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Abstract

We study how the allocation of attention to alternatives and the accessibility of
alternatives from memory affect decision making. To distinguish between attention
and memory, we propose a two-stage stochastic consideration set formation pro-
cess. An alternative enters the decision maker’s consideration set if it is investigated
in the initial attention stage and is remembered in the subsequent recall stage. In
the initial attention stage, the decision maker investigates each available alternative
with some alternative-specific probability. In the recall stage, the decision maker re-
members each alternative that she investigated in the attention stage with some
probability. The probability of remembering an alternative depends on the memora-
bility of the alternative and its position in the order of investigation in the attention
stage. In particular, investigating an alternative more recently enhances the proba-
bility of recalling it. The decision maker chooses the alternative that maximizes her
preference relation over her consideration set. Under the assumption that the in-
vestigation of alternatives is observable, we provide testable implications on choice
behavior and show that preferences, attention parameters, and memory parameters
can be uniquely identified from observable repeated choices.
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1 Introduction

Decision makers frequently encounter choices with an abundance of alternatives. As-

sessing each alternative in such complex decisions demands considerable time and ef-

fort. Over the last fifty years, theoretical and empirical research has demonstrated that

many consumers effectively consider a small number of alternatives before making a fi-

nal purchase decision (for an overview, see Honka et al. [2019]). In particular, the mar-

keting literature has long recognized that the actual choice process of the consumers

can be seen as a “purchase funnel” consisting of three stages: brand awareness, brand

recall, and choice (e.g., Shocker et al. [1991]). One of the main findings from this litera-

ture is that awareness and recall are as important as consumption utility or preferences

in influencing choices.

In contrast to the marketing literature, researchers in economics generally do not

differentiate between awareness and recall, grouping both into what is termed the con-

sideration set. In economics, the prevailing explanation for the composition of a con-

sideration set is that it comprises alternatives that the decision maker pays attention to

or is aware of. However, this explanation may refer to all of the available alternatives

that the decision maker knows about, or it can pertain to the set of alternatives that

comes to mind at a particular time. These two situations represent different facets of

the cognitive processes affecting decision making. Specifically, increasing awareness de-

mands grabbing the consumers’ attention, while boosting recall requires strengthening

memory retrieval. Thus, awareness refers to general knowledge about which alterna-

tives are out there, whereas recall refers to which alternatives come to mind at the time

of decision.

Brand awareness and brand recall together determine consumers’ final consideration

set. One may argue that identifying the final consideration set is sufficient for economic

analysis and it is not necessary to explicitly model brand awareness and brand recall

separately. However, distinguishing between how awareness and recall shape consider-

ation sets has economically relevant practical implications. To demonstrate, consider a

firm or a marketer with an aim to increase the sales of a product. Distinguishing be-

tween awareness and recall is crucial for a marketer because these two stages can be
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influenced by different marketing efforts. For example, by analyzing whether a prod-

uct is stuck at the awareness stage or at the recall stage, a marketer can determine

whether the firm should increase the brand’s visibility to reach new consumers (i.e.

boost awareness) or enhance the brand’s memorability to re-engage consumers who

have already been exposed to the brand (i.e. boost recall).1 This exercise necessitates

knowledge about the separate influence of awareness and recall on the composition of

the consideration set.

Since these cognitive processes are in the mind of the decision maker, an outside

analyst cannot observe which alternatives are paid attention to and which alternatives

are remembered. Given the intertwined nature of attention and memory, one might

wonder whether it is even possible to distinguish the effects of memory and attention

on decisions from solely observed choices. Since preferences also shape choices and

are also unobservable, separating attention, memory and preferences becomes an am-

bitious question. To answer this question, one needs a model of decision making that

has both attention and memory components. In this paper, we provide such a model.

In particular, we make the distinction between alternatives the decision maker knows

about and alternatives that the decision maker can remember at the time of choice.

We provide a parametric model in which attention and memory are captured through

distinct parameters.

In our model, the decision maker maximizes a preference relation over the set of

alternatives she was initially aware of and she can recall at the time of choice. Due to

imperfections in the attention and memory processes, this set may be different than the

entire set of alternatives, especially when the number of available alternatives is large.

In this case, the decision maker may make choice errors. We attribute the choice errors

that arise due to not knowing some of the alternatives exist to the attention channel, and

the choice errors that arise due to not remembering some of the alternatives at the time

of choice to the memory channel. Thus, the choices in our model are generated from the

interaction between attention, memory, and preferences.

1Indeed, the 2023 Nielsen Brand Lift Report, which measures the effectiveness of marketing cam-
paigns, ranks brand recall as the most important factor followed by baseline brand awareness. See the
article titled “In emerging media, brand recall is the biggest driver of lift” at Nielsen.com.
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We model attention and memory as stochastic. This modeling choice captures the

observation that the set of alternatives the decision maker is aware of or can recall may

change when the same choice problem is repeated. This randomness may be caused by

changes in the state of the world that are not observable by the analyst analyzing choice

data, but may affect the allocation of attention and memory. For example, a consumer

engaging in online shopping may search for alternatives on her phone or her computer.

Because of the differences in the screen size and the presentation of alternatives, the

consumer may pay attention to a different subset of alternatives on her phone versus on

her computer, but this information may not be available to the analyst. The changes in

unobserved states can also be due to changes in cognitive factors that affect attention

and memory such as emotional states or cognitive load.

Following the purchase funnel conceptualization that is popular in marketing, we

model the decision making process of the decision maker as a three-stage choice proce-

dure, each stage corresponding to one of the three elements present in our model. In

the first stage, given a set of available alternatives, the decision maker initially possesses

knowledge of a subset of these alternatives. We refer to this set as the awareness set and

attribute it to the impact of attention. To describe this attention-driven process, we use

the random attention rule proposed by Manzini and Mariotti [2014].2 In this model,

the composition of awareness sets is determined stochastically, based on the degree of

attention the decision maker allocates to each alternative. Here, the parameter γ(x)

captures the level of attention assigned to alternative x. Thus, given a set of available

alternatives, the first stage generates a probability distribution over awareness sets.

The second stage describes the memory-driven process following the random recall

rule in Yegane [2022]. In the second stage, given an awareness set, the decision maker

sequentially observes the alternatives in her awareness set. This assumption captures

the sequential nature of information processing. We refer to this order of observing

the alternatives as the list. We assume that the same list generates the entire set of

observable choices and the list is observable to the analyst. One way to visualize this

assumption is by considering the products ordered in a grocery store aisle. The assump-

2This parametric model is widely used in empirical applications (Abaluck and Adams-Prassl [2021],
Barseghyan et al. [2021a,b]).
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tion on the observability of the list assumes that the shopper follows the order presented

by the store, and the how the products are placed is known by the analyst. However,

due to randomness in awareness, the shopper may not observe all of the products in

the aisle - she may skip some of the products. Whether a product was skipped is not

assumed to be observed by the analyst, and we show this information can be revealed

from the choices.

The probability of remembering an alternative is determined by that alternative’s

base memorability and its position in the list. Intuitively, sequentially observing the

alternatives may cause the decision maker to forget some of the alternatives in her

awareness set that she observed earlier. In the model, whenever the decision maker en-

counters a new alternative in the list, she may forget alternatives she has already seen

with some probability. The parameter q(x) is the probability of recalling x when the next

alternative in the list is observed. This parameter, q(x), captures the base memorability

of an alternative x, absent of any order effects. As the decision maker continues observ-

ing the alternatives in the list, each new alternative explored creates a possibility for

previously observed alternatives to be forgotten, thereby discounting the probability of

remembering x further.

We refer to the set of alternatives that the decision maker was initially aware of

and successfully recalled at the time of making a choice as the consideration set. In

the third stage, the decision maker maximizes a well-behaved preference relation over

the consideration set. Given a set of available alternatives, the random attention rule

and the random recall rule together generate a probability distribution over possible

consideration sets.

We restate the question we posed above in the context of our model. There are

three possible reasons why an alternative is not chosen. First, there may be a more

preferred alternative available. Second, the alternative may not be considered because

the decision maker was never aware of it. Third, the alternative may not be considered

even though the decision maker was aware of it at some point but she could not recall

it at the time of choice. Our first set of results show that we can distinguish these three

possibilities from each other. The three sets of unobservables in our model, preferences,
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awareness sets and consideration sets, can be uniquely identified from repeated choices

when the list is observable.

In our identification exercise, we utilize choices from sets with only one or two al-

ternatives. We show that the choice probability of x when only x is available is equal to

the choice probability of x when x and y are available if and only if x is preferred to y

and x appears in the list after y. Thus, even when the underlying list is unobservable,

our identification results guide what type of preferences are permissible, by analyzing

singleton and binary choices. Moreover, we show that if the choice probability of both

x and y change from singleton sets to the set in which both x and y are available, then

the underlying preference relation has to coincide with the list order. Thus, when the

list is observable, we can fully reveal the preference ranking of x and y.

To better understand the relationship between attention, memory, and preferences,

we study the behavioral foundations of the limited attention and memory model. In par-

ticular, we provide necessary and sufficient conditions for repeated choices associated

with a list to have a limited attention and memory representation. Our characteriza-

tion exercise shows that a key implication of the limited attention and memory model

is that when some conditions on the preference and list ranking of x are satisfied, the

event of choosing x in some set S can be divided into independent events of choosing

x in subsets of set S. In other words, the act of choosing x in S can be divided into

smaller sub-problems such that each of those problems can be solved independently,

and the solutions of the sub-problems can be combined to form the choice probability

of x in S. Our characterization exercise provides insights into the alternatives suitable

for applying the “divide-and-conquer” approach.

The rest of the paper is organized as follows. Section 2 introduces the notation and

formally describes the model. Section 3 provides the identification results. Section 4

provides the characterization result. Section 5 compares the choice behavior generated

by the model with related models of stochastic choice. Section 6 concludes.
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2 Model

Let X be a non-empty finite set representing the set of alternatives that may be available

to the decision maker. Let X denote all nonempty subsets of X. Any element S of X
constitutes a choice set. There is an outside option o that the decision maker can opt for

when presented with any choice set S. Thus, the decision maker is effectively choosing

a single alternative from S∪{o} when presented with the alternatives in S. We interpret

the outside option as not choosing any of the alternatives in S.

