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We provide two nested models of random reference-dependent
choice in which the reference point is endogenously determined by
random processes. Random choice behavior is due to random ref-
erence points, even though, from the decision maker’s viewpoint,
choices are deterministic. Through a revealed preference exer-
cise, we establish when and how one can identify the reference-
dependent preferences and the random reference rule from observed
choice data. We also present behavioral postulates that character-
ize the empirical content of our models. Lastly, we investigate an
application of our model to Bertrand competition with differenti-
ated products.
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Reference dependence is widely accepted as a fundamental feature of decision-
making. In response to mounting evidence, a number of theories were proposed
on reference-dependent choice. Their common feature is that, for each decision
problem, a single alternative serves as a reference point. However, many real-life
situations present a multitude of possible candidates for a reference point (e.g.,
see Kahneman, 1992, March and Shapira, 1992, Baucells, Weber and Welfens,
2011, Koop and Johnson, 2012, Baillon, Bleichrodt and Spinu, 2020). Indeed, the
seminal work of Kahneman (1992) emphasizes that for each decision problem,
there might be multiple potential reference points:

“There are many situations in which people are fully aware of the
multiplicity of relevant reference points, and the question of how they
experience such outcomes and think about them must be raised. There
appears to have been little discussion of this issue in behavioral deci-
sion research.”

In an environment where the reference point is not observable, the existence
of multiple reference points poses an additional challenge for predicting people’s
behavior. First, as an outside observer, we must know not only which reference
points are used by the decision maker but also how frequently they are employed.
Second, we need to identify how these reference points affect preferences. In this
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paper, we tackle these questions by using revealed preference techniques. Our
study illustrates when and how one can identify from observed choice data the
reference-dependent preferences as well as the distribution of reference points.
Identifying the model’s parameters is important for a policymaker who would
like to make out-of-sample predictions and evaluate the impact of different policy
interventions.

In the presence of multiple reference points, March and Shapira (1992) is the
first to hypothesize that a decision maker probabilistically shifts her focus of at-
tention between different reference points. In line with this idea, we consider a
simple probabilistic attention rule where each alternative becomes the reference
point with a certain (unobservable) probability. While the decision maker allo-
cates her attention between multiple reference points probabilistically, the key
assumption is that she always attends to one reference point at a time.1 Given
a reference point, the agent chooses the alternative which maximizes the corre-
sponding reference-dependent preference. An important feature of this model is
that, from the decision maker’s viewpoint, choices are deterministic. Yet, due
to changes in her reference point, the individual might pick different alternatives
in repetitions of a decision problem.2 Hence, the analyst observes probabilistic
choice data due to shifts in the reference point. If the attention on the reference
point is deterministic (always one alternative attracts all attention), the model
becomes a classical deterministic reference-dependent model.

Without imposing further structure, this model cannot make any prediction.
For better predictive power and identification, we first consider a simple, though
non-trivial, attention rule which is tractable enough to use in applications. In
addition, our attention rule is both alternative specific and context-dependent.
Since reference points are alternatives that are simply salient to the decision
maker (Bhatia and Golman, 2019), it is reasonable to assume that the reference
probability of an alternative is an increasing function of its salience. For example,
Tesla, being the most salient electric car brand, might have the highest reference
probability among all electric car brands. To capture this idea, we utilize the well-
known Logit formulation for the attention rule. The probability of an alternative
being the reference point is determined by its own salience parameter relative
to the total salience parameters of all available alternatives. It is important to
note that the salience parameters are not observable and must be revealed from
observed choices.3

1Kahneman (1992, p. 306) and March and Shapira (1992) both argue that only one reference point
should be used at any given point in time.

2Repeated decisions are observable in naturally occurring data, such as scanner data from supermar-
kets and online data from digital platforms as well as experimental data.

3The salience of a product may depend on features of a product potentially irrelevant for its valuation,
such as the size and/or color of its package (Milosavljevic et al., 2012), its shelf position in a traditional
store (Liang and Lai, 2002), or its screen placement on an online store (Breugelmans, Campo and
Gijsbrechts, 2007). The analyst does not directly observe how all these features affect the salience of
an option for each decision maker. Hence, the salience parameters must be endogenously derived from
observed probabilistic choice behavior.
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We now define our model formally. The decision maker is endowed with reference-
dependent preference relations {≻x}x∈X , where ≻x reflects her preference when x
is the reference point. A well-known Status Quo Bias (SQB) property, which sim-
ply requires that an alternative is more desirable when it is the reference point,
interconnects the reference-dependent preferences.4 The second key ingredient
of our model is the attention rule which identifies the shifts between reference
points. Each alternative x is endowed with a salience parameter sx, assumed to
be strictly positive, measuring the salience of the alternative as a reference point.
The probability of an alternative being the reference point is then determined
by the Logit attention rule. Overall, the probability of x being chosen in S is
expressed as

p(x|S) =
∑
y∈S

 sy∑
z∈S

sz


︸ ︷︷ ︸

probability of y being
the reference point

1(x is ≻y-best in S)

︸ ︷︷ ︸
x is the maximizer of ≻y

.

We call this the Logit Random Reference Model (L-RAR). L-RAR is a canonical
model in the sense that it applies to any individual choice problem, such as
choice among consumption bundles, lotteries, acts, consumption streams, and
distributions of wealth. Consequently, we focus on an abstract domain where the
distribution of the reference points is only determined by the choice problem.5

We now illustrate when and how one can identify the reference-dependent pref-
erences and the salience parameters from probabilistic choice data. The inference
about reference-dependent preferences relies on three different observations. The
first one is an alternative being chosen with probability 1. In this case, the unique
choice must be revealed to be preferred to any other alternative in the choice set,
independent of the reference point. The second is an alternative being chosen
with positive probability in some choice problem. In this case, we can say that it
is the best alternative in the choice problem when it is the reference point. The
final observation uses the existence of regularity violations in the data, that is,
cases where the elimination of an alternative x from a set S reduces the choice
probability of another alternative y. In this case, we deduce that y must be better
than any other alternative in S when x is the reference point. We show that these
three observations completely characterize all the revealed preference implications

4More precisely, the status quo bias property says that if x is preferred to y when some z is the
reference point, then x must also be preferred to y when x itself is the reference point. This restriction
makes the deterministic models well-behaved (Masatlioglu and Ok, 2005, Sagi, 2006, Kőszegi and Rabin,
2006). Indeed, in the absence of this condition, unwanted behavioral patterns such as cyclical choice and
status quo aversion emerge (e.g., see Sagi, 2006, Masatlioglu and Ok, 2014).

5While we consider an arbitrary domain of alternatives, in applying our model to specific domains,
the reference probability could be a function of different attributes of an alternative. For example, if the
objects are risky prospects, then the reference probability could depend on the prize dimension only or
on both the prize and the probability dimensions.
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of our model. That is, they are not only necessary but also sufficient.
We now discuss the identification of the salience parameters from observed

choice data. Note that our model has a trivial non-uniqueness: multiplying all
salience parameters by the same positive constant leads precisely to the same
reference points and hence, choice behavior. Therefore, we can only identify
the salience parameters relative to each other. In our model, the relative choice
probabilities of two alternatives depend on the availability of other alternatives
(context-dependence). This makes it difficult to reveal relative salience parame-
ters. Nevertheless, we show that all “relevant” relative salience parameters can
be revealed by looking at choice sets of sizes two and three. Hence, our model can
be identified with limited data. There are three different observations through
which the salience parameter of x relative to y can be revealed. First, the relative
choice probabilities of x and y in {x, y} reveal the salience parameter of x relative
to y unless one of the alternatives is chosen with probability one. Second, if x is
not chosen from {x, y, z} and if its elimination induces a regularity violation on
z, the difference between the relative choice probabilities of z and y in {x, y, z}
versus {y, z} reveals the salience parameter of x relative to y. The third and final
way the salience parameter of x relative to y can be revealed is when x and y are
consecutive members of a cycle in which the salience parameters for every other
consecutive pair are known.
So far, we have shown that the parameters of L-RAR are “almost” fully iden-

tified as long as they affect choice behavior. We next inquire whether these
strong (reference-dependent) preference revelations are due to L-RAR’s paramet-
ric structure in reference point formation. One might envision other probabilis-
tic attention rules that determine reference point formation, and it is unclear
whether our revelations will still survive under different reference point forma-
tion processes. To this end, we consider a general model of random reference
where the reference formation process is only assumed to satisfy two basic con-
ditions: the reference probabilities (i) are strictly positive, and (ii) satisfy strict
regularity (that is, the reference probability of an alternative is decreasing as the
menu becomes larger). We call this the Random Reference Model (RAR). No-
tice that L-RAR is a special case of RAR since L-RAR satisfies both conditions.
Additionally, many other reference formation processes satisfy them.6

Surprisingly, we show that the revealed (reference-dependent) preferences of
RAR are exactly the same as that of L-RAR. This result has two implications.
First, the revealed preferences in L-RAR are not driven by our parametric mod-
eling choice of reference probabilities. Second, any stochastic model of reference
dependence satisfying these two assumptions will have exactly the same revealed
preference as L-RAR.
Both RAR and L-RAR also offer a new perspective for probabilistic choices.

6For example, random utility representations with full support on preference rankings, the random
consideration model of Manzini and Mariotti (2014), and the weighted linear stochastic choice model of
Chambers et al. (2021) satisfy both conditions. In Section III, we provide more examples of reference
point formation rules that satisfy both assumptions.
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The previous literature interpreted stochastic choices of a single individual as the
outcome of fluctuating tastes (Thurstone, 1927, Luce, 1959, Marschak, 1960)7,
random attention (Manzini and Mariotti, 2014, Brady and Rehbeck, 2016, Aguiar,
2017, Cattaneo et al., 2020), learning (Baldassi et al., 2020), random stopping
(Dutta, 2020), imperfect information (Natenzon, 2019), random attributes (Gul,
Natenzon and Pesendorfer, 2014), or deliberate randomization (Machina, 1985,
Fudenberg, Iijima and Strzalecki, 2015, Cerreia-Vioglio et al., 2019). In our model,
on the other hand, the source of randomness is probabilistic attention on potential
reference points.

While L-RAR resembles the classical random utility model (RUM) where there
are multiple preferences, these two models are completely different in terms of ob-
served data. First, L-RAR violates the well-known regularity condition of RUM.
Second, the intersection of L-RAR and RUM only contains the deterministic
rational-choice model and the Logit model. In addition, while the set of “ratio-
nalizing” preferences in RUM is not unique in general, our reference-dependent
preference is almost unique. This distinction is due to two important factors.
First, the multiple preferences in L-RAR are related through the status quo bias
condition. On the other hand, in RUM the set of preferences is arbitrary. Second,
in L-RAR the set of reference-dependent preferences is context-dependent and the
number of preferences applied to a choice set is bounded by the number of alter-
natives in it. In RUM, on the other hand, the set of preferences is independent
of context.

It is well-known that deterministic models of reference dependence can accom-
modate the attraction effect (Kőszegi and Rabin, 2006, Ok, Ortoleva and Riella,
2015, Kıbrıs, Masatlioglu and Suleymanov, 2021), the finding that the relative
choice proportion of two alternatives is affected by the availability of a third op-
tion that is asymmetrically dominated by one of the alternatives (Huber, Payne
and Puto, 1982). Although the attraction effect has often been demonstrated
in the marketing and economics literature using between-subjects designs, re-
cently Berkowitsch, Scheibehenne and Rieskamp (2014) and Mohr, Heekeren and
Rieskamp (2017) show that the attraction effect may also be observed for the
same individual when making repeated decisions. The existing models of refer-
ence dependence, due to their deterministic nature, are not capable of explaining
these experimental observations. On the other hand, L-RAR can accommodate
the attraction effect in choice data involving repeated decisions.

Our framework includes interesting special cases. In one extreme, all the
reference-dependent preferences are identical, and hence it is as if there is a single
reference-free preference. In this case, RAR and L-RAR reduce to the classical
model of deterministic rational choice. The other extreme is when each reference-
dependent preference exhibits extreme bias towards its reference point, that is,
when every reference-dependent preference ranks its reference point at the top.

7See also Apesteguia, Ballester and Lu (2017), Ahumada and Ulku (2018), Echenique and Saito
(2019), Kovach and Tserenjigmid (2022), Filiz-Ozbay and Masatlioglu (2023), Horan (2021).
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In this case, since an alternative is chosen only when it is the reference point,
the choice probability of an alternative is equal to the probability of it being the
reference point. While L-RAR becomes the Logit model in this extreme case,
RAR becomes a model characterized by the regularity condition. This case also
resembles the Kőszegi and Rabin (2006) idea of personal equilibrium: the dis-
tribution of reference points matches the distribution of choices. Note that this
equivalence is independent of the parametric structure we have on reference point
formation; it continues to hold for any stochastic reference formation process. In
other words, personal equilibrium is equivalent to extreme status quo bias in our
framework.

In Section IV, we provide a set of behavioral postulates that characterize the
empirical content of RAR.8 We first provide a set of ordinal axioms dealing with
issues such as choice with zero probability or regularity violations. Our Ax-
iom 1 imposes that if an alternative is chosen with zero probability in a binary
comparison, adding new alternatives should not increase its choice probability.
This statement is a significant weakening of the regularity axiom, which makes
this requirement for all choice sets, and all alternatives regardless of their choice
probability. The other ordinal axioms impose conditions under which a regularity
violation might be observed. Axioms 2 and 3 state that a regularity violation can
occur if and only if the eliminated alternative is chosen with zero probability.
Axiom 4 imposes asymmetry on regularity violations. The axiom states that if
removing an alternative z causes a regularity violation for another alternative x
in the presence of y, then removing z cannot cause a regularity violation for y as
long as x is available. Our final axiom, Axiom 5, is a cardinal axiom that relates
revealed reference probabilities across choice sets.

The key assumption in our approach is that the reference-dependent preferences
are related to each other via the SQB property (as discussed in footnote 4).
While SQB is intuitive and widely accepted in the literature, one may wonder
how much our strong preference identification results depend on it. In Section
V, we investigate this question by replacing SQB with a weaker version of this
property, which we call Weak Status Quo Bias (WSQB).9 While SQB requires
that being a reference point always unambiguously helps an alternative, WSQB
only requires that being a reference point unambiguously helps an alternative
in binary comparisons but may help or hurt it in general. WSQB is a natural
weakening of the SQB property, as it requires that being a reference point helps
an alternative in some but not necessarily all cases. While preference revelations
under WSQB and SQB are different, it turns out that our strong preference
identification result is still valid under WSQB. In particular, it is still true that
the relative ranking of any two alternatives under any reference point can be
revealed from observed choices as long as it matters for choice. In this section,

8Additionally, in the Appendix we present a set of behavioral postulates that characterize L-RAR.
9WSQB says that if x is preferred to y when y is the reference point, then x must also be preferred

to y when x itself is the reference point.
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we also discuss the distinguishing features of the WSQB property from SQB in
terms of observed choice behavior.

In Section VI, we discuss an application of our model to Bertrand competition
with differentiated products. Particularly, we discuss how the equilibrium prices
depend on salience levels and reference-dependent preferences. First, we consider
a simple model of duopoly where two firms engage in price competition on two
products that are imperfect substitutes. While firms maximize their profits as in
standard theory, all consumer choices are modeled as in L-RAR. Reference depen-
dence is modeled as the consumer attaching an additional value to the reference
point. This additional value, which we call the loyalty parameter, might depend
on the product. There is additionally a salience parameter that determines the
probability of a product being the reference point, as in L-RAR. For simplicity,
we assume that all consumers have the same loyalty and salience parameters, but
their valuations are different, and their reference points are determined indepen-
dently. Firms in our application have different tools at their disposal to influence
equilibrium prices and profits in contrast to the standard Bertrand equilibrium.
For example, firms can influence the salience parameter via advertising and the
loyalty parameter via reward programs. We show that an increase in the loyalty
parameter of commodity i increases the equilibrium prices of both commodities.
While it is expected that Firm i is now able to charge higher prices, it is inter-
esting to note that this increase spills over to Firm j as well and increases its
equilibrium price. On the other hand, an increase in the salience parameter of
commodity i increases the equilibrium price of commodity i and decreases the
equilibrium price of commodity j.

Our application also illustrates that L-RAR leads to a particular choice ar-
chitecture: the introduction of additional products, seemingly irrelevant to the
current consumption choice, might yet affect choice behavior. We study the im-
plications of Firm 1 introducing a decoy product which, even though it does not
create any demand for itself, increases consumers’ loyalty to commodity 1. We
assume that the decoy is not an attractive option even when it is the reference
point. Hence, consumers never choose it. Therefore, Firm 1 does not directly
profit from sales of the decoy but potentially benefits from the decoy by increas-
ing the relative attractiveness of commodity 1. We first show that it is not always
beneficial for Firm 1 to introduce the decoy and discuss the conditions under
which the introduction of a decoy becomes profitable. This result sheds light on
both the presence and absence of decoys under the market’s competitive forces.

