Behavioral Influence

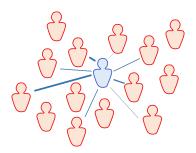
Christopher Chambers Tugce Cuhadaroglu Yusufcan Masatlioglu
Georgetown St Andrews Maryland

Decision Theory

Decision Theory

Decisions are made in isolation!!!

In reality:

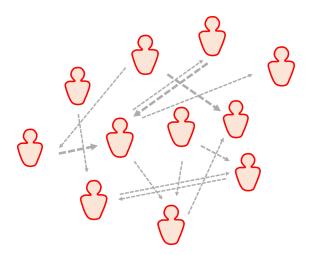


- People sharing the same environment such as members of the same household, friends, colleagues, neighbors, etc.
- We influence each other's behavior through advice, inspiration, imitation, etc.

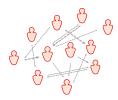
Social Interactions

- Huge (econometrical) literature on understanding the extent of social interactions in individual decisions:
 - productivity at work (Mas and Moretti, 2009)
 - job search (Topa, 2001)
 - school-achievement (Calvo-Armengol, et al., 2009)
 - teen smoking/drinking, recreational activities (Sacerdote, 2011)
 - adolescent pregnancy (Case and Katz, 1991)
 - crime (Glaser et al. 1996)

Identifying Network



Our Aim



- Propose a choice-theoretic approach to social influence
 - Describe a simple model of interacting individuals
 - Detect influence from observed choice behavior
 - \bullet Quantify Influence and Identify Preference
 - Minimal Data

Road Map

- Baseline Model: Two individuals, conformity behavior (positive)
- 2 General Model: Multi-individual interactions
- Extension: Any type of influence (positive and/or negative)

Primitive

- Domain: |X| > 1 finite set of alternatives
- Two individuals: 1 and 2

■ Data: $p_1(x, S)$ and $p_2(x, S)$, where

$$p_i(x,S) > 0 \text{ for all } x \in S$$

$$\sum_{x \in S} p_i(x,S) = 1$$

choices $\equiv f(\text{individual component, choices of other})$

choices $\equiv f(\text{individual component, choices of other})$

$$p_1 \equiv f(w_1, p_2)$$

$$w_1(x) + \alpha_1 p_2(x, S)$$

$$w_1(x) + \alpha_1 p_2(x, S)$$

$$w_1(x) + \alpha_1 p_2(x, S)$$

$$p_1(x, S) = \frac{w_1(x) + \alpha_1 p_2(x, S)}{\sum_{y \in S} [w_1(y) + \alpha_1 p_2(y, S)]}$$

Isolation vs Society

$$p_1(x,S) = \frac{w_1(x)}{\sum\limits_{y \in S} w_1(y)}$$

$$p_1(x,S) = \frac{w_1(x) + \alpha_1 p_2(x,S)}{\sum\limits_{y \in S} [w_1(y) + \alpha_1 p_2(y,S)]}$$

- Two colleagues, Dan and Bob,
- Daily exercise routines during the pandemic
 - exercise home or
 - go for a walk outside.

- Two colleagues, Dan and Bob,
- Daily exercise routines during the pandemic
 - exercise home or
 - go for a walk outside.

	Dan	Bob
walk outside	0.71	0.78
exercise home	0.29	0.22

	Dan	Bob
walk outside	0.71	0.78
exercise home	0.29	0.22

	Dan	Bob
walk outside	0.71	0.78
exercise home	0.29	0.22

- Two Possible Explanations
 - No influence and individual preferences are aligned
 - Individual preferences are not aligned but a strong influence

	Dan	Bob
walk outside	0.71	0.78
exercise home	0.29	0.22

- Two Possible Explanations
 - No influence and individual preferences are aligned
 - Individual preferences are not aligned but a strong influence
- Reflection Problem (Manski, 1993)

■ Gyms are open NOW!!!

	Dan	Bob	Dan	Bob
walk outside	0.71	0.78	0.60	0.70
exercise home	0.29	0.22	0.26	0.19
go to the gym			0.14	0.11

■ Gyms are open NOW!!!

	Dan	Bob	Dan	Bob
walk outside	0.71	0.78	0.60	0.70
exercise home	0.29	0.22	0.26	0.19
go to the gym			0.14	0.11

 \blacksquare Observe that $\frac{0.71}{0.29}\approx 2.5\neq 2.3\approx \frac{0.60}{0.26}$

■ Gyms are open NOW!!!