We consider a decision maker who chooses from the same choice set repeatedly. We

assume to observe the limiting distribution of the decision maker’s repeated choices

from each choice set, which we refer to as a random choice rule. Formally, a random

choice rule p maps each choice set S ∈ X to a probability distribution over its elements

and the outside option. We denote the probability of choosing alternative x from choice

set S with p(x, S). We assume that for all S ∈ X , x ∈ S, p(x, S) > 0.3 For choice sets

with only a single alternative available, we abuse notation and drop the parentheses

when denoting the singleton set, i.e. instead of p(x, {x}) we use p(x, x). Similarly, we

abuse notation and use S \ x instead of S \ {x}.

In our model, three channels influence decision making: attention, memory, and

preferences, in this particular order. We describe the decision making process of the

decision maker as a three-stage choice procedure where each stage corresponds to one

of the channels affecting decision making. Figure 1 provides a graphical representation

of our model.

Given a choice set S, the decision maker is initially aware of a subset of alternatives

A ⊆ S. We refer to this set A as the awareness set, which captures the effect of attention.

To capture attention, we utilize the parametric attention rule of Manzini and Mariotti

[2014], in which awareness sets are modeled probabilistically. Whether an alternative is

included in the awareness set is determined by the level of attention the decision maker

pays to it. The parameter γ(x) denotes the level of attention alternative x receives. This

3As noted by McFadden [1973], a zero probability is empirically indistinguishable from a very small
positive probability.

7



S A C x is ≻-best in C
µ(A|S)

Attention

π(C|A)

Memory

≻

Preference

Choice Set Awareness Set Consideration Set Choice

p(x, S)

Choice Rule

Figure 1: An illustration of our model. Observable: choice set and choice rule (solid line). Unobservable: awareness set, consideration
set, and preference (dashed line).

parameter is assumed to be strictly between 0 and 1 for all alternatives in X. Given a

choice set S, the awareness set can be equal to each subset of S with some probability.

The probability of A ⊆ S being the awareness set when the choice set is S is given by,

µ(A|S) :=
∏
x∈A

γ(x)
∏

y∈S\A

(1− γ(y))

In other words, the probability of the awareness set being equal to A when the choice

set is S is given by probability of paying attention to every alternative in A and not

paying attention to every alternative outside of A. Note that the awareness set A can be

empty. In this case, we assume that the decision maker chooses the outside option o.

If the awareness set A is nonempty, then the decision maker observes the alternatives

in A sequentially. The order in which the decision maker observes the alternatives is

captured by a list. Formally, a list ▷ is a strict total order over X. Let ▷(A) denote the

ordering that is obtained from ▷ by deleting the alternatives in X \ A. For any x ∈ A,

▷(x,A) denotes the number of alternatives that follow x in ▷(A). We write x ▷ y to

denote that x appears in the list before y. We assume that each random choice rule

p is associated with a single list ▷, and the list is observable to the analyst. Note that

because awareness sets are stochastic, the actual order followed by the decision maker is

a stochastic object. For example, if products are ordered so that x is the first alternative

in the list, y is second, and z is last, then the actual order followed by the decision

maker is equal to x ▷ y ▷ z if the decision maker initially pays attention to all three
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products. However, if the decision maker does not pay attention to y, then the actual

order followed by the decision maker is x and then z. The variations in the list due to

randomness of awareness is not assumed to be observable. But the analyst knows that

the decision maker cannot first observe z and then x.

Sequentially observing the alternatives in A may cause the decision maker to for-

get some of the alternatives in A. To capture memory failures, we utilize the recall

procedure in Yegane [2022]. In particular, each time the decision maker observes a new

alternative, this creates a possibility for previously observed alternatives to be forgotten.

In addition to this order effect, each alternative x is also associated with a base memora-

bility q(x), which captures the probability of remembering x when the next item on the

list is observed. We refer to q(x) as the period recall probability of x and assume that it is

strictly between 0 and 1. This recall procedure captures stochastic memory through an

order effect and an alternative-specific memorability effect. To illustrate, suppose that

there are three alternatives in the decision maker’s awareness set, ordered in the list as

x▷y▷z. The last alternative the decision maker observes is z so it is recalled with prob-

ability one. The decision maker observes z after observing y, so with probability q(y)

the decision maker recalls y. The decision maker observes y and then z after observing

x, so x is recalled with probability q(x)2. We refer to the memory probability of each

alternative in the respective awareness sets as the final recall probability. Note that as

opposed to the period recall probability, the final recall probabilities include the order

effects on memory. We refer to the set of alternatives the decision maker was initially

aware of and recalled at the time of choice as the consideration set. Given an awareness

set A, the consideration set can be equal to subsets of A that include the last alternative

in the list ▷(A) with some probability. Note that, the probability of the consideration set

being equal to a subset of A that does not include the last alternative in ▷(A) is zero. In

general, the probability of C ⊆ A being the consideration set when the awareness set is

A is given by,

π(C|A) =
∏
x∈C

q(x)▷(x,A)
∏

y∈A\C

(1− q(y)▷(y,A))

Thus, given an awareness set A, the probability of the consideration set being equal

to C is given by the probability that each alternative in C is recalled and each alternative
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in A \ C is forgotten. The generation of the consideration set from an awareness set is

the second stage of the choice procedure. The exclusion of the forgotten alternatives is

what we refer to as the memory channel. Note that by construction, being initially aware

of an alternative is necessary for an alternative to be remembered later on.

In the final stage of the choice procedure, the decision maker maximizes a preference

relation ≻ over the alternatives in the decision maker’s consideration set. We assume

that the decision maker’s preferences can be represented by a strict total order. We now

formally define our model.

Definition 1 A random choice rule p associated with list ▷ has a limited attention and

memory (LAM) representation if there exists a preference ordering ≻ on X, an attention

function γ : X → (0, 1), and a period recall probability function q : X → (0, 1), such

that for any x ∈ S and S ∈ X ,

p(x, S) =
∑
A⊆S

∏
y∈A

γ(y)
∏

z∈S\A

(1− γ(z))


︸ ︷︷ ︸

awareness set is A

q(x)▷(x,A)

︸ ︷︷ ︸
x is recalled

∏
{t∈A | t≻x}

(1− q(t)▷(t,A))︸ ︷︷ ︸
alternatives that are preferred to x are forgotten

Three conditions must be satisfied for an alternative x ∈ S to be chosen in S. First,

the decision maker must be initially aware of alternative x, so x must be in the aware-

ness set. Second, alternative x must be recalled at the time of choice, so x must be in

the consideration set. Finally, x must be the decision maker’s most preferred alterna-

tive among the ones in her consideration set. Definition 1 formalizes this procedure.

The choice probability of x in choice set S is given by the sum of probabilities of all

consideration sets in which x is the decision maker’s most preferred alternative. The

consideration set probabilities are given by the attention and memory procedure de-

scribed above.

In the limiting case where q(x) = 1 for all x ∈ X, LAM boils down to the model of

Manzini and Mariotti [2014].4 In the limiting case where γ(x) = 1 for all x ∈ X, the

4Note that if the preference relation and the list are exactly the opposite, i.e. for all x, y ∈ X x ≻ y
if and only if y ▷ x, then LAM makes the same predictions as Manzini and Mariotti [2014]. Thus, LAM
subsumes Manzini and Mariotti [2014].
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model boils down to Yegane [2022]. If q(x) = 1 and γ(x) = 1 for all x ∈ X, then the

model makes the same predictions as rational deterministic choice.

We now provide some intuition about how LAM works. We first introduce the well-

known regularity property on random choice rules. A random choice rule p satisfies

regularity if for all S ∈ X with x ∈ S and y /∈ S,

p(x, S) ≥ p(x, S ∪ {y})

The regularity property says that adding an alternative y to a choice set cannot increase

the choice probability of another alternative x. One way to think about violations of

regularity is to think of them as the probabilistic equivalent of deterministic choice

reversals. Suppose that the decision maker’s choice behavior is deterministic, so for any

p(x, S) is either equal to 0 or 1. Then a violation of regularity corresponds to alternative

x not being chosen in S, but it is chosen in S ∪ {y}. This choice behavior violates Sen’s

property α and it cannot be rationalized by the standard deterministic model of choice.

Similarly, violations of regularity with random choice rules cannot be rationalized by

the random utility model (Block and Marschak [1960]). However, studies document

systematic violations of regularity. Huber et al. [1982] is the first one to document such

violations and Rieskamp et al. [2006] provide a review of regularity violations in various

domains.

In what follows, we first show that LAM can rationalize regularity violations with

a simple example. We then discuss under which conditions on attention and memory

parameters the model predicts this behavior.

Example 1 Consider the following random choice rule, generated from LAM with x ≻
y ≻ z, x▷ y ▷ z, γ(x) = γ(y) = γ(z) = 0.9, q(x) = 0.8, q(y) = q(z) = 0.9.5

S p(x, S) p(y, S) p(z, S) p(o, S)

{x, y} 0.74 0.25 - 0.01
{x, y, z} 0.61 0.33 0.06 0

5Note that we round the numbers to the nearest hundredth. Thus, p(o, {x, y, z}) is a small but positive
number.
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When z is added to the choice set {x, y}, the choice probability of y increases from

0.25 to 0.33. Therefore, this random choice rule violates regularity. The explanation

behind this prediction is as follows. As z appears in the list after x and y, adding it to

the choice set {x, y} decreases the final recall probability of x and y when the awareness

set is {x, y, z}. This decrease in the final recall probability of y causes a decrease in the

choice probability of y. On the other hand, the decrease in the final recall probability of

x causes an increase in the choice probability of y. This is because x is preferred to y,

so x must be not paid attention to or paid attention to and forgotten for y to be chosen,

and the presence of z decreases the probability of y being considered by pushing its

location in the list. When the effect on the final recall probability of x is stronger, the

model predicts a regularity violation. Thus, the model rationalizes regularity violations

via changes in recall probabilities.

To better understand the interaction of attention and memory in generating this

result, we now inquire for which attention and memory parameter values the model

predicts a regularity violation in y when moving from set {x, y} to {x, y, z} given that

x ≻ y ≻ z, x ▷ y ▷ z. We first focus on for which parameter values p(y, {x, y, z}) −
p(y, {x, y}) is strictly positive. We then discuss how the size of the regularity violation

changes in response to the changes in the parameters.