Our paper is foremost related to the growing literature on reference-dependent
choice. The earliest strand of this literature treats the reference point as exoge-
nous (Kahneman and Tversky, 1979, Tversky and Kahneman, 1991, Munro and
Sugden, 2003, Sugden, 2003, Masatlioglu and Ok, 2005, Sagi, 2006, Salant and
Rubinstein, 2008, Masatlioglu and Ok, 2014, Dean, Kıbrıs and Masatlioglu, 2017,
Guney and Richter, 2018, Kovach and Suleymanov, 2021). Our paper is distinct
from these papers in endogenizing the reference formation process. In addition,
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all of these papers except for Kovach and Suleymanov (2021) address determinis-
tic choices. A second strand of the literature studies endogenous reference point
formation. In models of Bodner and Prelec (1994), Kivetz, Netzer and Srinivasan
(2004), Orhun (2009), Bordalo, Gennaioli and Shleifer (2012, 2013), and Tseren-
jigmid (2019), the reference point depends on the structure of the choice set, but it
is independent of individual characteristics.10 Kőszegi and Rabin (2006), Rubin-
stein and Salant (2006), Ok, Ortoleva and Riella (2015), Freeman (2017), Kıbrıs,
Masatlioglu and Suleymanov (2021), and Lim (2020) consider models where the
endogenous reference point might differ across individuals. Maltz (2020) consid-
ers a hybrid model which combines an exogenous status quo with an endogenous
reference point. These papers, however, only address deterministic choice behav-
ior.11 To the best of our knowledge, L-RAR and RAR are the first stochastic
models of endogenous reference dependence.

Among the deterministic models listed above, the closest to ours is Kıbrıs,
Masatlioglu and Suleymanov (2021), where the reference point of a choice set
is endogenously obtained from a maximization of a “conspicuity order” over al-
ternatives. In L-RAR, we replace this maximization with a stochastic process
in which the salience of an alternative now determines the probability that it
serves as a reference point. Since L-RAR has more parameters than its deter-
ministic counterpart, one might expect identification to be comparatively more
difficult. However, the stochastic choice data L-RAR uses is richer than deter-
ministic choice (in addition to being more realistic), and this richness more than
compensates for the added parameters under stochastic reference points when it
comes to identifying parameters.

Our paper (particularly the L-RAR model) is also related to a few recent papers
that generalize the Luce model (Ahumada and Ulku, 2018, Echenique and Saito,
2019, Horan, 2021). These papers relax the Luce model’s requirement that an
alternative must be chosen from every choice problem once it is chosen from
one choice problem. In these models, the DM first constructs a “consideration
set” by eliminating dominated alternatives and then chooses alternatives within
the consideration set via the Luce rule. While these papers have a completely
different motivation from ours as they do not model reference-dependent choice,
the L-RAR model can also be thought of as a generalization of the Luce model
which allows an alternative to be chosen with positive probability from one choice
set but with zero probability from another. However, the ways in which L-RAR

10Note that the notion of salience used in Bordalo, Gennaioli and Shleifer (2012, 2013) differs signif-
icantly from the one presented in this paper. In their framework, each product has distinct attributes,
and the reference point (attribute-wise average) influences which attribute becomes salient (and receives
more weight in the evaluation). Thus, their model uses the reference point to determine the salience of
an attribute. Conversely, we define the salience of an alternative (rather than a specific attribute), which
determines the random reference rule (without affecting preferences). Hence, the use of salience in the
two approaches differ significantly.

11To clarify, what we refer to is deterministic choice behavior rather than the possibility of having
alternatives that are lotteries. For example, Kőszegi and Rabin (2007) takes alternatives to be lotteries,
yet studies deterministic choices from them.
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and these models handle non-chosen alternatives are completely different. In these
models, an alternative that is not chosen has no influence on the relative choice
probabilities of chosen alternatives. In L-RAR, on the other hand, an alternative
that is not chosen can still act as a reference point and influence the relative
choice probabilities of other alternatives.
The paper is organized as follows. In Section I, we introduce L-RAR. In Section

II, we show how the primitives of L-RAR are revealed from observed choices.
In Section III, we generalize our model to RAR and discuss its identification.
In Section IV, we introduce the behavioral postulates that characterize RAR
and present our representation theorem. In Section V, we show that our strong
preference identification results still hold under a weaker version of status quo bias.
In Section VI, we present an application of our model to Bertrand competition.
We conclude in Section VII. Lastly, the Appendix contains a characterization
theorem for L-RAR and the proofs of all theorems.

I. Logit Random Reference Model

Let X be a non-empty finite set of alternatives, and let X be the set of all
nonempty subsets of X. A choice problem is a set of alternatives S ∈ X from
which the decision maker needs to make a choice. A choice rule is a map p :
X × X → [0, 1] such that for all S ∈ X ,

∑
x∈S p(x|S) = 1 and p(x|S) > 0 only if

x ∈ S. The choice rule p represents data on the choice behavior of the decision
maker (hereafter, DM ). The expression p(x|S) represents the probability of x
being chosen from the choice problem S. Note that if p(x|S) ∈ {0, 1} for every x
and S, then choices are deterministic. Hence, our formulation encompasses both
stochastic and deterministic choice rules.
Our model has two components: (i) a family {≻x}x∈X of reference-dependent

preferences where each ≻x is a strict linear order that represents the DM’s prefer-
ences under the reference point x,12 and (ii) a family {sx}x∈X of reference weights,
where each sx > 0 measures the salience of alternative x as a reference point.13

We assume that the reference-dependent preferences {≻x}x∈X satisfy the fol-
lowing assumption. If x is preferred to y when z is the reference point, then x
must also be preferred to y when x itself is the reference point. This assumption
relates two reference-dependent preferences and, in line with the status quo bias,
requires that being the reference point cannot hurt any alternative.14

Status Quo Bias (SQB). If x ≻z y, then x ≻x y.

In our model, the reference point is stochastically determined à la Luce (1959).
That is, we assume that the probability of x being the reference point in S is

12A binary relation R on X is a strict linear order if it is (i) weakly connected: for every x, y ∈ X,
x ̸= y implies either xRy or yRx, (ii) irreflexive: for every x ∈ X, it is not the case that xRx, and (iii)
transitive: for every x, y, z ∈ X, xRy and yRz imply xRz.

13Throughout the paper, we refer to {sx}x∈X as the reference weights, the salience weights or the
salience parameters interchangeably.

14In Section V, we discuss the implications of a weaker assumption on preferences.
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equal to its own reference weight relative to the total weight of all alternatives
in S. Once a reference point x is determined from the choice problem S, the
DM maximizes the associated reference-dependent preference ≻x in S to make a
choice. The following definition formally states the choice process in our model.

DEFINITION 1: A choice rule p is consistent with the Logit Random Refer-
ence Model (L-RAR) if there exist a family {≻x}x∈X of reference-dependent
preferences satisfying SQB and a family {sx}x∈X of reference weights, where
sx > 0 for each x ∈ X, such that for each S ∈ X and x ∈ S,

p(x|S) =
∑
y∈S

 sy∑
z∈S

sz

1(x is ≻y-best in S).

We also say {≻x, sx}x∈X represents p, or p admits an L-RAR representation.

L-RAR includes two well-known special cases. At one extreme, if all reference-
dependent preferences are the same, then L-RAR reduces to the classical model of
deterministic rational choice. At the other extreme, if each reference-dependent
preference ranks its reference point at the top, then L-RAR coincides with the
Luce model with weights {sx}x∈X .15 Hence, the rational choice model and the
Luce model are two extreme cases of L-RAR with no status quo bias and extreme
status quo bias, respectively.

To illustrate the model, consider a simple example with three alternatives.
Reference-dependent preferences are x ≻x y ≻x z, y ≻y x ≻y z, and x ≻z y ≻z z.
The salience weights are 1, 2, and 3 for x, y, and z, respectively. Since x and
y are the best options when they are the reference points, they will always be
chosen with positive probability. Particularly, when only x and y are available,
their relative choice probabilities will be equal to their relative reference proba-
bilities, that is (13 ,

2
3). As discussed later, this observation allows us to deduce

reference probabilities from binary sets where both alternatives are chosen with
positive probabilities. Alternatively, assume all alternatives are available. Then
(16 ,

2
6 ,

3
6) is the corresponding reference probability distribution. Since x is the

best alternative when the reference point is either x or z, the choice probability
of x is equal to the sum of 1

6 and 3
6 (=2

3). On the other hand, z is never chosen.
Notice that removing z from the choice set {x, y, z} lowers the probability that x
is chosen from 2/3 to 1/3. This choice behavior violates the well-known regularity
principle (Suppes and Luce, 1965), which is satisfied by the random utility models
and many other stochastic choice models. An important feature of our model is
that regularity violations are caused by the elimination of unchosen alternatives.

15Alternatively, if all alternatives are always chosen with positive probabilities in all choice sets, then
we can conclude that reference points are always ranked at the top (see the discussion in the next section).
Hence, L-RAR reduces to the Luce rule if no alternative is ever chosen with zero probability.
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II. Identification of Parameters

In this section, we examine what can be inferred about the primitives of the
model based on observed choices. This is important for understanding the under-
lying model and its predicted behavior, as well as for making out-of-sample pre-
dictions and welfare evaluations. We consider an analyst who observes stochastic
choice data. The analyst posits that the decision maker has reference-dependent
preferences and randomness in the choice data is due to random shifts in refer-
ence points. The analyst would like to answer the following two key questions: (i)
What is the frequency with which each alternative serves as the decision maker’s
reference point in each choice set? (ii) What is the preference relation induced
by each reference point? We show in this section how both questions can be
answered within the framework of our model.
Since the analyst does not observe how often each alternative serves as the DM’s

reference point, identifying reference-dependent preferences might at first appear
challenging. In addition, one might hypothesize that revealed reference-dependent
preferences might often be non-unique. Surprisingly, within the framework of our
model, we show that reference-dependent preferences can be revealed to a large
extent. In particular, the relative ranking of any two alternatives under any
reference point is revealed as long as at least one of the alternatives is at least
as good as the reference point. Alternatively, the relative ranking of any two
alternatives may not be revealed only if both alternatives are strictly inferior to the
reference alternative. Since the latter cannot affect the decision maker’s behavior
(the DM can always choose the reference alternative rather than a strictly inferior
alternative), identified preferences are “almost” unique. In Section III, we show
that this result is not due to the logit random reference rule and can be generalized
significantly. In Section V, we show that the result still holds even if one assumes
a much weaker version of the status quo bias property.
To illustrate how reference weights and reference-dependent preferences can

be identified, let us present two extreme examples. First, consider choice data
satisfying Luce’s IIA. It can have multiple L-RAR representations. In every one
of them, the reference weight of an alternative x relative to an alternative y (that
is, sx/sy) is uniquely determined as the choice probability of x relative to y in
the grand set of alternatives (or, by Luce’s IIA, in any set that contains them).
In addition, each reference point must be ranked as the top alternative of its
reference-dependent preferences in all these L-RAR representations. However, we
cannot infer the relative ranking of two non-reference alternatives. This is an
unavoidable non-uniqueness in our model. Note that non-reference alternatives
are strictly inferior to reference alternatives in this case.
At the other extreme, consider deterministic choice data generated by the maxi-

mization of a single reference-independent preference relation. It also has multiple
L-RAR representations. Unlike the other extreme case though, all reference-
dependent preferences are uniquely identified. Indeed, they must be the same
as the corresponding (reference-independent) preference relation generating the
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data. But unlike the other extreme case, reference weights cannot be identified:
any positive vector of weights would work.

As will be demonstrated further in this section, the existence of multiple rep-
resentations is not restricted to the extreme cases discussed above. Hence, in the
presence of multiple representations, we need to be precise about how we define
revealed preference and reference weights. Our approach will be conservative to
ensure that we do not make any mistakes in revelations. In particular, if two
representations disagree on the relative ranking of two alternatives under some
reference point, then we do not make any conclusions regarding the ranking of
these two alternatives. Similarly, if two representations disagree on the relative
reference weights of alternatives, then we do not make any conclusions. Before
making any conclusions regarding revealed preference and reference weights, we
will require that all representations agree on these revelations.

Formally, assume p admits k L-RAR representations
(
{≻i

x, s
i
x}x∈X

)
i∈{1,...,k}.

Then we say

1) x is revealed to be preferred to y under reference point z if x ≻i
z y for each

i ∈ {1, ..., k}, and

2) the reference weight of x relative to y is revealed to be αxy if αxy = six/s
i
y

for each i ∈ {1, ..., k}.

Note that the second item refers to the identification of the relative reference
weights of two alternatives rather than the reference weight of a single alterna-
tive. This is because absolute reference weights are essentially non-unique: both
{sx}x∈X and {a∗sx}x∈X produce the same choice data whenever a > 0. Our def-
inition bypasses this rather trivial non-uniqueness by considering relative rather
than absolute weights.

According to our definition, to make any conclusions about revealed preference
and reference weights, one needs to construct all possible L-RAR representations
and verify the cases in which these representations agree. It is clearly not practical
to use this method to obtain revelations. Thus, we next provide a practical
method to obtain revealed reference-dependent preferences and reference weights.

Three types of observations reveal information about reference-dependent pref-
erences. First, suppose an alternative is chosen with probability one in some
choice set, that is, p(y|S) = 1. Then, clearly, the chosen alternative must be
preferred to the reference alternative regardless of the reference point: y ≻z z for
any z ∈ S. In addition, the SQB property implies that we must also have y ≻x z
for any z ∈ S and x ∈ X. Hence, y is the best alternative in S regardless of the
reference point.

Next, consider the observation that an alternative is chosen with positive prob-
ability in some choice set: p(y|S) > 0. For an alternative to being chosen with
positive probability, it must be that it is the best alternative under some reference
point in that set: y is ≻z-best in S for some z ∈ S. But then the SQB property
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implies that y must also be the best when it is itself the reference point. That is,
y ≻y z for any z ∈ S.
Lastly, consider the observation that removing an alternative from a choice set

decreases the probability that another alternative is chosen. Such regularity viola-
tions are allowed in our model and they give us information about the underlying
reference-dependent preferences. In particular, suppose p(y|S) > p(y|S \x). This
observation reveals that y must be the best alternative in S under the reference
point x. To see this, let A(y|S) denote the set of reference points in S under
which y is the best alternative. Clearly, if x does not belong to A(y|S), then we
must have A(y|S) ⊆ A(y|S \ x). In addition, given the logit reference rule, any
alternative in A(y|S) that is distinct from x must be the reference point in S \ x
with a higher probability. Combining these two observations, we would then have
p(y|S) ≤ p(y|S \ x) if x /∈ A(y|S). Hence, y must be ≻x-best in S.
Our discussion makes it clear that the above observations are necessary for

revealed preference. An important question is whether these observations are
also sufficient. To answer this question, for any x ∈ X and y ̸= z, we define

yPxz if ∃S ⊇ {y, z} such that one of the following is observed:

(i) p(y|S) = 1,

(ii) p(y|S) > 0 and x = y, or

(iii) p(y|S) > p(y|S \ x).

We show that if p has an L-RAR representation, then Px must be transitive.
However, it might not be complete (see the first extreme case above). Since
any L-RAR representation of p must be consistent with the above revelations,
Px must be part of the revealed reference-dependent preferences. Importantly,
there is no other revelation: any family of reference-dependent preferences that
respect {Px}x∈X represents p. In other words, if two alternatives are not ranked
according to Px, then we can always find two representations where the relative
ranking of these alternatives is opposite of each other. The proof of this result is
analogous to the proof of Theorem 2, which provides a characterization result for
an L-RAR representation.

PROPOSITION 1 (Revealed Preference): Suppose p admits an L-RAR repre-
sentation. Then y is revealed to be preferred to z under reference point x if and
only if yPxz.

Proposition 1 establishes the empirical content of revealed preferences in our
model. If {Px}x∈X contained few revelations, this would be undesirable since it
would be hard for policymakers to make welfare evaluations. However, it turns
out that this is not the case. In particular, we show that the relative ranking
of any two alternatives under any reference point can be revealed as long as it
matters for choice. That is, if two alternatives y and z are not both strictly
inferior to the reference alternative x, then the relative ranking of y and z under



14 AMERICAN ECONOMIC JOURNAL MONTH YEAR

x must be revealed.16 Hence, revealed reference-dependent preferences in L-RAR
are “almost” unique. The following proposition formally states this claim.

PROPOSITION 2: Suppose p admits an L-RAR representation where at least
one of x ≻x y and x ≻x z does not hold. Then, assuming y ̸= z, either yPxz or
zPxy must hold.

PROOF:
Let {≻x, sx}x∈X be an L-RAR representation of p such that at least one of x ≻x

y and x ≻x z does not hold. In addition, without loss of generality, assume y ≻x z.
If y = x, then p(y|{y, z}) > 0, and hence yPxz. If z = x, then p(y|{y, z}) = 1, and
hence yPxz again. So, suppose x, y, z are distinct and y ≻x z. Since at least one
of x ≻x y and x ≻x z is not true, we must have y ≻x x, and by SQB, y ≻y x, z.
Now consider the choice set {x, y, z}. If p(y|{x, y, z}) = 1, then yPxz and we are
done. On the other hand, if p(y|{x, y, z}) ∈ (0, 1), then

p(y|{x, y, z}) = sx + sy
sx + sy + sz

>
sy

sy + sz
= p(y|{y, z}).