	Dan	Bob	Dan	Bob
walk outside	0.71	0.78	0.60	0.70
exercise home	0.29	0.22	0.26	0.19
go to the gym			0.14	0.11

- \blacksquare Observe that $\frac{0.71}{0.29}\approx 2.5\neq 2.3\approx \frac{0.60}{0.26}$
- !!!Existence of Influence!!!

■ Gyms are open NOW!!!

	Dan	Bob	Dan	Bob
walk outside	0.71	0.78	0.60	0.70
exercise home	0.29	0.22	0.26	0.19
go to the gym			0.14	0.11

- !!!Existence of Influence!!!
- We can *uniquely* identify
 - Dan and Bob have opposite rankings
 - Dan is strongly influenced by Bob

$$p_1(x, S) = \frac{w_1(x) + \alpha_1 p_2(x, S)}{\sum_{y \in S} [w_1(y) + \alpha_1 p_2(y, S)]}$$

$$p_2(x, S) = \frac{w_2(x) + \alpha_2 p_1(x, S)}{\sum_{y \in S} [w_2(y) + \alpha_2 p_1(y, S)]}$$

$$p_i(x, S) = \frac{w_i(x) + \alpha_i p_j(x, S)}{\sum\limits_{y \in S} [w_i(y) + \alpha_i p_j(y, S)]}$$

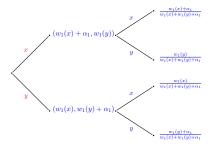
$$p_i(x, S) = \frac{w_i(x) + \alpha_i p_j(x, S)}{\sum\limits_{y \in S} [w_i(y) + \alpha_i p_j(y, S)]}$$

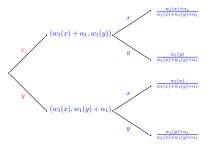
Alternatively, we can express the model:

$$p_i(x, S) = \frac{\mu_i w_i(x) + (1 - \mu_i) p_j(x, S)}{\sum_{y \in S} [\mu_i w_i(y) + (1 - \mu_i) p_j(y, S)]}$$

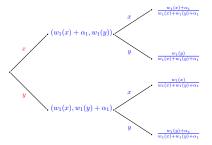
where

$$\mu_i = \frac{1}{1 + \alpha_i}$$
 and $1 - \mu_i = \frac{\alpha_i}{1 + \alpha_i}$





$$p_1(x,\{x,y\}) = \frac{p_2(x,\{x,y\})}{w_1(x) + w_1(y) + \alpha_1} + \frac{p_2(y,\{x,y\})}{w_1(x) + w_1(y) + \alpha_1} \frac{w_1(x)}{w_1(x) + w_1(y) + \alpha_1}$$



$$p_1(x,\{x,y\}) = \frac{p_2(x,\{x,y\})}{w_1(x) + w_1(y) + \alpha_1} + \frac{p_2(y,\{x,y\})}{w_1(x) + w_1(y) + \alpha_1} + \frac{w_1(x)}{w_1(x) + w_1(y) + \alpha_1}$$

$$p_1(x, \{x, y\}) = \frac{w_1(x) + \alpha_1 p_2(x, \{x, y\})}{w_1(x) + w_1(y) + \alpha_1}$$

 p_1^0

 p_2^0

$$t = 0$$

$$p_1^0 p_1^1 = f(w_1, p_2^0)$$

$$p_2^0 p_2^1 = f(w_2, p_1^0)$$

$$t = 0$$
 $t = 1$

$$p_1^0$$
 $p_1^1 = f(w_1, p_2^0)$ $p_1^2 = f(w_1, p_2^1)$

$$p_2^0$$
 $p_2^1 = f(w_2, p_1^0)$ $p_2^2 = f(w_2, p_1^1)$

$$t = 0$$
 $t = 1$ $t = 2$

$$p_1^0$$

$$p_1^1 = f(w_1, p_2^0)$$

$$p_1^1 = f(w_1, p_2^0)$$
 $p_1^2 = f(w_1, p_2^1)$

$$p_1^{\infty} = p_1$$

$$p_2^0$$

$$p_2^1 = f(w_2, p_1^0)$$

$$p_2^2 = f(w_2, p_1^1)$$

$$p_2^\infty=p_2$$

$$t = 0$$

$$t = 1$$

$$t = 2$$

$$t = \infty$$

Story behind our formulation

$$p_1(x, S) = \frac{w_1(x) + \alpha_1 p_2(x, S)}{\sum_{y \in S} [w_1(y) + \alpha_1 p_2(y, S)]}$$

- Random utility with social interactions
- Quantal response equilibrium
- Naive learning