First of all, whether there is a regularity violation in this setup depends only on pa-

rameters q(x), q(y), γ(x). Because z is the last alternative, it’s period recall probability

does not affect choices. Parameters γ(y) and γ(z) affect the size of the regularity vio-

lation, but they do not affect whether there is a violation. Essentially, both p(y, {x, y})
and p(y, {x, y, z}) are linear in γ(y). As long as γ(z) is strictly positive, the model creates

the trade-off between the final recall probability of x and y described above, even when

γ(z) is very small.

In Figure 2, we fix a value for γ(x), and then demonstrate the q(x) and q(y) com-

binations for which the model predicts a regularity violation in y. The purple area

corresponds to q(x) and q(y) combinations that predict a regularity violation when

γ(x) = 0.75. When γ(x) = 0.95, q(x) and q(y) combinations in the purple and blue

areas predict a regularity violation. The first observation is that q(y) must be sufficiently
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Figure 2: q(x)-q(y) combinations that predict a regularity violation in y

high, otherwise the model does not predict a regularity violation in y. If alternative y is

not memorable, then the decrease in the choice probability of y when z is added to the

choice set becomes very high.

The second observation is, given γ(x) and q(y), a regularity violation in y is observed

when q(x) take moderate values. This is because when q(x) is very high, then the final

recall probability of x is very close to 1, regardless of where x is placed in the list.

Thus, the decrease in the final recall probability of x due to the addition of z becomes

negligible and the model does not predict a regularity violation. On the other hand,

when q(x) is sufficiently small, the decrease in the final recall probability of x due to

the addition of z also becomes very small. Thus, for sufficiently small q(x) values, the

model does not predict a regularity violation.

The third observation is that if γ(x) decreases, then the sets of q(x) and q(y) combi-

nations for which the model predicts a regularity violation shrinks. To see why, consider

the limiting case in which γ(x) = 0. Then, in the choice set {x, y}, {y} is the only aware-

ness set assigned strictly positive probability in which y can be chosen. Similarly, in the

choice set {x, y, z}, {y} and {y, z} are the two awareness sets assigned strictly positive

probability in which y can be chosen. In awareness set {y}, alternative y is recalled with

probability one, thus it is chosen with probability one. However, in awareness set {y, z},

as z appears in the list after y, alternative y is recalled with probability q(y) which is

less than one. Thus, adding z to the choice set unambiguously decreases the choice

probability of y in the limiting case where the decision maker is completely unaware of
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alternative x. When γ(x) is in (0, 1) and the choice set is {x, y, z}, the decision maker

faces awareness sets {x, y, z} and {y, z} with positive probability. The choice probabil-

ity of y in awareness set {x, y, z} may be higher than the choice probability of y in

awareness set {x, y} as z increases the probability that x is forgotten. As γ(x) increases,

the probability of facing the awareness set {x, y, z} increases while the probability of

facing the awareness set {y, z} decreases, so lower q(y) values may generate regularity

violations. In other words, whether there is a regularity violation critically depends on

the decision maker being initially aware of alternative x, but forgetting it due to the

presence of another alternative z.

We now discuss how the size of the violation changes in response to a change in

model parameters, conditional on observing a regularity violation. Due to the intuition

described above, the size of the regularity violation is increasing in q(y) and γ(x), while

initially increasing and then decreasing in q(x). Conditional on observing a regularity

violation, the size of the violation is increasing in γ(y) and γ(z). This is because an

increase in γ(y) creates a level effect and boosts the choice probability of y in every

choice set. On the other hand, an increase in γ(z) causes the final recall probability

effects in alternatives x and y to be stronger, thereby boosting the size of the violation.

3 Identification

In this section, we assume that the random choice rule p associated with list ▷ has a

limited attention and memory representation. We inquire whether we can identify the

preference relation, the attention function and the period recall probability function

from (p,▷). We first define a binary relation based on singleton and binary choices:

xPy if one of the following is observed: (i) p(x, x) = p(x, {x, y}), or

(ii) p(y, y) ̸= p(y, {x, y}) and x▷ y.

14



The only instance in which the choice probability of x stays constant when another

alternative is added to the choice set is if x is preferred to the new alternative and the

new alternative does not affect the probability of x being recalled, which means that

the new alternative appears in the list before x. In this case, x is chosen in the choice set

{x, y} if the decision maker is initially aware of it. Thus, P (i) reveals that x is preferred

to y.6 Similarly, if y appears in the list after x, then adding x to the choice set does not

affect the final recall probability of y. If adding x changes the choice probability of y,

then it must be that the choice probability of y is affected by whether x is remembered,

which reveals that x is preferred to y.

If alternative x is the only available alternative, then it is recalled with probability

one if the decision maker initially paid attention to it. Thus, the choice probabilities

from singleton sets reveal the attention probabilities.

γ(x) = p(x, x) (1)

If alternative x is revealed to be preferred to y and x▷ y, we define

q(x) =
p(x, {x, y})− p(x, x)(1− p(y, y))

p(x, x)p(y, y)
(2)

Since x is preferred to y and x appears in the list before y, x is chosen in {x, y}
if x is the only alternative in the awareness set or both x and y are in the decision

maker’s awareness set and x is recalled. To reveal q(x), we need to isolate the choice

probability of x when the awareness set is {x, y} in p(x, {x, y}). Thus, we subtract the

choice probability of x when the awareness set is {x} in choice set {x, y}, which is given

by p(x, x)(1 − p(y, y)). What remains is the probability of recalling x in the set {x, y}
conditional on both x and y being in the awareness set.

At this point, we wish to emphasize that recall failures affect choices only when

the preference order and the list order coincide. To see why, consider the situation in

6Equivalently, we can write P (i) as p(x, x) = p(x, {x, y}) and y▷x. However, the latter part is implied
by the former because if x appears in the list before y, then the choice probability of x has to change
when y is added to the choice set. See the discussion following Axiom 1.
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which the preference relation and the list are exactly the opposite: For all x, y ∈ X,

x ≻ y and y▷x. In this case, the stochastic choice function is independent of the period

recall probability function q(.). In any awareness set, the decision maker recalls the last

alternative in the list, which is her most preferred alternative in that awareness set,

with probability one. Therefore, the decision maker chooses the alternative she recalls

with probability one in any awareness set. This means that the decision maker’s choices

are entirely governed by the initial awareness of the alternatives. Recall failures do not

affect choices because only less preferred alternatives are forgotten. Now suppose that

the preference relation ≻ and the list ▷ are exactly opposite except for the ranking of

two alternatives i, j ∈ X such that i ≻ j and i ▷ j. Now consider an awareness set

that includes i and j but does not include any of the alternatives that are preferred to

i. In this awareness set, any alternative that is inferior to j is not chosen, alternative i

is chosen if it is recalled and alternative j is chosen if i is forgotten. Now consider an

awareness set that includes at least one alternative that is preferred to i. Then, the last

alternative in the list is preferred to i, and is recalled with probability one, so neither

i nor j can be chosen in such awareness sets. Hence, the stochastic choice function

is independent of all q(.) parameters except q(i). In this case, we can reveal q(i) from

Equation 2. In other words, alternative i’s period recall probability q(i) appears in the

model only if there exists another alternative j such that i ≻ j and i▷ j, and in this case

Equation 2 can be used to identify q(i). Thus, we can uniquely reveal q(i) as long as it

is relevant for the model.

3.1 Identification with Limited Data

The identification strategy we described above explains a method to uniquely identify

the preference relation as well as the attention and memory parameters from choice

sets when only one or two alternatives are available. We now discuss a way of identi-

fying the underlying preference relation from choice sets with three or more available

alternatives. For a choice set S ∈ X , let ▷1 denote the first alternative in the associated

list ▷(S). Note that the first alternative in the list ▷(S) depends on choice set S. We

use the simplified notation ▷1 as long as it does not create any confusion. We consider

16



choice set variations in which the first alternative ▷1 in the list ▷(S) is removed from

choice set S. For any x ∈ S \▷1 define a binary relation P ,

xP ▷1 if p(x, S) = p(x, S \▷1)

▷1Px if p(x, S) ̸= p(x, S \▷1)

As ▷1 is the first alternative in the list, removing it does not change the final recall

probability of any of the alternatives in S \ ▷1 in any awareness set. Thus, if an alter-

native x is preferred to ▷1, its choice probability must remain unchanged when ▷1 is

removed. If an alternative is inferior to ▷1, then it can be chosen either if ▷1 is not

initially paid attention to, or if it is forgotten. Thus, the choice probability of such alter-

natives increase when ▷1 is removed. This means that we can fully reveal the ranking

of ▷1 within S from choice sets S and S \ ▷1. For any x ∈ S that is inferior to ▷1, we

can reveal its period recall probability by calculating the ratio in part (i) of Axiom 6.7

4 Characterization

In this section, we provide necessary and sufficient conditions for a random choice rule

and an associated list ▷ to have a limited attention and memory representation. In the

identification section, we provide a method for identifying the unobservable variables

that shape the behavior of the decision makers from the observables, i.e., we show that

we can identify the preference relation, the attention function and the period recall

probability function from the random choice rule and the associated list. However, the

identification results are applicable if the random choice rule is generated from the

limited attention and memory model. Our characterization exercise addresses this gap

by presenting testable conditions that link the model to the identification results.

The first axiom of our characterization result says that if alternative y is followed by

7Note that the least preferred alternative’s period recall probability is not relevant for the model. This
is because the last alternative in the list is recalled with probability one, so the least preferred alternative
can only be chosen if it is the last one in the list.
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another alternative x in the list, then the choice probability of y must decrease when x

is added to the choice set {y}.

Axiom 1 (Asymmetry) If y ▷ x, then p(y, y) > p(y, {x, y}).

If alternative y is followed by another alternative x in the list, then in the awareness

set {x, y}, the presence of alternative x decreases the final recall probability of alter-

native y. Hence, adding x to the choice set {y} decreases the choice probability of y,

regardless of the preference ranking of x and y. Note that Axiom 1 implies we cannot

have p(y, y) = p(y, {x, y}) and p(x, x) = p(x, {x, y}) at the same time, which ensures

that P is asymmetric.

The next axiom says that the revealed preference relation has to be transitive.

Axiom 2 (Transitivity) P is transitive.