Therefore, yPxz again. This concludes the proof. □
We next discuss how we can reveal relative reference weights from choice data.

To this end, we will only make use of binary and trinary sets, even though sim-
ilar revelations hold for larger sets as well. Three types of observations reveal
information about the reference weight of x relative to y. First, consider a binary
choice set {x, y} and suppose both x and y are chosen with positive probability.
This reveals that both x and y are preferred to the other alternative when they
are references. Hence, the relative choice probability of x and y reflects their
relative reference weight.
Next, suppose we cannot reveal the relative reference weight of x and y from the

binary choice set {x, y}. Suppose, however, there exists an alternative z ∈ X such
that p(z|{x, y, z}) > p(z|{y, z}). Notice that since p has an L-RAR representation,
this implies p(x|{x, y, z}) = 0. This is due to the fact that p(z|{x, y, z}) >
p(z|{y, z}) reveals z to be more preferred to x under ≻x, and by SQB, z is better
than x under any other reference. In addition, note that p(z|{x, y, z}) > 0 implies
z is ≻z-best in {x, y, z}, and p(z|{y, z}) < 1 implies y is ≻y-best in {x, y, z} (x
cannot be ≻y-best due to the previous observation). Therefore, we must have

p(z|{x, y, z})
p(y|{x, y, z})

− p(z|{y, z})
p(y|{y, z})

=
sx
sy

,

16If y and z are both strictly worse than the reference alternative x, the reference point is always
chosen against these alternatives. Hence, the relative ranking of these alternatives is irrelevant for choice
behavior. Notice that even in this case, we might still reveal the relative ranking of y and z under x
if either y ≻z z or z ≻y y holds. This revelation is due to the SQB property of reference-dependent
preferences.
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uniquely revealing the relative reference weights of x and y.
Lastly, suppose x and y are consecutive members of a cycle in which the relative

reference weights for every other consecutive pair are known. That is, we have
n alternatives {x1, . . . , xn}, where we have already revealed the relative reference
weights sxi/sxi+1 for (n − 1) pairs, with the abuse of notation xn+1 = x1. Since
reference weights are context-independent, the relative reference weights of any
two alternatives in {x1, . . . , xn} and the corresponding binary choice set must
coincide. This implies that the relative reference weights of a cycle multiply to
1, and knowing the values of (n − 1) pairs reveals the last one. This is evident
when n = 2 as knowing sx1/sx2 allows us to determine sx2/sx1 . For arbitrary
values of n, if only sxn/sx1 is unknown in the chain {x1, . . . , xn}, then it can be

obtained from sxn
sx1

= sxn
sxn−1

sxn−1

sxn−2
...

sx2
sx1

, where the right-hand side of the expression

is already known.
It is clear from the discussion that the above observations are necessary for

revealed reference weights. In addition, our next proposition shows that they are
also sufficient. To this end, for any x and y, let αxy be defined as below:

1) if p(x|{x, y}) ∈ (0, 1),

αxy =
p(x|{x, y})
p(y|{x, y})

,

2) if p(z|{x, y, z}) > p(z|{y, z}),

αxy =
p(z|{x, y, z})
p(y|{x, y, z})

− p(z|{y, z})
p(y|{y, z})

,

3) for any {x1, ..., xn}, if (n− 1) of the n alpha values {αxixi+1}ni=1 are already
known (with the abuse of notation xn+1 = x1), the last one is defined
through the equality

n∏
i=1

αxixi+1 = 1.

Given choice data p that is consistent with the L-RAR model, let

xWy if αxy is defined by one of the three patterns above.

First, note that W is transitive and symmetric, as implied by the last observation.
However, it may not be complete. For example, in the case of deterministic choice
data generated by maximization of a single reference-independent preference re-
lation, W = ∅. As we argued above, W must be part of the revealed relative
reference weights. Furthermore, there is no other revelation: any vector {sx}x∈X
that respects αxy for all (x, y) ∈ W represents p. In other words, if (x, y) /∈ W ,
then for any positive real number γ, we can find a representation where the ref-
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erence weight of x relative to y is γ. The following proposition establishes this
point. The proof is identical to the proof of Theorem 2.

PROPOSITION 3 (Revealed Reference Weights): Suppose p admits an L-RAR
representation. Then the reference weight of x relative to y is revealed to be αxy

if and only if xWy.

The previous proposition fully characterizes revealed reference weights in L-
RAR. As we noted before, W could be incomplete. However, similar to revealed
preference, we can show that the relative weights are “almost” unique. That
is, a relative reference weight can be revealed as long as it matters for choice.
More specifically, we next show that the relative reference weight of any two
alternatives x and y is revealed as long as there exists a choice set S containing
these two alternatives such that no alternative from S is chosen with probability
one. Note that if there exists no such S, then the relative reference weight of
x and y can never influence choice behavior, and being irrelevant for choice, it
cannot be revealed. The following proposition formally states this claim.

PROPOSITION 4: Suppose p admits an L-RAR representation. Then, for any
x and y, if there exists S ⊇ {x, y} such that p(z|S) = 1 for no z ∈ S, then xWy.

PROOF:
Since p(z|S) = 1 for no z ∈ S, there exist at least two alternatives that are

chosen with positive probability. There are a few cases to consider.
Case 1: Both x and y are chosen with positive probability. This observation
reveals to us that both x and y are the best in S when they are reference points.
Hence, p(x|{x, y}) > 0 and p(y|{x, y}) > 0, and αxy is defined.
Case 2: Either x or y is chosen with positive probability but not both. Without
loss of generality, suppose x is chosen with positive probability. Since y is chosen
with zero probability, there must be another alternative that is ≻y-best. First,
suppose x is ≻y-best in S. Let z denote another alternative that is chosen with
positive probability from S. Due to the representation, we must then have that
p(x|{x, y, z}) > p(x|{x, z}). By using the second observation, we can then define
αyz. Since both p(x|{x, z}) and p(z|{x, z}) must be positive, αzx is also defined.
Hence, by using the third observation, αxyαyzαzx = 1, we can define αxy. If, on
the other hand, z is ≻y-best in S, we must have p(z|{x, y, z}) > p(z|{y, z}), which
defines αxy through the second observation.
Case 3: Both x and y are chosen with zero probability. Then there exist z
and t such that z is ≻x-best in S and t is ≻y-best. First, suppose z and t are
distinct. By SQB, z is ≻z-best in S and t is ≻t-best. Hence, p(z|{z, t}) and
p(t|{z, t}) are both positive. This defines αzt. Next, note that by the represen-
tation, p(z|{x, z, t}) > p(z|{z, t}) and p(t|{y, z, t} > p(t|{z, t}). Using the second
observation, we can define αxt (and hence αtx) and αyz. But then, by using
the last observation αxyαyzαztαtx = 1, we can define αxy. Lastly, suppose z = t.
Since no alternative is chosen from S with probability one, there exists w such that
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p(w|S) > 0. By the representation, p(z|{z, w}) > 0 and p(w|{z, w}) > 0. This
defines αzw. In addition, the representation implies p(z|{x, z, w}) > p(z|{z, w})
and p(z|{y, z, w}) > p(z|{z, w}). This defines αxw (hence αwx) and αyw (hence
αwy) using the second observation. In addition, since αyzαzwαwy = 1, this defines
αyz. Lastly, since αxyαyzαzwαwx = 1, this defines αxy, and we are done. □

An implication of Proposition 4 is that if no alternative is chosen with probabil-
ity one in a choice set, then we can always uniquely reveal reference probabilities
for that choice set. If there exists an alternative that is uniquely chosen, we might
still be able to reveal reference probabilities by using choice data from other sets.
Hence, in L-RAR, reference probabilities are uniquely revealed whenever it is
possible to reveal information about them.

We next illustrate how to employ the previous propositions to reveal infor-
mation. To this end, we revisit the choice data given at the end of Section I,
presented in Table 1 for convenience. We show that all relative reference weights
and reference-dependent preferences are uniquely identified and consistent with
the primitives generating the data.

Table 1—A choice rule consistent with L-RAR. Preferences and relative reference weights

can be fully revealed from the choice data.

p(·|S) {x, y, z} {x, y} {x, z} {y, z}
x 2/3 1/3 1 -
y 1/3 2/3 - 1
z 0 - 0 0

Revealed Preference: To reveal Pz, note that p(x|{x, y, z}) > p(x|{x, y}) implies
xPzy, and p(y|{y, z}) = 1 implies yPzz. Together, we have xPzyPzz. To reveal Py,
note that p(y|{x, y, z}) > 0 implies yPyx and yPyz, and p(x|{x, z}) = 1 implies
xPyz. Together, we have yPyxPyz. To reveal Px, note that p(x|{x, y, z}) > 0
implies xPxy and xPxz, and p(y|{y, z}) = 1 implies yPxz. Together, we have
xPxyPxz.

Revealed Relative Reference Weights: From the set {x, y}, we observe αxy =
p(x|{x,y})
p(y|{x,y}) =

1
2 . Then, from the set {x, y, z},

αzy =
p(x|{x, y, z})
p(y|{x, y, z})

− p(x|{x, y})
p(y|{x, y})

=
2

1
− 1

2
=

3

2
.

Hence, αyz = 2
3 and αxz = αxyαyz = 1

3 . For example, normalizing sx = 1, this
gives us sy = 2 and sz = 3.
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III. Random Reference Model

In the previous section, we studied a specific model of reference point formation,
namely the logit rule, and showed that L-RAR could be almost fully identified.
While the logit rule has some appealing features, such as tractability, it is far
from being a canonical model of reference point formation, as it is a particular
parametric rule. In this section, we abstain from any specific parametric (stochas-
tic) rule and instead consider a large class of non-parametric reference formation
rules. Our general model imposes two intuitive conditions: (i) strict positivity
and (ii) strict regularity (i.e., the reference probability of an alternative decreases
as the menu becomes larger). We illustrate by means of examples that these con-
ditions are satisfied by many plausible reference point formation rules, including
logit. Given that the reference formation rule is not observable, this is crucial for
the applicability of our revealed preference results by ensuring that our findings
and empirical implications are valid under various rules that may be operating in
the background. In other words, our revealed preference results are derived from
non-parametric restrictions on the formation rule and hence are more robust to
misspecification biases. In addition, this model allows us to investigate whether
the strong revelations in the L-RAR model are due to its strong parametric struc-
ture in reference point formation.
Formally, the DM has context-dependent reference probabilities ρ(·|S). The

expression ρ(x|S) represents the likelihood that alternative x will be the reference
point in S. Assume that ρ satisfies (i) ρ(x|S) > 0 for all x ∈ S (strict positivity),
and (ii) ρ(x|S) < ρ(x|T ) for all x ∈ T ⊊ S (strict regularity). Notice that the
reference rule in L-RAR given by ρ(x|S) = sx∑

y∈S sy
satisfies both properties. To

further demonstrate the richness of the framework and motivate the analysis to
follow, we discuss several other examples of reference point formation models
satisfying the two above conditions.

1) (Captive Reference Point) This example generalizes the logit reference-
point formation. Each alternative x is now endowed with a captivity param-
eter θx ≥ 0 and sx > 0 represents the salience of x as before. The captivity
parameter reflects the attachment to a particular reference point in the
sense that the DM picks this alternative as her reference point regardless of
salience. Formally, let

ρ(x|S) = 1

1 +
∑

y∈S θy

sx∑
y∈S sy

+
θx

1 +
∑

y∈S θy
.

The second term is independent of the salience parameters and represents a
lower bound for ρ(x|S). The larger θx is, the more likely it is that x becomes
the reference point. When θx = 0 for all x, we obtain the logit model.
This model improves upon the unrealistic feature of the logit model, which

requires that the odds ratio of being a reference point, ρ(x|S)
ρ(y|S) , is independent
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of other alternatives, and independent of additions to, and deletions from a
choice set.

2) (Random Attribute Order) Consider an environment where alterna-
tives have attributes, such as price or quality. The decision maker randomly
focuses on one of these attributes and the alternative that is ranked highest
according to this attribute becomes the DM’s reference point. For example,
a DM who is buying an airplane ticket may focus on the price of the ticket
in some cases and the duration of the flight in other cases. Let A be the
finite set of attributes. Let λj represent the probability that attribute j
“draws attention to itself”. This reflects the salience and/or importance of
attribute j. Let Rj denote the ranking of alternatives under attribute j.
The probability of x being the reference point in S is then given by

ρ(x|S) =
∑
j∈A

λj1(x is Rj-best in S).

Assuming that each alternative is Rj-best for at least one attribute j with
λj > 0, ρ(·|·) satisfies both strict positivity and strict regularity. Notice that
for any given attribute (e.g., price) we can define another attribute that is
the inverse of the first one (e.g., − price). Hence, this example allows both
the cheapest and the most expensive item to act as a reference point.

3) (Random Attribute Intensity) This example is an adaptation of Gul,
Natenzon and Pesendorfer (2014) to reference point formation. As in the
Random Attribute Order, alternatives have several attributes. Let A denote
the finite set of attributes again. Each attribute j is endowed with a salience
parameter vj > 0. We let I(x, j) ≥ 0 denote the intensity of alternative x in
attribute j. For example, if color is the relevant attribute, then a product
with red color may have a higher intensity than the one with gray color. An
alternative with high intensity in more salient attributes is more likely to
act as the reference point. Formally, let Ax denote the subset of attributes
alternative x has, i.e., j ∈ Ax if and only if I(x, j) > 0. Let AS =

⋃
x∈S Ax.

Then,

ρ(x|S) =
∑
j∈Ax

vj∑
k∈AS

vk
· I(x, j)∑

y∈S I(y, j)
.

Assuming that each alternative has at least one attribute, strict positivity
and strict regularity are satisfied. Note that this model reduces to the logit
rule if no pair of alternatives share common attributes.

4) (Random Category) This is an adaptation of the nested logit model (Ben-
Akiva, 1973, McFadden, 1978) to reference point formation. The consumer
groups alternatives into categories C1, . . . , Cn that partition the set of all al-
ternatives X. The consumer first chooses a category, and then the reference
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point is chosen from the category via the Luce rule with weights {sx}x∈X .
Formally, if x is in Ci, then the probability of x being the reference point
in S is given by

ρ(x|S) =

( ∑
x∈S∩Ci

sx

)µi

∑
j

( ∑
z∈S∩Cj

sz

)µj

sx∑
y∈S∩Ci

sy
,

where µi ∈ (0, 1] for all i.

5) (Dual System) Our last example is an adaptation of the process “thinking
fast and slow,” an idea popularized by Kahneman (2011). In this model,
there are two distinct systems in the mind of the consumer: system 1 and
system 2. The consumer employs system 1 in familiar environments, while
system 2 is employed when the consumer faces an unfamiliar environment.
Assume that the consumer faces all the products most of the time. In this
familiar environment, the consumer only activates system 1, which dictates
that the probability of x acting as the reference point is at least v1(x). When
some of the alternatives are not available and the choice set is S, there
will be an excess measure of (1 −

∑
y∈S v1(y)) of probabilities. In these

cases, the consumer activates system 2 to allocate the excess probability
among the feasible reference points. The excess probability is distributed to
available products with respect to their relative salience according to system
2’s evaluation, which is represented by v2. Hence, the reference probabilities
in this example can be written as the sum of the base probability (system 1)
plus the fraction of the excess probability due to the unavailability of some
products (system 2).17 Formally,

ρ(x|S) = v1(x) +
(
1−

∑
y∈S

v1(y)
) v2(x)∑
y∈S

v2(y)
.

Assuming v1(x) > 0 for all x, this reference rule satisfies strict positivity
and strict regularity.

In what follows, the choice procedure of our agent is the same as in L-RAR,
except that now reference probabilities are only required to satisfy strict pos-
itivity and strict regularity, which are satisfied by a wide range of models, as
illustrated above. As before, we continue to assume that reference-dependent
preferences {≻x}x∈X satisfy SQB. The following definition formally describes the
choice process.

17This formulation also appears in Chambers et al. (2021) in the context of stochastic choice data.
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DEFINITION 2: A choice rule p is consistent with the random reference
model (RAR) if there exist a family {≻x}x∈X of reference-dependent prefer-
ences satisfying SQB and context-dependent reference probabilities ρ satisfying
strict positivity and strict regularity such that for each S ∈ X and x ∈ S,

p(x|S) =
∑
y∈S

ρ(y|S) 1(x is ≻y-best in S).

When the above definition is satisfied, we also say ({≻x}x∈X , ρ) represents p,
or p admits a RAR representation.
As in Section II, we say that y is revealed preferred to z under x if for every

RAR representation ({≻x}x∈X , ρ) of p, we have y ≻x z. In addition, let Px be
defined as in the previous section. Our main result in this section states that
the revealed preference in RAR is exactly the same as in L-RAR. In other words,
any reference point formation rule that satisfies the two assumptions of RAR
(e.g., any of the other examples in this section) shares the same exact preference
revelation as in L-RAR.