- Linear social interaction models: Manski (1993), Blume et al. (2011), Jackson (2011), Blume et al. (2015)
 - $U_i(x) = \text{individual private utility} + \text{social utility}$
 - Social utility depends on the expected behaviors of one's peers.
- Discrete choice models with social interactions: Blume (1993), Brock and Durlauf (2001, 2003)
 - Constant strategic complementarity
 - Rational expectations
 - Errors follow a relevant extreme value distribution

$$V_i(x,S) = w_i(x) + \alpha_i p_j(x,S)$$

- $V_i(x,S) = w_i(x) + \alpha_i p_j(x,S)$
- $U_i(x,S) = V_i(x,S)\varepsilon_i(x)$
- i.i.d. errors with a Log-logistic distribution, $f(\log \varepsilon_i) = e^{-\log \varepsilon_i} e^{-e^{-\log \varepsilon_i}}$

- $V_i(x,S) = w_i(x) + \alpha_i p_j(x,S)$
- $U_i(x,S) = V_i(x,S)\varepsilon_i(x)$
- i.i.d. errors with a Log-logistic distribution, $f(\log \varepsilon_i) = e^{-\log \varepsilon_i} e^{-e^{-\log \varepsilon_i}}$

$$p_{i}(x, S) = Prob \left(\log U_{i}(x, S) > \log U_{i}(y, S) \ \forall y \neq x \right)$$

$$= Prob \left(\log \varepsilon_{i}(y) < \log \left(\frac{V_{i}(x, S)\varepsilon_{i}(x)}{V_{i}(y, S)} \right), \ \forall y \neq x \right)$$

$$\dots$$

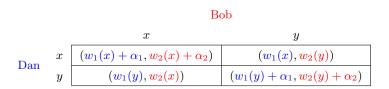
$$= \frac{w_{i}(x) + \alpha_{i}p_{j}(x, S)}{\sum_{y \in S} (w_{i}(y) + \alpha_{i}p_{j}(y, S))}$$

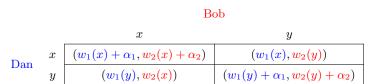
A normal form game with two players Dan and Bob,

- A normal form game with two players Dan and Bob,
- The pay-off matrix

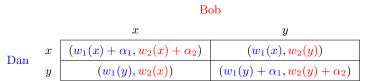
Bob

Dan $\begin{pmatrix} x & y \\ x & (w_1(x) + \alpha_1, w_2(x) + \alpha_2) & (w_1(x), w_2(y)) \\ y & (w_1(y), w_2(x)) & (w_1(y) + \alpha_1, w_2(y) + \alpha_2) \end{pmatrix}$

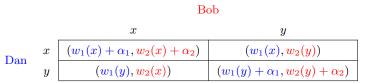




 \bullet s_i is a pure strategy, σ_i is a mixed strategy for player i.

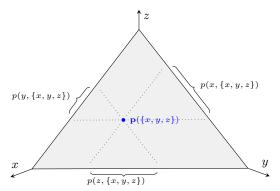


- s_i is a pure strategy, σ_i is a mixed strategy for player i.
- Player i's expected payoff from s when j plays σ_j $u_i(s, \sigma_j) = \sigma_j(s)(w_i(s) + \alpha_i) + (1 \sigma_j(s))w_i(s) = w_i(s) + \alpha_i\sigma_j(s).$

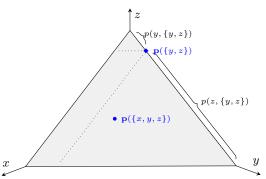


- s_i is a pure strategy, σ_i is a mixed strategy for player i.
- Player i's expected payoff from s when j plays σ_j $u_i(s,\sigma_j) = \sigma_j(s)(w_i(s) + \alpha_i) + (1 \sigma_j(s))w_i(s) = w_i(s) + \alpha_i\sigma_j(s).$
- Under the assumption that $U_i(s,\sigma) = u_i(s,\sigma)\varepsilon_{is}$ with i.i.d. log-logistic errors ε_{is} , the QRE outcome coincides with (p_1,p_2) of the dual interaction model.