Due to the definition of P , the implication of transitivity is not straightforward. To

illustrate, suppose that xPy and yPz. Axiom 2 indicates that either p(x, x) = p(x, {x, z})
or p(z, z) ̸= p(z, {x, z}) and x▷z. Thanks to Axiom 1, we know more about this. Assume

that both these revelations originated from part (i) of the definition of P , i.e., p(x, x) =

p(x, {x, y}) and p(y, y) = p(y, {y, z}). Then, Axiom 1 yields z ▷ y ▷ x. The transitivity of

the list order implies that we must have p(x, x) = p(x, {x, z}). Hence, xPz follows from

part (i) (not part (ii) which would imply that p(z, z) ̸= p(z, {x, z}) and x▷ z).

Similarly, if xPy and yPz both follow from part (ii) of the definition of P , i.e.,

p(y, y) ̸= p(y, {x, y}), p(z, z) ̸= p(z, {y, z}) and x ▷ y ▷ z, then Axiom 1 and the transi-

tivity of ▷ imply that p(x, x) ̸= p(x, {x, z}). Therefore, xPz must follow from part (ii) of

the definition, which requires that p(z, z) ̸= p(z, {x, z}) and x▷ z.

Note that P is complete by definition. For any two alternative x and y, either

p(x, x) = p(x, {x, y}) or p(x, x) ̸= p(x, {x, y}). If p(x, x) = p(x, {x, y}), then xPy by

P (i). If p(x, x) ̸= p(x, {x, y}) and y ▷ x, then yPx by P (ii). If p(x, x) ̸= p(x, {x, y})
and x ▷ y, then we also need to check the relation between p(y, y) and p(y, {x, y}). If

p(y, y) = p(y, {x, y}) then yPx by P (i). If p(y, y) ̸= p(y, {x, y}), then xPy follows from

P (ii), since x▷ y. Thus, Axiom 1 and 2 together guarantee that P is a linear order.
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The next axiom guarantees that the impact of forgetting an alternative x on the

choice probability of x in binary choice sets is consistent across two inferior alternatives

y and z. In other words, forgetting x influences its choice probability uniformly in binary

choice sets, independent of the specific inferior options available.

Axiom 3 (Consistent Recall) If xPy, z and x▷ y, z then,

p(x, {x, y})− p(x, x)(1− p(y, y))

p(x, x)p(y, y)
=

p(x, {x, z})− p(x, x)(1− p(z, z))

p(x, x)p(z, z)
> 0

If there are two or more alternatives that are inferior to x and follow x in the list, then

the impact of forgetting x on the choice probability of x in binary choice sets must

be consistent across two inferior alternatives. Axiom 3 addresses this by guaranteeing

that the period recall probability of x implied by Equation 2 from each of the inferior

alternatives must be the same. In other words, Axiom 3 ensures that the period recall

probability function is well-defined.

Additionally, we rule out always-forgotten and always-recalled alternatives by as-

sumption, so each period recall probability must be in (0, 1). Axiom 3 handles this

assumption in the following manner. First, notice that Axiom 3 has q(x) > 0 directly

embedded in. Second, to see that q(x) < 1 is implied by Axiom 3, we can rewrite Equa-

tion 2 as,

q(x) = 1 +
p(x, {x, y})− p(x, x)

p(x, x)p(y, y)

As x▷ y, Axiom 1 implies that p(x, x) > p(x, {x, y}) and thus q(x) < 1.

The next axiom relates the choice probability of an alternative in some choice set

with at least three alternatives to that alternative’s choice probability in subsets of that

larger choice set. The idea behind the axiom is to isolate the choice probability of an

alternative when the decision maker’s awareness set includes every available alternative

from the observed choice probability in a given choice set. The goal is to isolate the

change in the choice probability of an alternative due to memory limitations from those

due to attention limitations, in response to systematic choice set variations. Isolating the
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portion of the choice probability in which every option is paid attention to essentially

shuts down the attention channel, allowing us to focus on the memory channel effects.

To illustrate, suppose that (p,▷) has a limited attention and memory representation.

Then,

p(x, {x, y, z})− p(x, {x, y})p(x, {x, z})
p(x, x)

(3)

=γ(x)γ(y)γ(z)q(x)▷(x,{x,y,z})

 ∏
{t∈{y,z}|t≻x}

(1− q(t)▷(t,{x,y,z}))−
∏

{t∈{y,z}|t≻x}

(1− q(t)▷(t,{x,t}))



Notice that the difference between p(x, {x, y, z}) and p(x,{x,y})p(x,{x,z})
p(x,x)

is equal to the

choice probability of x when the decision maker’s awareness set includes every avail-

able alternative minus an additional term that constructs the choice probability of x

from the choice probability of x from sets {x, y} and {x, z}, conditional on the decision

maker being initially aware of every alternative. Notice that if x is the most preferred

alternative in {x, y, z}, then

p(x, {x, y, z})− p(x, {x, y})p(x, {x, z})
p(x, x)

= 0

Thus, the choice probability of the most preferred alternative x can be written as the

multiplication of two binary sets constructed in a way to cover every alternative in

the ternary set and making sure x is available in both of the smaller sets.8 In other

words, if x is the decision maker’s most preferred alternative in {x, y, z}, then the act

of choosing x in {x, y, z} can be divided into smaller sub-problems of {x, y} and {x, z},

such that each of those problems can be solved independently, and the solutions of the

sub-problems can be combined to form the choice probability of x in {x, y, z}. Thus, we

can “divide-and-conquer” choosing alternative x in choice set {x, y, z}.

8Note that we need to divide the multiplication of binary choice probabilities by p(x, x) because the
outside option is always available, so it is double counted in sets {x, y} and {x, z}.
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Now suppose that y ≻ x,

p(x, {x, y, z})− p(x, {x, y})p(x, {x, z})
p(x, x)

=

γ(x)γ(y)γ(z)q(x)▷(x,{x,y,z}) [(1− q(y)▷(y,{x,y,z}))− (1− q(y)▷(y,{x,y}))
]

Because y is preferred to x, the choice probability of x also depends on the probability

that y is forgotten, which can disrupt the divide-and-conquer procedure. However, if the

probability that y is forgotten is the same in {x, y} and {x, y, z}, then,

p(x, {x, y, z})− p(x, {x, y})p(x, {x, z})
p(x, x)

= 0

Thus, if the probability that y is forgotten is the same in {x, y} and {x, y, z}, then

we can divide-and-conquer choosing alternative x in choice set {x, y, z} into smaller

problems of choosing x in {x, y} and {x, z}. Summarizing this yields the following ob-

servation.

Observation 1 If x is revealed to be the most preferred option in {x, y, z} or if y is revealed

to be preferred to x, and y follows z in the list, then

p(x, {x, y, z})− p(x, {x, y})p(x, {x, z})
p(x, x)

= 0

Note that Observation 1 is essentially a path independence condition as in Plott

[1973]. In particular, the condition isolates memory channel effects and then character-

izes when the change in choice probability due to memory channel effects satisfies path

independence.

Our next axiom extends the idea behind Observation 1 to sets with more than three

alternatives. Note that when there are only three available alternatives, dividing the

choice set into smaller sub-problems is straightforward, as the only way to do it is to di-

vide the choice set into two binary choice sets. However, when there are more than three

alternatives, the division into sub-problems is not straightforward. Unlike the standard

path independence condition, which essentially says that the division does not matter,
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the division matters within our model because of the memory channel effects. In par-

ticular, when a new alternative is added to a choice set, the addition of this alternative

decreases the recall probability of alternatives that appear earlier in the list. This effect

causes the choice probability of those alternatives that are pushed back to decrease.

However, for inferior alternatives to be chosen, the decision maker has to forget the

alternatives she prefers. Thus, pushing the alternatives in the list actually may boost the

choice probability of some of the inferior alternatives, because the recall probability of

some of the better alternatives decreases. When a divide-and-conquer procedure is ap-

plied, the division of the choice set into smaller subsets matter because of these memory

channel effects.

In what follows, we describe a way of dividing any choice set S for any alternative x ∈
S into smaller sub-problems to minimize the memory channel effects described above.

This requires varying the choice set such that the alternatives that appear earlier in the

list are removed, so that the changes in the recall probabilities of other alternatives are

minimized.

Let ▷1 and ▷2 denote the first and second alternative in list ▷, respectively. For a

given list ▷, choice set S and alternative x ̸= ▷1, consider the following sets: {▷1, x}, S\
▷1. If x = ▷1, then consider the sets: {▷2, x}, S \▷2. We now define an auxiliary object

depending on x and the list, which captures the alternative that will be removed in the

choice set variations we consider:

▷x =

{
▷1 if x ̸= ▷1

▷2 if x = ▷1

To illustrate the idea behind the next axiom, we start with an example that applies

the reasoning underlying Observation 1 to sets with four alternatives. Consider a set

with four elements: S = {x, y, z, t} and suppose that y ≻ x ≻ z ≻ t and y ▷ x ▷ z ▷ t.

Since x is not the first option in the list, we consider the choice probability of x in sets

{x, y}, {x, z, t} and then compare it with the choice probability of x in {x, y, z, t}.
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p(x, {x, y, z, t})− p(x, {x, y})p(x, {x, z, t})
p(x, x)

= γ(x)γ(y)γ(z)γ(t)q(x)2[(1− q(y)3)− (1− q(y))]

+ γ(x)γ(y)γ(z)(1− γ(t))q(x)[(1− q(y)2)− (1− q(y))]

+ γ(x)γ(y)(1− γ(z))γ(t)q(x)[(1− q(y)2)− (1− q(y))]

Recall that we aim to isolate the portion of the choice probability of x that’s related to

when the decision maker’s awareness set encompasses all available alternatives. How-

ever, the expression above includes terms related to the choice probability of x when the

awareness set is {x, y, z} or {x, y, t}. Notice that the additional terms have the following

structure:

p(x, {x, y, z})− p(x, {x, y})p(x, {x, z})
p(x, x)

= γ(x)γ(y)γ(z)q(x)[(1− q(y)2)− (1− q(y))]

p(x, {x, y, t})− p(x, {x, y})p(x, {x, t})
p(x, x)

= γ(x)γ(y)γ(t)q(x)[(1− q(y)2)− (1− q(y))]

Rewriting the additional terms yields:

p(x, {x, y, z, t})− p(x, {x, y})p(x, {x, z, t})
p(x, x)

= γ(x)γ(y)γ(z)γ(t)q(x)2[(1− q(y)3)− (1− q(y))]

+ (1− γ(t))

[
p(x, {x, y, z})− p(x, {x, y})p(x, {x, z})

p(x, x)

]
+ (1− γ(z))

[
p(x, {x, y, t})− p(x, {x, y})p(x, {x, t})

p(x, x)

]

To generalize Observation 1 to choice sets with four or more alternatives, we need

to handle the additional terms that appear in the expression. In what follows, we define

a function fx that extends the idea behind Equation 3 to sets with four or more alter-

natives by systematically isolating the awareness set with all available alternatives. We

then provide an axiom which extends the idea behind Observation 1 to sets with more
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than three alternatives.