PROPOSITION 5 (Revealed Preference): Suppose p admits a RAR representa-
tion. Then y is revealed to be preferred to z under reference point x if and only
if yPxz.

The formal proof of this result is analogous to the proof of Theorem 1, which
provides a characterization result for RAR. Here we illustrate why this result
must hold. The argument for the necessity is similar to the one for Proposition
1. First, if an alternative is chosen with probability one in some choice set, then
this alternative must be the best alternative regardless of the reference point in
that set. In addition, the SQB property guarantees that it also has to be the
best, even for reference points outside the set. For the second revelation, if an
alternative is chosen with a positive probability in some choice set, then it must
be the best under at least one reference point in that set. But then the SQB
property guarantees that it is also the best when it is itself the reference point.
For the last revelation, assume we observe the probability of y being chosen to be
strictly larger in S than S \x. Notice that removing x from S does not shrink the
set of alternatives that place y as the top-ranked alternative in S. In addition,
since reference probabilities satisfy strict regularity, this observation is possible
only if y is the best in S under x.
To see why these revelations are sufficient, assume that we have not revealed

the relative ranking of y, z ∈ X under the reference x using our definition for
Px. Then, by an argument along the lines of Proposition 2, we can show that
x ≻x y, x ≻x z, y ≻y z and z ≻z y. But if all these conditions are satisfied, the
relative ranking of y and z under x cannot impose any restrictions on observed
choices. Hence, our definition reveals to us everything that can be revealed about
the preference, so it has to be sufficient. Notice that this also implies that the
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added structure of L-RAR cannot give us any new preference revelations. All the
information that can be learned about preferences can already be learned under
RAR.
The result in this section is important for two reasons. First, it shows that the

strong preference revelations in L-RAR are not driven by its parametric structure.
The same strong revelations also hold under a much more general non-parametric
restriction. Second, for any other reference point formation rule that satisfies the
two assumptions of RAR, we do not need to perform further revealed preference
analysis. Our results in this section are directly applicable to all such reference
point rules.

IV. Behavioral Postulates for RAR

In this section, we discuss the behavioral postulates that characterize the empir-
ical content of RAR.18 Our postulates can be classified into two groups. Axioms
1-4 consider ordinal properties of the observed choice rule, dealing with issues
such as choice with zero probability or regularity violations. Axiom 5, on the
other hand, puts a cardinal structure for reference probabilities.
The following terminology will be helpful. We say x is chosen from S if p(x|S) >

0. If p(x|S) = 0, we say x is not chosen from S. Our first axiom states that if
x is not chosen against y in a binary comparison, it cannot be chosen from any
choice problem that contains y. Hence, this axiom is a significant relaxation of
the well-known regularity condition, which requires p(x|S) ≤ p(x|T ) whenever
x ∈ T ⊂ S.

AXIOM 1: If p(x|{x, y}) = 0, then p(x|S) = 0 for every S that contains y.

In our model, if x is not chosen against y, that means y ≻x x. Since reference-
dependent preferences that we consider satisfy the SQB property, it must be the
case that y is ranked above x regardless of the reference point. Hence, x can never
be chosen in the presence of y.
Our model allows for regularity violations. The following three axioms regulate

what type of regularity violations can be observed. The next axiom states that
if an alternative x is not chosen in S, there must be an alternative y which beats
x in a binary comparison, and if this y does not beat all other alternatives in S,
then eliminating x must induce a regularity violation for y.

AXIOM 2: If p(x|S) = 0, then there is y ∈ S such that p(y|{x, y}) = 1 and
either p(y|S) = 1 or p(y|S) > p(y|S \ x).

This axiom necessarily holds in our model. If x is not chosen from S, that means
another alternative y must be ≻x-best in S, and by SQB, must also be ≻y-best.
Since y is better than x under both reference-dependent preferences, it must be

18We provide a characterization for L-RAR in the Appendix.
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that x is not chosen from {x, y}. Furthermore, unless y similarly beats every other
alternative in S (in which case y must be the only chosen alternative in S), it must
be that elimination of x from S decreases the choice probability of y, inducing a
regularity violation. To see why, let A(y|S) be the set of reference points in S
according to which y is the best alternative in S. By p(y|{x, y}) = 1, we know
that x belongs to that set. With the elimination of x from S, A(y|S \x) becomes
smaller than A(y|S). In addition, for any z /∈ A(y|S), ρ(z|S \x) > ρ(z|S). Hence,
if A(y|S) ̸= S, this induces p(y|S) > p(y|S \ x). If there are no other chosen
alternatives (that is, if A(y|S) = S), on the other hand, p(y|S) = p(y|S \ x) = 1
remains the same.
Axiom 2 states that eliminating an unchosen alternative should induce a regu-

larity violation unless only one alternative is chosen from S. The following axiom
completes this picture by stating that eliminating a chosen alternative cannot
induce a regularity violation. Hence, in our model, regularity violations happen
only due to zero probability choices.

AXIOM 3: If p(x|S) > 0, then p(y|S) ≤ p(y|S \ x) for any y ∈ S \ x.

To see why this axiom holds in our model, note that if x is chosen in S, it must
be ≻x-best in S. Hence, if y is ≻z-best for some alternative z ∈ S, then z is
distinct from x, and y is also ≻z-best in S \x. That is, the set of reference points
for which y is the best in S can not get smaller as x is eliminated: A(y|S) ⊆
A(y|S \x). Since p(y|S) =

∑
z∈A(y|S) ρ(z|S) and ρ satisfies regularity, this implies

p(y|S) ≤ p(y|S \ x) for every y ∈ S \ x.
The next axiom imposes a form of asymmetry on regularity violations. It

considers a situation where eliminating z induces a regularity violation on x when
y is available. Our axiom then states that, in the presence of x, eliminating of z
cannot induce a regularity violation for y.

AXIOM 4: If p(x|S) > p(x|S \ z) and x, y, z ∈ T ∩ S, then p(y|T ) ≤ p(y|T \ z).

To see why Axiom 4 is satisfied by our model, note that z induces a regularity
violation on x in a set that contains y only if x ≻z y. Due to the asymmetry
of ≻z, there cannot be another case where z induces a regularity violation on y
when x is available.
Axiom 4 is related to the single reversal axiom on deterministic choice (Kıbrıs,

Masatlioglu and Suleymanov, 2021). Their axiom states that if elimination of x
induces a choice reversal in a choice set containing y (i.e., c(S) ̸= c(S \ x) when
x ̸= c(S) and y ∈ S), then there cannot be another choice set containing x in
which, now, elimination of y induces a choice reversal. The stochastic analog of
the single reversal axiom would require that in any choice set, there is at most
one alternative elimination which can cause a regularity violation. While this
does not hold in our model, Axiom 4 restricts the number of possible regularity
violations in another way by stating that eliminating an alternative can cause a
regularity violation for at most one alternative.



24 AMERICAN ECONOMIC JOURNAL MONTH YEAR

Unfortunately, Axioms 1-4 are not sufficient, as illustrated in our next exam-
ple. The choice rule presented in Table 2 satisfies Axioms 1-4, but cannot be
represented by RAR. To see this, suppose not. By the previous discussion on
revealed preferences, we must have x ≻y y ≻y z, x ≻x y, z and z ≻z x, y.
Since p(y|{y, z}), p(z|{y, z}) ∈ (0, 1), ρ(y|{y, z}) = p(y|{y, z}) = 0.1. Similarly,
ρ(x|{x, z}) = p(x|{x, z}) = 0.5. By strict regularity, we must have ρ(x|{x, y, z}) <
0.5 and ρ(y|{x, y, z}) < 0.1. This is a contradiction since p(x|{x, y, z}) > 0.1+0.5.

Table 2—A choice rule that satisfies Axioms 1-4 but cannot be represented by RAR.

p(·, S) {x, y, z} {x, y} {x, z} {y, z}
x 0.7 1 0.5 -
y 0 0 - 0.1
z 0.3 - 0.5 0.9

The example in Table 2 illustrates that, for choice data to be representable by
RAR, the size of regularity violations it exhibits must be bounded. The following
axiom guarantees this is the case. Together with the previous axioms, it char-
acterizes RAR. This axiom is closely related to Motzkin’s transposition theorem
(Motzkin, 1936), a member of the well-known theorems of the alternatives. It
guarantees that the reference point formation rule satisfies strict positivity and
strict regularity.
Before stating the axiom, we introduce the following notation. For any x, y ∈

S ⊆ X, let λxy(S) denote a positive constant. Let λ stand for the vector consisting
of all constants λxy(S). For notational simplicity, let λx(S) stand for λxx(S). For
any such λ, we define

V (λ, p) =
∑
S∈X

∑
x∈S⊆X

λx(S)p(x, S)+
∑
S∈X

∑
x,y∈S⊆X s.t. x ̸=y

λxy(S)(p(x, S\y)−p(x, S)).

For any x ∈ S, let

Γλ(x, S) = λx(S) +
∑
y/∈S

λxy(S ∪ y)−
∑

z∈S\x

λxz(S).

Notice that if p satisfies the regularity condition, then V (λ, p) must be positive
for any vector λ ≥ 0. On the other hand, since our model allows for regularity
violations, V (λ, p) may not always be positive for all possible positive λ. However,
if λ is chosen in a way that satisfies certain constraints, as made precise in the
axiom, then V (λ, p) must be positive. This ensures that if we observe a regularity
violation, and hence p(x|S\y)−p(x, S) is negative for some x, y ∈ S, the regularity
violation is bounded so that V (λ, p) is still positive.
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AXIOM 5: For any λ ≥ 0 that satisfies Γλ(x, S) = Γλ(y, S) for all x, y ∈ S such
that either p(x|S) = 1 or p(x, S) > p(x, S \ y), we have V (λ, p) ≥ 0, with strict
inequality if λ ̸= 0.

The necessity of Axiom 5 is shown in the proof of Theorem 1. To see how the
axiom rules out the example in Table 2, let λ ≥ 0 be such that λxy({x, y, z}) =
λyx({x, y, z}) = 1, and every other term in λ is zero. Note that Γλ(x, {x, y, z}) =
−1 = Γλ(y, {x, y, z}) and Γλ(x, {x, y}) = 0 = Γλ(y, {x, y}), and hence the if part
of the axiom is satisfied. On the other hand,

V (λ, p) = p(x|{x, z})− p(x|{x, y, z}) + p(y|{y, z})− p(y|{x, y, z}) = −0.1 < 0,

violating the axiom.
Similar to other studies in stochastic choice theory, our proof identifies the

RAR representation as a solution to a finite linear system. Earlier studies such
as Scott (1964), McFadden and Richter (1991), McFadden (2005) follow a similar
strategy. Non-negativity of the Block-Marschak polynomials (BM) and the Axiom
of Revealed Stochastic Preference (ARSP) of McFadden and Richter (1991) are
both used to characterize the behavioral content of RUM. We think of Axiom 5
as belonging to the same category of axioms as BM and ARSP. We now state the
characterization result.

THEOREM 1: A random choice rule p satisfies Axioms 1-5 if and only if it has
a RAR representation.

The proof of the theorem is in the Appendix. In the proof, we first show that
Axioms 1-4 guarantee Px, as defined in Section II, is well-defined. Hence, we
can construct reference-dependent preferences {≻x}x∈X by considering arbitrary
completions of {Px}x∈X . Lastly, Axiom 5 ensures that there exists ρ satisfying
strict positivity and strict regularity such that ({≻x}x∈X , ρ) represents p.

V. Weak Status Quo Bias

In the previous sections, our preference identification results make use of the
SQB property. One may then wonder to what extent our results can be generalized
when a weaker version of SQB is assumed. We answer this question in this section.
It turns out that our preference identification results continue to hold in that case
as well.
Our original SQB property requires that if x is preferred to y under some

reference point, then xmust also be preferred to y when x is the reference point. A
weaker requirement, calledWeak Status Quo Bias (WSQB), is that if x is preferred
to y when y is the reference point, then x must also be preferred to y when x
is the reference point. While under SQB being a reference point unambiguously
helps an alternative, under WSQB being a reference point unambiguously helps
an alternative in binary comparisons, but may help or hurt it in general.
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Weak Status Quo Bias (WSQB). If x ≻y y, then x ≻x y.

Direct confirmations of WSQB can be found in the experimental literature on
individual choice (see Knetsch, 1989, Masatlioglu and Uler, 2013). Motivated
by these findings, WSQB has commonly been employed by reference-dependent
choice models, seeking to capture status quo bias and loss aversion phenomena
(see Sugden, 2003, Munro and Sugden, 2003, Sagi, 2006, Apesteguia and Ballester,
2009, Masatlioglu and Nakajima, 2013).19

For the sake of brevity, we do not pursue full axiomatic characterization of the
model with WSQB in this paper. Nevertheless, we would like to highlight two
main properties that distinguish the model with WSQB from the model with
SQB. First, under SQB, if x is never chosen in a menu, then x will still never be
chosen if we enlarge the menu with new alternatives, that is, p(x|T ) = 0 implies
p(x|S) = 0 as long as T ⊆ S. (Note that for binary T , this is the statement of
Axiom 1.) This statement is no longer true under WSQB. Hence, the model with
WSQB allows for choice overload type of phenomenon where previously unchosen
alternatives can be chosen with positive probability when new alternatives are
added to the menu.

Second, under SQB, removing alternatives that are chosen with positive proba-
bility cannot cause a regularity violation (Axiom 3): if p(x|S) > 0, then p(y|S) ≤
p(y|S \x). In other words, regularity violations can happen only if zero probabil-
ity alternatives are removed from the menu. On the other hand, under WSQB,
we can have regularity violations even when non-zero probability alternatives are
removed. The model with WSQB, hence, allows for a much richer set of choice
behavior where regularity violations can occur under a variety of circumstances.

To illustrate both points, consider the example in Table 3. Notice that choices
from binary menus exhibit a cycle: x is always chosen from {x, y}, y is always
chosen from {y, z}, and z is always chosen from {x, z}. In the choice set {x, y, z},
each alternative is chosen with 1/3 probability. Now, since all alternatives are
chosen with positive probabilities in {x, y, z}, but x is never chosen from {x, z},
y is never chosen from {x, y}, and z is never chosen from {y, z}, this example
violates Axiom 1. In addition, removing x, y or z from {x, y, z} causes a regularity
violation, even though all three alternatives are chosen with positive probabilities
in {x, y, z}, in violation of Axiom 3. Since this example violates both Axiom 1
and Axiom 3, it cannot be explained by RAR under SQB. On the other hand,
consider the preferences z ≻x x ≻x y, x ≻y y ≻y z, and y ≻z z ≻z x. These
preferences satisfy WSQB, and they can explain the observed choice behavior if

19Alternatively, one may choose to impose no assumptions on preferences at all. This may not nec-
essarily be desirable since such a model allows “status quo aversion” type of choice patterns, which are
against the existing experimental findings. Furthermore, preference identification results under this most
general model are not as sharp as the results under SQB and WSQB. As a simple example, suppose there
are only two alternatives and both of them are chosen with a positive probability. Under WSQB, we
learn that each alternative is ranked top when it is the reference point. If we do not make any assumption
on preferences, this is not necessarily true, and multiple reference-dependent preferences are consistent
with the data.
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we choose ρ(a|{x, y, z}) = 1/3 for a ∈ {x, y, z}. Reference probabilities in binary
menus can be arbitrary as long as strict positivity and regularity are satisfied.

Table 3—A choice rule that is accommodated by RAR under WSQB but not SQB.

p(·|S) {x, y, z} {x, y} {x, z} {y, z}
x 1/3 1 0 -
y 1/3 0 - 1
z 1/3 - 1 0

The two properties we highlight above can then be thought of as the additional
behavioral implications of SQB. If one assumes that observed random choice be-
havior is driven by the unobserved randomness in reference points, where reference
probabilities satisfy strict positivity and regularity properties, then a violation of
either Axiom 1 or 3 leads one to conclude that the underlying reference-dependent
preferences violate SQB while they may still satisfy WSQB.
Interestingly, it turns out that our sharp identification result is still true under

WSQB. We first define the revealed preference under WSQB. Since some of the
revelations under SQB no longer hold under WSQB, we modify our revealed
preference as follows. For any x ∈ X and y ̸= z, we define

yPxz if one of the following is observed:

(i) p(y|S) = 1 for some S ⊇ {x, y, z},
(ii) p(y|S) = 1 for some S ⊇ {x, y} and p(x|T ) = 1 for some T ⊇ {x, z},
(iii) p(y|{y, z}) > 0 and x = y, or

(iv) p(y|S) > p(y|S \ x) for some S ⊇ {x, y, z}.