- \blacksquare Consider $\mathbf{p}(\{x,y,z\}) = (p(x,\{x,y,z\}), p(y,\{x,y,z\}), p(z,\{x,y,z\}))$
- $\mathbf{p}(\{x,y,z\})$ is a point in a simplex



 $\mathbf{p}(\{y,z\})$ is also a point in a simplex

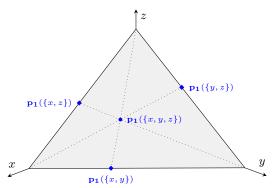


No Influence

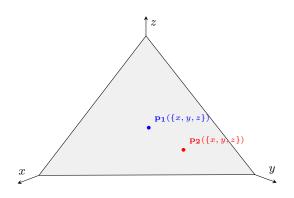
"No Influence"
$$p_1(x,A) = \frac{w_1(x)}{\sum_{y \in A} w_1(y)}$$

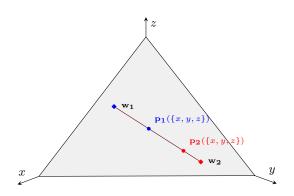
No Influence

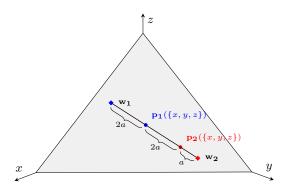
"No Influence"
$$p_1(x, A) = \frac{w_1(x)}{\sum_{y \in A} w_1(y)}$$

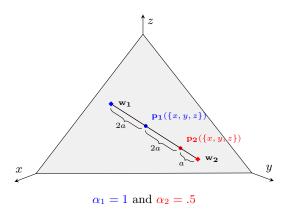


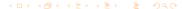
■ Luce's IIA: $\frac{p_1(x,A)}{p_1(y,A)} = \frac{p_1(x,B)}{p_1(y,B)}$





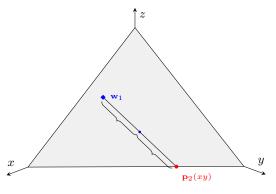






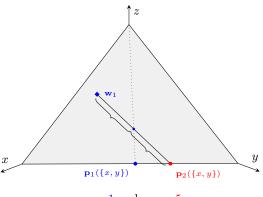
What about $p_1(\{x,y\})$?

What about $p_1(\{x,y\})$?



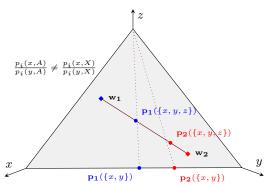
$$\alpha_1 = 1$$
 and $\alpha_2 = .5$

What about $p_1(\{x,y\})$?



$$\alpha_1 = 1$$
 and $\alpha_2 = .5$

Existing of Influence \Rightarrow IIA fails



- Assume the model is correct
- How can we identify parameters of the model (w_i, α_i) ?
- \blacksquare Take two sets X and S (Minimal Data)

- Assume the model is correct
- How can we identify parameters of the model (w_i, α_i) ?
- Take two sets X and S (Minimal Data)
- Observe that $\frac{0.71}{0.29} \approx 2.5 \neq 2.3 \approx \frac{0.60}{0.26}$

- Assume the model is correct
- How can we identify parameters of the model (w_i, α_i) ?
- Take two sets X and S (Minimal Data)
- Observe that $\frac{0.71}{0.29} \approx 2.5 \neq 2.3 \approx \frac{0.60}{0.26}$
- Key: Luce's IIA violation

First assume no influence and consider

$$p_i(x, S) = \frac{w_i(x)}{w_i(S)}$$
 and $p_i(x, X) = w_i(x)$

$$d_{i}(x, S) = p_{i}(x, S) - p_{i}(x, X)$$
$$= p_{i}(x, S) + w_{i}(S)p_{i}(x, S)$$
$$= (1 - w_{i}(S))p_{i}(x, S) > 0$$

In our model,

$$d_{i}(x,S) = \underbrace{\frac{1 - w_{i}(S)}{1 + \alpha_{i}} p_{i}(x,S)}_{\text{individual}} + \underbrace{\frac{\alpha_{i}}{1 + \alpha_{i}} d_{j}(x,S)}_{\text{social influence}}$$

$$\frac{d_i(x,S)}{p_i(x,S)} - \frac{d_i(y,S)}{p_i(y,S)} = \frac{\alpha_i}{1+\alpha_i} \left[\frac{d_j(x,S)}{p_i(x,S)} - \frac{d_j(y,S)}{p_i(y,S)} \right]$$

$$\frac{\alpha_i}{1+\alpha_i} = \frac{\frac{d_i(x,S)}{p_i(x,S)} - \frac{d_i(y,S)}{p_i(y,S)}}{\frac{d_j(x,S)}{p_i(x,S)} - \frac{d_j(y,S)}{p_i(y,S)}}$$

$$\frac{\alpha_i}{1+\alpha_i} = \frac{\frac{d_i(x,S)}{p_i(x,S)} - \frac{d_i(y,S)}{p_i(y,S)}}{\frac{d_j(x,S)}{p_i(x,S)} - \frac{d_j(y,S)}{p_i(y,S)}}$$

■ What about w_i ?