Let X x denote the elements of X that includes x. For each alternative x, define

fx : X x → [0, 1) recursively as

fx(S) = p(x, S)− p(x, {▷x, x})p(x, S \▷x)

p(x, x)
−

∑
{x,▷x}⊂T⊂S

fx(T )
∏

k∈S\T

p(o, {k})

Note that the summation term in fx(T ) equals zero if |T | = 3. The summation term

cancels out the additional terms that are unrelated to the awareness set that includes

every alternative. Rewriting the expression from the example with four alternatives

above,

p(x, {x, y, z, t})− p(x, {x, y})p(x, {x, z, t})
p(x, x)

= γ(x)γ(y)γ(z)γ(t)q(x)2[(1− q(y)3)− (1− q(y))]

+ (1− γ(t))fx({x, y, z}) + (1− γ(z))fx({x, y, t})

= γ(x)γ(y)γ(z)γ(t)q(x)2[(1− q(y)3)− (1− q(y))]

+
∑

{x,y}⊂T⊂{x,y,z,t}

fx(T )
∏

k∈{x,y,z,t}\T

p(o, {k})

Recall that Observation 1 identifies for which S and x ∈ S values fx = 0. We are

now ready to state the axiom, which describes the conditions under which path inde-

pendence is satisfied, according to the choice set variations described above. In other

words, the axiom identifies the general conditions under which fx(S) = 0.

Axiom 4 (Limited Path Independence) If xP▷1 or x = ▷1 and xP▷2, then fx(S) = 0.

By the construction of the choice set variation of S, if x ̸= ▷1 the recall probabilities

of all the alternatives except ▷1 are the same in S and S\▷1. Thus, if xP▷1, then we can

divide-and-conquer choosing x in S. Similarly, if x = ▷1, then the recall probabilities of

all the alternatives in S \▷2 except x are the same in S and S \▷2. Therefore, if xP▷2,

then we can divide-and-conquer choosing x in S.

The next axiom says that the choice probability of the outside option in any set S
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can be written as the multiplication of its choice probabilities in singleton sets of the

elements of S.

Axiom 5 (Path Independence for Outside Option) For any S ⊆ X,

p(o, S) =
∏
x∈S

p(o, x)

In other words, we can divide-and-conquer choosing the outside option in any choice

set, as it is not affected by the final recall probability effects that violates this procedure.

As 4 hints at, not every alternative can satisfy path independence. The next axiom

describes how the choice probabilities change when an alternative does not satisfy path

independence. Define q(x) = p(x,{x,y})−p(x,x)(1−p(y,y))
p(x,x)p(y,y)

. Thus, q(x) is the observable coun-

terpart of the period recall probability of x, q(x), as discussed in Section 3. Let L(x, S)

denote the lower counter set of x in set S, i.e., L(x, S) = {y ∈ S | xPy} ∪ {x}.

Axiom 6 (Proportional Path Independence Bias) (i) If ▷1Px, and |L(x, S)| ≥ 2 then

fx(S)∑
y∈L(x,S) fy(S)

= q(x)▷(x,S)

(ii) If x = ▷1, ▷2Px, and |L(x, S)| ≥ 2 then

fx(S)∑
y∈L(x,S) fy(S)

= q(x)▷(x,S)−1

First, consider the case with ▷1Px, which means that x is not the first alternative in list

▷. In this case, the sets used in fx(S) is {▷1, x}, S \▷1}. Thus, the final recall probability

of every alternative in S \▷1 is the same in S \▷1 and S. However, because ▷1Px and

the final recall probability of ▷1 is different in sets {x,▷1} and S, so we cannot divide-

and-conquer choosing x in S.

fx(S) =
∏
z∈S

γ(z) q(x)▷(x,S)
∏

{y∈S\{▷1}|yPx}

(1− q(y)▷(y,S))
[
(1− q(1)▷(▷1,S))− (1− q(1)▷(▷1,{x,▷1)}))

]
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Because P is transitive, ▷1 is also preferred to any alternative that is in the lower

counter set of x. Thus, the divide-and-conquer structure is violated for any alternative

in the lower counter set of x. Moreover, given that x follows ▷1 in the list, the final

recall probability of ▷1 in {x,▷1} is independent from x. Therefore, the violation in the

divide-and-conquer structure is the same in every alternative in the lower counter set

of x, and this effect cancels out. Now suppose that x = ▷1 and ▷2Px. The intuition

behind this case is similar to the first, however, notice that fx(S) is evaluated using

the sets {{▷2, x}, S \ ▷2}, while every alternative y in S \ x is evaluated using the sets

{{▷1, y}, S \▷1}. The difference in the sets used causes an additional term to appear in

the sum over the lower counter set.

We are now ready to state the characterization theorem.

Theorem 1 A random choice rule p associated with list ▷ has a limited attention and

memory representation if and only if (p,▷) satisfies Axiom 1-6.

5 Related Literature

In this section, we compare our model with well-known parametric models of stochastic

choice. Figure 4 illustrates the relationship between our model and seven well-known

stochastic choice models on the Marschak-Machina triangle in a domain of two alterna-

tives, x and y, and the outside option o. This is the simplest environment we can utilize

to study the differences and similarities between these models. We show that even in

this simple environment, LAM makes distinct predictions from related parametric mod-

els of stochastic choice.

The Marschak-Machina triangle is a tool used in decision theory to represent stochas-

tic choices. In the standard setup, each corner represents a different alternative. The

edges of the triangle represent the probability mixtures of the three outcomes. The exis-

tence of the outside option requires a slight modification of the triangle, as the outside

option is always available. To highlight that there is no instance in which we observe

choices when the outside option is not available, the edge between x and y is denoted
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by a dotted line in 3.

Figure 3: The distance between point p(., {x}) and corner o (x) correspond to p(x, x) (p(o, x)). The distance between point
p(., {y}) and corner o (y) correspond to p(y, y) (p(o, y)). Given a point inside the Marschak-Machina triangle, the denoted lengths
correspond to the choice probabilities of alternatives x, y and the outside option o when the choice set is {x, y}.

In Figure 3, choosing the outside option with probability one is depicted by the top

corner of the triangle. We then fix stochastic choice for singleton sets and denote these

by the black dots on the edges of the triangle. The distance between the corner o and

the black point labeled by p(., {x}) represents p(x, x), which is the choice probability

of x when x is the only alternative.9 The distance between the corner x and p(., {x})
represents p(o, x), the choice probability of o when only x is available. Similarly, the

distance between corner o and the black point labeled by p(., {y}) is equal to p(y, y) and

the distance between corner y and the black point labeled by p(., {y}) is equal to p(o, y).

The points inside the Marschak-Machina triangle capture choice probabilities from the

choice set {x, y}. Consider the black point in the middle of the triangle. We draw three

lines that pass through the black dot that are parallel to the edges of the triangle. The

length of each of the two lines (denoted in orange) connecting the black point to the o-y

edge of the triangle corresponds to p(y, {x, y}). Similarly, the purple lines connecting the

black point to the o-y edge of the triangle corresponds to p(x, {x, y}) and the blue lines

connecting the black point to the x-y edge of the triangle corresponds to p(o, {x, y}).
9Note that p(x, x) is equivalent to p(x, {x, o}) as the outside option is available as part of any choice

set.
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In what follows, we fix the singleton choice probabilities as shown in Figure 4. This

figure identifies all possibilities for p(·, {x, y}) for each model given that all models agree

on these singleton choices. The thicker green line (labeled as LAM) in Figure 4 denotes

all possible p(·, {x, y}) belonging to our model when x is ranked above y and listed

before y, given the singleton choices. Hence, this line captures the explanatory power

of our model given these singleton choices.10

Figure 4: Given x ≻ y, and choice data on singleton sets, this figure identifies all possibilities for p(·, {x, y}) for each model of
interest. The predictions of LAM are highlighted by the green (thicker) line.

The first set of models we consider is the standard Luce model (see Luce [1959]) and

its generalizations. We first modify the Luce model so that we can accommodate the out-

side option. This definition is also adapted by Echenique et al. [2018]. The Luce model

is characterized by the Luce Independence of Irrelevant Alternatives (Luce IIA) condi-

tion, which implies the ratio of choice probabilities of two alternatives are the same

across choice sets. Hence, the modified Luce can accommodate only one point in Figure

4, denoted by the black point labeled Luce.11 Echenique et al. [2018] proposes a model

10If x were listed after y, then LAM makes the same predictions as Manzini and Mariotti [2014].
11There are other models that make the same prediction as the Luce model in this simple setting, as

long as each available alternative chosen with positive probability. See the binary focal model of Kovach
and Tserenjigmid [2022a], the nested logit model characterized by Kovach and Tserenjigmid [2022b], the
stochastic semi-order model of Horan [2021], the general Luce model of Echenique and Saito [2019], the
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(PALM) in which the decision maker evaluates available alternatives following a priority

order, capturing perception. The likelihood of selecting a particular alternative hinges

on the probability of not choosing a previously perceived alternative. Additionally, the

probability of opting for an alternative is determined by its relative utility according

to Luce. If none of the perceived alternatives is chosen, then the decision maker opts

for the outside option. Echenique et al. [2018] uses violations of Luce’s IIA to reveal

the perception priority of alternatives. We assume that x is perceived higher than y.