The first condition states that if y is chosen with probability one in some choice
set containing x, y, and z, then y is revealed preferred to z under x. Unlike the
revelation under SQB, we now need to require that the choice set also contains
x, not just y and z. The second condition states that if y is chosen over x and
x is chosen over z, then y must be preferred to z under x.20 The third condition
states that if x is chosen over z with a positive probability in a binary comparison,
then x must be preferred to z under x. Unlike the case with SQB, this is no
longer true for arbitrary choice sets. For example, in Table 3, x is chosen with
positive probability from {x, y, z}, but x cannot be preferred to z under x, as x
is never chosen from {x, z}. The last condition uses regularity violations to infer
preferences and is the same as the revelation under SQB.
One can show that (i) if reference-dependent preferences satisfy WSQB and ref-

20Notice that this revelation is indirectly implied by (i). We only have (ii) in our definition of Px to
ensure that Px as defined is transitive.
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erence probabilities satisfy strict positivity and regularity, then Px is transitive;
(ii) analogous to Proposition 1, Px as defined in this section captures all that can
be learned about preferences under WSQB; and (iii) analogous to Proposition 5,
if either x ≻x y or x ≻x z is not true, then we can reveal the relative ranking
of y and z under x (in other words, we can always reveal the relative ranking of
any alternatives as long as this ranking matters for observed choice behavior).21

Hence, while we reveal less about preferences under WSQB than SQB, the reve-
lations are still rich enough for us to learn all the information about preferences
that matter for choice behavior. This also shows that revealed preference in RAR
and L-RAR are equivalent not just under SQB but also under WSQB.22

VI. Bertrand Competition with Differentiated Products

In this section, we discuss an application of our model to Bertrand competition
with differentiated products. Consider a simple model of duopoly where two
substitute products, x1 and x2, are respectively sold by Firm 1 and Firm 2.
(We will later extend this model by allowing Firm 1 to sell a “decoy” product
additionally.) The firms compete by simultaneously choosing their selling prices,
p1 and p2. For simplicity, assume that both firms have zero marginal costs. Also,
assume that the two products are not perfect substitutes; that is, a consumer
can value the two differently. The consumers’ valuations, denoted by (v1, v2), are
uniformly and independently distributed on [0, 1]2. Each consumer either buys
one unit of product from one of the firms or leaves the market. The total volume
of consumers is normalized to one.

All consumer choices are consistent with RAR. Let us first introduce reference-
dependent preferences. If xi is the reference point of a consumer with original
valuation vi, she attaches xi an additional value of ai ∈ [0, 1]. In this case, the
consumer compares her net utility from xi (i.e., vi + ai − pi) with that of xj (i.e.,
vj − pj) and chooses the product that provides higher positive net utility. If both
net utilities are negative, the consumer leaves the market without purchasing
either product (i.e., chooses her outside option). Since ai creates an affinity
towards the reference point, we call it the loyalty parameter of xi. In line with
L-RAR, further, assume that each product i has a salience level si > 0 and
becomes the reference point with probability si/(si + sj). Note that if a1 = a2 =
0, consumers have standard reference-free preferences and make a consumption
decision by comparing v1 − p1 (buying from Firm 1), v2 − p2 (buying from Firm
2), and 0 (outside option). In this case, our model boils down to a standard
Bertrand competition with differentiated products.

21We omit these results as well as the characterization for RAR under WSQB for the sake of brevity.
22Interestingly, this equivalence breaks once we impose no assumptions on preferences. That is, it

is possible to provide an example where one can reveal strictly more information about preferences in
L-RAR than RAR if one imposes no assumptions on preferences.This highlights that the equivalence
of revealed preferences in L-RAR and RAR is not obvious ex ante. It is the (weak) status quo bias
assumption in our model that delivers this equivalence.
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For each consumer on [0, 1]2, her consumption decision as a function of p1 and
p2 is demonstrated in Figure 1. On the left, we present the standard case where
a1 = a2 = 0. In this case, there is no probabilistic choice, and consumers are
divided into three groups: (i) consumes x1, (ii) consumes x2, or (iii) takes the
outside option. The demand for Firm i at given prices (p1, p2) is

Di(p1, p2) =

∫ 1

pi

∫ min{vi−pi+pj ,1}

0
dvjdvi.

The profit of each firm is then Πi(p1, p2) = piDi(p1, p2). Under reference-free
preferences (a1 = a2 = 0), the price setting game has a unique symmetric equi-
librium where both firms set their price equal to p∗ =

√
2 − 1 > 0 and receive

profit (
√
2− 1)2.

Figure 1. Consumers’ choices as a function of their valuations. The standard case: a1 = a2 = 0

(left panel) and L-RAR: a1, a2 > 0 (right panel).

The right panel in Figure 1 represents consumer decisions under RAR with
reference-dependent preferences (a1, a2 > 0). It shows that when a1, a2 > 0,
there are now three additional groups of consumers. Each group randomizes
between two of the three possibilities, purchasing from Firm 1 or 2 or taking the
outside option. For each such consumer, consumption decision depends on the
random reference point. The aggregate demand for xi can then be written as

DRAR
i (p1, p2) =

si
si + sj

Di(pi − ai, pj) +
sj

si + sj
Di(pi, pj − aj).

The first part of this expression captures the demand when xi is the reference
point, which happens with probability si/(si + sj). Here, the valuation of the
marginal individual purchasing from Firm i is pi − ai instead of pi due to the
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additional value the consumers get from their reference point. The second term
gives the demand for Firm i when the other product is the reference point, which
happens with probability sj/(si+sj). In this case, Firm j has more market power
due to affinity towards commodity j (aj > 0). Hence, this case can be written as
if Firm j is charging pj − aj while Firm i is charging pi.
Aggregating individual decisions over consumers, we can obtain the market de-

mand and the profit function of each firm. For simplicity, we assume a1 = a2 = a
and s1 = s2 = s. In this case, there exists a symmetric equilibrium of the price
setting game where both firms set their price equal to p∗ = a− 1+

√
a2 − 2a+ 2.

Furthermore, Firm i’s equilibrium profits can be expressed as Πi(p
∗, p∗) = (2 −

a)(a − 1 +
√
a2 − 2a+ 2)2/2. Note that both equilibrium prices and profits are

increasing in the common loyalty parameter a. This is because an increase in a
increases consumers’ net valuations of their reference points, which implies that
at any fixed price level, there are now more consumers who purchase from one of
the firms rather than choose their outside option. This increased loyalty towards
the reference point on the consumers’ side allows firms to charge higher prices and
make higher profits. A second point to note is that a simultaneous increase in
the common salience parameter s has no effect on equilibrium prices and profits.
This is simply because if both firms increase their salience level equally, there
is no change in the resulting reference probabilities. Given that advertising is
costly, a game of choosing salience levels through advertising resembles a prison-
ers’ dilemma game where firms will choose sub-optimally high advertising levels
in equilibrium.
A firm in our model can utilize different tools at its disposal to influence equilib-

rium prices and profits. It can either increase the salience level si of its product
via advertising or increase its loyalty parameter ai via strategies that improve
brand loyalty. The following proposition provides an answer to how each of these
strategies affects equilibrium prices and profits, taking the symmetric equilibrium
as the starting point of the analysis.

PROPOSITION 6: Given a1 = a2 = a and s1 = s2 = s, the resulting symmetric
equilibrium has the following comparative statics properties:

1) An increase in the salience parameter of commodity i, si, increases the equi-
librium price of commodity i and decreases the equilibrium price of commod-
ity j in the same amount. Additionally, it increases the equilibrium profits of
Firm i and decreases the equilibrium profits of Firm j in the same amount.

2) An increase in the loyalty parameter of commodity i, ai, increases the equi-
librium prices of both commodities. But the increase in the price of com-
modity i is higher than that of commodity j. Additionally, it increases the
equilibrium profits of Firm i and decreases the equilibrium profits of Firm j.
Again, the increase in the equilibrium profits of Firm i is higher in absolute
value than the decrease in Firm j’s profits.
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3) An increase in the common loyalty parameter, a, increases the effect of
commodity i’s salience, si, on firms’ equilibrium prices. On the other hand,
an increase in the common salience parameter, s, does not change the effect
of commodity i’s loyalty parameter, ai, on firms’ equilibrium prices.

The first item in Proposition 6 considers a unilateral increase in the salience
parameter of commodity i. As a result of this, commodity i becomes the reference
point with a higher probability. This increases the market power of Firm i com-
pared to Firm j. As a result, Firm i can now charge higher prices in equilibrium.
To compete, Firm j responds by decreasing its equilibrium selling price. Hence,
in asymmetric cases, we expect firms with more salient products to charge higher
equilibrium prices. An increase in the salience of commodity i also increases the
equilibrium profits of Firm i while decreasing the competitor’s equilibrium profits.
The second item in Proposition 6 considers an increase in brand loyalty towards

commodity i. As a result, a higher percentage of consumers whose reference
point is xi end up purchasing commodity i. On the other hand, consumers with
reference point xj do not alter their behavior. It is not surprising that Firm i
can now charge higher prices as a result. It is more interesting to note that this
increase spills over to Firm j as well, and Firm j also increases its equilibrium
price, albeit to a lesser extent. Additionally, it is useful to note that the positive
effect of ai on pj can only be guaranteed to start from the symmetric equilibrium.
In other words, it is possible to find cases where s1 ̸= s2 and an increase in brand
loyalty for one firm leads to a decrease in the competitor’s equilibrium price.23

The third item in Proposition 6 provides additional observations based on the
analysis of the cross-partial derivatives. First, in environments where consumers
have high brand loyalty for both products (high a), an increase in the salience
of one of the products has a more significant effect on equilibrium prices. This
is because when a is high, a firm’s return from being the reference point of a
consumer is also higher. This magnifies the effect of the salience parameters
si and sj on equilibrium prices. Second, in contrast to the first observation,
environments where the consumers have high salience for both products (high s)
are equivalent to those with a low s. This is because a change in the common
salience s does not affect reference probabilities. So in real terms, it has no effect
on the duopoly game, particularly on how much individual loyalty parameters
affect equilibrium prices. The interaction between individual salience and loyalty
parameters in determining equilibrium prices and profits is more involved and
depends on the initial values of the loyalty and salience parameters in question.

A. Competition via a Decoy Product

Choice architecture, a term coined by Thaler and Sunstein (2008), reflects that
there are many ways to present a choice problem to a decision maker and choices

23For example, if a1 = a2 = 0.1, s1 = 0.34, s2 = 0.07, the equilibrium prices are p1 = 0.46 and

p2 = 0.42, and we have ∂p2
∂a1

< 0.
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often depend upon this presentation. A rapidly growing literature shows that
cleverly designed choice architecture can be used by planners to steer decision
makers towards making better choices, or by firms towards more profitable ones
(e.g., see Sunstein, 2017). In terms of choice architecture, RAR suggests that
the presentation of additional products, seemingly irrelevant to the current con-
sumption choice of a consumer, might yet affect her choice behavior in a desired
manner. Casual observations in environments of repeated choice suggest that a
consumer’s choice behavior might be affected by the sheer existence of a product,
even though she will never consume it. For example, imagine someone who goes
to the same restaurant for lunch every day. Imagine that the restaurant serves
pork chops on some days and not on others. Suppose the consumer does not eat
pork and, therefore, never orders pork chops. However, her choice of food (say
between pasta and veal) can be affected if, for example, the smell of pork chops
increases her appetite for meat. Relatedly, the literature on deterministic choice
with endogenous reference dependence contains a variety of models that capture
common behavioral patterns, such as the attraction or compromise effects (e.g.,
Kőszegi and Rabin, 2006, Ok, Ortoleva and Riella, 2015, Kıbrıs, Masatlioglu and
Suleymanov, 2021). However, this literature is silent about stochastic choices
with endogenous reference dependence. Our model fills this gap.24

In line with this motivation, we revisit the duopoly example in the previous
section and discuss the implications of Firm 1 introducing a decoy product which,
even though it does not create any demand for itself, increases consumers’ loyalty
for x1 against x2 (hence, potentially changing the relative ranking of the two
products). We then discuss conditions under which such choice architecture will
be profitable for Firm 1.
Let d denote the decoy product that is never chosen and sd its salience level.

When the decoy is the reference point, this increases the relative attractiveness
of x1 against x2. The utility boost that the decoy provides for x1 is denoted by
ad ∈ [0, 1]. We interpret ad as a second loyalty parameter for x1, effective when
the decoy serves as the reference point. We assume that the loyalty the decoy
provides for x1 is not stronger than that of x1 towards itself, that is, ad ≤ a1.
Consumers in this extended model behave as before when their reference points
are x1 or x2. However, the reference probabilities of these alternatives are now
lowered to si/(s1 + s2 + sd) where i ∈ {1, 2}. When a consumer’s reference point
is d, her payoff from x1 becomes v1 + ad − p1, while her payoff from x2 and the
outside option are not affected. Aggregating individual choices, we obtain the
demand for x1 as

DRARd
1 (p1, p2) =

s1D1(p1 − a1, p2) + sdD1(p1 − ad, p2) + s2D1(p1, p2 − a2)

s1 + s2 + sd
.

24While there are other stochastic choice models capturing regularity violations, their explanations
rely on different mechanisms, such as limited attention (e.g., see Cattaneo et al., 2020). For a review
of empirical evidence on regularity violations and alternative theories explaining them, see Rieskamp,
Busemeyer and Mellers (2006).
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Figure 2 demonstrates how the demand for x1 changes from the two commodi-
ties (left panel) to the three commodities (right panel) case. First, consumers who,
in the two commodities, consume x1 with probability 1 (that is, independent of
the reference point) still do so after the introduction of the decoy. This is because
their valuation of x1 is sufficiently higher than that of x2 as v1−p1 ≥ v2+a2−p2.
The second group of consumers on the left panel are those who consume x1 only
when it is their reference point. With the addition of the decoy, this group of
consumers is divided into two on the right panel. One subgroup now consumes
x1 under two reference points: both x1 and d. For this subgroup, the probability
that they will purchase x1 increases from s1/(s1 + s2) to (s1 + sd)/(s1 + s2 + sd),
affecting Firm 1’s profits positively. Consumers in the other subgroup continue
to consume x1 only when it is the reference point itself. However, due to the
diminished probability of x1 being the reference point, the probability that they
will purchase x1 decreases from s1/(s1 + s2) to s1/(s1 + s2 + sd), affecting Firm
1’s profits negatively. Overall, due to the above trade-off, it is not always ben-
eficial for Firm 1 to introduce the decoy. If ad (that is, the loyalty the decoy
provides for x1) is sufficiently high, then Firm 1 benefits from introducing the
decoy. Otherwise, the addition of the decoy might hurt Firm 1’s profits.

Figure 2. Consumers who choose Firm 1’s product x1 as a function of their valuations and

reference points. The two commodity case (left panel) and the three commodities (right

panel).

Since consumers do not purchase the decoy, the two firms compete on the prices
of the first two products as in the previous model. However, due to the decoy,
it is no longer possible to focus on a symmetric equilibrium. Furthermore, the
analysis of a closed-form asymmetric solution is too involved and outside the
scope of this paper. Instead, we provide some numerical examples showing how
the introduction of the decoy affects the firms’ profits. For some parameter values,
the introduction of the decoy increases Firm 1’s profits while decreasing Firm 2’s
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profits.25 These parameter combinations correspond to cases where the loyalty the
decoy provides for x1 is sufficiently high with respect to the other parameters. In
contrast, in cases where the loyalty the decoy provides is comparatively low, profit
levels of both Firm 1 and Firm 2 fall in response to the decoy’s introduction.26

This is due to the previously mentioned trade-off where the decoy increases x1’s
consumption probability for one subgroup while decreasing it for another. The
size of ad determines how big the first group is in comparison to the second and
hence how profitable the introduction of the decoy is. Overall, since it may or
may not be profitable to introduce a decoy, this might explain both presence and
absence of decoys in different markets.

VII. Conclusion

In this paper, we provide two simple models of random reference-dependent
choice. The first, L-RAR, is a parametric model where the attention rule takes
the logit form. The second model, RAR, is a non-parametric generalization of
L-RAR. We demonstrate when and how the reference-dependent preferences and
the reference weights in L-RAR can be identified. We show that the parame-
ters of L-RAR can be almost fully identified from choice data. Surprisingly, we
then show that the revealed preferences in RAR are exactly the same as in L-
RAR. Hence, the strong identification of preferences in L-RAR is not due to the
parametric structure of the reference formation process. We also investigate our
revealed preference results under alternative assumptions on reference-dependent
preferences and show that a much weaker status quo bias property ensures that
preferences can be identified whenever they matter for choice. Lastly, we offer
behavioral postulates that characterize the models and provide an application of
our model to a duopoly price-setting game.
We mainly interpret RAR as a model of individual choice, focusing on repeated

decisions such as scanner data from supermarkets or online data from digital plat-
forms. Alternatively, we can also interpret RAR as a model of aggregate choice
from a population where different agents might have different reference points,
but any two agents with the same reference point share the same preference. In
this interpretation, stochastic choice data arises not from the heterogeneity of
preferences but from the heterogeneity of reference points in the population. Un-
fortunately, a model of aggregate choice where one allows for both heterogeneity
in reference points and preferences imposes few restrictions on observed aggre-
gate choices. Nevertheless, one can still perform revealed preference analysis in
this general setup. For example, suppose we observe that pA(y|S) > pA(y|S \ x)

25For example, if a1 = a2 = 0.2 and s1 = s2 = 0.1, the addition of a decoy with ad = 0.1 and sd = 0.1
increases Firm 1’s profits by more than 1% while decreasing Firm 2’s profits by almost 8%. It is also
interesting to note that the decoy decreases both equilibrium prices marginally for Firm 1 at 0.6% and
more significantly for Firm 2 at 4.6%.