$$\frac{\alpha_i}{1+\alpha_i} = \frac{\frac{d_i(x,S)}{p_i(x,S)} - \frac{d_i(y,S)}{p_i(y,S)}}{\frac{d_j(x,S)}{p_i(x,S)} - \frac{d_j(y,S)}{p_i(y,S)}}$$

■ What about w_i ?

$$w_i(x) = p_i(x, X) + \alpha_i(p_i(x, X) - p_j(x, X))$$

Revisit Example

	Dan	Bob	Dan	Bob
walk outside	0.71	0.78	0.60	0.70
exercise home	0.29	0.22	0.26	0.19
go to the gym			0.14	0.11

Revisit Example

	Dan	Bob	Dan	Bob
walk outside	0.71	0.78	0.60	0.70
exercise home	0.29	0.22	0.26	0.19
go to the gym			0.14	0.11

$$\frac{\alpha_1}{1+\alpha_1} = \frac{\frac{d_i(w,S)}{p_i(w,S)} - \frac{d_i(e,S)}{p_i(e,S)}}{\frac{d_j(w,S)}{p_i(w,S)} - \frac{d_j(e,S)}{p_i(e,S)}} = \frac{\frac{0.11}{0.71} - \frac{0.03}{0.29}}{\frac{0.08}{0.71} - \frac{0.03}{0.29}} = \frac{5}{6}$$

Revisit Example

	Dan	Bob	Dan	Bob
walk outside	0.71	0.78	0.60	0.70
exercise home	0.29	0.22	0.26	0.19
go to the gym			0.14	0.11

$$\frac{\alpha_1}{1+\alpha_1} = \frac{\frac{d_i(w,S)}{p_i(w,S)} - \frac{d_i(e,S)}{p_i(e,S)}}{\frac{d_j(w,S)}{p_i(e,S)} - \frac{d_j(e,S)}{p_i(e,S)}} = \frac{\frac{0.11}{0.71} - \frac{0.03}{0.29}}{\frac{0.08}{0.71} - \frac{0.03}{0.29}} = \frac{5}{6}$$

 $\alpha_1 : 5 \text{ and } \alpha_2 : 1$

Revisit Example

	Dan	Bob	Dan	Bob
walk outside	0.71	0.78	0.60	0.70
exercise home	0.29	0.22	0.26	0.19
go to the gym			0.14	0.11

$$\frac{\alpha_1}{1+\alpha_1} = \frac{\frac{d_i(w,S)}{p_i(w,S)} - \frac{d_i(e,S)}{p_i(e,S)}}{\frac{d_j(w,S)}{p_i(w,S)} - \frac{d_j(e,S)}{p_i(e,S)}} = \frac{\frac{0.11}{0.71} - \frac{0.03}{0.29}}{\frac{0.08}{0.71} - \frac{0.03}{0.29}} = \frac{5}{6}$$

- $\alpha_1 : 5 \text{ and } \alpha_2 : 1$
- $w_1: 0.1, 0.6, 0.3 \text{ and } w_2: 0.8, 0.12, 0.08$

Identification

- Quantify Influence and Identify Preference
- Minimal Data
- Can we falsify this model?

Define $\beta_i(x, y, S)$ for all distinct $x, y \in S \neq X$ with $\frac{d_j(x, S)}{p_i(x, S)} - \frac{d_j(y, S)}{p_i(y, S)} \neq 0$ as follows:

$$\frac{d_i(x,S)}{p_i(x,S)} - \frac{d_i(y,S)}{p_i(y,S)} = \beta_i(x,y,S) \left[\frac{d_j(x,S)}{p_i(x,S)} - \frac{d_j(y,S)}{p_i(y,S)} \right]$$
(1)

Define $\beta_i(x, y, S)$ for all distinct $x, y \in S \neq X$ with $\frac{d_j(x, S)}{p_i(x, S)} - \frac{d_j(y, S)}{p_i(y, S)} \neq 0$ as follows:

$$\frac{d_i(x,S)}{p_i(x,S)} - \frac{d_i(y,S)}{p_i(y,S)} = \beta_i(x,y,S) \left[\frac{d_j(x,S)}{p_i(x,S)} - \frac{d_j(y,S)}{p_i(y,S)} \right]$$
(1)

Independence [I].

- i) $\beta_i(x, y, S) (:= \beta_i)$ is independent of S, x, y, and
- ii) β_i satisfies (1) for all $S \neq X$ and distinct $x, y \in S$.

Positive Uniform Boundedness: $\beta_i(x,y,S) < \min_{z \in X} \left\{ \frac{p_i(z,X)}{p_j(z,X)} \right\}$, for all S and $x,y \in S$.