Then, PALM can accommodate one possible choice, which is denoted by PALM in Figure

4.12 Tserenjigmid [2021] is another generalization of the Luce model in which the Luce

weights depend on the order of the alternatives. In the model, removing a lower ranked

alternative does not cause Luce IIA violations. We denote the prediction of this model

under the assumption that x is ranked above y in Figure 4, denoted by O-Luce. Since x

is the top-ranked alternative, the relative choice probability of x and o does not change

after removing y. Hence, all these models are independent of LAM.13

The second set of parametric models is about capturing limited attention. One of the

seminal papers in this literature is Manzini and Mariotti [2014].14 This model satisfies

two conditions: i) adding an inferior alternative does not affect the choice probability

of more-preferred alternatives, and ii) choice set variations in which the most preferred

alternative is removed respect Luce IIA. As mentioned above, Manzini and Mariotti

[2014] is a special case of our model. There is only one choice probability satisfying

these conditions, which is marked by the red dot labeled MM in Figure 4. This point

also belongs to our model and captured by the situation in which x is ranked above y

and y is listed before x. The model of Manzini and Mariotti [2014] is also subsumed

by the models of Brady and Rehbeck [2016] and Aguiar [2017]. Brady and Rehbeck

Luce rule with limited consideration of Ahumada and Ülkü [2018], the preference-oriented Luce model
of Doğan and Yıldız [2021], and the categorical consideration model of Honda [2021].

12If x and y are perceived simultaneously, then PALM makes the same prediction as Luce. If y is per-
ceived before x, then the choice probability of y is the same as Luce, but the choice probability of x
(outside option) is higher (lower) than Luce, which does not overlap with any other models depicted in
the triangle.

13In the limiting case of LAM where q(x) = 0, the model satisfies Luce IIA when alternative y is
removed. This limiting case can be captured by the Ordered Luce model.

14See Horan [2019] for an axiomatic characterization of Manzini and Mariotti [2014] model when
there is no default alternative. Demirkan and Kimya [2020] study a generalization of this model in which
γ is the menu-dependent. Gibbard [2021] allows heterogeneous preferences within Manzini and Mariotti
[2014]’s framework.
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State 1 State 2 State 3

x vx 0 0
y 0 vy 0
o R R R

Prior probability s1 s2 1− s1 − s2

Table 1: The state-payoff structure assumed in the rational inattention model for comparison with the limited attention and memory
model.

[2016] assumes a distribution over possible consideration sets in which each possible

subset has a positive probability. In this model, we must have p(o,{x,y})
p(y,{x,y}) = p(o,y)

p(y,y)
, i.e.,

removing the most preferred alternative respects Luce IIA. Since this model does not

require the first condition, it is more general than Manzini and Mariotti [2014]. The

points that can be accommodated by Brady and Rehbeck [2016] are indicated by the

purple line (labeled as BR) in Figure 4. On the other hand, the random categorization

model of Aguiar [2017] accommodates multiple possibilities (labeled as RC) in Figure

4. Note that if p(·, {x, y}) belongs to this model, p(x, {x, y}) must be equal to p(x, x).

These models are not only different from each other but also distinct from LAM since

their predictions do not overlap with the green line except at MM.

We now discuss how LAM is related to the rational inattention model. In the ratio-

nal inattention model, the decision maker has imperfect information about the payoff

resulting from each available alternative but she can acquire information at a cost to

resolve the uncertainty regarding the payoffs. The cost of acquiring information is given

by the Shannon mutual information between prior and posterior beliefs, multiplied by

a parameter capturing the unit cost of acquiring information. The distinction between

the modeling approaches of the rational inattention model and LAM requires making

certain assumptions about the underlying states of the world and the payoff structure in

order to compare the predictions of the two models. In particular, we fix the state space

and the payoff structure of the rational inattention as shown in Table 1.

Following Matějka and McKay [2015], we depict the outside option o as an alterna-

tive that pays the same payoff regardless of the underlying state. We also assume that

R > 0. Given the prior state probabilities, the parameter capturing the unit cost of ac-

quiring information, and R, choices from the singleton choice sets pin down the specific

30



vx and vy values that explain the singleton choices. We then use these vx and vy values

to calculate the model’s prediction of choice probabilities when both x and y are avail-

able (in addition to the outside option). We repeat this exercise for the possible values

of prior state probabilities, the unit cost of acquiring information and R can take, while

ensuring that the singleton choices can be supported. The red triangle (labeled as RI) in

Figure 4 denote all possible predictions for the binary choice set, given the choices from

the singleton choice sets and varying the unit cost of acquiring information and the R

value. We would like to highlight that LAM makes distinct predictions from the rational

inattention model in this setting.15

The third set of parametric models we consider is the literature on choice from lists.

Rubinstein and Salant [2006] introduced a model in which the decision maker chooses

from lists. They also explored random choice rules where the list is stochastic. Their

model satisfies regularity, which is violated in our model. Yegane [2022] is the only

model in this literature studying limited memory. To accommodate the outside option,

we consider a modified version of this model where the outside option can be chosen

with a positive probability. We assume that the last alternative is always the outside op-

tion and considered with probability one. To make the comparison with LAM consistent,

we assume x appears before y in the list (x ▷ y ▷ o).16 This implies that removing the

first alternative in the list does not generate violations of Luce IIA between y and o. On

the other hand, introducing y reduces the choice probability of x and the relative choice

probabilities of x and o. The model of Yegane [2022] makes a strong prediction: There

is only one possible point in Figure 4, denoted by light blue dot labeled LM. Notice that

even though LAM combines the models of Manzini and Mariotti [2014] and Yegane

[2022], the predictions of LAM is not a convex combination of these models.

Yildiz [2016] considers a decision maker who chooses an alternative by recursively

making binary comparisons until the choice set is exhausted. The order of comparison

is captured by a list. Yildiz [2016] characterizes random choice rules that are rational-

15As an extension, we modified the payoff structure in Table 1 by allowing the payoff of x in state 2
and the payoff of y in state 1 distinct from zero. We then repeated the exercise described above. In this
case, the area corresponding to the possible predictions of the rational inattention model becomes very
large, and encompasses most of the models depicted in Table 1 above, including LAM.

16If the list order is given by y ▷ x ▷ o, then the prediction of Yegane [2022] for the given singleton
choice probabilities corresponds to a point on the purple line capturing Aguiar [2017].
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izable by this process, referred to as list rational (LR) random choice rules. In LR, the

list is endogenously determined from the observed choice behavior. In addition, the LR

model does not have an outside option. To make the comparison consistent, we intro-

duce an outside option and assume the list exogenously given, which is x▷y▷o. Under

this list order, LR can accommodate the choices that are indicated by the light gray line

(labeled as LR) in Figure 4. Hence, LAM is distinct from the LR model.

6 Conclusion

In this paper, we provide a parametric model to study the interactions between atten-

tion, memory, preferences, and choices. Our model conceptually distinguishes between

the allocation of attention to different alternatives and the accessibility of alternatives

from memory. In our model, when an alternative is not selected, it can be attributed to

one of three potential reasons. The first is the presence of a more favored alternative.

The second reason is that the alternative might not have been taken into account be-

cause the decision maker was unaware of it. The third possibility is that even though

the decision maker was aware of the alternative at some point, she could not recall it

at the time of choice. Our results show that we can distinguish these three possibilities

from each other. To better understand the relationship between attention, memory and

preferences, we study the behavioral foundations of the limited attention and memory

model. In our future work, we plan to apply our model to better understand the interac-

tion between attention, memory and preferences in economically relevant applications.
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E. Honka, A. Hortaçsu, and M. Wildenbeest. Empirical search and consideration sets. In

Handbook of the Economics of Marketing, volume 1, pages 193–257. Elsevier, 2019.

S. Horan. Random consideration and choice: A case study of âdefaultâ options. Mathe-
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A Proof of Theorem 1

(Necessity) The necessity of all axioms is already outlined in the main text.
(Sufficiency) Assume that (p,▷) is a random choice rule with an associated list satisfying
Axiom 1 - 6. Define a binary relation P on X as follows: xPy if one of the following is
observed:
(i) p(x, x) = p(x, {x, y}), or
(ii) p(y, y) ̸= p(y, {x, y}) and x▷ y.

We first show that P is asymmetric. For a contradiction, suppose that there exists x, y ∈ X
with xPy and yPx. Without loss of generality, let x ▷ y. Then yPx must be revealed from
P (i), due to the definition of P . Thus, p(y, y) = p(y, {x, y}). Therefore, xPy can only follow
from P (i), which requires that p(x, x) = p(x, {x, y}), but this is ruled out by Axiom 1 as
x ▷ y. Hence, P is asymmetric. P is complete by definition. For any two alternative x and
y, either p(x, x) = p(x, {x, y}) or p(x, x) ̸= p(x, {x, y}). If p(x, x) = p(x, {x, y}), then xPy by
P (i). If p(x, x) ̸= p(x, {x, y}) and y▷ x, then yPx by P (ii). If p(x, x) ̸= p(x, {x, y}), x▷ y, and
p(y, y) = p(y, {x, y}) then yPx by P (i). If p(x, x) ̸= p(x, {x, y}), x▷y, and p(y, y) ̸= p(y, {x, y}),
then xPy follows from P (ii). Transitivity of P follows from Axiom 2. Therefore, P is a linear
order. For all x ∈ X, define

γ(x) = p(x, x)

If alternative xPy and x▷ y, define

q(x) =
p(x, {x, y})− p(x, x)(1− p(y, y))

p(x, x)p(y, y)

Note that q(x) is well-defined and strictly positive, because if there exists y, z ∈ X such
that xPy, z and x▷ y, z, then Axiom 3 implies

p(x, {x, y})− p(x, x)(1− p(y, y))

p(x, x)p(y, y)
=

p(x, {x, z})− p(x, x)(1− p(z, z))

p(x, x)p(z, z)
> 0

Moreover, we can rewrite q(x) as

q(x) = 1 +
p(x, {x, y})− p(x, x)

p(x, x)p(y, y)

Thus, Axiom 1 implies that q(x) < 1.