26If the loyalty parameter of the decoy is 0.01 instead of 0.1 in the previous footnote, its addition
decreases equilibrium profits of both firms, by 5.6% for Firm 1 and by a higher 6.5% for Firm 2. Addi-
tionally, it decreases both equilibrium prices, 4.5% for Firm 1 and 5% for Firm 2.
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where pA represents the aggregate choice data. We can then conclude that there
are at least some people in the population who prefer y over any other alter-
native in S when their reference point is x. If this were not the case, then for
every agent i in the population, we would have pi(y|S) ≤ pi(y|S \ x), and hence
pA(y|S) ≤ pA(y|S \ x). The complete analysis of this general model is left for
future research.

One feature of our model that survives under various assumptions is that if
all alternatives are chosen with positive probabilities, then the observed choices
directly inherit any assumptions we make on reference probabilities. Hence, the
model in its current form does not allow for non-standard reference-dependent
choice behavior when all alternatives are always chosen with positive probability.
One possible way to address this concern would be to make an assumption on
reference-dependent preferences that is even weaker than the weak status quo
bias property. Interestingly, an alternative way to address this concern would
be by assuming an even stronger form of reference dependence. To illustrate,
suppose the reference point affects the decision maker’s choices via two channels.
First, with a small but positive probability, the agent always sticks with her
reference point, exhibiting an extreme status quo bias. This captures the idea
that agents might choose to stick with their reference points to avoid making
any comparisons, thus reducing cognitive or time costs. With the remaining
probability, the agent makes her choices by maximizing her reference-dependent
preferences. This captures the idea that even when the reference point is not
necessarily chosen, it may influence the decision maker’s preferences among other
alternatives. Formally, consider the model

p(x|S) =
∑
y∈S

(
sy∑
z∈S sz

)(
ε1(x = y) + (1− ε)1(x is ≻y-best in S)

)
where ε > 0. Here, ε reflects the probability that the decision maker exhibits
extreme status quo bias and sticks with her reference point. As ε → 0, this model
converges to L-RAR. As long as ε > 0, we do not observe zero probabilities,
yet the model allows for interesting forms of reference-dependent choice behavior,
such as the violations of the regularity property.

Throughout this paper, we assume that the analyst has access to stochastic
choice data but does not observe the agent’s reference point. The analyst at-
tributes random choice behavior to randomness in reference points. Alterna-
tively, suppose the analyst now observes not only the agent’s stochastic choice
data but also her exogeneously given reference point. That is, the analyst ob-
serves a dataset pr(·|S) where r ∈ S ⊆ X. To address this possibility, we can
consider an extension of L-RAR that allows for an exogenous reference point r to
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probabilistically affect the reference formation process as follows:

pr(x|S) =
∑
y∈S

(
sry∑
z∈S srz

)
1(x is ≻y-best in S)

where srr = sr+ br and srz = sz for all z ̸= r. In this model, the exogenously given
reference point r receives a boost br > 0 to its original reference weight, and hence
it becomes the reference point with a higher probability. As the boost, br → ∞,
this model converges to a deterministic choice model where the DM maximizes
≻r when her reference point is r. In this case, the exogenous reference point is the
same as the endogenous reference point, which drives the agent’s choices. On the
other hand, as br → 0, the exogenous reference point matters less and less for the
agent’s choices. Hence, the magnitude of br captures the relative importance of
exogenous and endogenous reference points. Further analysis of such extensions
is left for future research.

REFERENCES

Aguiar, Victor H. 2017. “Random Categorization and Bounded Rationality.”
Economics Letters, 159: 46–52.

Ahumada, Alonso, and Levent Ulku. 2018. “Luce Rule with Limited Con-
sideration.” Mathematical Social Sciences, 93: 52–56.

Apesteguia, Jose, and Miguel A Ballester. 2009. “A Theory of Reference-
Dependent Behavior.” Economic Theory, 40(3): 427–455.

Apesteguia, Jose, Miguel A Ballester, and Jay Lu. 2017. “Single-Crossing
Random Utility Models.” Econometrica, 85(2): 661–674.
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Appendix

A1. Proof of Theorem 1

The necessity of Axioms 1-4 is discussed in the main text. We next show the
necessity of Axiom 5.

CLAIM 1: If p has a RAR representation ({≻x}x∈X , ρ), then it satisfies Axiom
5.

PROOF:
Let X = {x1, . . . , xN} so that |X| = N . We first introduce a binary relation

≫ on X . For any non-empty S ⊆ X, let k(S) denote the smallest integer in
{1, . . . , N} such that xk(S) ∈ S. Let S ≫ S′ if |S| < |S′| or |S| = |S′| and
k(S \ S′) > k(S′ \ S). Note that ≫ is irreflexive, and since S \ S′ ̸= ∅, S′ \ S ̸= ∅,
and (S\S′)∩(S′\S) = ∅ for any S ̸= S′ with |S| = |S′|, it is weakly connected. In
addition, suppose |S| = |S′| = |S′′|, k(S \S′) > k(S′ \S), and k(S′ \S′′) > k(S′′ \
S′). Then, we must have that either k(S′\S) > k(S′′\S′) or k(S′′\S′) > k(S′\S)
(equality is not possible since (S′ \ S) ∩ (S′′ \ S′) = ∅). Since S and S′ have the
same elements from {x1, . . . , xk(S′\S)−1} with xk(S′\S) ∈ S′ \ S, and S′ and S′′

have the same elements from {x1, . . . , xk(S′′\S′)−1} with xk(S′′\S′) ∈ S′′ \ S′, in
both cases above k(S \ S′′) > k(S′′ \ S) follows. Hence, ≫ is transitive. Let
m : X → {0, 1, 2, . . . , 2N − 2} be a numeric representation of ≫ that satisfies
m(S) > m(S′) if and only if S ≫ S′. Hence, m(X) = 0, m({xN}) = 2N − 2, and
etc.
We next define the vector of choice probabilities. For any S ⊆ X, let p(·|S)

denote the vector of choice probabilities for the choice set S, where the probability
corresponding to alternative xi is placed higher in the vector (alternatively, has
a lower row number) than alternative xj if i < j. Note that if xi /∈ S, then
p(xi|S) = 0. Each p(·|S) is an N × 1 vector. Let p denote the vector of choice
probabilities [p(·, S)]S⊆X stacked as follows: if m(S) < m(S′), then the p(·|S) is
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placed higher in the vector p than p(·|S′). Hence, the rows betweenm(S)N+1 and
(m(S)+1)N in the vector p correspond to p(·|S). Note that p is a (2N −1)N ×1
vector.

We next define the vector of reference probabilities. Let ρ(·|S) denote the
N × 1 vector of reference probabilities, where ρ(xi|S) = 0 if xi /∈ S. We stack the
reference probabilities ρ(·|·) in the vector ρ in the same order as p.

Next, we encode the preferences in a matrix as follows. For any S ⊆ X, let
A(S) denote an N ×N matrix of zeros and ones such that

[A(S)]ij = 1 if and only if xi = argmax(≻xj , S) and xj ∈ S.

Note that if p(·|·) has a RAR representation, then for any nonempty S ⊆ X,

A(S)ρ(·|S) = p(·|S).

We stack the matrices A(S) in a matrix A as follows. For a matrix A and
integers m,n, k, l such that n ≥ m and l ≥ k, let A[m : n, k : l] denote the
(n−m+1)×(l−k+1) matrix consisting of elements Aij such that i ∈ {n, . . . ,m}
and j ∈ {k, . . . , l}. Then, A is an (2N − 1)N × (2N − 1)N matrix given by

[Aij ] = A(S) where i, j ∈ {m(S)N + 1, . . . , (m(S) + 1)N} for some S ∈ X

and Aij = 0 otherwise. If p(·|·) has a RAR representation ({≻x}x∈X , ρ), then, by
construction,

Aρ = p.

Our next step is to incorporate strict positivity and regularity constraints for
reference probabilities in a matrix. It will be convenient to introduce the following
function: for any S ∈ X , let nS : {1, . . . , N} → {0, 1, . . . , N} be given by

nS(i) =

{
|{xj ∈ S|j ≤ i}| if xi ∈ S,

0 if xi /∈ S.

Now, let I(X) denote the N ×N identity matrix. For any non-empty S ⊆ X, let
I(S) denote |S|×N matrix where the rows in I(X) which correspond to elements
in X \ S are eliminated. That is,

[I(S)]ij = 1 if and only if nS(j) = i.
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We stack the matrices I(S) in a (
∑

S∈X |S|)× (2N − 1)N matrix B1 as follows:

[B1]ij = 1 if and only if j ∈ {m(S)N + 1, . . . , (m(S) + 1)N} for some S ∈ X

and i = nS(j −m(S)N) +
∑

S′∈X :m(S′)<m(S)

|S′|

The matrix B1 encodes the requirement that ρ(xi|S) > 0 for any xi ∈ S ⊆ X.

We use the matrix B2 to encode the regularity requirement: ρ(xi|S) < ρ(xi|S \
xj) for any xi ∈ S ⊆ X and xj ∈ S \ xi. To this end, for any xi ∈ S ⊆ X, let
B2(xi, S) denote the |S \ xi| × (2N − 1)N matrix where

[B2(xi, S)]kl =


−1 if l = m(S)N + i,

1 if k = nS\xi
(j), l = m(S \ xj)N + i for xj ∈ S \ xi,

0 otherwise.

Stack the matrices B2(xi, S) in the matrix B2(S) where the matrix corresponding
to the element xi ∈ S is ranked higher in the matrix than element xj ∈ S if i < j.
Lastly, create a matrix B2 consisting of matrices B2(S), where B2(S) is placed
higher in B2 than B2(S

′) if m(S) < m(S′).

Now, let

B =

[
B1

B2

]
.

By construction, p(·|·) has a RAR representation ({≻x}x∈X , ρ) if and only if

(A1) Aρ = p and Bρ > 0.

Let

C =

[
A
−A

]
and b =

[
p
−p

]
.

Then, we can alternatively write equation A1 as

(A2) Cρ ≤ b and Bρ > 0.

ByMotzkin transposition theorem (Motzkin, 1936), the system described by equa-
tion A2 has a solution if and only if for all vectors y ≥ 0 and z ≥ 0,

(A3) CTy = BT z ⇒ bTy ≥ 0

with strict inequality if z ̸= 0. Note that CTy and BT z are (2N −1)N×1 vectors.

Note that each row in the matrix B is associated either with a strict positivity
or a regularity constraint, and for each row i in B there is a corresponding zi ≥ 0
in the vector z. For row i such that [B]i is associated with the positivity constraint
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ρ(xk|S) > 0, we use the notation λxk
(S) = zi to indicate that row i represents

the strict positivity requirement for xk in S. Similarly, for row j such that [B]j
is associated with the constraint ρ(xk|S) < ρ(xk|S \ xl), we use the notation
λxkxl

(S) = zj . Let λ = z. Then, we can rewrite equation A3 as

(A4) CTy = BTλ ⇒ bTy ≥ 0

with strict inequality if λ ̸= 0.

Now, let κ = (2N − 1)N . We can express bTy as

bTy =
∑
S∈X

∑
i∈{1,...,N}

p(xi|S)(ym(S)N+i − yκ+m(S)N+i).

For any S ∈ X , let ηS denote the function ηS : {1, . . . , N} → {1, . . . , N} such
that

ηS(i) = {j ∈ {1, . . . , N}| xj = argmax(≻xi , S)}.
Then, for i ∈ {1, . . . , N} and S ∈ X ,

[CTy]m(S)N+i =

{
ym(S)N+ηS(i) − yκ+m(S)N+ηS(i) if xi ∈ S,

0 otherwise.

and

[BTλ]m(S)N+i =

{
λxi(S) +

∑
xk /∈S λxixk

(S ∪ xk)−
∑

xj∈S\xi
λxixj (S) if xi ∈ S,

0 otherwise.

Hence, for xi ∈ S ⊆ X, the constraint in equation A4 implies
(A5)

ym(S)N+ηS(i) − yκ+m(S)N+ηS(i) = λxi(S) +
∑
xk /∈S

λxixk
(S ∪ xk)−

∑
xj∈S\xi

λxixj (S).

In addition, since p(xi|S) = 0 if and only if ηS(i) ̸= i, using the above equations,
we get

bTy =
∑
S∈X

∑
i∈{1,...,N}

p(xi|S)
[
λxi(S) +

∑
xk /∈S

λxixk
(S ∪ xk)−

∑
xj∈S\xi

λxixj (S)
]

=
∑
S∈X

∑
xi∈S

λxi(S)p(xi|S) +
∑
S∈X

∑
xi∈S

∑
xj∈S\xi

λxixj (S)(p(xi|S \ xj)− p(xi|S))

Lastly, given the above equation, the only implication of equation A5 is that for
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xi, xl ∈ S such that ηS(i) = ηS(l), we have

λxi(S) +
∑
xk /∈S

λxixk
(S ∪ xk)−

∑
xj∈S\xi

λxixj (S) = λxl
(S)+

∑
xk /∈S

λxlxk
(S ∪ xk)

−
∑

xj∈S\xl

λxlxj (S).

Since for xi ̸= xl in S, ηS(i) = ηS(l) = i if and only if p(xi|S) = 1 or p(xi|S) >
p(xi|S \ xl), letting

Γλ(xi, S) = λxi(S) +
∑
xk /∈S

λxixk
(S ∪ xk)−

∑
xj∈S\xi

λxixj (S)

and

V (λ, p) =
∑
S∈X

∑
xi∈S

λxi(S)p(xi|S)+
∑
S∈X

∑
xi∈S

∑
xj∈S\xi

λxixj (S)(p(xi|S\xj)−p(xi|S))

yields the axiom. This concludes the proof of the claim. □
We next prove sufficiency. To this end, we first define reference-dependent

preferences as in Section II.

DEFINITION 3: For any x and y ̸= z, let yPxz if and only if there exists
S ⊇ {y, z} such that at least one of the following is satisfied:

(i) p(y|S) = 1,

(ii) p(y|S) > 0 and x = y,

(iii) p(y|S) > p(y|S \ x).

The next claim ensures that Px is well-defined.

CLAIM 2: If p(·|·) satisfies Axioms 1-4, then Px is transitive for all x ∈ X.

PROOF:
Let yPxzPxt. We will show that yPxt. There are nine cases (3 by 3) to consider.

Each case is named according to the corresponding conditions in the definition.
(i)-(i): There exist S ⊇ {y, z} and T ⊇ {z, t} such that p(y|S) = 1 and p(z|T ) =
1. By Axiom 2, p(y|{y, z}) = 1 and p(z|{z, t}) = 1. By Axiom 1, p(y|{y, z, t}) = 1,
and yPxt follows.
(i)-(ii): There exist S ⊇ {y, z} and T ⊇ {z, t} such that p(y|S) = 1 and
p(z|T ) > 0, where x = z. Axiom 2 implies p(y|{y, z}) = 1. Axiom 1 implies
p(z|{z, t}) > 0 and p(z|{y, z, t}) = 0. Axiom 2 implies that either p(y|{y, z, t}) =



46 AMERICAN ECONOMIC JOURNAL MONTH YEAR

1 or p(y|{y, z, t}) > p(y|{y, t}). In both cases yPzt follows, and since x = z, yPxt
follows.

(i)-(iii): There exist S ⊇ {y, z} and T ⊇ {z, t} such that p(y|S) = 1 and
p(z|T ) > p(z|T \ x). Axiom 2 implies p(y|{y, z}) = 1. Hence, Axiom 1 implies
p(z|{x, y, z, t}) = 0. Since p(z|T ) > p(z|T \ x), Axiom 1 implies p(z|{x, z}) > 0
and p(z|{z, t}) > 0. Then, Axiom 2 implies p(z|{x, z, t}) > 0. Moreover, since
p(z|T ) > p(z|T \ x), Axiom 3 implies p(x|T ) = 0, and hence Axioms 2 and 4
imply p(x|{x, z}) = 0. Then, Axiom 1 implies p(x|{x, y, z, t}) = 0. Note that,
by Axioms 1 and 2, p(t|{x, y, z, t}) < 1 as p(z|{x, z, t}) > 0. In addition, since
p(z|T ) > p(z|T \ x), Axiom 4 implies p(t|{x, y, z, t}) ≤ p(t|{y, z, t}). Therefore,
by Axiom 2, either p(y|{x, y, z, t}) = 1 or p(y|{x, y, z, t}) > p(y|{y, z, t}). In both
cases yPxt follows.