Positive Uniform Boundedness: $\beta_i(x,y,S) < \min_{z \in X} \left\{ \frac{p_i(z,X)}{p_j(z,X)} \right\}$, for all S and $x,y \in S$.

Non-negativeness: $\beta_i(x, y, S) \ge 0$, for all S and $x, y \in S$.

THEOREM

Suppose p_i does not satisfy IIA at least for one individual. Then (p_1, p_2) has a **dual interaction** representation with $\alpha_1, \alpha_2 \in \mathbb{R}_+$ if and only if Axiom 1-3 hold. Moreover, $(w_1, w_2, \alpha_1, \alpha_2)$ is uniquely identified.

Summary

- Our aim was
 - propose a simple and intuitive model
 - detect interaction from observed choice behavior
 - quantify influence and identify preference
 - minimal data requirement (one menu variation)

Generalization

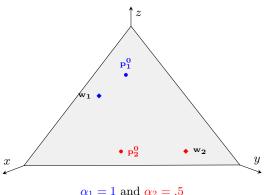
$$p_i(x,S) = \frac{U_i(x|S,\alpha_i,p_j)}{\sum_{y \in S} U_i(y|S,\alpha_i,p_j)}$$

- The current paper: $U_i(x|S,\alpha_i,p_j) = w_i(x) + \alpha_i p_j(x,S)$
- $U_i^*(x|S,\alpha_i,p_j) = (1-\alpha_i) \frac{w_i(x)}{w_i(S)} + \alpha_i p_j(x,S)$
- Many more...

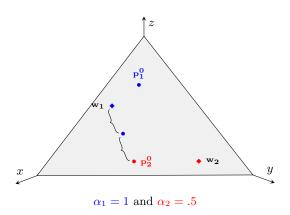
- Uniqueness of "equilibrium"
- Stability of the "equilibrium"

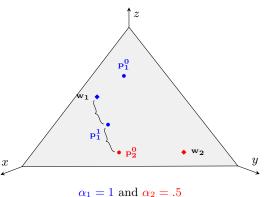
- Uniqueness of "equilibrium":
 - For any $(w_1, w_2, \alpha_1, \alpha_2)$, is there a unique pair of (p_1^*, p_2^*) consistent with the model?

- Uniqueness of "equilibrium":
 - For any $(w_1, w_2, \alpha_1, \alpha_2)$, is there a unique pair of (p_1^*, p_2^*) consistent with the model?
- Stability of the equilibrium:
 - Let (p_1^0, p_2^0) be the initial behavior
 - Assume the dual interaction model
 - What happens in the long run?