For any set S ∈ X with |S| ≥ 2, we provide a proof by strong induction on the cardinality
of the set S.
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(Basis Step): First, we show that the choices are consistent with the representation for the
basis case |S| = 2. If xPy and x▷ y,

p(x, {x, y}) = γ(x)γ(y)q(x) + γ(x)(1− γ(y))

By Axiom 5,

p(o, {x, y}) = p(o, x)p(o, y)

= (1− γ(x))(1− γ(y))

Since choice probabilities in any choice set must sum up to 1,

p(y, {x, y}) = γ(x)γ(y)(1− q(x)) + γ(y)(1− γ(x))

If xPy and y ▷ x,

p(x, {x, y}) = γ(x)

p(y, {x, y}) = γ(y)(1− γ(x))

p(o, {x, y}) = (1− γ(x))(1− γ(y))

(Induction Hypothesis:) Now suppose that for any S with |S| ≤ n, the representation holds.
(Inductive Step): In what follows, to simplify the notation, we denote the final recall proba-
bility of x in the awareness set S when the list is ▷ by Q(x, S,▷),

Q(x, S,▷) = q(x)▷(x,S)

Since the random choice rule p is associated with a single, fixed list ▷, to simplify the notation,
we fix the list as ▷ and use the notation Q(x, S) = Q(x, S,▷) as long as the simplification
does not create any confusion. Note that if S ∩ T = {x}

Q(x, S)Q(x, T ) = Q(x, S ∪ T )

Let µ(S|T ) denote the probability that the awareness set equals S when the set of available
alternatives is T ,

µ(S|T ) =
∏
x∈S

γ(x)
∏

y∈T\S

(1− γ(y))

We will utilize the next two lemmas show that the (p,▷) satisfying Axiom 1-6 is consis-
tent with the representation. Let ▷1 and ▷2 denote the first and second alternative in list ▷
respectively. Define the function 1xPy where x, y ∈ X as follows,

1xPy(i) :

{
i if xPy

1 otherwise
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Lemma 1 Suppose that (p,▷) has a limited attention and memory representation. For any
S ⊆ X with |S| ≥ 3 and any x ∈ S,

p(x, {x,▷i})p(x, S \▷i)

p(x, x)
−

∑
{x,▷i}⊂T⊂S

fx(T )
∏

k∈S\T

p(o, k) (4)

= µ(S|S)Q(x, S)
∏

y∈S\▷i:yPx

(1−Q(y, S))1▷iPx(1−Q(▷i, {x,▷i}))

+
∑
T⊂S

µ(T |S)Q(x, T )
∏

y∈T :yPx

(1−Q(y, T ))

where ▷i =

{
▷1 if x ̸= ▷1

▷2 if x = ▷1

Proof. We provide a proof by strong induction on the cardinality of the set S.
(Basis Step:) Suppose that |S| = 3. Note that if S is a singleton or a binary set, fx(S) = 0.
Hence, ∑

{x,▷i}⊆T⊂S

fx(T )
∏

k∈S\T

p(o, k) = 0

Let S = {x, y,▷i}, then

p(x, {x,▷i})p(x, S \▷i)

p(x, x)
=

p(x, {x,▷i})p(x, {x, y})
p(x, x)

p(x, {x,▷i})p(x, {x, y})
p(x, x)

= γ(x)γ(y)γ(i)Q(x, {x, y})Q(x, {x,▷i})1yPx(1−Q(y, {x, y}))1▷iPx(1−Q(▷i, {x,▷i}))
+ γ(x)(1− γ(y))γ(i)Q(x, {x,▷i})1▷iPx(1−Q(▷i, {x,▷i}))

+ γ(x)γ(y)(1− γ(i))Q(x, {x, y})1yPx(1−Q(y, {x, y}))
+ γ(x)(1− γ(y))(1− γ(i))

Plugging in
Q(y, {x, y}) = Q(y, {x, y,▷1}) = Q(y, S)

Q(x, {x, y})Q(x, {x,▷i}) = Q(x, {x, y,▷1}) = Q(x, S)
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p(x, {x,▷i})p(x, {x, y})
p(x, x)

=µ(S|S)Q(x, S)1yPx(1−Q(y, S))1▷iPx(1−Q(▷i, {x,▷i}))

+ µ(x,▷i|S)Q(x, {x,▷i})1▷iPx(1−Q(▷i, {x,▷i}))
+ µ(x, y|S)Q(x, {x, y})1yPx(1−Q(y, {x, y}))
+ µ(x|S)
= µ(S|S)Q(x, S)1yPx(1−Q(y, S))1▷iPx(1−Q(▷i, {x,▷i}))

+
∑

T⊂{x,y,▷i}

µ(T |x, y,▷i)Q(x, T )
∏

y∈T :yPx

(1−Q(y, T ))

= µ(S|S)Q(x, S)
∏

y∈S\▷i:yPx

(1−Q(y, S))1▷iPx(1−Q(▷i, {x,▷i}))

+
∑
T⊂S

µ(T |S)Q(x, T )
∏

y∈T :yPx

(1−Q(y, T ))

(Induction Hypothesis:) Now suppose that for any S with |S| ≤ n, Equation 4 holds. (In-
ductive Step): Consider S with |S| = n+ 1. Note that

p(x, {x,▷i})
p(x, x)

= γ(i)Q(x, {x,▷i})1▷iPx(1−Q(▷i, {x,▷i})) + 1− γ(i)

p(x, {x,▷i})p(x, S \▷i})
p(x, x)

−
∑

{x,▷i}⊂T⊂S

fx(T )
∏

k∈S\T

p(o, k)

=
∑

T⊆S\▷i

(1− γ(i))µ(T |S \ {▷i})Q(x, T )
∏

y∈T :yPx

(1−Q(y, T ))

−
∑

T⊆S\▷i

γ(i)µ(T |S \ {▷i})Q(x, T ∪ {▷i})
∏

y∈T\{▷i}:yPx

(1−Q(y, T ))1▷iPx(1−Q(▷i, {x,▷1}))

−
∑

{x,▷i}⊂T⊂S

fx(T )
∏

k∈S\T

p(o, k)

=
∑

T⊆S\▷i

µ(T |S)Q(x, T )
∏

y∈T :yPx

(1−Q(y, T ))

−
∑

{x,▷i}⊆T⊆S

µ(T |S)Q(x, T )
∏

y∈T\{▷i}:yPx

(1−Q(y, T ))1▷iPx(1−Q(▷i, {x,▷i}))

−
∑

{x,▷1}⊂T⊂S

fx(T )
∏

k∈S\T

p(o, k)
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Using the definition of fx(T ) and the induction hypothesis,

fx(T ) = p(x, T )−
∑
K⊂T

µ(K|T )Q(x,K)
∏

y∈K:yPx

(1−Q(y,K))

− µ(T |T )Q(x, T )
∏

y∈T\{▷i}:yPx

(1−Q(y, T ))1▷iPx(1−Q(▷i, {x,▷i}))

=
∑
K⊆T

µ(K|T )Q(x,K)
∏

y∈K:yPx

(1−Q(y,K))

−
∑
K⊂T

µ(K|T )Q(x,K)
∏

y∈K:yPx

(1−Q(y,K))

− µ(T |T )Q(x, T )
∏

y∈T\{▷i}:yPx

(1−Q(y, T ))1▷iPx(1−Q(▷i, {x,▷i}))

= µ(T |T )Q(x, T )
∏

y∈T\{▷i}:yPx

(1−Q(y, T ))1▷iPx(1−Q(▷i, T )− (1−Q(▷i, {x,▷i})))

Thus,

p(x, {x,▷i})p(x, S \ {▷i})
p(x, x)

−
∑

{x,▷i}⊂T⊂S

fx(T )
∏

k∈S\T

p(o, k) =
∑

T⊆S\▷i

µ(T |S)Q(x, T )
∏

y∈T :yPx

(1−Q(y, T ))

−
∑

{x,▷i}⊆T⊆S

µ(T |S)Q(x, T )
∏

y∈T\{▷i}:yPx

(1−Q(y, T ))1▷iPx(1−Q(▷i, {x,▷i}))

−
∑

{x,▷i}⊂T⊂S

µ(T |T )
∏

k∈S\T

p(o, k)Q(x, T )
∏

y∈T\{▷i}:yPx

(1−Q(y, T ))1▷iPx[1−Q(▷i, T )−(1−Q(▷i, {x,▷i}))]

=
∑

T⊆S\▷i

µ(T |S)Q(x, T )
∏

y∈T :yPx

(1−Q(y, T ))−
∑

{x,▷i}⊆T⊂S

µ(T |S)Q(x, T )
∏

y∈T\{▷i}:yPx

(1−Q(y, T ))

+ µ(S|S)Q(x, S)
∏

y∈S\{▷i}:yPx

(1−Q(y, S))1▷iPx(1−Q(▷i, {x,▷i}))

=
∑
T⊂S

µ(T |S)Q(x, T )
∏

y∈T :yPx

(1−Q(y, T ))

+ µ(S|S)Q(x, S)
∏

y∈S\{▷i}:yPx

(1−Q(y, S))1▷iPx(1−Q(▷i, {x,▷i}))

Lemma 2 Suppose that for any T with |T | ≤ n, choices are consistent with the representation.
Then, for any S with |S| = n+ 1,∑
x∈S∪{o}

fx(S) =
∑

x∈S:▷iPx

µ(S|S)Q(x, S)
∏

y∈S\{▷i}:yPx

(1−Q(y, S))[(1−Q(▷i, S))−(1−Q(▷i, {x,▷i}))]

Proof. By the definition of fx(S),
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p(x, S)− fx(S) =
p(x, {x,▷i})p(x, S \ {▷i})

p(x, x)
+

∑
{x,▷i}⊆T⊂S

fx(T )
∏

k∈S\T

p(o, k)

By Lemma 1,∑
x∈S∪{o}

[p(x, S)− fx(S)] =
∑

x∈S∪{o}

∑
T⊂S

µ(T |S)Q(x, T )
∏

y∈T :yPx

(1−Q(y, T ))

+
∑

x∈S∪{o}

µ(S|S)Q(x, S)
∏

y∈S\{▷i}:yPx

(1−Q(y, S))1▷iPx(1−Q(▷i, {x,▷i}))

Note that∑
x∈S∪{o}

∑
T⊂S

µ(T |S)Q(x, T )
∏

y∈T :yPx

(1−Q(y, T )) +
∑

x∈S∪{o}

µ(S|S)Q(x, S)
∏

y∈S:yPx

(1−Q(y, S)) = 1

Thus,∑
x∈S∪{o}

[p(x, S)− fx(S)] = 1−
∑

x∈S∪{o}

µ(S|S)Q(x, S)
∏

y∈S:yPx

(1−Q(y, S))

+
∑

x∈S∪{o}

µ(S|S)Q(x, S)
∏

y∈S\{▷i}:yPx

(1−Q(y, S))1▷iPx(1−Q(▷i, {x,▷i}))