(ii)-(i): There exist S ⊇ {y, z} and T ⊇ {z, t} such that p(y|S) > 0 and
p(z|T ) = 1, where x = y. Axiom 1 implies p(y|{y, z}) > 0. Axiom 2 implies
p(z|{z, t}) = 1. Therefore, Axiom 1 implies p(t|{y, z, t}) = 0. Since p(y|{y, z}) >
0 and p(t|{y, z, t}) = 0, by Axiom 2, we cannot have p(y|{y, z, t}) = 0. Hence,
p(y|{y, z, t}) > 0 which implies yPyt, and since x = y, yPxt follows.

(ii)-(ii): There exist S ⊇ {y, z} and T ⊇ {z, t} such that p(y|S) > 0 and
p(z|T ) > 0, where x = y and x = z. Since the definition of Px requires that y ̸= z
whenever yPxz, this case is not possible.

(ii)-(iii): There exist S ⊇ {y, z} and T ⊇ {z, t} such that p(y|S) > 0 and
p(z|T ) > p(z|T \ x), where x = y. Axiom 1 implies p(y|{y, z}) > 0. Axiom 3
implies p(x|T ) = 0. Axioms 2 and 4 imply p(x|{x, z}) = 0. This contradicts
p(y|{y, z}) > 0 as x = y. Hence, this case is not possible.

(iii)-(i): There exist S ⊇ {y, z} and T ⊇ {z, t} such that p(y|S) > p(y|S \ x)
and p(z|T ) = 1. Axiom 1 implies p(y|{x, y}) > 0 and p(y|{y, z}) > 0, and
hence Axiom 2 implies p(y|{x, y, z}) > 0. Since p(z|T ) = 1, Axiom 2 implies
p(z|{z, t}) = 1, and hence Axiom 1 implies p(t|{x, y, z, t}) = 0. Now since
p(y|S) > p(y|S \x), Axiom 3 implies p(x|S) = 0, and hence Axioms 2 and 4 imply
p(x|{x, y}) = 0. Therefore, Axiom 1 implies p(x|{x, y, z, t}) = 0. Note that, by
Axioms 1 and 2, p(z|{x, y, z, t}) < 1 as p(y|{x, y, z}) > 0. Moreover, by Axiom 4,
p(z|{x, y, z, t}) ≤ p(z|{y, z, t}) as p(y|S) > p(y|S \ x). Since p(x|{x, y, z, t}) = 0,
by Axiom 2, either p(y|{x, y, z, t}) = 1 or p(y|{x, y, z, t}) > p(y|{y, z, t}). In both
cases yPxt follows.

(iii)-(ii): There exist S ⊇ {y, z} and T ⊇ {z, t} such that p(y|S) > p(y|S \ x)
and p(z|T ) > 0, where x = z. Since x = z and p(y|S) > p(y|S \ x), Axiom
3 implies p(z|S) = 0, and hence Axioms 2 and 4 imply p(z|{y, z}) = 0. Now,
Axiom 1 implies p(z|{y, z, t}) = 0 and p(z|{z, t}) > 0. Hence, by Axiom 2,
p(t|{y, z, t}) < 1. Moreover, by Axiom 4, p(t|{y, z, t}) ≤ p(t|{y, t}). Therefore,
by Axiom 2, either p(y|{y, z, t}) = 1 or p(y|{y, z, t}) > p(y|{y, t}) > 0. In both
cases yPzt, and hence yPxt, follows.

(iii)-(iii): There exist S ⊇ {y, z} and T ⊇ {z, t} such that p(y|S) > p(y|S \ x)
and p(z|T ) > p(z|T \ x). By Axiom 3, p(x|S) = p(x|T ) = 0. Axioms 2 and 4
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imply p(x|{x, y}) = p(x|{x, z}) = 0. Then, Axiom 1 implies p(x|{x, y, z, t}) =
0. Since p(z|T ) > p(z|T \ x), by Axiom 1, p(z|{x, z}) > 0 and p(z|{z, t}) >
0, and hence, by Axiom 2, p(z|{x, z, t}) > 0. Therefore, by Axioms 1 and 2,
p(t|{x, y, z, t}) < 1. Moreover, by Axiom 4, p(t|{x, y, z, t}) ≤ p(t|{y, z, t}). By
the same argument, p(y|S) > p(y|S \ x) implies that p(z|{x, y, z, t}) < 1 and
p(z|{x, y, z, t}) ≤ p(z|{y, z, t}). Hence, by Axiom 2, either p(y|{x, y, z, t}) = 1 or
p(y|{x, y, z, t}) > p(y|{y, z, t}). In both cases yPxt follows.
We have now shown that in all possible cases yPxt follows. Hence, Px is tran-

sitive. □
Now let ≻x be an arbitrary completion of Px. The next claim shows that

{≻x}x∈X satisfies the SQB property.

CLAIM 3: If y ≻x z, then y ≻y z.

PROOF:
Suppose z ≻y y. Then it must be that there exists no S ⊇ {y, z} with p(y|S) >

0. In particular, p(z|{y, z}) = 1. But then, by definition, zPxy which contradicts
y ≻x z. Hence, y ≻y z must be true. □
By Claims 2 and 3, Axioms 1-4 guarantee that preferences are well-defined and

satisfy the SQB property. We then define the vectors p, ρ, and matrices A, B as
in the proof of the necessity of Axiom 5. Here the vector ρ is unknown. Proving
the representation is equivalent to showing that equation A1, and hence equation
A2, holds for some ρ. We can then use Motzkin transposition theorem to show
that the representation holds if and only if equation A3, and hence equation A4
holds. Let ηS(i) be defined as in the proof of the necessity. Notice that our
definition of {≻x}x∈X and the axioms guarantee that (i) ηS(i) ̸= i if and only if
p(xi|S) = 0, and (ii) ηS(i) = ηS(l) = i for xi ̸= xl in S if and only if p(xi|S) = 1
or p(xi|S) > p(xi|S \ xl). The rest of the proof is the same as the proof of the
necessity. □

A2. Characterization for L-RAR

Clearly, Axioms 1-4 are satisfied by L-RAR. We will replace Axiom 5 with four
new axioms.
The next two axioms are related to Luce’s well-known IIA axiom which states

that the relative choice probability of two alternatives is independent of the choice
problem they are considered in, that is, for x, y ∈ S ∩ T ,

p(x|S)
p(y|S)

=
p(x|T )
p(y|T )

.

L-RAR may not satisfy IIA in general. First, L-RAR does not require that an
alternative is chosen from every choice problem (that is, with a positive proba-
bility) once it is chosen from one choice problem. Second, even when the two
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alternatives are both chosen from the two choice problems, L-RAR can exhibit
IIA violations. Hence, accommodating the type of choice behavior we are inter-
ested in requires formulation of more qualified versions of IIA. This is what we
will do next.

Our first “IIA axiom” ensures that the weights of alternatives revealed from
binary and trinary choice sets are consistent. First, note that for any binary
choice problem {x, y}, if p(x|{x, y}) ∈ (0, 1), then p(x|{x, y}) must reflect the
reference probability of x in {x, y}. Hence, in any binary choice problem where
both alternatives are chosen, reference probabilities are fully revealed. We use
this to construct a function q(·|·) where q(x|S) reflects the probability that x is
the reference point in S. For any {x, y} with p(x|{x, y}) ∈ (0, 1) and a ∈ {x, y},
let

q(a|{x, y}) = p(a|{x, y}).
Note that q(·|·) cannot be defined for all binary choice sets, since we might have
p(x|{x, y}) ∈ {0, 1} for some {x, y}. However, when q is defined, it must be
strictly between 0 and 1.

Next, consider a trinary choice set. First, if all alternatives are chosen, then
it must be the case that observed choice probabilities correspond to reference
probabilities. Hence, for any {x, y, z} where p(a|{x, y, z}) > 0 for all a ∈ {x, y, z},
we have

q(a|{x, y, z}) = p(a|{x, y, z}).
Now suppose that p(x|{x, y, z}) > 0, p(y|{x, y, z}) > 0, and p(z|{x, y, z}) = 0. As
discussed in Section II, we can also fully reveal q(·|·) in this case. To see this, note
that if p is consistent with L-RAR, we must have either p(x|{x, y, z}) > p(x|{x, y})
or p(y|{x, y, z}) > p(y|{x, y}). We can assume p(x|{x, y, z}) > p(x|{x, y}). This
reveals that z ∈ A(x|{x, y, z}), and hence the observed choice probability of y
from {x, y, z} must be the same as its reference probability:

q(y|{x, y, z}) = p(y|{x, y, z}).

In addition, if p is consistent with L-RAR, we must also have p(x|{x, y}) > 0 and
p(y|{x, y}) > 0 (Axiom 1). Hence, q(x|{x, y}) and q(y|{x, y}) are defined and
equal to p(x|{x, y}) and p(y|{x, y}), respectively. Since reference probabilities
satisfy IIA in our model, we should then have

q(x|{x, y, z})
q(y|{x, y, z})

=
q(x|{x, y})
q(y|{x, y})

.

Therefore, we can define q(x|{x, y, z}) as

q(x|{x, y, z}) = p(x|{x, y})p(y|{x, y, z})
p(y|{x, y})

.
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Lastly, since reference probabilities add up to 1, we have q(z|{x, y, z}) as

q(z|{x, y, z}) = p(x|{x, y, z})− p(x|{x, y})p(y|{x, y, z})
p(y|{x, y})

.

Notice that for singleton choice sets p(x|{x}) = q(x|{x}) = 1 must hold. How-
ever, as discussed above, if S is not a singleton set, we cannot reveal q(·|S) when
there is an alternative x ∈ S that satisfies p(x|S) = 1. We will let T denote all
singleton, binary, and trinary choice sets for which q is defined as above. The
next axiom ensures that q is generated by the Luce rule on T .

AXIOM 6: For any S1, S2, . . . , SN ∈ T and any x1, . . . , xN ∈ X such that
{xi, xi+1} ⊆ Si for i < N and {x1, xN} ⊆ SN ,

q(x1|SN )

q(xN |SN )
=

N−1∏
i=1

q(xi|Si)

q(xi+1|Si)
.

Since reference probabilities satisfy the IIA property in our model, we should
expect that observed choices should also satisfy IIA under certain conditions.
For example, if all alternatives are chosen with positive probability from every
set, then our model reduces to the Luce rule and, hence, satisfies IIA. Our next
axiom generalizes this observation. Consider a chosen alternative z ∈ S such that
elimination of no alternative in S induces a regularity violation for z. Axiom 7
then states that choices must satisfy IIA when such a “well-behaved” alternative
z is eliminated from S.

AXIOM 7: If p(x|S)p(y|S)p(z|S) > 0 and p(z|S) ≤ p(z|S \ t) for all t ∈ S \ z,
then

p(x|S)
p(y|S)

=
p(x|S \ z)
p(y|S \ z)

.

To see why our model satisfies this axiom, note that p(x|S)p(y|S)p(z|S) > 0
implies that for these alternatives, the associated reference-dependent preference
ranks the reference point as the best in S. Furthermore, elimination of no alter-
native in S induces a regularity violation for z. That means A(z|S) = {z}, that
is, no other reference-dependent preference in S is maximized at z. Hence, elimi-
nation of z does not affect the sets of reference-dependent preferences maximized
at x or y: A(x|S) = A(x|S \z) and A(y|S) = A(y|S \z). Thus, the relative choice
probability of x and y remains unchanged.
It is useful to note that if all alternatives are chosen with positive probability

in S, then Axiom 3 guarantees that observed choices satisfy regularity when any
alternative is eliminated from S, and hence Axioms 3 and 7 jointly guarantee that
IIA holds in this case.
The IIA violations allowed by L-RAR have a certain structure. Axiom 6 pro-

vides information about this structure in binary and trinary sets by imposing a
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condition on revealed reference probabilities. The next two axioms describe the
structure of these violations in all other sets. Consider a choice problem S where
x and y are chosen, and z and t are not chosen. Furthermore, suppose elimination
of z from S induces a regularity violation on x. Since in our model z can induce
a regularity violation for only one alternative, this guarantees that elimination
of z from S will change the relative choice probabilities of x and y. Similarly,
eliminating z from S \ t will also change the relative choice probabilities of x and
y. The following two axioms describe how these change are related between S
and S \ t. It turns out that the relationship depends on whether elimination of t
from S induces a regularity violation on x or not.
For the first axiom, assume that elimination of t from S does not induce a

regularity violation for x. In this case, we look at the ratio

p(x|S)/p(y|S)
p(x|S \ z)/p(y|S \ z)

which measures how much more likely x is to be chosen relative to y from S
compared to S \ z. Our axiom states that the above ratio must be the same on S
and S \ t. Hence, z improves the likelihood that x is chosen in a consistent way.

AXIOM 8: If p(x|S \ t) ≥ p(x|S) > p(x|S \ z), p(y|S) > 0, and p(t|S) = 0, then

p(x|S)/p(y|S)
p(x|S \ z)/p(y|S \ z)

=
p(x|S \ t)/p(y|S \ t)

p(x|S \ {t, z})/p(y|S \ {t, z})
.

To see that our model satisfies this axiom, note that under the given assump-
tions, z ∈ A(x|S). Hence, A(y|S) = A(y|S \ z). This implies

p(x|S)/p(y|S)
p(x|S \ z)/p(y|S \ z)

=


∑

A(x|S)
sa∑

A(y|S)
sa




∑
A(y|S\z)

sa∑
A(x|S\z)

sa

 =

∑
A(x|S)

sa∑
A(x|S\z)

sa
.

Since t /∈ A(x|S), we have A(x|S) = A(x|S \ t) and A(x|S \ z) = A(x|S \ {z, t}).
Hence, the above ratio remains the same when we replace S with S \ t.
For the second axiom, now assume elimination of t from S does induce a regu-

larity violation for x. In this case, we consider the difference

p(x|S)
p(y|S)

− p(x|S \ z)
p(y|S \ z)

,

which is an alternative measure of how much more likely x is to be chosen relative
to y from S compared to S \ z. Our axiom states that the above difference must
be the same on S and S \ t.
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AXIOM 9: If p(x|S) > max{p(x|S \ z), p(x|S \ t)} and p(y|S) > 0, then

p(x|S)
p(y|S)

− p(x|S \ z)
p(y|S \ z)

=
p(x|S \ t)
p(y|S \ t)

− p(x|S \ {z, t})
p(y|S \ {z, t})

.

To see that our model satisfies this axiom, note that under the given assump-
tions, z, t ∈ A(x|S). Hence, A(y|S) = A(y|S \ z). This implies

p(x|S)
p(y|S)

− p(x|S \ z)
p(y|S \ z)

=

∑
A(x|S)

sa∑
A(y|S)

sa
−

∑
A(x|S\z)

sa∑
A(y|S\z)

sa
=

sz∑
A(y|S)

sa
.

Since A(y|S) = A(y|S \ t), this expression remains the same when we replace S
with S \ t.
To get an intuition for the last two axioms, consider an attraction effect example

with four alternatives where z is dominated by x and t is either dominated by
x or y. Axioms 8 and 9 impose consistency on how addition of z to a choice
set will improve the relative likelihood that x is chosen. Clearly, the impact of
adding z will depend on whether t is dominated by x or y. First, suppose t is
dominated by y. Then, Axiom 8 states that adding z to either {x, y} or {x, y, t}
must increase the relative choice probability of x and y by the same percentage.
Note that since t is dominated by y, x must be chosen with a smaller probability
from {x, y, t} compared to {x, y}, and hence an increase by the same percentage
implies a smaller increase in magnitude when z is added to {x, y, t}.
Now, suppose t is dominated by x. Intuitively, one might expect that in this

case adding z to {x, y, t} should make a smaller impact than adding z to {x, y},
since there is already an alternative dominated by x in the former choice set. In
fact, it can be seen that in this case the relative choice probability of x and y
will increase by a smaller percentage when z is added to {x, y, t} compared to the
case when z is added to {x, y}. Axiom 9 then imposes an alternative consistency
requirement that the magnitude of the increase in the relative choice probabilities
must be the same.
We can now state the characterization result.

THEOREM 2: A random choice rule p satisfies Axioms 1-4 and 6-9 if and only
if it has an L-RAR representation.

PROOF:
Necessity of the axioms is clear from the preceding discussion. We prove suffi-

ciency. As shown in the proof of Theorem 1, Axioms 1-4 guarantee that we can
construct reference-dependent preferences {≻x}x∈X which satisfy the SQB prop-
erty and respect revealed preferences {Px}x∈X . Next, we let q and T be defined
as before. The next claim shows that, under Axiom 6, q is generated by the Luce
rule.
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CLAIM 4: Suppose p(·|·) satisfies Axioms 1-4. If q satisfies Axiom 6, then there
exist weights {sx}x∈X such that for any S ∈ T and x ∈ S,

q(x|S) = sx∑
y∈S sy

.

PROOF:

First, we construct a partition P of the set of alternatives as follows. Let x and
y belong to the same partition element P ∈ P if there exist S1, . . . , SN−1 ∈ T and
{x1, . . . , xN} such that x1 = x, xN = y, and {xi, xi+1} ⊆ Si for i ∈ {1, . . . , N−1}.
We let P (x) denote the partition element corresponding to the alternative x.

