Negative Interactions

- Fashions and fads
- The choice of a fashion product not only signals which social group you would like to identify with but also signals who you would like to differentiate from (Pesendorfer, '95)
- Among criminals competition for resources governs the need for negative interactions (Glaeser et al, '96)

■ Lots of evidence but less theoretical work

Negative Interactions

How to incorporate negative influence:

Negative Interactions

How to incorporate negative influence: let $\alpha_{i} \in R$

Negative Interactions

- Existence of representation: Not every combination of ($w_{1}, w_{2}, \alpha_{1}, \alpha_{2}$) yield a dual interaction representation

Negative Interactions

- Existence of representation: Not every combination of ($w_{1}, w_{2}, \alpha_{1}, \alpha_{2}$) yield a dual interaction representation

Negative Interactions: Characterization

Fairly straightforward:

Negative Interactions: Characterization

Fairly straightforward:
Let $i \neq j$. For any $S \neq X$, and any $x, y \in S$ for which $x \neq y$, define

$$
\gamma_{i}(x, y, S) \equiv \frac{1}{\beta_{i}(x, y, S)}=\frac{\frac{d_{j}(x, S)}{p_{i}(x, S)}-\frac{d_{j}(y, S)}{p_{i}(y, S)}}{\frac{d_{i}(x, S)}{p_{i}(x, S)}-\frac{d_{i}(y, S)}{p_{i}(y, S)}} .
$$

Negative Interactions: Characterization

Fairly straightforward:
Let $i \neq j$. For any $S \neq X$, and any $x, y \in S$ for which $x \neq y$, define

$$
\gamma_{i}(x, y, S) \equiv \frac{1}{\beta_{i}(x, y, S)}=\frac{\frac{d_{j}(x, S)}{p_{i}(x, S)}-\frac{d_{j}(y, S)}{p_{i}(y, S)}}{\frac{d_{i}(x, S)}{p_{i}(x, S)}-\frac{d_{i}(y, S)}{p_{i}(y, S)}} .
$$

Conditional Independence: If p_{i} does not have a Luce representation, then $\gamma_{i}(x, y, S)$ is independent of S, x, and y.

Negative Interactions: Characterization

Fairly straightforward:
Let $i \neq j$. For any $S \neq X$, and any $x, y \in S$ for which $x \neq y$, define

$$
\gamma_{i}(x, y, S) \equiv \frac{1}{\beta_{i}(x, y, S)}=\frac{\frac{d_{j}(x, S)}{p_{i}(x, S)}-\frac{d_{j}(y, S)}{p_{i}(y, S)}}{\frac{d_{i}(x, S)}{p_{i}(x, S)}-\frac{d_{i}(y, S)}{p_{i}(y, S)}} .
$$

Conditional Independence: If p_{i} does not have a Luce representation, then $\gamma_{i}(x, y, S)$ is independent of S, x, and y.

Uniform Boundedness: For all $S \neq X$ and $x, y \in S$

$$
\gamma_{i}(x, y, S) \notin\left[\min _{z \in X}\left\{\frac{p_{j}(z, X)}{p_{i}(z, X)}\right\}, \max _{z \in X}\left\{\frac{p_{j}(z, X)}{p_{i}(z, X)}\right\}\right]
$$

Negative Interactions: Characterization

Theorem

Let $p_{1} \neq p_{2}$. (p_{1}, p_{2}) has a dual interaction representation with $\alpha_{1}, \alpha_{2} \in \mathbb{R}$ if and only if it satisfies conditional independence and uniform boundedness. Moreover, ($w_{1}, w_{2}, \alpha_{1}, \alpha_{2}$) is uniquely identified.

Literature Review

- Cuhadaroglu [2017]
- Borah and Kops [2018]
- Fershtman and Segal [2018]

THANKS!