Plugging in ∑
x∈S∪{o}

p(x, S) = 1

1−
∑

x∈S∪{o}

fx(S) = 1−
∑

x∈S:▷iPx

µ(S|S)Q(x, S)
∏

y∈S\{▷i}:yPx

(1−Q(y, S))[(1−Q(▷i, S))−(1−Q(▷i, {x,▷i}))]∑
x∈S∪{o}

fx(S) =
∑

x∈S:▷iPx

µ(S|S)Q(x, S)
∏

y∈S\{▷i}:yPx

(1−Q(y, S))[(1−Q(▷i, S))−(1−Q(▷i, {x,▷i}))]

Recall that by the induction hypothesis, the representation holds for any set T with |T | ≤ n.
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Now consider a set S ⊆ X with |S| = n+ 1. If xP▷1 or x = ▷1 and xP▷2, then by Axiom 4,

fx(S) = p(x, S)− p(x, {x,▷i})p(x, S \ {▷i})
p(x, x)

−
∑

{x,▷i}⊂T⊂S

fx(T )
∏

k∈S\T

p(o, k)

= 0

p(x, S) =
p(x, {x,▷i})p(x, S \ {▷i})

p(x, x)
+

∑
{x,▷i}⊂T⊂S

fx(T )
∏

k∈S\T

p(o, k)

By Lemma 1,

p(x, S) = µ(S|S)Q(x, S)
∏

y∈S\{▷i}:yPx

(1−Q(y, S))1▷iPx(1−Q(▷i, {x,▷i}))

+
∑
T⊂S

µ(T |S)Q(x, T )
∏

y∈T :yPx

(1−Q(y, T ))

= µ(S|S)Q(x, S)
∏

y∈S\{▷i}:yPx

(1−Q(y, S))

+
∑
T⊂S

µ(T |S)Q(x, T )
∏

y∈T :yPx

(1−Q(y, T ))

=
∑
T⊆S

µ(T |S)Q(x, T )
∏

y∈T :yPx

(1−Q(y, T ))

Thus, Axiom 4 ensures that choices are consistent with the representation if xP▷1 or x =
▷1 and xP▷2. What remains to show is that the choices are consistent with the representation
if ▷1Px or x = ▷1 and ▷2Px.

Axiom 4 implies that for any alternative x ∈ S that is revealed to be preferred to ▷1,
fx(S) = 0. From Axiom 5, for any S, fo(S) = 0. Thus,∑

x∈S∪{o}

fx(S) =
∑

x∈S:▷1Px

fx(S) + f▷1(S) (5)

First, consider the case with x = ▷1 and ▷2P▷1. By Axiom 6,

f▷1(S)∑
y∈L(▷1,S)

fy(S)
= q(1)▷(▷1,S)−1

Lemma 2 together with Equation 5 implies,
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f▷1(S)

= q(1)▷(▷1,S)−1

[ ∑
x∈S:▷iPx

µ(S|S)Q(x, S)
∏

y∈S\{▷i}:yPx

(1−Q(y, S)) [(1−Q(▷i, S))− (1−Q(▷i, {x,▷i}))]

]

= q(1)▷(▷1,S)−1µ(S|S)

[ ∑
x∈S\{▷1}:▷1Px

Q(x, S)[(1−Q(▷1, S))

− (1−Q(▷1, {x,▷1}))]
∏

y∈S\{▷1}:yPx

(1−Q(y, S))

+Q(▷1, S)[(1−Q(▷2, S))− (1−Q(▷2, {▷1,▷2}))
∏

y∈S\{▷2}:yPx

(1−Q(y, S))]

]

Since Q(▷2, {▷1,▷2}) = 1

f▷1(S) = q(1)▷(▷1,S)−1µ(S|S)

[ ∑
x∈S\{▷1}:▷iPx

Q(x, S) [(1−Q(▷1, S))

− (1−Q(▷1, {x,▷1}))
∏

y∈S\{▷1}:yPx

(1−Q(y, S)) +Q(▷1, S)
∏

y∈S:yP▷1

(1−Q(y, S))]

]

= q(1)▷(▷1,S)−1µ(S|S)
∏

y∈S:yP▷1

(1−Q(y, S))

[
Q(▷1, S)

+
∑

x∈S\{▷1}:▷1Px

Q(x, S) [(1−Q(▷1, S))− (1−Q(▷1, {x,▷1}))]
∏

y∈S:▷1PyPx

(1−Q(y, S))]

]

For any x ∈ S \ {▷1}, Q(▷1, {x,▷1}) = q(1),

f▷1(S) = q(1)▷(▷1,S)−1µ(S|S)
∏

y∈S:yP▷1

(1−Q(y, S))

[
Q(▷1, S) [(1−Q(▷1, S))

− (1−Q(▷1, {x,▷1}))
∑

x∈S\{▷1}:▷1Px

Q(x, S)
∏

y∈S:▷1PyPx

(1−Q(y, S))]

]

Denote the last alternative in list ▷ with ▷n, so Q(▷n, S) = 1. Notice that, if ▷nPz for
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some z ∈ S, then

µ(S|S)Q(x, S) [(1−Q(▷1, S))− (1−Q(▷1, {x,▷1}))]
∏

y∈S\{▷1}:yPx

(1−Q(y, S)) = 0

Enumerate the alternatives that are strictly worse that ▷1 and at least as good as ▷n so
that ▷1Px1Px2...Pxk = ▷n

k∑
i=1

Q(xi, S)
∏

j∈{1,2,...,k}:xjPxi

(1−Q(xj, S)) = Q(xk, S)(1−Q(xk−1, S))
∏

j<k−1

(1−Q(xj, S))

+Q(xk−1, S)
∏

j<k−1

(1−Q(xj, S))

+
k−2∑
i=1

Q(xi, S)
∏

j∈{1,2,...,k}:xjPxi

(1−Q(xj, S))

Since Q(xk, S) = 1,

k∑
i=1

Q(xi, S)
∏

j∈{1,2,...,k}:xjPxi

(1−Q(xj, S)) =
∏

j<k−1

(1−Q(xj, S))

+
k−2∑
i=1

Q(xi, S)
∏

j∈{1,2,...,k}:xjPxi

(1−Q(xj, S))

If we keep iterating until the sum is exhausted,

k∑
i=1

Q(xi, S)
∏

j∈{1,2,...,k}:xjPxi

(1−Q(xj, S)) = 1

Thus,

f▷1(S) = q(1)▷(▷1,S)−1µ(S|S)
∏

y∈S:yP▷1

(1−Q(y, S))

[
Q(▷1, S) + (1−Q(▷1, S))− (1−Q(▷1, {x,▷1}))]

]
= q(1)▷(▷1,S)−1µ(S|S)

∏
y∈S:yP▷1

(1−Q(y, S))Q(▷1, {x,▷1})

= Q(▷1, S)µ(S|S)
∏

y∈S:yP▷1

(1−Q(y, S))
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Combining this with the definition of f▷1(S) and Lemma 1,

f▷1(S) = µ(S|S)Q(▷1, S)
∏

y∈S:yP▷1

(1−Q(y, S))

= p(▷1, S)−µ(S|S)Q(▷1, S)(1−Q(▷2, {▷1,▷2}))−
∑
T⊂S

µ(T |S)Q(▷1, T )
∏

z∈T :zPx

(1−Q(z, T ))

Q(▷2, {▷1,▷2}) = 1 implies that

p(▷1, S) = µ(S|S)Q(▷1, S)
∏

y∈S:yP▷1

(1−Q(y, S) +
∑
T⊂S

µ(T |S)Q(▷1, T )
∏

z∈T :zPx

(1−Q(z, T ))

=
∑
T⊆S

µ(T |S)Q(▷1, T )
∏

z∈T :zPx

(1−Q(z, T ))

Now suppose that ▷1Px. First, consider the most preferred alternative x among the ones
with fx(S) > 0.

∑
x∈S∪{o}

fx(S) =
∑

x∈S:▷1Px

fx(S)

By Axiom 6,

fx(S)∑
y∈L(x,S) fy(S)

= q(x)▷(▷x,S)

Lemma 2 implies,

fx(S)

= q(x)▷(x,S)

[ ∑
x∈S:▷1Px

µ(S|S)Q(x, S)
∏

y∈S\{▷1}:yPx

(1−Q(y, S)) [(1−Q(▷1, S))− (1−Q(▷1, {x,▷1}))]

]
= q(x)▷(x,S)µ(S|S) [(1−Q(▷1, S))− (1− (1−Q(▷1, {▷1, x})))][ ∑

x∈S:▷1Px

Q(x, S)
∏

y∈S\{▷1}:yPx

(1−Q(y, S))

]
= q(x)▷(x,S)µ(S|S) [(1−Q(▷1, S))− (1− q(1))]

∏
y∈S:yP▷1

(1−Q(y, S))
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From Lemma 1 and Axiom 6,

fx(S) = p(x, S)− µ(S|S)Q(x, S)(1−Q(▷1, {▷1, x})) +
∑
T⊂S

µ(T |S)Q(x, T )
∏

z∈T :zPx

(1−Q(z, T ))

p(x, S) = fx(S) + µ(S|S)Q(x, S)(1−Q(▷1, {▷1, x})) +
∑
T⊂S

µ(T |S)Q(x, T )
∏

z∈T :zPx

(1−Q(z, T ))

= µ(S|S)Q(x, S) [(1−Q(▷1, S))− (1−Q(▷1, {▷1, x}))]
∏

y∈S:yP▷1

(1−Q(y, S))

+ µ(S|S)Q(x, S)(1−Q(▷1, {▷1, x}))

+
∑
T⊂S

µ(T |S)Q(x, T )
∏

z∈T :zPx

(1−Q(z, T ))

= µ(S|S)Q(x, S)(1−Q(▷1, S))
∏

y∈S:yP▷1

(1−Q(y, S))

+
∑
T⊂S

µ(T |S)Q(x, T )
∏

z∈T :zPx

(1−Q(z, T ))

= µ(S|S)Q(x, S)
∏

y∈S:yPx

(1−Q(y, S))

+
∑
T⊂S

µ(T |S)Q(x, T )
∏

z∈T :zPx

(1−Q(z, T ))

p(x, S) =
∑
T⊆S

µ(T |S)Q(x, T )
∏

z∈T :zPx

(1−Q(z, T ))

which completes the proof.
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