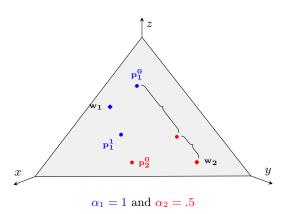


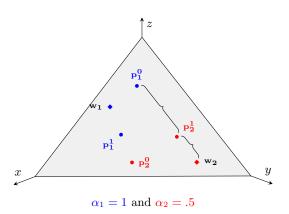
$$\alpha_1 = 1$$
 and $\alpha_2 = .5$

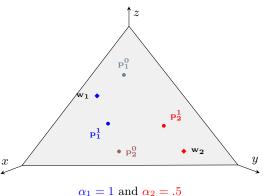




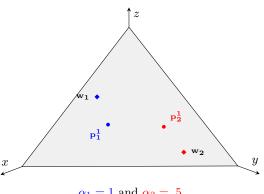
$$\alpha_1 = 1$$
 and $\alpha_2 = .5$



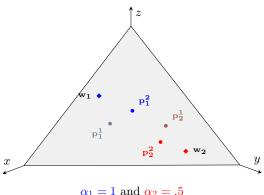




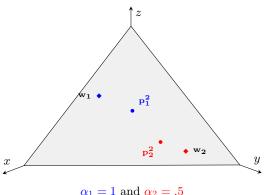
$$\alpha_1 = 1$$
 and $\alpha_2 = .5$



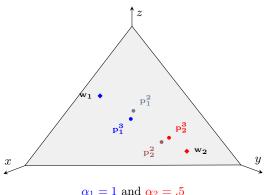
$$\alpha_1 = 1$$
 and $\alpha_2 = .5$



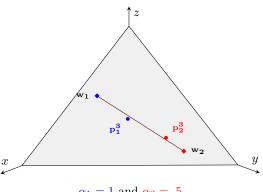
$$\alpha_1 = 1$$
 and $\alpha_2 = .5$



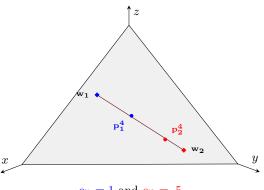
$$\alpha_1 = 1$$
 and $\alpha_2 = .5$



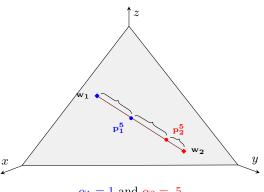
$$\alpha_1 = 1$$
 and $\alpha_2 = .5$



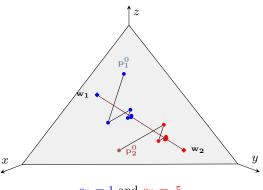
$$\alpha_1 = 1$$
 and $\alpha_2 = .5$

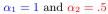


$$\alpha_1 = 1$$
 and $\alpha_2 = .5$



$$\alpha_1 = 1$$
 and $\alpha_2 = .5$





THEOREM

Let $w_i \gg 0$ and $\alpha_i \geq 0$ for each $i \in \{1, 2\}$. Let $S \in 2^X \setminus \{\emptyset\}$. Then there are unique $p_i^*(S) \in \Delta_{++}(S)$ for which for all $x \in S$,

$$p_i^*(x, S) = \frac{w_i(x) + \alpha_i p_j^*(x, S)}{\sum_{y \in S} w_i(y) + \alpha_i p_j^*(y, S)}.$$

Further, let $(p_1^0, p_2^0) \in \Delta(S) \times \Delta(S)$. Define for each $i \in \{1, 2\}$ and $t \ge 1$, $p_i^t(\cdot, S) \in \Delta(S)$ via

$$p_i^t(x, S) \equiv \frac{w_i(x) + \alpha_i p_j^{t-1}(x, S)}{\sum_{y \in S} w_i(y) + \alpha_i p_j^{t-1}(y, S)}.$$

Then for each $i \in \{1, 2\}$, $\lim_{t \to \infty} p_i^t = p_i^*$.

Dynamic Identification

What about identification in this dynamic setting? Any inference if we were to observe ... p_1^{t-1}, p_1^t ...?

Dynamic Identification

- What about identification in this dynamic setting? Any inference if we were to observe ... p_1^{t-1}, p_1^t ...?
- Yes! Although the behavior changes every period, it changes consistently. Same identification strategy:

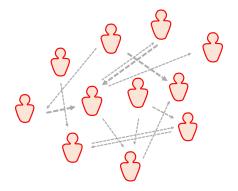
$$\beta_{i}(x,y,S) = \frac{\frac{d_{i}^{t}(x,S)}{p_{i}^{t}(x,S)} - \frac{d_{i}^{t}(y,S)}{p_{i}^{t}(y,S)}}{\frac{d_{j}^{t-1}(x,S)}{p_{i}^{t}(x,S)} - \frac{d_{j}^{t-1}(y,S)}{p_{i}^{t}(y,S)}} = \frac{\alpha_{i}}{1 + \alpha_{i}}$$

.

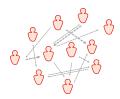
$$w_i(x) = p_i^t(x, X) + \alpha_i(p_i^t(x, X) - p_j^{t-1}(x, X))$$

Extensions

- Multi-agent Interaction
- Negative Interaction



Let N finite set of agents with $(p_1, p_2, ..., p_n)$.



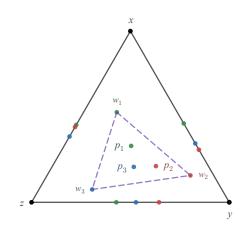
Let N finite set of agents with $(p_1, p_2, ..., p_n)$.

DEFINITION

 $(p_1, p_2, ..., p_n)$ has a **social interaction** representation if for each $i \in N$ there exist $w_i : X \to (0, 1)$ with $\sum_{x \in X} w_i(x) = 1$ and $\alpha_i \in \mathbb{R}^{n-1}$ such that

$$p_i(x, S) = \frac{w_i(x) + \alpha_i \cdot \mathbf{p}_{-i}(x, S)}{\sum_{y \in S} [w_i(y) + \alpha_i \cdot \mathbf{p}_{-i}(y, S)]}$$

for all $x \in S$ and for all S.



$$\gamma_i \cdot \left(\frac{\mathbf{d}_{-i}(x,S)}{p_i(x,S)} - \frac{\mathbf{d}_{-i}(y,S)}{p_i(y,S)} \right) = \frac{d_i(x,S)}{p_i(x,S)} - \frac{d_i(y,S)}{p_i(y,S)}. \tag{2}$$

 $\mathcal{B}_i = \{ \gamma_i \in \mathbb{R}^{n-1} \mid \gamma_i \text{ solves (2) for any } S \text{ and distinct } x, y \in S \}$

N-Independence [N-I]. \mathcal{B}_i is nonempty.