Next, we construct the weights as follows. Pick an arbitrary element x ∈ X and
let sx = 1. Choose y ∈ P (x) and suppose S1, . . . , SN−1 ∈ T and {x1, . . . , xN} are
such that x1 = x, xN = y, and {xi, xi+1} ⊆ Si for i ∈ {1, . . . , N − 1}. Then, we
let

sy =
N−1∏
i=1

q(xi+1|Si)

q(xi|Si)
.

To see that sy is well-defined, let S′
1, . . . , S

′
K−1 ∈ T and {x′1, . . . , x′K} be such

that x′1 = x, x′K = y, and {xj , xj+1} ⊆ S′
j for j ∈ {1, . . . ,K}. Then, by Axiom 6,

we get

1 =
q(x2|S1)

q(x1|S1)
· · · q(xN |SN−1)

q(xN−1|SN−1)

q(x′K−1|S′
K−1)

q(x′K |S′
K−1)

· · · q(x
′
1|S′

1)

q(x′2|S′
1)
,

since xN = x′K , x1 = x′1 = x, and q(x|{x}) = 1. Hence,

sy =

N−1∏
i=1

q(xi+1|Si)

q(xi|Si)
=

K−1∏
j=1

q(x′j+1|S′
j)

q(x′j |S′
j)

.

If X \ P (x) is empty, then we are done. Otherwise, pick an alternative y /∈ P (x)
and repeat the procedure above until we are done.

Now let S ∈ T be given. If S is a singleton, the claim follows trivially. Hence,
let y, z ∈ S be given. Then, we know that S ⊆ P (x) for some x ∈ X. Let
S1, . . . , SN−1 and {x1, . . . , xN} be such that x1 = x, xN = y, and {xi, xi+1} ⊆ Si

for i ≤ N−1, and let S′
1, . . . , S

′
K−1 and {x′1, . . . , x′K} be such that x′1 = x, x′K = z,

and {x′j , x′j+1} ⊆ S′
j for j ≤ K − 1. Now, by Axiom 6,

q(y|S)
q(z|S)

=
q(xN |SN−1)

q(xN−1|SN−1)
· · · q(x2|S1)

q(x1|S1)︸ ︷︷ ︸
sy

q(x′1|S′
1)

q(x′2|S′
1)

· · ·
q(x′K−1|S′

K−1)

q(x′K |S′
K−1)︸ ︷︷ ︸

1/sz

,

since xN = y, x′K = z, and x1 = x′1 = x. Hence, we get that for any S ∈ T and
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any y, z ∈ S,
q(y|S)
q(z|S)

=
sy
sz

.

It then follows that
q(y|S) = sy∑

t∈S st
,

as desired. □
We next show that Axioms 1-4 and 6 guarantee that the characterization the-

orem holds for all sets with at most three alternatives.

CLAIM 5: Suppose p(·|·) satisfies Axioms 1-4 and 6, and let {≻x}x∈X and {sx}x∈X
be defined as in the previous claims. Then, for any S with |S| ≤ 3 and x ∈ S,

p(x|S) =
∑
y∈S

sy∑
z∈S sz

1(x = argmax(≻y, S)).

PROOF:
Let S with |S| ≤ 3 and x ∈ S be given. There are a few cases to consider.

Case 1: p(x|S) = 1 for some x ∈ S. Then, by our definition of ≻y, x ≻y z for any
y, z ∈ S. Since x is ≻y-maximal element in S for all y ∈ S, the characterization
follows.
Case 2: p(x|S) > 0 for all x ∈ S. B our definition of ≻x, each x is ≻x-best
element in S. Moreover, by our definition of q(·|·), we have that p(x|S) = q(x|S).
Since by Claim 4

q(x|S) = sx∑
y∈S sy

,

the characterization follows.
Case 3: S = {x, y, z}, p(x|S) > 0, p(y|S) > 0, and p(z|S) = 0. Note that
by our definition of ≻x and ≻y, x and y are ≻x and ≻y maximal elements in S,
respectively. Moreover, by Axioms 2 and 4, exactly one of p(x|S) > p(x|S \z) and
p(y|S) > p(y|S\z) must hold. Without loss, suppose p(y|S) > p(y|S\z). Then, we
must have that y is ≻z-maximal element in S, which shows that the representation
holds for z. In addition, by our definition of q(·|·), we have p(x|S) = q(x|S). Since
by Claim 4

q(x|S) = sx
sx + sy + sz

,

the representation follows for x. Since p(y|S) = 1 − p(x|S), the representation
also follows for y. This concludes the proof of Claim 5. □
The next claim shows that if we assume Axioms 1-4 and 6-7, the characteriza-

tion holds for all sets where all alternatives are chosen with positive probability.

CLAIM 6: Suppose p(·|·) satisfies Axioms 1-4 and 6-7, and let {≻x}x∈X and
{sx}x∈X be defined as in the previous claims. Then, for any S such that p(y|S) >
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0 for all y ∈ S, and any x ∈ S,

p(x|S) =
∑
y∈S

sy∑
z∈S sz

1(x = argmax(≻y, S)).

PROOF:

Let S be such that p(y|S) > 0 for all y ∈ S and let x ∈ S. By Axiom 1,
p(x|{x, y}) > 0 for any y ∈ S. In addition, by our definition of ≻y, each y ∈ S is
≻y-maximal element in S. Hence, by Claim 5, for any y ∈ S,

p(x|{x, y})
p(y|{x, y})

=
sx
sy

.

Now let z ∈ S be given. By Axiom 3, we get p(z|S) ≤ p(z|S \ t) for all t ∈ S \ z.
Hence, by Axiom 7,

p(x|S)
p(y|S)

=
p(x|S \ z)
p(y|S \ z)

.

for any y ∈ S \ z. Now note that if {x, y} ⊆ T ⊆ S, then Axioms 1 and 2 imply
that p(t|T ) > 0 for all t ∈ T . Hence, by repeatedly applying the above reasoning,
we get that for any y ∈ S \ x,

p(x|S)
p(y|S)

=
p(x|{x, y})
p(y|{x, y})

=
sx
sy

.

Hence,
1− p(x|S)
p(x|S)

=

∑
y∈S\x sy

sx
⇒ p(x|S) = sx∑

y∈S sy
,

as desired. Since x was arbitrary, this concludes the proof of the claim. □
For any S and x ∈ S, let A(x|S) denote the set of alternatives in S for which

x is the maximal element in S:

A(x|S) = {y ∈ S| x = argmax(≻y, S)}.

Hence, the representation we want to prove can alternatively be stated as

p(x|S) =
∑

a∈A(x|S) sa∑
b∈S sb

.

The last claim shows that Axioms 1-4 and 6-9 are sufficient for the representa-
tion.

CLAIM 7: Suppose p(·|·) satisfies Axioms 1-4 and 6-9, and let {≻x}x∈X and
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{sx}x∈X be defined as in the previous claims. Then, for any S and x ∈ S,

p(x|S) =
∑

a∈A(x|S) sa∑
y∈S sb

.

PROOF:

Note that we have already proven the result for S with |S| ≤ 3. We will extend
the result for all S by induction. Suppose the characterization holds for all S with
|S| ≤ n, where n ≥ 3, and let S ∋ x with |S| = n+ 1 be given. If p(x|S) = 1 for
some x ∈ S, then the same argument used in Claim 5 can still be used to show the
characterization. Hence, we can assume that p(x|S) = 1 for no x ∈ S. In addition,
if p(x|S) > 0 for all x ∈ S, then Claim 6 guarantees that the representation holds.
Hence, suppose there exists z ∈ S such that p(z|S) = 0. There are two cases to
consider.

Case 1: p(z|S) = 0 and p(x|S) > 0 for all x ∈ S \ z. By definition of ≻z, we
should have that z ∈ A(x|S) for some x ∈ S\z, and the representation holds for z.
In addition, every x ∈ S \ z is ≻x-maximal in S. Hence, assume A(x|S) = {x, z}
for some x ∈ S \ z and A(y|S) = {y} for y ∈ S \ {x, z}. Since |S| ≥ 4, there exist
at least two alternatives y, y′ ∈ S \ x such that p(y|S)p(y′|S) > 0. By Axioms 3
and 4, p(y|S) ≤ p(y|S \ t) for all t ∈ S \y and p(y′|S) ≤ p(y′|S \ t) for all t ∈ S \y′.
By Axiom 7, for any t ∈ S \ {x, y, z},

p(t|S)
p(x|S)

=
p(t|S \ y)
p(x|S \ y)

.

In addition, by Axiom 7,
p(y|S)
p(x|S)

=
p(y|S \ y′)
p(x|S \ y′)

.

By induction argument, we have

p(t|S \ y)
p(x|S \ y)

=
st

sx + sz
and

p(y|S \ y′)
p(x|S \ y′)

=
sy

sx + sz
.

Combining the previous two lines, we get

1− p(x|S)
p(x|S)

=

∑
t∈S\{x,z} st

sx + sz
,

which implies

p(x|S) = sx + sz∑
y∈S sy

and p(t|S) = st∑
y∈S sy

for t ∈ S \ {x, z},
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as desired.

Case 2: p(z|S) = p(t|S) = 0 for z ̸= t ∈ S. There are two subcases to consider.

First, suppose z, t ∈ A(x|S) for some x ∈ S. Since we assumed that p(x|S) ̸= 1,
Axiom 2 implies p(x|S) > p(x|S \ z) and p(x|S) > p(x|S \ t). By Axiom 9, for
any y ∈ S \ x with p(y|S) > 0, we have

p(x|S)
p(y|S)

=
p(x|S \ z)
p(y|S \ z)

+
p(x|S \ t)
p(y|S \ t)

− p(x|S \ {z, t})
p(y|S \ {z, t})

.

Since A(y|S) = A(y|S \ z) = A(y|S \ t) = A(y|S \ {z, t}), by induction argument,
we get

p(x|S)
p(y|S)

=

∑
a∈A(x|S)\z sa∑
b∈A(y|S) sb

+

∑
a∈A(x|S)\t sa∑
b∈A(y|S) sb

−
∑

a∈A(x|S)\{z,t} sa∑
b∈A(y|S) sb

=

∑
a∈A(x|S) sa∑
b∈A(y|S) sb

.

Since this is true for any y ∈ S \ x with p(y, S) > 0, we get

p(x|S) =
∑

a∈A(x|S) sa∑
b∈S sb

and p(y|S) =
∑

a∈A(y|S) sa∑
b∈S sb

.

Next, suppose z ∈ A(x|S) and t ∈ A(y′|S) for some y′ ̸= x. Hence, we should
have p(x|S) > p(x|S \z) and p(x|S) ≤ p(x|S \ t). By Axiom 8, for any y ̸= x such
that p(y|S) > 0, we have

p(x|S)
p(y|S)

=
p(x|S \ z)
p(y|S \ z)

p(x|S \ t)
p(y|S \ t)

p(y|S \ {z, t})
p(x|S \ {z, t})

.

Note that for y ̸= x, y′, we have A(y|S) = A(y|S \ z) = A(y|S \ t) = A(y|S \
{z, t}). Similarly, we have A(x|S)\z = A(x|S\t)\z = A(x|S\z) = A(x|S\{z, t}).
Hence, for y ̸= x, y′, the induction hypothesis implies

p(x|S)
p(y|S)

=

∑
a∈A(x|S)\z sa∑
b∈A(y|S) sb

∑
a∈A(x|S) sa∑
b∈A(y|S) sb

∑
b∈A(y|S) sb∑

a∈A(x|S)\z sa
=

∑
a∈A(x|S) sa∑
b∈A(y|S) sb

.

In addition, since A(y′|S) \ t = A(y′|S \ z) \ t = A(y′|S \ t) = A(y′|S \ {z, t}),

p(x|S)
p(y′|S)

=

∑
a∈A(x|S)\z sa∑
b∈A(y′|S) sb

∑
a∈A(x|S) sa∑
b∈A(y′|S)\t sb

∑
b∈A(y′|S)\t sb∑
a∈A(x|S)\z sa

=

∑
a∈A(x|S) sa∑
b∈A(y′|S) sb

.

Combining the previous two lines, we get

p(x|S) =
∑

a∈A(x|S) sa∑
b∈S sb

and p(y|S) =
∑

a∈A(y|S) sa∑
b∈S sb

,
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as desired. □
This concludes the proof of the theorem. □

A3. Bertrand competition with differentiated products

In this section, we derive the symmetric equilibrium prices and profits in the
Bertrand competition model presented in Section VI and prove all the results
related to this model. Recall that there are two products, x1 produced by Firm
1 and x2 produced by Firm 2. Let si be the salience parameter, ai the loyalty
parameter, and pi the price of product xi. The costs are assumed to be zero. The
demand function for Firm i is given by

DRAR
i (p1, p2) =

si
si + sj

Di(pi − ai, pj) +
sj

si + sj
Di(pi, pj − aj),

where

Di(p1, p2) =

∫ 1

pi

∫ min{vi−pi+pj ,1}

0
dvjdvi.

Multiplying the demand function with price, we get the profit function of Firm
i. It is easy to check that fixing pj , Firm i’s profit function is continuously
differentiable and strictly concave in pi so that there is a unique best response to
any pj . Assuming pi − ai ≥ 0 and pi ∈ (pj − aj , pj + aj) for i, j ∈ {1, 2}, we can
write the profit function of Firm i as

Πi(p1, p2) =
sipi(1− p2j + 2pj − 2pi + 2ai)

2(si + sj)
+

sjpi(1− pi)(1− pi + 2pj − 2aj)

2(si + sj)
.

The first order condition is then given by

si(1− p2j + 2pj − 4pi + 2ai) + sj(1− 2pi)(1− pi + 2pj − 2aj)− sj(pi − p2i ) = 0.

To simplify the analysis, we assume that a1 = a2 = a and s1 = s2 = s. Under
these assumptions, we have a symmetric equilibrium pi = pj = p. Using this in
the first order condition, we get

−2p2 − (4− 4a)p+ 2 = 0 ⇒ p∗ = a− 1 +
√
a2 − 2a+ 2.

Notice that p∗ − a = −1 +
√
a2 − 2a+ 2 ≥ 0 and pi ∈ (pj − a, pj + a) so that our

assumptions are satisfied. In addition, Firm i’s equilibrium profits are given by

Πi(p
∗, p∗) =

(2− a)(a− 1 +
√
a2 − 2a+ 2)2

2
.

We next prove the results stated in Proposition 6. Our proof uses the implicit
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function theorem to analyze the implications of changes in the salience and loyalty
parameters on equilibrium prices and profits.

PROOF OF PROPOSITION 6:

We can simplify the first order condition as

si(1− p2j + 2pj − 4pi + 2ai) + sj(1 + 2(pj − aj)− 4pi(1 + pj − aj) + 3p2i ) = 0.

If a1 = a2 = a, s1 = s2 = s, we found that there is a symmetric equilibrium
p1 = p2 = p∗ = a − 1 +

√
a2 − 2a+ 2. Starting from the symmetric equilibrium,

we first look at a unilateral change in si. We can calculate the effects of a change
in si on equilibrium prices and equilibrium profits as:

∂pi
∂si

= −∂pj
∂si

=
a

s(6− a+
√
a2 − 2a+ 2)

> 0,

∂Πi

∂si
= −∂Πj

∂si
=

a(3− a−
√
a2 − 2a+ 2)(a+

√
a2 − 2a+ 2− 1)

4s
> 0.

For the second item, we follow a similar methodology to obtain the effects of a
change in ai on equilibrium prices as:

∂pi
∂ai

=
23
√
a2 − 2a+ 2 + 6a(4− a−

√
a2 − 2a+ 2)− 19

(34− 10a)
√
a2 − 2a+ 2

> 0,

∂pj
∂ai

=
1− a

20− 12a− 8
√
a2 − 2a+ 2

+

√
a2 − 2a+ 2− 2(1− a)

4
√
a2 − 2a+ 2

> 0.

A comparison of the two expressions shows that ∂pi
∂ai

>
∂pj
∂ai

. We can also obtain
the effects of a change in ai on equilibrium profits as:

∂Πi

∂ai
=

a− 1 +
√
a2 − 2a+ 2

2
> 0,

∂Πj

∂ai
= −(2− a−

√
a2 − 2a+ 2)(a− 1 +

√
a2 − 2a+ 2)

2
< 0.

Since (2− a−
√
a2 − 2a+ 2) ∈ (0, 1), the increase in Firm i’s profits is higher in

absolute value than the decrease in Firm j’s profits.

In item three, we analyze how a change in the common a affects the impact of
a change in si on equilibrium prices:

∂2pi
∂si∂a

= − ∂2pj
∂si∂a

=
2− a+ 6

√
a2 − 2a+ 2

s
√
a2 − 2a+ 2

(
6− a+

√
a2 − 2a+ 2

)2 > 0.
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Lastly, we also look how a change in the common s affects the impact of a change
in ai on equilibrium prices:

∂2pi
∂ai∂s

= − ∂2pj
∂ai∂s

= 0.

This concludes the proof of the Proposition. □