Characterization

N-Independence [N-I]. \mathcal{B}_i is nonempty.

N-Uniform Boundedness. [N-UB] For all $z \in X$, $p_i(z, X) > \gamma_i \cdot p_{-i}(z, X)$ for some $\gamma_i \in \mathcal{B}_i$ with $\gamma_i \in R^{n-1}_+$.

Characterization

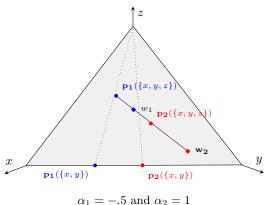
THEOREM

Let distinct p_i . Then $(p_1, p_2, ..., p_n)$ has a **social interaction** representation if and only if n-independence, n-uniform boundedness, and n-nonnegativeness hold. Moreover, $\{w_i, \boldsymbol{\alpha}_i \geq 0\}_{i \in \mathbb{N}}$ are uniquely identified.

- Fashions and fads
- The choice of a fashion product not only signals which social group you would like to identify with but also signals who you would like to differentiate from (Pesendorfer, '95)
- Among criminals competition for resources governs the need for negative interactions (Glaeser et al, '96)
- Lots of evidence but less theoretical work

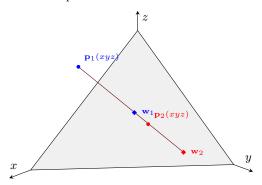
How to incorporate negative influence:

How to incorporate negative influence: let $\alpha_i \in R$



Existence of representation: Not every combination of $(w_1, w_2, \alpha_1, \alpha_2)$ yield a dual interaction representation

Existence of representation: Not every combination of $(w_1, w_2, \alpha_1, \alpha_2)$ yield a dual interaction representation



Fairly straightforward:

Fairly straightforward:

Let $i \neq j$. For any $S \neq X$, and any $x, y \in S$ for which $x \neq y$, define

$$\gamma_i(x, y, S) \equiv \frac{1}{\beta_i(x, y, S)} = \frac{\frac{d_j(x, S)}{p_i(x, S)} - \frac{d_j(y, S)}{p_i(y, S)}}{\frac{d_i(x, S)}{p_i(x, S)} - \frac{d_j(y, S)}{p_i(y, S)}}.$$

Fairly straightforward:

Let $i \neq j$. For any $S \neq X$, and any $x, y \in S$ for which $x \neq y$, define

$$\gamma_i(x, y, S) \equiv \frac{1}{\beta_i(x, y, S)} = \frac{\frac{d_j(x, S)}{p_i(x, S)} - \frac{d_j(y, S)}{p_i(y, S)}}{\frac{d_i(x, S)}{p_i(x, S)} - \frac{d_j(y, S)}{p_i(y, S)}}.$$

Conditional Independence: If p_i does not have a Luce representation, then $\gamma_i(x, y, S)$ is independent of S, x, and y.

Fairly straightforward:

Let $i \neq j$. For any $S \neq X$, and any $x, y \in S$ for which $x \neq y$, define

$$\gamma_i(x, y, S) \equiv \frac{1}{\beta_i(x, y, S)} = \frac{\frac{d_j(x, S)}{p_i(x, S)} - \frac{d_j(y, S)}{p_i(y, S)}}{\frac{d_i(x, S)}{p_i(x, S)} - \frac{d_j(y, S)}{p_i(y, S)}}.$$

Conditional Independence: If p_i does not have a Luce representation, then $\gamma_i(x, y, S)$ is independent of S, x, and y.

Uniform Boundedness: For all $S \neq X$ and $x, y \in S$

$$\gamma_i(x,y,S) \notin \left[\min_{z \in X} \left\{ \frac{p_j(z,X)}{p_i(z,X)} \right\}, \max_{z \in X} \left\{ \frac{p_j(z,X)}{p_i(z,X)} \right\} \right].$$

THEOREM

Let $p_1 \neq p_2$. (p_1, p_2) has a **dual interaction** representation with $\alpha_1, \alpha_2 \in \mathbb{R}$ if and only if it satisfies conditional independence and uniform boundedness. Moreover, $(w_1, w_2, \alpha_1, \alpha_2)$ is uniquely identified.

Literature Review

- Cuhadaroglu [2017]
- Borah and Kops [2018]
- Fershtman and Segal [2018]

THANKS!